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METACOMPACTNESS IN L-TOPOLOGICAL SPACES

S. JACOB JOHN AND T. BAIJU

Abstract. In this paper the concept of metacompactness in L-topological

spaces is introduced by means of point finite families of L-fuzzy sets. This
fuzzy metacompactness is a natural generalization of Lowen fuzzy compact-

ness. Further a characterization of fuzzy metacompactness in the weakly in-
duced L-topological spaces is also obtained.

1. Introduction

In [7] Fu-Gui Shi and Cheng-You Zheng introduced the concept of α-locally
finite family to characterize fuzzy compactness and using this they have defined
paracompactness in L-topological spaces in [8], which is a natural generalization
of the Lowen fuzzy compactness. In this paper we define α-point finite families
and metacompactness in L-topological spaces. Besides getting a characterization
for metacompactness in the weakly induced L-topological spaces that involve the
concept of well monotone and directed α-Q-covers, it is also seen that the meta-
compactness obtained is closed hereditary.

2. Preliminaries and Basic Definitions

Let L be a complete lattice. Its universal bounds are denoted by ⊥ and >. We
presume that L is consistent. ie., ⊥ is distinct from >. Thus ⊥ ≤ α ≤ > for all
α ∈ L. We note

∨
φ = ⊥ and

∧
φ = >. The two point lattice {⊥,>} is denoted by

2. A unary operation ′ on L is a quasi-complementation. It is an involution (ie.,
α′′ = α for all α ∈ L) that inverts the ordering. (ie., α ≤ β implies β′ ≤ α′). In
(L,′ ) the DeMorgan laws hold: (

∨
A)′ =

∧
{α′;α ∈ A} and (

∧
A)′ =

∨
{α′;α ∈ A}

for every A ⊂ L. Moreover, in particular, ⊥′ = > and >′ = ⊥.

A molecule or co-prime element in a lattice L is a join irreducible element in L
and the set of all non zero co-prime elements of L is denoted by M(L). A complete
lattice L is completely distributive if it satisfies either of the logically equivalent
CD1 or CD2 below:

CD1:
∧

i∈I(
∨

j∈Ji
ai,j) =

∨
φ∈Πi∈IJi

(
∧

i∈I ai,φ(i))

CD2:
∨

i∈I(
∧

j∈Ji
ai,j) =

∧
φ∈Πi∈IJi

(
∨

i∈I ai,φ(i))
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for all {{aij ; j ∈ Ji}; i ∈ I} ⊂ P (L) \ {φ}, I 6= φ

If L is a complete lattice, then for a set X, LX is the complete lattice of all maps
from X into L, called L-sets or L-subsets of X. Under point-wise ordering, a ≤ b
in LX if and only if a(x) ≤ b(x) in L for all x ∈ X. If A ⊂ X, 1A ∈ 2X ⊂ LX

is the characteristic function of A. The constant member of LX with value α is
denoted by α itself. We use the same notation to represent crisp set as well as
its characteristic function. Wang [9] proved that a complete lattice is completely
distributive if and only if for each a ∈ L , there exists B ⊆ L such that (i) a =

∨
A

and (ii) if A ⊆ L and a ≤
∨

B, then for each b ∈ B , there exists c ∈ A such that
b ≤ c. B is called the minimal set of a and β(a) denote the union of all minimal
sets of a. Again β∗(a) = β(a)∩M(L). Clearly β(a) and β∗(a) are minimal sets of a.

For α ∈ L and A ∈ LX , we use the following notations.

A[α] = {x ∈ X : A(x) ≥ α}
A[α] = {x ∈ X : A(x) ≤ α}
A(α) = {x ∈ X : A(x) 6≤ α}
A(α) = {x ∈ X : α ∈ β(A(x))}

Clearly LX has a quasi complementation ′ defined point-wisely α′(x) = α(x)′ for
all α ∈ L and x ∈ X. Thus the DeMorgan laws are inherited by (LX ,′ ).

Let (L,′ ) be a complete lattice equipped with an order reversing involution and
X be any non empty set. A subfamily τ ⊂ LX which is closed under the for-
mation of sups and finite infs (both formed in LX) is called an L-topology on X
and its members are called open L-sets. The pair (X, τ) is called an L-topological
space (L-ts). The category of all L-topological spaces, together with L-continuous
mappings and the composition and identities of Set is denoted by L-Top. Quasi
complements of open L-sets are called closed L-sets.

We know that the set of all non zero co-prime elements in a completely distribu-
tive lattice is

∨
-generating. Moreover for a continuous lattice L and a topological

space (X, T ), T = ıLωL(T ) is not true in general. By proposition 3.5 in Kubiak
[4] we know that one sufficient condition for T = ıLωL(T ) is that L is completely
distributive.

In [10] Wang extended the Lowen functor ω for completely distributive lattices
as follows: For a topological space (X, T ), (X, ω(T )) is called the induced space of
(X, T ) where ω(T ) = {A ∈ LX ;∀α ∈ M(L), A(α′) ∈ T}. In 1992 Kubiak also ex-
tended the Lowen functor ωL for a complete lattice L. In fact when L is completely
distributive, ωL = ω.
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An L-topological space (X, τ) is called weakly induced space if ∀α ∈ M(L),∀A ∈
τ it is true that A(α′) ∈ [τ ] where [τ ] is the set of all crisp open sets in τ .

Based on these facts, in this paper we use a complete, completely distributive
lattice L in LX . For a standardized basic fixed-basis terminology, we follow Hoehle
and Rodabaugh [3]. Also L-Pnt(X) denote the collection of all L-fuzzy points in
the L-ts (X, τ).

A closed remote neighbourhood (R-nbd) of xλ is a closed L-set P such that
xλ 6≤ P . An open L-set Q is called an open Q-neighbourhood (Q-nbd) of xλ if Q′

is a closed R-nbd of xλ. Set of all Q-nbds of xλ is denoted by Q(xλ) and the set of
all closed R-nbds of xλ is denoted by η(xλ).

A is called α-nonempty if A[α] 6= φ. Moreover if there exists γ ∈ β∗(α) such
that A is γ-nonempty, then A is called α−-nonempty. If A ∧ B is α-nonempty
(α−-nonempty), we say that A is α-nonempty (α−-nonempty) in B.

Definition 2.1. [9, 10] Let (X, τ) be an L-ts, D ∈ LX and α ∈ M(L). A ⊆ τ ′ is
called an α-R neighborhood family of D, briefly α-RF of D , if for each xα ≤ D,
there exists A ∈ A such that xα 6≤ A. A is called an α− − R neighborhood fam-
ily of D, briefly α−−RF of D , if there exists γ ∈ β∗(α) such that A is a γ-RF of D.

If {A} is an α-RF (α−RF ) of D, then we call A an α-R-neighborhood (α−-R-
neighborhood) of D.

Definition 2.2. [8] Let (X, τ) be an L-ts, D ∈ LX and α ∈ M(L). A ⊆ τ is called
an α-Q-cover of D, if for each xα ≤ D, there exists A ∈ A such that xα 6≤ A′. A is
called an an α−-Q cover of D, if there exists γ ∈ β∗(α) such that A is a γ-Q-cover
of D.

If {A} is an α-Q-cover (α−-Q-cover) of D, then we call A an α-Q-neighborhood
(α−-Q-neighborhood) of D.

Clearly A is an α-RF of D if and only if A′ = {A′ : A ∈ A} is an α-Q-cover of D.

Definition 2.3. [7] Let A = {At : t ∈ T} ⊆ LX , D ∈ LX , α ∈ M(L). If ∀ xα ≤ D,
∃ P ∈ η(xα) and a finite subset T0 of T such that ∀t ∈ T − T0, At ≤ P , then A is
called α-locally finite in D. If there exists γ ∈ β∗(α) such that A is γ-locally finite
in D, then A is called α−-locally finite in D.

Definition 2.4. Let A = {At : t ∈ T} ⊆ LX , D ∈ LX , α ∈ M(L). Then A is
called α-point finite in D if ∀ xα ≤ D, there exists at most finitely many t ∈ T such
that xα ≤ At. If there exists γ ∈ β∗(α) such that A is γ-point finite in D, then A
is called α−-point finite in D.
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Obviously α−-locally finite implies α-locally finite and α−-point finite implies
α-point finite.

More over we say that A is locally finite (point finite) in D if A is α-locally
finite (α-point finite) in D for every co-prime element α ∈ L.

Proposition 2.5. Every α-locally finite (α−-locally finite) family is α-point finite
(α−-point finite).

Proof. Proof of Proposition 2.5 follows immediately from the definitions. �

Definition 2.6. A collection A refines a collection B (A< B) if for every A ∈ A,
there exists B ∈ B such that A ≤ B.

Definition 2.7. [7] Let (X, τ) be an L-ts, D ∈ LX . D is called fuzzy compact
if ∀α ∈ M(L) and ∀γ ∈ β∗(α) , every constant α-net in D has a cluster point xγ ≤ D

Definition 2.8. [7] Let (X, τ) be an L-ts, D ∈ LX . D is called fuzzy countably
compact if ∀α ∈ M(L) and ∀γ ∈ β∗(α) , each α-sequence in D has a cluster point
xγ ≤ D.

3. Fuzzy Metacompactness

Definition 3.1. [8] Let (X, τ) be an L-ts, D ∈ LX . D is called fuzzy paracompact
if for each α ∈ M(L) and for each α−-Q-cover A of D, there exists an α-Q-cover B
of D such that B is a refinement of A and B(0) ∧D is α-locally finite in D,where
B(0) = {B(0) : B ∈ B}. When D = X , (X, τ) is called fuzzy paracompact.

Definition 3.2. Let (X, τ) be an L-ts, D ∈ LX . D is called fuzzy metacompact if
for each α ∈ M(L) and for each α−-Q-cover A of D, there exists an α-Q-cover B
of D such that B is a refinement of A and B(0) ∧D is α-point finite in D, where
B(0) = {B(0) : B ∈ B}. When D = X , (X, τ) is called fuzzy metacompact.

Clearly we have the following implications

fuzzy compact ⇒ fuzzy paracompact ⇒ fuzzy metacompat.
From the above implication and the fact that the fuzzy unit interval I(L) is fuzzy
compact, we have the following corollary.

Corollary 3.3. The fuzzy unit interval I(L) is fuzzy metacompact.

Now we give an example of a fuzzy metacompact space which is not fuzzy para-
compact.
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Example 3.4. Let X be the deleted Tychnoff plank T∞ = T − (ω1, ω) where
T is the Tychnoff’s plank given by [0, ω1] × [0, ω] where ω1 is the first uncount-
able ordinal and ω is the first infinite ordinal. Let α ∈ [0, 1),. Define for each
ς ∈ [0, ω) and β ∈ [0, ω1), Uβ

ς = {(β, γ) : ς < γ ≤ ω} and for each λ ∈ [0, ω1) and
δ ∈ [0, ω), V δ

λ = {(γ, δ) : λ < γ ≤ ω1}. Let T be the I-topology generated by taking
each point p of [0, ω1]× [0, ω] as fuzzy points with value η with α < η ≤ 1 and Uβ

ς

and V δ
λ as the open sets. Now (X, T ) is fuzzy metacompact. For, any α−-Q-cover

of X by open I-sets has an α-Q-cover refinement consisting of one basic neighbour-
hood for each fuzzy point of X. Any such α-Q-cover refinement U is point finite,
since an arbitrary fuzzy point xα can have at most three members of U such that
xα ≤ U , where U ∈ U.

Now the space (X, T ) is not fuzzy paracompact. For, consider the α−-Q-cover
of X by sets U0 = X − B and Un = V n−1

0 for n = 1, 2, 3, where A = {(ω, n) :
0 ≤ n < ω}, has no locally finite refinement. For, if possible let {Wµ} be a locally
finite refinement. Now for each n ∈ N , we may define an ordinal αn to be the least
ordinal such that characterestic function of V n

αn
is contained in just one Wµ. If

α = Sup{αn} < ω1, every R-neighbourhood of (α, ω) will contain infinitely many
members of {Wµ}.

Theorem 3.5. Let (X, τ) be an L-ts and D ∈ LX . Then D is fuzzy metacompact
if and only if for each α ∈ M(L) and for each α−-Q-cover A of D, there exists an
α−-Q-cover B of D such that B is a refinement of A and B(0) ∧ D is α−-point
finite in D.

Proof. Sufficiency part: Since every α−-Q-cover of D, is an α-Q-cover of D, and
every α−-point finite family is α-point finite, sufficiency part follows clearly.
Necessary part: Assume that D is metacompact. Let α ∈ M(L) and A be an
α−-Q-cover of D. Then by definition ∃γ ∈ β∗(α) such that A is a γ-Q-cover of
D. Now we have γ ∈ β∗(α) = β∗(

∨
{λ : λ ∈ β∗(α)}) =

⋃
{β∗(λ) : λ ∈ β∗(α)}.

Therefore it follows that there is a λ ∈ β∗(α) such that γ ∈ β∗(λ). Thus A is a
λ−-Q-cover of D. Since D is fuzzy metacompact , ∃ a λ-Q-cover B of D which
refines A and B(0) ∧D is α−-point finite in D. �

Theorem 3.6. Let (X, τ) be an L-ts and D ∈ LX . Then if D is fuzzy metacompact,
then ∀B ∈ τ ′ , D ∧B is fuzzy metacompact.

Proof. Let A be an α−-Q-cover of D ∧ B, where α ∈ M(L). By the definition of
α−-Q-cover, ∃γ ∈ β∗(α) such that A is a γ-Q-cover of D ∧B. Take B = A

⋃
{B′}.

Then clearly B is a γ-Q-cover of D. Since D is fuzzy metacompact, it follows that
B has a refinement C which is an α-Q-cover of D and C(0) ∧ D is point finite in
D. Let F = {C ∈ C : B′ 6≥ C}. Now F is an α-Q-cover of D ∧ B and F is a
refinement of A. Obviously F(0) ∧ D is α-point finite in D and hence in D ∧ B.
Hence F(0)∧D∧B is α-point finite in D∧B. Thus D∧B is fuzzy metacompact. �

Definition 3.7. Let (X, τ) be an L-ts. A = {At : t ∈ T} ⊆ LX is a closure
preserving collection if for every subfamily A0 of A , cl[∨A0] = ∨[clA0].
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Proposition 3.8. A point finite closure preserving closed collection is always locally
finite.

Proof. Proof follows clearly from Definitions 2.3, 2.4 and 3.7. �

Remark 3.9. A collection U is locally finite implies that so is {clU : U ∈ U}. But
this does not hold for point finite families.

Definition 3.10. [5] Let (X, τ) be an L-ts. Then by [τ ] we denote the family of
support sets of all crisp subsets in τ . (X, [τ ]) is a topology and it is the background
space. (X, τ) is weakly induced if each U∈ τ is a lower semi continuous function
from the background space (X, [τ ]) to L.

Theorem 3.11. If (X, τ) is a weakly induced L-ts, then (X, τ) is fuzzy metacom-
pact if and only if (X, [τ ]) is metacompact.

Proof. Let(X, τ) be weakly induced and fuzzy metacompact. Let A be an open
cover of (X, [τ ]). Take α ∈ M(L) and γ ∈ β∗(α). Then clearly A is a γ-Q-cover of
(X, τ). Since (X, τ) is fuzzy metacompact, ∃ an α-Q-cover B which refines A and
B(0) is α-point finite. Now we can easily show that U = {B(α′) : B ∈ B} is a point
finite open refinement of A, proving that (X, [τ ]) is metacompact.

Conversely assume that (X, [τ ]) is metacompact. Let A be an α−Q-cover of
(X, τ), where α ∈ M(L). Then ∃γ ∈ β∗(α) such thatA is a γ-Q-cover of (X, τ).
Hence A(γ′) = {A(γ′) : A ∈ A} is an open cover of (X, [τ ]) by the weakly induced
property. Since (X, [τ ]) is metacompact, this cover has a point finite open refine-
ment say B = {Bt : t ∈ T}. Let Ω = {Bt ∧ A : Bt ≤ A(γ′), Bt ∈ B, A ∈ A}.
Now clearly Ω is a refinement of A which is a γ-Q-cover also. Hence it is an α−-
Q-cover of (X, τ). Now we will show that Ω(0) is γ-point finite in (X, τ). For, any
xγ ∈ M(LX), since B is point finite in (X, [τ ]), ∃ at the most finitely many t ∈ T

such that x ∈ Bt. Now Ω(0) = {(Bt ∧ A)(0) : Bt ≤ A(γ′), Bt ∈ B, A ∈ A} and it
follows that xγ ≤ (Bt ∧ A)(0) for at the most finitely many t ∈ T . Hence Ω(0) is
γ−-point finite and hence (X, τ) is fuzzy metacompact. �

Definition 3.12. A collection U of fuzzy subsets of an L-topological space (X, τ)
is said to be well monotone if the subset relation ′ <′ is a well order on U.

Definition 3.13. A collection U of fuzzy subsets of an L-topological space (X, τ)
is said to be directed if U, V ∈ U implies there exists W ∈ U such that U ∨V < W .

Theorem 3.14. If (X, τ) is a weakly induced L-ts, then the following are equiva-
lent.
(i) (X, τ) is fuzzy metacompact .
(ii) For every α ∈ M(L), every well monotone open α−-Q-cover of X has an α−-
point finite open refinement which is also an α−-Q-cover of X.

Proof. (i) ⇒ (ii) Obvious
(ii) ⇒ (i) By Theorem 3.11 it is enough to prove that (X, [τ ]) is metacompact. But
by a characterization of metacompactness (Burke Dennis [1]), it is enough to prove
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that every well monotone open cover of (X, [τ ]) has a point finite refinement.
Let U = {Ut : t ∈ T} be a well monotone open cover of (X, [τ ]). Then clearly U is
an open well monotone α−-Q-cover of X for every α ∈ M(L). So it has an α-point
finite refinement say A = {At : t ∈ T}. Take B = {A(α′)

t : t ∈ T}. Since (X, τ)
is weakly induced, B ⊂ [τ ]. Now if possible let there be some x ∈ X such that
x ∈ B for infinitely many B ∈ B. ie., xα ≤ At for infinitely many t ∈ T . This is a
contradiction to that A is point finite. Again let x ∈ A

(α′)
t for some t ∈ T . Since

{At : t ∈ T} refines {Ut : t ∈ T}, it follows that α ≤ At(x) ≤ Ut. This implies that
Ut 6= 0. Thus x ∈ Ut and hence B is a refinement of {Ut : t ∈ T}. This completes
the proof.

�

Lemma 3.15. Let (X, τ) be a weakly induced L-ts, and α ∈ M(L) .Then if every
directed open α−-Q-cover of X has a closure preserving closed refinement which is
also an α−-Q-cover of X, then (X, τ) is metacompact.

Proof. Let U = {Ut : t ∈ T} be a directed open cover of X. Then clearly U is
a directed α−-Q-cover of X for every α ∈ M(L) and hence it is having a closure
preserving closed refinement say A = {At : t ∈ T}, which is also an α−-Q-cover of
X. Now consider the collection B = {A[α′]

t : t ∈ T} . Since X is weakly induced,
clearly B ⊂ τ ′ and we will show that B is the required closure preserving closed
refinement. For, let x ∈ A

[α′]
t . Since A refines U, it follows that Ut(x) 6= 0 for any

t ∈ T . And hence x ∈ Ut and A
[α′]
t ⊂ Ut. Hence B refines U. Moreover it easily

follows that B is closure preserving from the fact that A is closure preserving. This
completes the proof. �

Lemma 3.16. Let (X, τ) be a weakly induced metacompact L-ts and α ∈ M(L).
Then every directed open α−-Q-cover of X has a closure preserving closed refine-
ment which is also an α−-Q-cover of X.

Proof. Let U be a directed α−-Q-cover of X. Now V= {U (α′) : U ∈ U} is a
directed open cover of (X, [τ ]) and since (X, [τ ]) is metacompact, it follows that V
has a closure preserving closed refinement say W. This W is the required closure
preserving closed refinement of U, which is also an α−-Q-cover of X. �

Theorem 3.17. Let (X, τ) be an L-ts and α ∈ M(L). Then the following are
equivalent.
(i)Every directed α−-Q-cover of X has a closure preserving closed refinement which
is also an α−-Q-cover of X.
(ii)For every α−-Q-cover U of X, UF has a closure preserving closed refinement
which is also an α−-Q-cover of X. (Where UF is the collection of all unions of
finite sub collections from U).

Proof. (i) ⇒ (ii) Clearly UF is directed and hence has a closure preserving refine-
ment.
(ii) ⇒ (i) Let U be a directed α−-Q-cover of X. Since U is directed, UF is a re-
finement of U. Then by (ii), UF has a closure preserving closed refinement say V
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which is also an α−-Q-cover of X. Now V refines UF and UF refines U. Hence it
follows that V is the required closure preserving closed refinement of U. �

Combining the results in 3.14, 3.15, 3.16 and 3.17 , we have the following char-
acterization of metacompactness in L-topological spaces.

Theorem 3.18. If (X, τ) is a weakly induced L-ts, then the following are equiva-
lent.
(i) (X, τ) is fuzzy metacompact .
(ii) (X, [τ ]) is metacompact.
(iii) For every α ∈ M(L), every well monotone open α−-Q-cover of X has an α−-
point finite open refinement which is also an α−-Q-cover of X.
(iv)For every α ∈ M(L), every directed open α−-Q-cover of X has a closure pre-
serving closed refinement which is also an α−-Q-cover of X.
(v) For every α ∈ M(L) and every α−-Q-cover U of X, UF has a closure preserving
closed refinement which is also an α−-Q-cover of X.
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