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SOLVING FUZZY LINEAR SYSTEMS BY USING THE SCHUR
COMPLEMENT WHEN COEFFICIENT MATRIX IS AN

M-MATRIX

M. S. HASHEMI, M. K. MIRNIA AND S. SHAHMORAD

Abstract. This paper analyzes a linear system of equations when the right-

hand side is a fuzzy vector and the coefficient matrix is a crisp M -matrix. The
fuzzy linear system (FLS) is converted to the equivalent crisp system with

coefficient matrix of dimension 2n× 2n. However, solving this crisp system is

difficult for large n because of dimensionality problems . It is shown that this
difficulty may be avoided by computing the inverse of an n×n matrix instead

of Z−1.

1. Introduction

n×n fuzzy linear systems have been studied by many authors [1, 3, 5, 6, 7, 9, 10,
11, 12]. In [7] Friedman et al. proposed a general model for solving such systems by
the embedding approach and stated conditions for the existence of a unique fuzzy
solution to n × n linear systems. A minimum norm solution of the fuzzy under
determined systems has been obtained in [10].

In this paper we investigate the case where the coefficient matrix in a fuzzy
linear system is an M -matrix. We first study the properties of this system and
then propose a solution using the Schur complement.

Section 2 provides preliminaries for fuzzy numbers and fuzzy linear systems.
Several M -matrix properties and the Schur complement formula are also stated.
The relationship between an M -matrix and its crisp matrix and the existence and
expression of the solution to the fuzzy linear system using the Schur complement
are discussed in section 3. Numerical examples to illustrate previous sections are
given in Section 4.

2. Preliminaries

2.1. Fuzzy Numbers and Fuzzy Linear Systems. In this section we recall the
basic notion of fuzzy numbers arithmetic and fuzzy linear system.

Definition 2.1. [7] A fuzzy number in parametric form is an ordered pair of func-
tions (u(r), u(r)),
0 ≤ r ≤ 1 which satisfy the following conditions:

1. u(r) is a bounded left continuous nondecreasing function on [0,1].
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2. u(r) is a bounded left continuous nonincreasing function on [0,1].
3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

If u(r) = u(r) = ψ, 0 ≤ r ≤ 1 then ψ is a crisp number. A popular repre-
sentation for fuzzy number is the trapezoidal representation u = (x0, y0, α, β) with
defuzzifier interval [x0, y0], left fuzziness α and right fuzziness β. The membership
function of this trapezoidal number is as follows:

u(x) =



1
α (x− x0 + α), x0 − α ≤ x ≤ x0

1, x ∈ [x0, y0]

1
β (y0 − x+ β), y0 ≤ x ≤ y0 + β

0, otherwise.

The parametric form of the number is

u(r) = x0 − α+ αr, u(r) = y0 + β − βr.

The operations of addition and scalar multiplication for arbitrary fuzzy numbers,
u = (u, u) and v = (v, v) and λ ∈ <1 are defined by

(u+ v)(r) = u(r) + v(r),

(u+ v)(r) = u(r) + v(r),

(λu)(r) = λu(r), (λu)(r) = λu(r), λ ≥ 0,

(λu)(r) = λu(r), (λu)(r) = λu(r), λ ≤ 0.

(1)

A general fuzzy linear system is as follows:

a11x1 + a12x2 + · · ·+ a1nxn = y1

a21x1 + a22x2 + · · ·+ a2nxn = y2

...
an1x1 + an2x2 + · · ·+ annxn = yn,

(2)

where the coefficient matrix A = (aij), 1 ≤ i, j ≤ n is a crisp n × n matrix and
y = (yi), 1 ≤ i ≤ n is a fuzzy vector. This system is called a fuzzy linear system
(FLS). By (2.1), the system (2.1) is equivalent to the following parametric system:∑n

j=1 aijxj =
∑n

j=1 aijxj = yi

∑n
j=1 aijxj =

∑n
j=1 aijxj = yi.

(3)

If for a particular i : aij > 0, 1 ≤ j ≤ n, then we obviously get
n∑

j=1

aijxj = yi ,
n∑

j=1

aijxj = yi.
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In general, an arbitrary equation for either yi or yi may include a linear combi-
nation of xj ’s and xj ’s. Consequently, in order to solve the system given by Eq.
(??) one must solve a (2n) × (2n) crisp linear system, where the column on the
right is the vector (y1, y2, . . . , yn, y1, y2, . . . , yn)T .

Let us now rearrange the linear system of Eqs.(??) so that the unknowns are
(xi,−xi), 1 ≤ i ≤ n and the column on the right is

Y = (y1, y2, . . . , yn,−y1,−y2, . . . ,−yn)T .

Define a (2n)× (2n) matrix Z = (zij) as follows:

aij ≥ 0 =⇒ zij = aij , zi+n,j+n = aij ,
aij < 0 =⇒ zi,j+n = −aij , zi+n,j = −aij .

(4)

Any zij which is not determined by (2.1) is zero. Then the system (??) may be
written in the following crisp block form:

ZX = Y −→
(
B ≥ 0 C ≥ 0
C ≥ 0 B ≥ 0

)(
X
−X

)
=
(

Y
−Y

)
(5)

where B,C ∈ <n,n and

X =

 x1(r)
...

xn(r)

 , X =

 x1(r)
...

xn(r)

 , Y =

 y1(r)
...

yn(r)

 , Y =

 y1(r)
...

yn(r)

 .

The definition of Z = (zij) implies that B contains the positive entries of A, C
contains the absolute values of the negative entries of A and A = B − C.

2.2. M-matrices and Some of their Properties.

Definition 2.2. [2] A real square matrix A = (aij) is called an M -matrix if aij ≤ 0;
i 6= j and A−1 ≥ 0. For any real or complex n×n matrix A = (aij), the comparison
matrix, denoted by Ξ(A) = (ξij(A)), and defined by

ξij(A) =

{
|aij |, i = j

−|aij |, i 6= j
(6)

is called an H−matrix if Ξ(A) is an M -matrix.

Definition 2.3. [2] A square matrix A is said to be generalized diagonally dominant
if

|aii|xi ≥
∑
j 6=i

|aij |xj , i = 1, 2, . . . , n (7)
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for some positive vector x = (x1, x2, . . . , xn)T , generalized strictly diagonally dom-
inant if (2.3) is valid with strict inequality and (strictly) diagonally dominant if
(2.3) is valid for x=(1, 1, . . . , 1)T .

Lemma 2.4. [2] Let A = (aij) be an n×n matrix, with aij ≤ 0, i 6= j and aii > 0.
If A is strictly diagonally dominant, then A is an M -matrix.

Lemma 2.5. [2] a) A matrix A = (aij), with aij ≤ 0, i 6= j, is an M -matrix if
and only if there exists a positive vector x, such that Ax is positive.
b) A matrix A = (aij) is an H-matrix if and only if A is generalized strictly
diagonally dominant.

Theorem 2.6. [2] Let A = (aij) be a matrix of order n, with aij ≤ 0, i 6= j. Then
the following are equivalent:
a) A is generalized strictly diagonally dominant and aii ≥ 0.
b) A is an M -matrix.

2.3. Schur Complements. Let the matrix A be partitioned into the two-by-two
block form

A =
(
A11 A12

A21 A22

)
,

(8)

where Aii, i = 1, 2 are square matrices.

Definition 2.7. [2] If A11 is nonsingular, we define

S ≡ A/A11 ≡ A22 −A21A
−1
11 A12,

(9)

S is called the Schur complement of A with respect to A11.

Note that S is in the position A22 of A after we use Gaussian-elimination to
convert A21 to zero in A. In fact, the block matrix triangular factorization of A is
readily found to be

A =
(

I 0
A21A

−1
11 I

)(
A11 0
0 S

)(
I A−1

11 A12

0 I

)
.

(10)

Hence we may write the inverse of A in one of the two forms (11) and (12) as
follows:

A−1 =
(
I −A−1

11 A12

0 I

)(
A−1

11 0
0 S−1

)(
I 0

−A21A
−1
11 I

)
(11)

A−1 =
(
A−1

11 +A−1
11 A12S

−1A21A
−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

)
(12)
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Solving Fuzzy Linear Systems by Using the Schur Complement ... 19

If both A−1
11 and A−1

22 exist, an alternative expression for A−1 is

A−1 =
(

S−1
1 −A−1

11 A12S
−1
2

−S−1
2 A21A

−1
11 S−1

2

)
(13)

where
Si = A/Ajj , i 6= j, i, j = 1, 2.

Theorem 2.8. [2] Let A be an M -matrix that is partitioned in a two-by-two block
form. Then the Schur complement

S = A/A11 = A22 −A21A
−1
11 A12

exists and is also an M -matrix.

3. Solving a Fuzzy Linear System when A Is an M-matrix

3.1. Solution to a Fuzzy Linear System. To study the solution to a fuzzy linear
system, it is first necessary to discuss the generalized inverses of the matrix Z in a
special structure.

Definition 3.1. [5] Let X =
{

(xi(r), xi(r)); 1 ≤ i ≤ n
}

denote a solution of ZX = Y. The fuzzy number vector

U =
{
(ui(r), ui(r)); 1 ≤ i ≤ n

}
defined by

ui(r) = min
{
xi(r), xi(r), xi(1), xi(1)

}
ui(r) = max

{
xi(r), xi(r), xi(1), xi(1)

} (14)

is called a fuzzy solution of ZX = Y . If (xi(r), xi(r)); 1 ≤ i ≤ n, are all fuzzy
numbers and ui(r) = xi(r), ui(r) = xi(r), 1 ≤ i ≤ n, then U is called a strong
fuzzy solution. Otherwise, U is a weak fuzzy solution.

From (2.1) we have the following assertion:

Theorem 3.2. [12] Let matrix Z be in the form (2.1). Then the matrix

Z− =
1
2

(
(B + C)− + (B − C)− (B + C)− − (B − C)−

(B + C)− − (B − C)− (B + C)− + (B − C)−

)
(15)

is a g-inverse of the matrix Z, where (B + C)− and (B − C)− are g-inverses
of the matrices B + C and B − C, respectively. In particular, the Moore-Penrose
inverse of the matrix Z is

Z† =
1
2

(
(B + C)† + (B − C)† (B + C)† − (B − C)†

(B + C)† − (B − C)† (B + C)† + (B − C)†

)
(16)

In this paper, we consider only the case when m = n; thus Z is nonsingular if
and only if the matrices A = B − C and B + C are both nonsingular [7, Theorem
1]. Hence, as a direct consequence of Theorem 3.2, we have the following corollary.
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Corollary 3.3. [7] If Z−1 exists, it must have the same structure as Z, i.e.

Z−1 =
(
T1 T2

T2 T1

)
where

T1 = 1
2 [(B + C)−1 + (B − C)−1],

T2 = 1
2 [(B + C)−1 − (B − C)−1].

The next result provides a sufficient condition for the solution vector to be a
fuzzy vector.

Theorem 3.4. [12] For the consistent system (2.1) and any g-inverse Z− of the
coefficient matrix Z, X = Z−Y is a solution to the system and therefore it admits
a weak or strong fuzzy solution. In particular, if Z− is nonnegative with the special
structure (3.2), then X = Z−Y admits a strong fuzzy solution for arbitrary fuzzy
vector Y .

Corollary 3.5. [12] For the n × n fuzzy linear system, if Z−1 exists, then for an
arbitrary fuzzy vector Y , the unique solution X = Z−1Y is a fuzzy vector if Z−1 is
nonnegative.

3.2. Properties of the Equivalent Crisp Matrix Z. We consider the solution
of FLS, Ax = ỹ when A is an M -matrix and ỹ is a fuzzy vector. Then (2.1),

implies that zij ≥ 0, 1 ≤ i, j ≤ n and Z =
(
B C
C B

)
where B is the diagonal

matrix containing the diagonal entries of A and C contains the absolute value of
the off-diagonal entries of A. In other words, B = diag(a11, a22, . . . , ann), and so
(B−1 = diag( 1

a11
, 1

a22
, . . . , 1

ann
)), and C = (cij)n×n where{

cii = 0, 1 ≤ i ≤ n
cij = −aij , 1 ≤ i, j ≤ n, i 6= j.

Theorem 3.6. If A is an M -matrix then Z, as defined by (2.1), is an H-matrix.

Proof. From theorem 2.6, it is clear that A is generalized strictly diagonally domi-
nant and aii ≥ 0. Thus from lemma 2.5 for some x > 0, x ∈ <n we have

|aii|xi >
∑
j 6=i

|aij |xj , i = 1, 2, . . . , n.
(17)

To complete the proof, it is sufficient to show that Z is generalized strictly
diagonally dominant. Let y = [xT , xT ], where x is the vector corresponding to the
matrix A. Then it may easily be checked that the relation

|zii|yi >
2n∑

j=1

|zij |yj , j 6= i, 1 ≤ i ≤ 2n.
(18)

holds for the matrix Z defined in (2.1). �
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3.3. Solution Using the Schur Complement. In this section we employ the
Schur complement for computing Z−1 where Z is defined by (2.1) with block form

Z =
(
B C
C B

)
where B is a diagonal matrix and C is a nondiagonal matrix whose

entries are absolute values of the off-diagonal entries of A if A is an M -matrix. It
is clear from (2.7), (2.3) and (2.1) that S = S1 = S2 = B − CB−1C and so

Z−1 =
(

S−1 −B−1CS−1

−S−1CB−1 S−1

)
(19)

Theorem 3.7. Let A be an M -matrix, in FLS, Z be the extended crisp matrix of
A, and S be its Schur complement. Then we have

S−1CB−1 = B−1CS−1

Proof. Let P = S−1, Q1 = −B−1CS−1, Q2 = −S−1CB−1. We must prove
Q1 = Q2. From (3.3) and (2.1) we have

ZZ−1 = I, or

(
B C
C B

)(
P Q1

Q2 P

)
=
(
I 0
0 I

)
,

thus {
BQ1 + CP = 0
CP +BQ2 = 0 =⇒

{
Q1 = −B−1CP
Q2 = −B−1CP

}
which completes the proof. �

From theorem 3.7 we have

Z−1 =
(
P Q
Q P

)
, (20)

where P = S−1, Q = −PCB−1. Hence (2.1) and (3.3) imply that(
X
−X

)
=
(
P Q
Q P

)(
Y
−Y

)
or  X = PY −QY

X = PY −QY .
(21)

3.4. Some Properties of Z−1. To investigate properties of Z−1, we shall need
the following definitions and lemmas:

Definition 3.8. [4] Let A = (aij) be an m × n matrix. We define a matrix norm
‖A‖ as follows:

‖A‖ = max1≤i≤m

n∑
j=1

|aij |.

Lemma 3.9. [4] For any matrices, A and B, we have

‖AB‖ ≤ ‖A‖‖B‖,
and consequently ‖A2‖ ≤ ‖A‖2.
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Lemma 3.10. [4] The matrix series

I +A+A2 + · · ·+Ak + · · ·
converges to (I −A)−1 if ‖A‖ < 1.

Theorem 3.11. Let A be a strictly diagonally dominant matrix with the extended
crisp matrix defined by (2.1) and the inverse defined by by (3.3). Then

P ≥ 0, Q ≤ 0.

Proof. We know that P = S−1 = (B − CB−1C)−1, thus

B−1S = I −B−1CB−1C.

Let E = B−1CB−1C. We prove ‖E‖ < 1. From (2.1) we have

B−1C =


1

a11
0 · · · 0

0 1
a22

· · · 0
...

...
. . .

...
0 0 · · · 1

ann




0 a12 · · · a1n

a21 0 · · · a2n

...
...

. . .
...

an1 an2 · · · 0



=


0 a12

a11
· · · a1n

a11
a21
a22

0 · · · a2n

a22
...

...
. . .

...
an1
ann

an2
ann

· · · 0

 .

Thus by the Lemma 3.9 and inequalities (3.2) we obtain

‖B−1C‖ = max1≤i≤n

n∑
j=1

|aij |
|aii|

< 1.

Therefore
‖E‖ = ‖(B−1C)2‖ ≤ ‖B−1C‖2 < 1,

and from lemma 3.10

(I − E)−1 = I + E + E2 + · · · ≥ 0.

Hence S−1B = (I−E)−1 ≥ 0 and P = S−1 = S−1BB−1 ≥ 0. From Q = −PCB−1

and P ≥ 0, C ≥ 0, B−1 ≥ 0, it is clear that Q ≤ 0 and the proof is complete. �

Theorem 3.12. Let A = (aij) be an n× n matrix with the following properties:
a) aij ≤ 0 for i 6= j and there exists at least one negative off-diagonal entry.
b) aii > 0, i = 1, · · · , n.
c) A is strictly diagonally dominant.

Then there exists a fuzzy vector Y such that X =

(
X

−X

)
= Z−1Y is not a fuzzy

vector i.e. 
x1(r) = (x1(r), x1(r))

...
xn(r) = (xn(r), xn(r))
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Solving Fuzzy Linear Systems by Using the Schur Complement ... 23

is not a strong fuzzy solution for system (2.1).

(Note: If the assumption (a) fails then C = 0 and there is a fuzzy solution by
corollary 3.5)

Proof. Suppose

P =

 p11 · · · p1n

...
. . .

...
pn1 · · · pnn

 , Q =

 q11 · · · q1n

...
. . .

...
qn1 · · · qnn

 .

From the assumptions, Theorem 3.11 holds and from second part of assumption
(a),Q 6= 0. Since P is non-singular and non-negative, hence there exist i0 and j1
such that qi0,j1 < 0 and pi0,j0 > 0, 1 ≤ i0, j0, j1 ≤ n. Now we construct a fuzzy
vector Y such that X = Z−1Y is a non-fuzzy vector. Let us write

X = Z−1Y =



 p11 · · · p1n

...
. . .

...
pn1 · · · pnn


 q11 · · · q1n

...
. . .

...
qn1 · · · qnn


 q11 · · · q1n

...
. . .

...
qn1 · · · qnn


 p11 · · · p1n

...
. . .

...
pn1 · · · pnn







y1(r)
...

yn(r)

−y1(r)
...

−yn(r)



=



x1(r)
...

xn(r)

−x1(r)
...

−xn(r)


.

(22)

It is sufficient to construct Y such that xi0(r) is a non-fuzzy number. From (3.4)
we have

xi0(r) = pi01y1(r) + · · ·+ pi0j0yj0(r) + · · ·
+pi0nyn(r)− qi01y1(r)− · · · − qi0j1yj1(r)− · · · − qi0nyn(r). (23)

We have the following two cases:
Case1. j0 = j1. In this case, for the real numbers ai, 1 ≤ i ≤ n, cj0 and dj0 we
define {

yi(r) = yi(r) = ai, (1 ≤ i ≤ n, i 6= j0)

yj0(r) = aj0r, yj0(r) = cj0r + dj0
(24)

in which aj0 > 0, cj0 < 0 and cj0 6= −aj0 . Then from (3.4) we will have

xi0(r) =
n∑

j=1j 6=j0

(Pi0j − qi0j)aj + pi0j0aj0r − qi0j0cj0r − qi0j0dj0
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⇒ xi0(r) = (pi0j0aj0 − qi0j0cj0)r +
n∑

j=1j 6=j0

(Pi0j − qi0j)aj − qi0j0dj0 .

Now it is sufficient to define the coefficient of the parameter r so that the function

xi0(r) is a decreasing function i.e.
dxi0 (r)

dr < 0. Hence the coefficients cj0 and aj0 are
determined so that pi0j0aj0 − qi0j0cj0 < 0. Also, to preserve the fuzziness of Y , it is
sufficient to have yj0 ≤ yj0 , or, equivalently, aj0r ≤ cj0r+dj0 ; i.e. (aj0−cj0)r ≤ dj0

or r ≤ dj0
aj0−cj0

. If we set dj0 = aj0 − cj0 , then 0 ≤ r ≤ 1.

Case2. j0 6= j1. In this case, for the real numbers ai, 1 ≤ i ≤ n, cj0 and dj0

we define 
yi(r) = yi(r) = ai, (1 ≤ i ≤ n, i 6= j0)

yj0(r) = aj0r, yj0(r) = cj0r + dj0

yj1(r) = aj1r, yj1(r) = cj1r + dj1
(25)

where aj0 > 0, cj0 < 0, cj0 6= −aj0 , aj1 > 0, cj1 < 0 and cj1 6= −aj1 . From (3.4),
we have

xi0(r) =
n∑

j=1j 6=j0,j1

(Pi0j − qi0j)aj + pi0j0aj0r − qi0j0cj0r − qi0j0dj0

+pi0j1aj1r − qi0j1cj1r − qi0j1dj1

or
xi0(r) = (pi0j0aj0 + pi0j1aj1 − qi0j0cj0 − qi0j1cj1)r

+
n∑

j=1j 6=j0,j1

(Pi0j − qi0j)aj − qi0j0dj0 − qi0j1dj1 .

Choosing aj0 , aj1 , cj0 and cj1 to satisfy

pi0j0aj0 + pi0j1aj1 < qi0j0cj0 + qi0j1cj1

guarantees
dxi0 (r)

dr < 0. Thus if

dj0 = aj0 − cj0 , dj1 = aj1 − cj1 ,

the vector Y will be fuzzy, but the number xi0(r) will not be fuzzy. �

4. Numerical Results

Example 1: Consider the 2× 2 fuzzy linear system{
2x1 − x2 = (r, 3− r)

−3x1 + 4x2 = (r − 1, 5− r)
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where A =
(

2 −1
−3 4

)
is obviously an M -matrix. The extended 4× 4 matrix is

Z =


(

2 0
0 4

) (
0 1
3 0

)
(

0 1
3 0

) (
2 0
0 4

)


where

B =
(

2 0
0 4

)
, C =

(
0 1
3 0

)
.

From (2.2) we have

Ξ(Z) =


2 0 0 −1
0 4 −3 0
0 −1 2 0
−3 0 0 4

 .

Clearly Ξ(Z), is an M -matrix, thus Z is an H-matrix. By (3.3)

P = S−1 = (B − CB−1C)−1 =
(

1.25 0
0 2.5

)−1

=
(

0.8 0
0 0.4

)
Q = −PCB−1 =

(
0 −0.2

−0.6 0

)
and thus

Z−1 =
(
P Q
Q P

)
=


(

0.8 0
0 0.4

) (
0 −0.2

−0.6 0

)
(

0 −0.2
−0.6 0

) (
0.8 0
0 0.4

)
 .

Let

X =
(
x1(r)
x2(r)

)
, X =

(
x1(r)
x2(r)

)
,

so we have

Y =
(

r
r − 1

)
, Y =

(
3− r
5− r

)
and from (3.3),

X = PY −QY =
(

0.8 0
0 0.4

)(
r

r − 1

)
−
(

0 −0.2
−0.6 0

)(
3− r
5− r

)
=
(

0.6r + 1
−0.2r + 1.4

)
X = PY −QY =

(
0.8 0
0 0.4

)(
3− r
5− r

)
−
(

0 −0.2
−0.6 0

)(
r

r − 1

)
=
(
−0.6r + 2.2

0.2r + 2

)
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and thus
x1(r) = (x1(r), x1(r)) = (0.6r + 1,−0.6r + 2.2),
x2(r) = (x2(r), x2(r)) = (−0.2r + 1.4, 0.2r + 2).

Obviously, x1, x2 are not fuzzy numbers. Therefore the corresponding fuzzy
solution is a weak fuzzy solution given by{

u1(r) = (0.6r + 1,−0.6r + 2.2)
u2(r) = (1.2, 2.2).

Example 2: Now consider a system where the coefficient matrix is the same as in
the previous example, but where the fuzzy vector on the right hand side leads to a
strongly fuzzy solution.{

2x1 − x2 = (2r,−3r + 5)
−3x1 + 4x2 = (5r + 1,−4r + 10)

where A =
(

2 −1
−3 4

)
and

Z =


(

2 0
0 4

) (
0 1
3 0

)
(

0 1
3 0

) (
2 0
0 4

)
 .

From the previous example we have

P =
(

0.8 0
0 0.4

)
, Q =

(
0 −0.2

−0.6 0

)
,

Z−1 =


(

0.8 0
0 0.4

) (
0 −0.2

−0.6 0

)
(

0 −0.2
−0.6 0

) (
0.8 0
0 0.4

)
 .

Also

Y =
(

2r
5r + 1

)
, Y =

(
−3r + 5
−4r + 10

)
and thus from (3.9) it follows that

X = PY −QY =
(

0.8 0
0 0.4

)(
2r

5r + 1

)
−
(

0 −0.2
−0.6 0

)(
−3r + 5
−4r + 10

)
=
(

0.8r + 2
0.2r + 3.4

)
X = PY −QY =

(
0.8 0
0 0.4

)(
−3r + 5
−4r + 10

)
−
(

0 −0.2
−0.6 0

)(
2r

5r + 1

)
=
(
−1.4r + 4.2
−0.4r + 4

)
so that

x1(r) = (x1(r), x1(r)) = (0.8r + 2,−1.4r + 4.2),
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x2(r) = (x2(r), x2(r)) = (0.2r + 3.4,−0.4r + 4).
Obviously x1(r), x2(r) are fuzzy numbers for 0 ≤ r ≤ 1, and

2 ≤ x1(r) ≤ 2.8, 2.8 ≤ x1(r) ≤ 4.2, 3.4 ≤ x2(r) ≤ 3.6, 3.6 ≤ x2(r) ≤ 4

x1(1) = 2.8, x1(1) = 2.8, x2(1) = 3.6, x2(1) = 3.6.
Therefore

x1(r) = min{x1(r), x1(r), x1(1), x1(1)},
x1(r) = max{x1(r), x1(r), x1(1), x1(1)},
x2(r) = min{x2(r), x2(r), x2(1), x2(1)},
x2(r) = max{x2(r), x2(r), x2(1), x2(1)},

so X is a strong fuzzy solution.
Example 3: Consider the 3× 3 fuzzy linear system

6x1 − 4x2 − x3 = (r, 1− r)
−x1 + 5x2 − 2x3 = (r + 1, 3− r)
−x1 + +4x3 = (r − 2,−r).

The coefficient matrix is

A =

 6 −4 −1
−1 5 −2
−1 0 4


which is an M -matrix. Also,

Y =

 r
r + 1
r − 2

 , Y =

 1− r
3− r
−r

 .

The extended 6× 6 crisp matrix is as follows:

Z =



 6 0 0
0 5 0
0 0 4

  0 4 1
1 0 2
1 0 0


 0 4 1

1 0 2
1 0 0

  6 0 0
0 5 0
0 0 4




where

B =

 6 0 0
0 5 0
0 0 4

 , C =

 0 4 1
1 0 2
1 0 0


and

Ξ(Z) =


6 0 0 0 −4 −1
0 5 0 −1 0 −2
0 0 4 −1 0 0
0 −4 −1 6 0 0
−1 0 −2 0 5 0
−1 0 0 0 0 4

 .
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Since Ξ(Z) is an M -matrix, Z is an H-matrix. Moreover,

P = (B − CB−1C)−1 =


413
2031

128
9737

64
749

230
9737

181
774

15
749

40
9737

396
9737

198
749

 ,

Q = −PCB−1 =


− 160

9737 − 809
4973 − 43

749

− 221
5223 − 184

9737 − 92
749

− 495
9737 − 32

9737 − 16
749

 ,

thus

Z−1 =




413
2031

128
9737

64
749

230
9737

181
774

15
749

40
9737

396
9737

198
749




− 160
9737 − 809

4973 − 43
749

− 221
5223 − 184

9737 − 92
749

− 495
9737 − 32

9737 − 16
749




− 160
9737 − 809

4973 − 43
749

− 221
5223 − 184

9737 − 92
749

− 495
9737 − 32

9737 − 16
749




413
2031

128
9737

64
749

230
9737

181
774

15
749

40
9737

396
9737

198
749




,

and from (3.3) we have:

X = PY −QY =


7

107r + 3376
9737

10
107r + 2851

9737

25
107r −

4161
9737



X = PY −QY =


− 7

107r + 2830
9737

− 10
107r + 4853

9737

− 25
107r + 844

9737

 ;

i.e. 
x1(r) = (x1(r), x1(r)) = ( 7

107r + 3376
9737 ,−

7
107r + 2830

9737 )

x2(r) = (x2(r), x2(r)) = ( 10
107r + 2851

9737 ,−
10
107r + 4853

9737 )

x3(r) = (x3(r), x3(r)) = ( 25
107r −

4161
9737 ,−

25
107r + 844

9737 )

which x1, x2, x3 are fuzzy numbers, but u1(r) = x1(r), u1(r) = x1(r), thus the
corresponding fuzzy solution is a weak fuzzy solution given by

u1(r) = (u1(r) , u1(r)) = (x1(1) , x1(1)) = ( 2193
9737 , 4013

9737 )

u2(r) = (u2(r), u2(r)) = (x2(r), x2(r)) = ( 10
107r + 2851

9737 ,−
10
107r + 4853

9737 )

u3(r) = (u3(r), u3(r)) = (x3(r), x3(r)) = ( 25
107r −

4161
9737 ,−

25
107r + 844

9737 ).
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