ALMOST S*-COMPACTNESS IN L-TOPOLOGICAL SPACES

Archive of SID G. F. WEN, F. G. SHI AND H. Y. LI

ABSTRACT. In this paper, the notion of almost S^* -compactness in L-topological spaces is introduced following Shi's definition of S^* -compactness. The properties of this notion are studied and the relationship between it and other definitions of almost compactness are discussed. Several characterizations of almost S^* -compactness are also presented.

1. Introduction

The concept of compactness is one of the most important concepts in general topology. The notion of compactness in [0, 1]-fuzzy set theory was first introduced by C. L. Chang in terms of open cover [5]. However the analogue of Tychonoff Theorem is false in Chang's compactness theory [13]. Hence Gantner, Steinlage and Warren introduced the idea of α -compactness [11], Lowen introduced the ideas of fuzzy, strong fuzzy, as well as ultra-fuzzy compactness [18, 19], Liu defined Qcompactness [16] and Wang and Zhao defined N-compactness [28, 30]. Recently Shi has introduced S^{*}-compactness [24]. In 1924, Alexandroff and Urysohn [1] studied the idea of almost compactness (a weak form of compactness) in topological spaces. The analogous concept in fuzzy topological spaces was first studied by Concilio and Gerla [8] and developed by A. Haydar Es [10], M.N. Mukherjee and R.P. Chakraborty [23]. However, Concilio and Gerla's definition of fuzzy almost compactness is not a good extension of the notion in general topology.

In [4], the notion of almost compactness was again generalized to [0,1]-topological spaces following Lowen's definition of compactness [19]. In [6, 15, 22], it was also generalized to *L*-topological spaces following Lowen's definition of fuzzy compactness, Kudri's definition of compactness, and Wang's definition of N-compactness.

In this paper, we generalize the concept of almost compactness to L-topological spaces following Shi's definition of S^* -compactness [24]. We call this concept almost S^* -compactness. We first prove several properties of almost S^* -compactness and study some characterizations. Then we discuss the relationship between the different definitions of fuzzy almost compactness in L-topological spaces.

2. Preliminaries

Throughout this paper $(L, \bigvee, \bigwedge, ')$ is a completely distributive DeMorgan algebra, X is a nonempty set and L^X is the set of all L-fuzzy sets on X. The smallest element and the largest element in L^X are denoted by 0 and 1 respectively.

Received: April 2007; Accepted: February 2008

Key words and phrases: L-topology, β_a -cover, Q_a -cover, S*-compactness, Almost S - compactness.

An element a in L is called a prime element if $a \ge b \land c$ implies $a \ge b$ or $a \ge c$. a in L is called a co-prime element if a' is a prime element [12]. The set of nonunit prime elements in L is denoted by P(L), the set of nonzero co-prime elements in L is denoted by M(L) and the set of nonzero co-prime elements in L^X is denoted by $M(L^X)$. Of SID

The binary relation \prec in L is defined as follows: for $a, b \in L$, $a \prec b$ if and only if for every subset $D \subseteq L$, the relation $b \leq \sup D$ always implies the existence of $d \in D$ with $a \leq d$ [9]. In a completely distributive DeMorgan algebra L, each element b is a sup of $\{a \in L \mid a \prec b\}$. In the sense of [17, 29], $\{a \in L \mid a \prec b\}$, denoted by $\beta(b)$, is the greatest minimal family of b. Moreover, for $b \in L$, we define $\alpha(b) = \{a \in L \mid a' \prec b'\}$ and $\alpha^*(b) = \alpha(b) \cap P(L)$.

Following [24, 27], for $a \in L$ and $A \in L^X$, we write:

$$A_{[a]} = \{ x \in X \mid A(x) \ge a \}, \quad A_{(a)} = \{ x \in X \mid a \in \beta(A(x)) \}, \\ A^{(a)} = \{ x \in X \mid A(x) \le a \}.$$

An *L*-topological space (or *L*-space for short) is a pair (X, \mathcal{T}) , where \mathcal{T} is a subfamily of L^X which contains $\underline{0}$, $\underline{1}$ and is closed for any suprema and finite infima. \mathcal{T} is called an *L*-topology on X. Each member of \mathcal{T} is called an open *L*-set and its complement is called a closed *L*-set.

For a subfamily $\Phi \subseteq L^X$, $2^{(\Phi)}$ denotes the set of all finite subfamilies of Φ .

The operator ω was first introduced by R. Lowen in [19]. It was generalized to an *L*-fuzzy setting by T. Kubiak in [14]. The following is an equivalent form of their definition:

Definition 2.1. [14, 17, 29] For a topological space (X, \mathcal{T}) , let $\omega_L(\mathcal{T})$ denote the family of all lower semi-continuous maps from (X, \mathcal{T}) to L, i.e., $\omega_L(\mathcal{T}) = \{A \in L^X \mid A^{(a)} \in \mathcal{T}, \forall a \in L\}$. Then $\omega_L(\mathcal{T})$ is an L-topology on X and we said that $(X, \omega_L(\mathcal{T}))$ is topologically generated by (X, \mathcal{T}) .

The concept of weakly induced spaces was introduced by H.W. Martin in [20] and generalized to an L-fuzzy setting by Y.M. Liu and M.K. Luo in 1987. An equivalent form of their definition is as follows:

Definition 2.2. [17, 20, 29] An *L*-space (X, \mathcal{T}) is called weakly induced if $\forall a \in L$, $\forall A \in \mathcal{T}$, it follows that $A^{(a)} \in [\mathcal{T}]$, where $[\mathcal{T}]$ denotes the topology formed by all crisp sets in \mathcal{T} .

It is obvious that $(X, \omega_L(\mathcal{T}))$ is weakly induced.

Lemma 2.3. [20, 24] Let (X, \mathcal{T}) be a weakly induced L-space, $a \in L, A \in \mathcal{T}$. Then $A_{(a)}$ is an open set in $[\mathcal{T}]$.

Definition 2.4. $A \in L^X$ is called (1) semi-open [3] if $A \leq A^{\circ-}$, (2) regularly open [3] if $A^{-\circ} = A$ and (3) α -open [21] if $A \leq A^{\circ-\circ}$. The complement of l_A semiopen *L*-set is called semi-closed, the complement of a regularly open *L*-set is called regularly closed and the complement of an α -open *L*-set is called α -closed. **Definition 2.5.** Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two *L*-spaces. A map $f : (X, \mathcal{T}_1) \rightarrow (Y, \mathcal{T}_2)$ is called (1) almost continuous [3] if $f_L^{\leftarrow}(G) \in \mathcal{T}_1$ for each regularly open *L*-set *G* in (Y, \mathcal{T}_2) , (2) weakly continuous [3] if $f_L^{\leftarrow}(G) \leq f_L^{\leftarrow}(G^-)^\circ$ for each open *L*-set *G* in (Y, \mathcal{T}_2) and (3) strongly continuous [2] if $f_L^{\leftarrow}(G^-) \leq f_L^{\leftarrow}(G)$ for each *L*-set $f_L^{\leftarrow}(G) \leq f_L^{\leftarrow}(G) \leq f_L^{\leftarrow}(G)$ for each *L*-set $f_L^{\leftarrow}(G) \leq f_L^{\leftarrow}(G) \leq f_L^{\leftarrow}(G)$ for each *L*-set $f_L^{\leftarrow}(G) \leq f_L^{\leftarrow}(G) \leq f_L^{\leftarrow}(G)$.

Definition 2.6. [25] A net S with index set D is denoted by $\{S(n) \mid n \in D\}$ or $\{S(n)\}_{n \in D}$. For $G \in L^X$, a net S is said to quasi-coincide with G if $\forall n \in D, S(n) \notin G'$.

Definition 2.7. [25] Let $\alpha \in M(L)$. A net $\{S(n) \mid n \in D\}$ in L^X is called an α^- -net if there exists $n_0 \in D$ such that $\forall n \ge n_0, V(S(n)) \le \alpha$, where V(S(n)) denotes the height of S(n). A net $\{S(n)\}_{n\in D}$ in L^X is said to be a constant α -net if the height of each S(n) is a constant value α .

Obviously each constant α -net is an α --net.

Definition 2.8. [29] Let (X, \mathcal{T}) be an *L*-space. $A \in \mathcal{T}'$ is called a closed remote neighborhood of a fuzzy point x_a if $x_a \notin A$. $A \in L^X$ is called a remote neighborhood of x_a if there exists $B \in \mathcal{T}'$ such that $A \notin B$ and B is a closed remote neighborhood of x_a . The set of all closed remote neighborhoods of x_a and the set of all remote neighborhoods of x_a are denoted by $\eta^-(x_a)$ and $\eta(x_a)$, respectively.

It is evident that $A \in \eta(x_a)$ if and only if $A^- \in \eta^-(x_a)$.

Definition 2.9. [30] Let $A \in L^X$, $a \in M(L)$. $\Phi \subseteq \mathcal{T}'$ is called an *a*-remote neighborhood family (briefly *a*-*RF*) of *A*, if for each $x_a \leq A$ there is $P \in \Phi$ such that $P \in \eta^-(x_a)$. Φ is called an a^- -*RF* of *A* if there exists $b \in \beta^*(a)$ such that Φ is a *b*-*RF* of *A*.

Definition 2.10. [6] Let $A \in L^X$, $a \in M(L)$. $\Phi \subseteq T'$ is called an almost a-RF of A, if for each $x_a \leq A$ there is $P \in \Phi$ such that $P^\circ \in \eta(x_a)$. Φ is called an almost a^- -RF of A if there exists $t \in \beta^*(a)$ such that Φ is an almost t-RF of A.

Definition 2.11. [22] Let $A \in L^X$, $r \in P(L)$. $\Omega \subseteq L^X$ is called an r-cover of A if, for each $x \in A_{[r']}$, there is $U \in \Omega$ such that $U(x) \notin r$. Ω is called an r⁺-cover of A if there exists $t \in \alpha^*(r)$ such that Ω is a t-cover of A.

The notion of r-cover is equivalent to the notion of r-shading in [14].

Definition 2.12. [22] Let $A \in L^X$, $r \in P(L)$. $\Omega \subseteq L^X$ is called an almost r-cover of A, if for each $x \in A_{[r']}$, there is $U \in \Omega$ such that $U^-(x) \notin r$. Ω is called an almost r^+ -cover of A if there exists $t \in \alpha^*(r)$ such that Ω is an almost t-cover of A.

Definition 2.13. [6] Let (X, T) be an L-space and $G \in L^X$. Then G is called almost F-compact if for any $r \in P(L)$, each open r^+ -cover of G has a finite subfamily which is an almost r^+ -cover of G. (X, T) is said to be almost F-compact if <u>1</u> is almost F-compact. WWW, SID, ir

Definition 2.14. [24] Let (X, \mathcal{T}) be an *L*-space, $a \in M(L)$ and $G \in L^X$. A subfamily \mathcal{U} of L^X is called a β_a -cover of G if for any $x \in X$ with $a \notin \beta(G'(x))$, there

exists an $A \in \mathcal{U}$ such that $a \in \beta(A(x))$. A β_a -cover \mathcal{U} of G is called open(regularly open, α -open, etc.) β_{α} -cover of G if each member of \mathcal{U} is open (regularly open, a-open, etc.).

It is obvious that \mathcal{U} is a β_o -cover of G if and only if for any $x \in X$ we have $A \notin \mathcal{O}(iG' \notin x) \neq SID(x)$.

Definition 2.15. [24] Let (X, T) be an L-space, $a \in M(L)$ and $G \in L^X$. A subfamily \mathcal{U} of L^X is called a Q_a -cover of G if for any $x \in X$, $G(x) \nleq a'$, implies $\bigvee_{A \in \mathcal{U}} A(x) \ge a$. A Q_a -cover \mathcal{U} of G is called open (regularly open, α -open, etc.)

 Q_{μ} -cover of G if each member of \mathcal{U} is open (regularly open, α -open, etc.).

Definition 2.16. [24] Let (X, \mathcal{T}) be an L-space and $G \in L^X$. G is called S^{*}compact if for any $a \in M(L)$, each open β_a -cover of G has a finite subfamily \mathcal{V} which is an open Q_{a} -cover of G. (X, T) is said to be S^{*}-compact if 1 is S^{*}-compact.

In [15], Kudri and Warner introduced a notion of almost compactness based on Kudri's compactness. Since Kudri's compactness is equivalent to strong compactness in the sense of [17, 29], we call this new notion, which is defined below, almost strong compactness.

Definition 2.17. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then G is called almost strongly compact if for any $r \in P(L)$, each open r-cover \mathcal{U} of G has a finite subfamily \mathcal{V} such that \mathcal{V}^- is an r-cover of G. (X, \mathcal{T}) is said to be almost strongly compact if 1 is almost strongly compact. .

Definition 2.18. [24] Let (X, T) be an L-space. An open L-set U is called a strongly open neighborhood of a fuzzy point x_{λ} , if $\lambda \in \beta(U(x))$. An L-set A is called a strong neighborhood of x_a if there exists a strongly open neighborhood B of x_a such that $B \leq A$.

Definition 2.19. [8] An L-space (X, \mathcal{T}) is said to be regular if and only if each open L-set A is a union of open L-sets whose closure is less than A.

3. Definitions and Properties of Almost S^{*}-compactness

Definition 3.1. Let (X, T) be an L-space and $G \in L^X$. Then G is called almost S^{*}-compact if for any $a \in M(L)$, every open β_{α} -cover of G has a finite subfamily \mathcal{V} such that $\mathcal{V}^- = \{A^- \mid A \in \mathcal{V}\}$ is a Q_a -cover of G. (X, \mathcal{T}) is said to be almost S^* -compact if 1 is almost S^* -compact.

The following theorem is obvious.

Theorem 3.2. S^{*}-compactness implies almost S^{*}-compactness.

Theorem 3.3. Let (X, \mathcal{T}) be a regular L-space and $G \in \mathcal{L}^X_{\mathcal{W}\mathcal{W}}$ then \mathcal{G} is almost S^{*}-compact if and only if G is S^{*}-compact.

Proof. The sufficiency is obvious. Hence we only need to prove the necessity. Let $\mathcal{A} = \{A_i\}_{i \in I}$ be an open β_a -cover of G. By regularity of (X, \mathcal{T}) , we know that for each $i \in I$, there exists a family $\{B_{ij} \mid j \in J_i\}$ of open L-sets such that $A_i = \bigvee B_{ij}$ $j \in J_i$

and $B_{\overline{A_i}} \leq A_i$. Let $\mathcal{B}_{\overline{A_i}} \mid i \in I, j \in J_i$, then \mathcal{B} is an open β_a -cover of G. By almost S^{*}-compactness of G, we know that \mathcal{B} has a finite subfamily \mathcal{C} such that $\mathcal{C}^- = \{ C^- \mid C \in \mathcal{C} \}$ is a Q_a -cover of G. Suppose $\mathcal{C} = \{ B_{ij} \mid i \in I_0, j \in J_{i0} \}$, where I_0 and J_{i0} are finite subfamilies of I and J_i respectively. Obviously, $\bigvee B_{ij} \leq B_{ij}$ $i \in I_0 \ j \in J_{i0}$

 $\bigvee A_i$, hence $\{A_i \mid i \in I_0\}$ is a finite open Q_a -cover of G. It follows that G is $i \in I_0$ S^* -compact.

Theorem 3.4. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then G is almost S^* compact if and only if for any $a \in M(L)$, each regularly open β_a -cover of G has a finite subfamily \mathcal{V} such that \mathcal{V}^- is a Q_a -cover of G.

Proof. Again, the necessity is obvious. Now, for any $a \in M(L)$, suppose that \mathcal{U} is an open β_a -cover of G. Then $H = \mathcal{U}^{-\circ} = \{A^{-\circ} \mid A \in \mathcal{U}\}$ is a regularly open β_a -cover of G. So there exists a finite subfamily \mathcal{V} of \mathcal{U} such that $\mathcal{V}^{-\circ-} = \{A^{-\circ-} \mid A \in \mathcal{V}\}$ is a Q_a -cover of G. Since $A^{-\circ-} \leq A^-$ for any $A \in \mathcal{V}$, hence \mathcal{V}^- is a Q_a -cover of G. This shows that G is almost S^* -compact.

Theorem 3.5. If both G and H are almost S^* -compact, then $G \vee H$ is almost S^* -compact.

Proof. For any $a \in M(L)$, suppose that \mathcal{U} is an open β_a -cover of $G \vee H$. Then from

$$(G \lor H)'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) = \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x)\right) \land \left(H'(x) \lor \bigvee_{A \in \mathcal{U}} A(x)\right)$$

we obtain that for any $x \in X$, $a \in \beta \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right)$ and $a \in \beta \left(H'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right)$. So \mathcal{U} is an open β_a -cover of G and H. From almost S^{*}-compactness of G and H, it follows that \mathcal{U} has finite subfamilies \mathcal{V}_1 and \mathcal{V}_2 such that \mathcal{V}_1^- is a Q_a -cover of Gand \mathcal{V}_2^- is a Q_a -cover of H. Hence for any $x \in X$, $a \leq G'(x) \vee \bigvee_{A \in \mathcal{V}} A^-(x)$ and $a \leq H'(x) \vee \bigvee_{A \in \mathcal{V}_2} A^-(x)$. Now let $\mathcal{W} = \mathcal{V}_1 \cup \mathcal{V}_2$. Then \mathcal{W} is a finite subfamily of \mathcal{U} and it satisfies the conditions $a \leq G'(x) \lor \bigvee_{A \in \mathcal{W}} A^-(x)$ and $a \leq H'(x) \lor \bigvee_{A \in \mathcal{W}} A^-(x)$. It follows that $a \leq (G \lor H)'(x) \lor \bigvee_{A \in \mathcal{W}} A^-(x)$, which implies \mathcal{W}^- is a Q_a -cover of $G \lor H$. Therefore $G \lor H$ is almost S^* -compact.

Theorem 3.6. If G is almost S^* -compact and H is a clopen set, then $G \wedge H$ is almost S^* -compact.

Proof. For any $a \in M(L)$, suppose that \mathcal{U} is an open β_a -cover of \mathcal{G} w. BID hen $\mathcal{U} \cup \{H'\}$ is an open β_a -cover of G. By almost S^{*}-compactness of G, we know that $\mathcal{U} \cup \{H'\}$ has a finite subfamily \mathcal{V} such that \mathcal{V}^- is a Q_a -cover of G. Take

 $\mathcal{W} = \mathcal{V} \setminus \{H'\}$. Then \mathcal{W}^- is a Q_a -cover of $G \wedge H$. This shows that $G \wedge H$ is almost S^* -compact.

Theorem 3.7. Let $f: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ be almost continuous. If G is almost S^* -compact in (X, \mathcal{T}_1) , then so is $f_L^{\to}(G)$ in (Y, \mathcal{T}_2) . Applied of SID. Proof. For any $a \in M(L)$, suppose that $\mathcal{U} \subseteq \mathcal{T}_2$ is an open β_a -cover of $f_L^{\to}(G)$. Then $\mathcal{U}^{-\circ} = \{A^{-\circ} \mid A \in \mathcal{U}\}$ is a regularly open β_a -cover of $f_L^{\to}(G)$. For any $y \in Y$, we have that $a \in \beta \left(f_L^{\to}(G)'(y) \lor \bigvee_{A \in \mathcal{U}} A^{-\circ}(y) \right)$. Since f is almost continuous and

$$\begin{split} f_L^{\rightarrow}(G)'(y) &\vee \bigvee_{A \in \mathcal{U}} A^{-\circ}(y) &= \bigwedge_{x \in f^{-1}(y)} \left(G'(x) \vee \bigvee_{A \in \mathcal{U}} A^{-\circ}(f(x)) \right) \\ &= \bigwedge_{x \in f^{-1}(y)} \left(G'(x) \vee \bigvee_{A \in \mathcal{U}} f_L^{\leftarrow}(A^{-\circ})(x) \right), \end{split}$$

It follows that $f_L^{\leftarrow}(\mathcal{U}^{-\circ}) = \{f_L^{\leftarrow}(A^{-\circ}) \mid A \in \mathcal{U}\}\$ is an open β_a -cover of G. By almost S^* -compactness of G, \mathcal{U} has a finite subfamily \mathcal{V} such that $f_L^{\leftarrow}(\mathcal{V}^{-\circ})^-$ is a Q_a -cover of G. Hence for any $y \in Y$,

$$\begin{array}{rcl} a & \leqslant & \bigwedge_{x \in f^{-1}(y)} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} f_L^{-}(A^{-\circ})^{-}(x) \right) \\ & \leqslant & \bigwedge_{x \in f^{-1}(y)} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} f_L^{-}(A^{-\circ-})(x) \right) \\ & = & f_L^{-}(G)'(y) \lor \bigvee_{A \in \mathcal{V}} A^{-\circ-}(y) \\ & \leqslant & f_L^{-}(G)'(y) \lor \bigvee_{A \in \mathcal{V}} A^{-}(y). \end{array}$$

This shows that \mathcal{V}^- is a Q_a -cover of $f_L^{\rightarrow}(G)$. Therefore $f_L^{\rightarrow}(G)$ is almost S^* -compact.

The following theorems can be proved similarly.

Theorem 3.8. Let $f: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ be weakly continuous. If G is S^{*}-compact in (X, \mathcal{T}_1) , then $f_{L} \to (G)$ is almost S^{*}-compact in (Y, \mathcal{T}_2) .

Theorem 3.9. Let $f : (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ be strongly continuous. If G is almost S^* -compact in (X, \mathcal{T}_1) , then $f_L^{\to}(G)$ is S^* -compact in (Y, \mathcal{T}_2) .

The following theorem shows that the notion of almost S^* -compactness is a good extension of the notion of almost compactness in general topology.

Theorem 3.10. If (X, \mathcal{T}) is a weakly induced L-space, then (X, \mathcal{T}) is almost S^* compact if and only if $(X, [\mathcal{T}])$ is almost compact.

Proof. Let $(X, [\mathcal{T}])$ be almost compact. For $a \in M(L)$, let \mathcal{U} be an open β_a -cover of $\underline{1}$ in (X, \mathcal{T}) . By Lemma 2.3, $\{A_{(a)} \mid A \in \mathcal{U}\}$ is an open cover of $(X, [\mathcal{T}])$. By almost compactness of $(X, [\mathcal{T}])$, we know that there exists a finite subfamily \mathcal{V} of \mathcal{U} such that $(\mathcal{V}_{(a)})^- = \{(A_{(a)})^- \mid A \in \mathcal{V}\}$ is a cover of $(X, [\mathcal{T}])$. For any $A \in \mathcal{V}$, by $(A_{(a)})^- \subseteq (A_{[a]})^- \subseteq (A^-)_{[a]}$ we know that \mathcal{V}^- is a Q_a -cover of $\underline{1}$ in (X, \mathcal{T}) . This shows that (X, \mathcal{T}) is almost S^* -compact.

Conversely let (X, \mathcal{T}) be almost S^* -compact and \mathcal{W} be an open cover of $(X, [\mathcal{T}])$. Then for each $a \in \beta^*(1)$, $\{\chi_A \mid A \in \mathcal{W}\}$ is an open β_a -cover of $\underline{1}$ in (X, \mathcal{T}) . By almost S^{*}-compactness of (X, \mathcal{T}) , we know that there exists a finite subfamily \mathcal{V} of \mathcal{W} such that $\{(\chi_A)^- \mid A \in \mathcal{V}\}$ is a $Q_{\dot{a}}$ -cover of $\underline{1}$ in (X, \mathcal{T}) . By $(\chi_A)^- = \chi_{A^-}$ we know that \mathcal{V}^- is a cover of $(X, [\mathcal{T}])$. This shows that $(X, [\mathcal{T}])$ is almost compact. \Box Corollary 3.19. Let (X, τ) be a topological space and $(X, \omega_L(\tau))$ be generated

topologically by (X, τ) . Then $(X, \omega_L(\tau))$ is almost S^{*}-compact if and only if (X, τ) is almost compact.

4. The Relationship between Different Definitions of Almost Compactness

In order to compare almost S^* -compactness and almost F-compactness, we first study some characterizations of almost F-compactness. The following lemma is obvious.

Lemma 4.1. Let (X, \mathcal{T}) be an L-space and $G \in L^X$, $\Omega \subseteq L^X$. Then

- (1) Ω is an r-cover of G if and only if $G'(x) \vee \bigvee_{A \in \Omega} A(x) \notin r$ for any $x \in X$;
- (2) Ω is an r^+ -cover of G if and only if $\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \Omega} A(x) \right) \notin r;$ (3) Ω is an almost r-cover of G if and only if $G'(x) \lor \bigvee_{A \in \Omega} A^-(x) \notin r$ for any

 $x \in X;$

(4)
$$\Omega$$
 is an almost r^+ -cover of G if and only if $\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \Omega} A^-(x) \right) \notin r$.

Analogous to the method in [26], the following two theorems are obtained easily from Lemma 4.1.

Theorem 4.2. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then the following conditions are equivalent.

- (1) G is almost F-compact.
- (2) For every subfamily $\mathcal{U} \subset \mathcal{T}$,

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \leqslant \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{V}} A^{-}(x) \right).$$

(3) For every subfamily $\mathcal{P} \in \mathcal{T}'$,

$$\bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{P}} B(x) \right) \geqslant \bigwedge_{\mathcal{V} \in 2^{(\mathcal{P})}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in \mathcal{V}} B^{\circ}(x) \right).$$

Theorem 4.3. Let (X, \mathcal{T}) be an L-space and $G \in L^X$. Then the following conditions are equivalent:

(1) G is almost F-compact.

(2) For any $r \in L \setminus \{1\}$, each open r^+ -cover of G has a finite subfamily which is an almost r^+ -cover of G.

(3) For any $r \in L \setminus \{1\}$, each open r^+ -cover of G has a finite subfamily which is an almost r-cover of G.

(4) For any $r \in P(L)$, each open r^+ -cover of G has a finite subfamily which is an almost r-cover of G.

A(5) For ang $f \in \mathbb{P}(L)$ and each open r^+ -cover \mathcal{U} of G, there exists $b \in \alpha^*(r)$ and a finite subfamily \mathcal{V} such that \mathcal{V} is an almost b-cover of G.

(6) For any $a \in L \setminus \{0\}$ and any $b \in \beta(a) \setminus \{0\}$, each open Q_a -cover \mathcal{U} of G has a finite subfamily \mathcal{V} such that \mathcal{V}^- is a Q_b -cover of G.

(7) For any $a \in M(L)$ and any $b \in \beta^*(a)$, each open Q_a -cover \mathcal{U} of G has a finite subfamily \mathcal{V} such that \mathcal{V}^- is a Q_b -cover of G.

Theorem 4.4. Almost S^{*}-compactness implies almost F-compactness.

Proof. Let G be almost S^* -compact. For each $a \in M(L)$, suppose that Φ is an open Q_a -cover of G. Then $a \leq G'(x) \lor \bigvee_{A \in \Phi} A(x)$ for any $x \in X$. Thus for all $b \in \beta^*(a)$ we know that Φ is an open β_b -cover of G. By almost S^* -compactness of G we know that Φ has a finite subfamily Ψ such that Ψ^- is a Q_b -cover of G. By Lemma 4.3 this implies that G is almost F-compact.

However, as the following example shows, F-compactness does not always imply almost S^* -compactness.

Example 4.5. Let L = [0, 1], $X = \{2, 3, 4, \dots\}$ and \mathcal{T} be an *L*-topology generated by $\Phi = \{A_n, B_n \mid n \in X\}$, where

$$A_n(x) = \begin{cases} \frac{1}{2} + \frac{1}{n}, & x = n, \\ 0, & x \neq n, \end{cases} \quad B_n(x) = \begin{cases} \frac{1}{2} - \frac{1}{n}, & x = n, \\ 0, & x \neq n. \end{cases}$$

From

 $A'_n(x) = 1 - A_n(x) = \begin{cases} \frac{1}{2} - \frac{1}{n}, & x = n, \\ 1, & x \neq n, \end{cases} \text{ and } B'_n(x) = 1 - B_n(x) = \begin{cases} \frac{1}{2} + \frac{1}{n}, & x = n, \\ 1, & x \neq n, \end{cases}$

we obtain

$$A_n^-(x) = \begin{cases} \frac{1}{2} + \frac{1}{n}, & x = n, \\ \frac{1}{2} - \frac{1}{x}, & x \neq n, \end{cases} \qquad B_n^-(x) = \frac{1}{2} - \frac{1}{x}.$$

Obviously if $a \in (0.5, 1]$, no subfamily of Φ is an open Q_a -cover of $\underline{1}$. Thus we only need to consider $a \in (0, 0.5]$. Suppose that \mathcal{U} is an open Q_a -cover of $\underline{1}$. For each $b \in (0, a)$, we can take $A_m \leq U \in \mathcal{U}$ or $B_n \leq U \in \mathcal{U}$. Then $b \leq A_m^-(x) \leq U^-(x)$ or $b \leq B_n^-(x) \leq U^-(x)$ when $x \geq l = \frac{1}{0.5-b}$ and $x \in X$. Let $I = \{x \mid x \in X \text{ and} x < l\}$, then I is finite. For each $x \in I$, there exists $U_x \in \mathcal{U}$ such that $b < U_x(x)$. Let $\mathcal{C} = \{U_x, x \in I\} \bigcup \{U\}$, then \mathcal{C} is finite subfamily of \mathcal{U} and \mathcal{C}^- is a Q_b -cover of $\underline{1}$. Therefore (X, \mathcal{T}) is almost F-compact.

It is also clear that $\mathcal{U} = \{A_n\}_{n \in X}$ is an open $\beta_{0.5}$ -cover of $\underline{1}$, but \mathcal{U} has no finite subfamily \mathcal{V} such that \mathcal{V}^- is a $Q_{0.5}$ -cover of $\underline{1}$, hence (X, \mathcal{T}) is not almost S^* -compact. WWW.SID.ir

Theorem 4.6. When L = [0,1], almost strong compactness implies almost S^* -compactness.

Proof. Suppose that G is almost strongly compact and \mathcal{U} is an open β_a -cover of G. Then \mathcal{U} is an *a*-cover of G since

$$\begin{array}{ccc} a \in \beta \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) & \Leftrightarrow & a < G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \\ Archive \ of \ SID & \Leftrightarrow & G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \notin a. \end{array}$$

By almost strong compactness of G we know that there exists a finite subfamily \mathcal{V} of \mathcal{U} such that $\mathcal{V}^- = \{A^- \mid A \in \mathcal{V}\}$ is an *a*-cover of G. Obviously \mathcal{V}^- is a Q_a -cover of G. Therefore G is almost S^* -compact.

However, as the following example shows, almost S^* -compactness does not always imply almost strong compactness.

Example 4.7. Let L = [0, 1], $X = \{2, 3, 4, \dots\}$ and \mathcal{T} be an *L*-topology generated by $\Phi = \{A_n, B_n, C_n \mid n \in X\}$, where

$$A_n(x) = \begin{cases} \frac{1}{2} - \frac{1}{n}, & x = n, \\ 0, & x \neq n, \end{cases} \quad B_n(x) = \begin{cases} \frac{1}{2} + \frac{1}{n}, & x = n, \\ \frac{1}{2}, & x \neq n, \end{cases} \quad C_n(x) = \begin{cases} \frac{1}{2}, & x = n, \\ 0, & x \neq n. \end{cases}$$

It is obvious that when $m \neq n$ we have

$$A_n \wedge A_m = C_n \wedge C_m = A_n \wedge C_m = \underline{0}, \quad B_n \wedge B_m = \underline{\frac{1}{2}}$$

and

$$A_n \wedge B_m = A_n, \ C_n \wedge B_m = C_n, \ A_n \wedge \frac{1}{2} = A_n, \ B_n \wedge \frac{1}{2} = \frac{1}{2}, \ C_n \wedge \frac{1}{2} = C_n.$$

Thus $\{A_n, B_n, C_n \mid n = 2, 3, 4, \dots \} \cup \{\frac{1}{2}\}$ is a base of (X, \mathcal{T}) . By

$$A'_{n}(x) = \begin{cases} \frac{1}{2} + \frac{1}{n}, & x = n, \\ 1, & x \neq n, \end{cases} \quad B'_{n}(x) = \begin{cases} \frac{1}{2} - \frac{1}{n}, & x = n, \\ \frac{1}{2}, & x \neq n, \end{cases} \quad C'_{n}(x) = \begin{cases} \frac{1}{2}, & x = n, \\ 1, & x \neq n, \end{cases}$$

we have

$$A_n^-(x) = \frac{1}{2} - \frac{1}{x}, \ B_n^-(x) = B_n(x), \ (\frac{1}{2})^- = \frac{1}{2}, \ C_n^-(x) = \begin{cases} \frac{1}{2}, & x = n, \\ \frac{1}{2} - \frac{1}{x}, & x \neq n. \end{cases}$$

Obviously for any $a \in (0.5, 1]$, no subfamily of Φ is an open β_a -cover of $\underline{1}$. Thus we only need to consider $a \in (0, 0.5]$. Suppose that \mathcal{U} is an open β_a -cover of $\underline{1}$. We can take $B_k \leq \mathcal{U} \in \mathcal{U}$ or $\underline{1} \leq \mathcal{U} \in \mathcal{U}$, then $\{U^-\}$ is a Q_a -cover of $\underline{1}$. Otherwise, a < 0.5. We can take $A_m \leq \mathcal{U} \in \mathcal{U}$ or $C_n \leq \mathcal{U} \in \mathcal{U}$, then when $x \geq l = \frac{1}{0.5 - a}$ and $x \in X$, we have $a \leq A_m^-(x) \leq \mathcal{U}^-(x)$ or $a \leq C_n^-(x) \leq \mathcal{U}^-(x)$. Let $I = \{x \mid x \in X \text{ and } x < l\}$, then I is finite. For each $x \in I$, there exists $U_x \in \mathcal{U}$ such that $a < U_x(x)$. Let $\mathcal{C} = \{U_x, x \in I\} \bigcup \{\mathcal{U}\}$. Then \mathcal{C} is a finite subfamily of \mathcal{U} and \mathcal{C}^- is a Q_a -cover of $\underline{1}$. Therefore (X, \mathcal{T}) is almost S^* -compact.

Now $\mathcal{U} = \{B_n\}_{n \in X}$ is a 0.5-cover of <u>1</u>. However, for any finite subfamily \mathcal{V} of \mathcal{U} , there exists $x \in X$ such that $\bigvee_{A \in \mathcal{V}} A^-(x) = 0.5$. So (X, \mathcal{T}) is not almost strongly compact.

The notion of almost N-compactness was defined in [22] as follows:

Definition 4.8. [22] Let (X, \mathcal{T}) be an *L*-space and $G \in L^X$. Then *G* is called almost *N*-compact if for any $a \in M(L)$, each *a*-*RF* Φ of *G* has a finite subfamily which is an almost a^- -*RF* of *G*. (X, \mathcal{T}) is said to be almost *N*-compact if $\underline{1}$ is almost *N*-compact.

From the fact that $P^{\circ} \in \eta(x_a) \Leftrightarrow P^{\circ -} \in \eta^{-}(x_a)$, it follows that Φ is an almost $a^{-}-RF$ of G if and only if $\Phi^{\circ -}$ is an $a^{-}-RF$ of G. Hence Definition 4.8 is not a generalization of almost compactness in general topology, but of near compactness. In fact it is easily seen to be equivalent to near N-compactness as defined by Chen in [7]. In the proof of several theorems in [22], the authors have used the following fact:

$$P^{\circ} \in \eta(x_a) \iff a \notin P^{\circ}(x).$$

This shows that results in [22] are correct. Thus we revise the definition of the almost N-compactness as follows:

Definition 4.9. Let (X, \mathcal{T}) be an *L*-space and $G \in L^X$. *G* is called almost *N*-compact if for any $a \in M(L)$ and any a-*RF* Φ of *G*, there exists a finite subfamily Ψ of Φ and $t \in \beta^*(a)$ such that for all $x \in X$, $t \notin G(x) \land \bigwedge_{P \in \Psi} P^{\circ}(x)$. (X, \mathcal{T}) is

said to be almost N-compact if $\underline{1}$ is almost N-compact.

Theorem 4.10. Almost N-compactness implies almost strong compactness.

Proof. Suppose that G is almost N-compact. For any $r \in P(L)$, let \mathcal{U} be an open r-cover of G. Then \mathcal{U}' is an r'-RF of G. By almost N-compactness of G we know that there exist $t \in \beta^*(r')$ and a finite subfamily \mathcal{V} of \mathcal{U} such that $t \notin G(x) \land \bigwedge_{A \in \mathcal{V}} A'^{\circ}(x)$.

This implies that

$$G'(x) \vee \bigvee_{A \in \mathcal{V}} A^{-}(x) = G'(x) \vee \bigvee_{A \in \mathcal{V}} A^{' \circ'}(x) \not\leqslant t'.$$

By $r \leq t'$ we know that $G'(x) \lor \bigvee_{A \in \mathcal{V}} A^{-}(x) \leq r$, i.e., \mathcal{V}^{-} is an *r*-cover of *G*. Therefore *G* is almost strongly compact.

As the following example shows, almost strong compactness does not always imply almost N-compactness.

Example 4.11. Let X = (0, 1), \mathcal{T} be a [0, 1]-topology generated by A, B and all constant *L*-sets, where A(x) = x, B(x) = 1-x. It is obvious that $A^- = A, B^- = B$. For $a \in [0, 1)$, suppose that \mathcal{U} is an open *a*-cover of 1.

(1) If a > 0.5 take a = 0.5 then A(a) = D(a) = 0.5. In this

(1) If $a \ge 0.5$, take x = 0.5, then A(x) = B(x) = 0.5. In this case, there exists $U \in \mathcal{U}$ such that $U(x) > a \ge 0.5$, this implies that there exists a constant fuzzy set $\underline{s} \le U$ such that s > a. Therefore $\{U^-\}$ is an *a*-cover of $\underline{1}$.

(2) If a < 0.5, then we know from the structure of \mathcal{T} , that there exists a subfamily \mathcal{B} of $\{\underline{r}, \underline{r} \wedge A, \underline{r} \wedge B, \underline{r} \wedge A \wedge B \mid r \in [0, 1]\}$ such that \mathcal{B} is a refinement of \mathcal{U} and \mathcal{B} is an *a*-cover of $\underline{1}$. Obviously \mathcal{B} has a finite subfamily \mathcal{D} which is an *a*-cover of $\underline{1}$, hence \mathcal{U} has a finite subfamily which is an *a*-cover of $\underline{1}$.

This shows that (X, \mathcal{T}) is almost strongly compact.

Let $\mathcal{U} = \{A\}$. Then \mathcal{U} is a 1-*RF* of <u>1</u>. But there is no t < 1 such that $t \notin A(x) = A^{\circ}(x)$ for all $x \in X$. So (X, \mathcal{T}) is not almost *N*-compact.

Corollary 4.12. When L = [0,1], almost N-compactness implies almost S^* -compactnessive of SID

5. Other Characterizations of Almost S^* -compactness

Definition 5.1. Let $\{S(n) \mid n \in D\}$ be a net in $(X, \mathcal{T}), x_{\lambda} \in M(L^X)$. x_{λ} is called a weak O_{θ} -cluster point of S, if for each strongly open neighborhood U of x_{λ} , Sis frequently in U^- . x_{λ} is called a weak O_{θ} -limit point of S, if for each strongly open neighborhood U of x_{λ} , S is eventually in U^- . In this case, we also say that S weakly O_{θ} -converges to x_{λ} and write $S \xrightarrow{WO_{\theta}} x_{\lambda}$.

From [24] we know that if S weakly O-converges to x_{λ} then that S weakly O_{θ} -converges to x_{λ} , and if x_{λ} is a weak O-cluster point of S then x_{λ} is a weak O_{θ} -cluster point of S.

Theorem 5.2. An L-set G is almost S^* -compact in (X, \mathcal{T}) if and only if $\forall a \in M(L)$, each constant a-net quasi-coinciding with G has a weak O_{θ} -cluster point $x_a \notin \beta(G')$.

Proof. Suppose that G is almost S^* -compact. For $a \in M(L)$, let $\{S(n) \mid n \in D\}$ be a constant *a*-net quasi-coinciding with G. Suppose that S has no weak O_{θ} -cluster point $x_a \notin \beta(G')$. Then for each $x_a \notin \beta(G')$ there exists a strongly open neighborhood U_x of x_a and $n_x \in D$ such that $\forall n \ge n_x$, $S(n) \notin U_x^-$. Let $\Phi = \{U_x \mid x_a \notin \beta(G')\}$. Then Φ is an open β_a -cover of G. Since G is almost S^* -compact, Φ has a finite subfamily $\Psi = \{U_{x^i} \mid i = 1, 2, \cdots, k\}$ such that Ψ^- is a Q_a -cover of G. Since D is a directed set, there exists $n_0 \in D$ such that $n_0 \ge n_{x^i}$ for each $i \le k$. Thus $\forall n \ge n_0$, $S(n) \notin \bigvee \{U_{x^i}^- \mid i = 1, 2, \cdots, k\}$. This contradicts the fact that Ψ^- is a Q_a -cover of G. Therefore S has a weak O_{θ} -cluster point $x_a \notin \beta(G')$.

Conversely, suppose that for each $a \in M(L)$, each constant *a*-net quasi-coinciding with G has a weak O_{θ} -cluster point $x_a \notin \beta(G')$. We prove that G is almost S^* compact. Let Φ be an open β_a -cover of G. If for each finite subfamily Ψ of Φ , Ψ^- is not a Q_a -cover of G, then for each finite subfamily Ψ of Φ , there exists $S(\Psi) \in M(L^X)$ with height a such that $S(\Psi) \notin G'$ and $S(\Psi) \notin \sqrt{\Psi^-}$. Let $S = \{S(\Psi) \mid \Psi$ is a finite subfamily of Φ }. Then S is a constant a-net quasicoinciding with G. Suppose that S has a weak O_{θ} -cluster point $x_a \notin \beta(G')$. Then for each finite subfamily Ψ of Φ , we have $x_a \notin \beta(\sqrt{\Psi})$. In particular, $x_a \notin \beta(B)$ for any $B \in \Phi$. But since Φ is an open β_a -cover of G, we know that there exists $B \in \Phi$ such that $x_a \in \beta(B)$, which is in contradiction with $x_a \notin \beta(B)$. So G is almost S^* -compact.

Theorem 5.3. An L-set G is almost S^* -compact in (X, \mathcal{T}) if and only if $\forall a \in M(L)$, each a^- -net quasi-coinciding with G has a weak O_{θ} -cluster point $\psi_a \notin B(G')$.

Proof. The sufficiency is obvious and so we only need to prove the necessity.

Let G be almost S^* -compact, $a \in M(L)$ and $\{S(n) \mid n \in D\}$ be an a^- -net quasi-coinciding with G. Then there exists $n_0 \in D$ such that $\forall n \ge n_0$, $S(n) \le a$. Put $E = \{n \in D \mid n \ge n_0\}$ and

 $T = \{T(n) \mid n \in E, V(T(n)) = a, \text{ the support point of } T(n) \text{ is same as } S(n)\}.$ Then This acconstant D_{n-1} and T(n) are quasi-coinciding with G. Let x_a be a weak O_{θ} -cluster point of T. It is easy to see that x_a is also a weak O_{θ} -cluster point of S.

Definition 5.4. Let $A \in L^X$. The θ -closure of A is defined to be

$$cl_{\theta}(A) = \bigwedge \{ V \mid A \leqslant V^{\circ}, V \in \mathcal{T}' \}.$$

The θ -interior of A is defined to be $cl_{\theta}(A')'$, written as $int_{\theta}(A)$.

The following lemmas are obvious.

Lemma 5.5. Let $A \in L^X$, then $cl_{\theta}(A) \in \mathcal{T}'$, $int_{\theta}(A) \in \mathcal{T}$, $A^- \leq cl_{\theta}(A)$, and $int_{\theta}(A) \leq A^{\circ}$.

Lemma 5.6. If $A \in \mathcal{T}$, then $A^- = cl_\theta(A)$; If $A \in \mathcal{T}'$, then $A^\circ = int_\theta(A)$.

Definition 5.7. An *L*-set *A* is called a Θ^C -set if $A = cl_{\theta}(B)$, for some $B \in L^X$. An *L*-set *A* is called Θ^O -set if $A = int_{\theta}(B)$, for some $B \in L^X$.

Obviously, a Θ^C -set is closed and a Θ^O -set is open.

Theorem 5.8. An L-set G is almost S^* -compact in (X, \mathcal{T}) if and only if for each $a \in M(L)$ and for each family \mathcal{U} of Θ^C -sets such that \mathcal{U}° forms a β_a -cover of G, there exists a finite subfamily \mathcal{V} of \mathcal{U} such that \mathcal{V} is a Q_a -cover of G.

Proof. (⇒) Suppose that *G* is almost *S*^{*}-compact. For any *a* ∈ *M*(*L*), let *U* be a family of Θ^C-sets such that \mathcal{U}° forms a β_a -cover of *G*. By almost *S*^{*}-compactness of *G*, there exists a finite subfamily \mathcal{V} of \mathcal{U} such that $\mathcal{V}^{\circ-} = \{V^{\circ-} | V \in \mathcal{V}\}$ is a Q_a -cover of *G*. Now it follows from $V^{\circ-} \leq V$ for each $V \in \mathcal{V}$ that \mathcal{V} is a Q_a -cover of *G*.

(⇐) For any $a \in M(L)$, let \mathcal{U} be an open β_a -cover of G. Then by Lemma 5.6, $\mathcal{U}^- = \{U^- \mid U \in \mathcal{U}\}$ is a family of Θ^C -sets. It follows from $U^{-\circ} \ge U$ for each $U \in \mathcal{U}$ that $\mathcal{U}^{-\circ}$ is a β_a -cover of G. Thus \mathcal{U} has a finite subfamily \mathcal{V} such that \mathcal{V}^- is a Q_a -cover of G. So G is almost S^* -compact. \Box

Theorem 5.9. An L-set G is almost S^* -compact in (X, \mathcal{T}) if and only if $\forall a \in M(L)$, every β_a -cover of G by Θ^O -sets has a finite subfamily \mathcal{V} such that $cl_\theta(\mathcal{V})$ is a Q_a -cover of G.

Proof. (\Rightarrow) Suppose that G is almost S*-compact. For any $a \in M(L)$, let \mathcal{U} be a β_a -cover of G by Θ^O -sets. Then \mathcal{U} is also an open β_a -cover of G. By almost S*-compactness of G, there exists a finite subfamily \mathcal{V} of \mathcal{U} such that $\{A^- \mid A \in \mathcal{V}\}$ is a Q_a -cover of G. By $A^- = cl_\theta(A)$ we know that $cl_\theta(\mathcal{V}) = \{cl_\theta(A) \mid A \in \mathcal{V}\}$ is a Q_a -cover of G.

(\Leftarrow) For any $a \in M(L)$, let \mathcal{U} be an open β_a -cover of G. It follows from Lemma 5.6 that $\mathcal{U}^{-\circ} = \{A^{-\circ} \mid A \in \mathcal{U}\}$ is a family of Θ^O -sets and it is a β_a -cover of G

since $A^{-\circ} \ge A$ for each $A \in \mathcal{U}$. By hypothesis, \mathcal{U} has a finite subfamily \mathcal{V} such that $cl_{\theta}(\mathcal{V}^{-\circ})$ is a Q_a -cover of G. From

$$G'(x) \vee \bigvee_{A \in \mathcal{V}} cl_{\theta}(A^{-\circ}) = G'(x) \vee \bigvee_{A \in \mathcal{V}} A^{-\circ-}(x) \leqslant G'(x) \vee \bigvee_{A \in \mathcal{V}} A^{-}(x),$$

we obtain that W is a G-cover of G. This shows that G is almost S^* -compact. \Box

Definition 5.10. Let $A \in L^X$. The α -closure of A is defined by

$$cl_{\alpha}(A) = \bigwedge \{ B \mid A \leq B \text{ and } B \text{ is } \alpha \text{-closed} \}.$$

 $cl_{\alpha}(A')'$ is called the α -interior of A and denoted by $int_{\alpha}(A)$.

Lemma 5.11. If A is a semi-open L-set, then $cl_{\alpha}(A) = A^{-}$.

Proof. Obviously, $cl_{\alpha}(A) \leq A^{-}$. In order to prove that $A^{-} \leq cl_{\alpha}(A)$, suppose that $x_a \leq cl_{\alpha}(A)$. Then there exists an α -closed set B such that $A \leq B$ and $x_a \leq B$. Since A is semi-open and B is α -closed, hence $A^{-} \leq A^{\circ -} \leq B^{\circ -} \leq B^{-\circ -} \leq B$. This shows that $x_a \leq A^{-}$. Thus $A^{-} \leq cl_{\alpha}(A)$. \Box

Theorem 5.12. An L-set G is almost S^* -compact in (X, \mathcal{T}) if and only if $\forall a \in M(L)$, each α -open β_a -cover \mathcal{U} of G has a finite subfamily \mathcal{V} such that $cl_{\alpha}(\mathcal{V})$ is a Q_a -cover of G.

Proof. (\Rightarrow) Suppose that G is almost S*-compact. For any $a \in M(L)$, let \mathcal{U} be an α -open β_a -cover of G. Let $\mathcal{W} = \{A^{\circ-\circ} \mid A \in \mathcal{U}\}$, then \mathcal{W} is an open β_a cover of G. By almost S*-compactness of G, there exists a finite subfamily \mathcal{V} of \mathcal{U} such that $\{A^{\circ-\circ-} \mid A \in \mathcal{V}\}$ is a Q_a -cover of G. Since $A^{\circ-\circ-} = A^- = cl_\alpha(A)$, $cl_\alpha(\mathcal{V}) = \{cl_\alpha(A) \mid A \in \mathcal{V}\}$ is also a Q_a -cover of G.

(⇐) For any $a \in M(L)$, let \mathcal{U} be an open β_a -cover of G. Then \mathcal{U} is also an α -open β_a -cover of G. By hypothesis there exists a finite subfamily \mathcal{V} of \mathcal{U} such that $cl_\alpha(\mathcal{V})$ is a Q_a -cover of G. Since $cl_\alpha(A) = A^-$ for any $A \in \mathcal{V}$, G is almost S^* -compact.

References

- P. Alexandroff and P. Urysohn, Zur theorie der topologischen r\u00e4iume, Math. Ann., 92 (1924), 258-266.
- [2] S. P. Arya and R. Gupta, On strongly continuous functions, Kyungpook Math. J., 14 (1974), 131–141.
- K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82 (1981), 14–32.
- [4] A. Bülbül and M.W. Warner, Some good dilutions of fuzzy compactness, Fuzzy Sets and Systems, 51 (1992), 111–115.
- [5] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182–190.
- [6] S. L. Chen, Almost F-compactness in L-fuzzy topological spaces, J. Northeastern Math., 7(4) (1991), 428–432.
- [7] S. L. Chen, The nearly nice compactness in L-fuzzy topological spaces, Chinese Journal of Mathematics, 16 (1996), 67–71.
- [8] A. D. Concilio and G. Gerla, Almost compactness in fuzzy topological spaces, Fuzzy Sets and Systems, 13 (1984), 187–192.
- [9] P. Dwinger, Characterizations of the complete homomorphic images of a completely distributive complete lattice I, Indagationes Mathematicae (Proceedings), 85 (1982), 403–414.

- [10] A. H. Es, Almost compactness and near compactness in fuzzy topological spaces, Fuzzy Sets and System, 22 (1987), 289–295.
- [11] T. E. Gantner, R. C. Steinlage and R. H. Warren, Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62 (1978), 547-562.
- [12] G. Gierz and et al., A compendium of continuous lattices, Springer Verlag, Berlin, 1980.
- [13] R. Goguen, The fuzzy tychnoff theorem, J. Math. Anal. Appl., 43 (1973), 734–742.
- [14] T. Kubiák, The topological modification of the L-fuzzy unit interval, Chapter 11, In applications of category theory to fuzzy subsets, S. E. Rodabaugh, E. P. Klement, U. Höhle, eds., 1992, Kluwer Academic Publishers, 275–305.
- [15] S. R. T. Kudri and M. W. Warner, Some good L-fuzzy compactness-related concepts and their properties I, Fuzzy Sets and Systems, 76 (1995), 141–155.
- [16] Y. M. Liu, Compactness and Tychnoff theorem in fuzzy topological spaces, Acta Mathematica Sinica, 24 (1981), 260-268.
- [17] Y. M. Liu and M.K. Luo, Fuzzy topology, World Scientific, Singapore, 1997.
- [18] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56 (1976), 621–633.
- [19] R. Lowen, A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl., 64 (1978), 446–454.
- [20] H. W. Martin, Weakly induced fuzzy topological spaces, J. Math. Anal. Appl., 78 (1980), 634–639.
- [21] A. S. Mashhour, M. H. Ghanim and M. A. F. Alla, On fuzzy noncontinuous mappings, Bull. Calcutta Math.Soc., 78 (1986), 57–69.
- [22] H. Meng and G. W. Meng, Almost N-compact sets in L-fuzzy topological spaces, Fuzzy Sets and Systems, 91 (1997), 115–122.
- [23] M. N. Mukherjee, On fuzzy almost compact spaces, Fuzzy Sets and Systems, 98 (1998), 207–210.
- [24] F. G. Shi, A new notion of fuzzy compactness in L-topological spaces, Information Sciences, 173 (2005), 35–48.
- [25] F. G. Shi, C. Y. Zheng, O-convergence of fuzzy nets and its applications, Fuzzy Sets and Systems, 140 (2003), 499–507.
- [26] F. G. Shi, A new definition of fuzzy compactness, Fuzzy Sets and Systems, 158 (2007), 1486–1495.
- [27] F. G. Shi, Theory of L_β-nested sets and L_α-nested sets and its applications, Fuzzy Systems and Mathematics, Chinese, 4 (1995), 65-72.
- [28] G. J. Wang, A new fuzzy compactness defined by fuzzy nets, J. Math. Anal. Appl., 94 (1983), 1–23.
- [29] G. J. Wang, Theory of L-fuzzy topological space, Shanxi Normal University Press, Chinese, 1988.
- [30] D. S. Zhao, The N-compactness in L-fuzzy topological spaces, J. Math. Anal. Appl., 128 (1987), 64–70.

Guo-Feng Wen, School of Management Science and Engineering, Shandong Institute of Business and Technology, Yantai 264005, P. R. China

E-mail address: wenguofeng@sdibt.edu.cn

FU-GUI SHI, DEPARTMENT OF MATHEMATICS, BEIJING INSTITUTE OF TECHNOLOGY, BEIJING, 100081, P. R. CHINA

E-mail address: fuguishi@bit.edu.cn

HONG-YAN LI*, SCHOOL OF MATHEMATICS AND INFORMATION SCIENCE, SHANDONG INSTITUTE OF BUSINESS AND TECHNOLOGY, YANTAI 264005, P. R. CHINA *E-mail address:* lihongyan@sdibt.edu.cn

*Corresponding author