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AnsTRACT. In this paper, the notion of almost 5*-compactness in L-topological
spaces is introduced following Shi‘s definition of §*-compactness. The prop-
orties of this notion are studied and the relationship between it and other
definitions of almost compactness are discussed. Several characterizations of
almost 5°-compactness are algo presented.

1. Introduction

The concept of compactness is one of the most important concepts in general
topology. The notion of compactness in [D. lj—fuzx;.- set theory was first introduced
by C. L. Chang in terms of open cover [5]. However the analogue of Tychonoff
Theorem is false in Chang's compactness theory [13]. Hence Gantner. Steinlage
and Warren introduced the idea of a-compactness [11], Lowen introduced the ideas
of fueey, strong fuzey, as well as ultra-fuzey compactness [18. 19], Liu defined Q-
compactness [16] and Wang and Zhao defined N-compactness [28, 30]. Recently
Shi has introduced 5*-compactness [24]. In 1924, Alexandroff and Urysohn [1]
studied the idea of alimost compactness {(a weak form of compactness) in topological
spaces. The analogous concept in fuzzy topological spaces was first studied by
Concilio and Gerla [8] and developed by A. Haydar Es [10], M.N. Mukherjec and
R.P. Chakraborty [23]. However, Concilio and Gerla’s definition of fuzzy almost
compactness is not a good extension of the notion in general topology.

In [4], the notion of almost compactness was again generalized to [0,1]-topological
spaces following Lowen’s definition of compactness [19). In [6, 15, 22, it was also
generalized to L-topological spaces following Lowen's definition of fuzzy compact-
ness, Kudri's definition of compactness, and Wang's definition of N-compactness,

In this paper, we gencralize the concept of almost compactness to L-topological
spaces following Shi's definition of S*-compactness [24]. We call this concept al-
most S*-compactness. We first prove several properties of almost S*-compactness
and study some characterizations. Then we discuss the relationship between the
different definitions of fuzzy almost compactness in L-topological spaces.

2. Preliminaries

Throughout this paper (L,\/, A} is a completely distributive DeMorgan alge-
bra, X is a nonempty set and LY is the set of all L-Fuzzy sets on X. The smallest
element and the largest element in LY are denoted by 0 and | respectively.
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An element a in L is called a prime element if a > b A ¢ implies a 2 bor a = c.
a in L is called a co-prime element if @’ is a prime element [12]. The set of nonunit
prime elements in L is denoted by P(L) , the set of nonzero co-prime elements in
L is denoted t?r é! B) and the set of nonzero co-prime elements in L is denoted
PhE(HYE O
The binary relation < in L is defined as follows: for a,b € L, a < b if and only
if for every subset D C L, the relation b < sup D always implies the existence of
d € D with a € d [9]. In a completely distributive DeMorgan algebra L. each
element b is a sup of {a € L | a < b}. In the sense of [17, 29], {a € L | a < b},
denoted by 3(b), is the greatest minimal family of b. Moreover, for b € L, we define
ab)={ae L|a <b}and a*(b) = a(b)N P(L).
Following [24, 27, for a € L and A € LX, we write:
A[a] ={ze X |A(x) 2a}, An ={r€X|ac (A=)},
A ={zre X | Ax) £ a}.
An L-topological space (or L-space for short) is a pair (X,7), where 7 is a
subfamily of L which contains 0, 1 and is closed for any suprema and finite

infima. 7 is called an L-topology on X. Each member of 7 is called an open L-set
and its complement is called a closed L-set.

For a subfamily ® C LX, 2(%) denotes the set of all finite subfamilies of ®.

The operator w was first introduced by R. Lowen in [19]. It was generalized to
an L-fuzzy setting by T. Kubiak in [14]. The following is an equivalent form of
their definition:

Definition 2.1. [14, 17, 29] For a topological space (X, 7), let wz(7) denote the
family of all lower semi-continuous,maps from (X,7T) to L, ie., wr(7T) = {4 €
LX | A® ¢ T,Va € L}. Then w(7T) is an L-topology on X and we said that
(X,wr(T)) is topologically generated by (X, T).

The concept of weakly induced spaces was introduced by H.W. Martin in [20]
and generalized to an L-fuzzy setting by Y.M. Liu and M.K. Luo in 1987. An
equivalent form of their definition is as follows:

Definition 2.2. [17, 20, 29] An L-space (X, T) is called weakly induced if Va € L,
VA € T, it follows that A(®) € [T], where [7] denotes the topology formed by all
crisp sets in 7.

It is obvious that (X,w (7)) is weakly induced.

Lemma 2.3. [20, 24] Let (X,7) be a weakly induced L-space, a € L, A € T. Then
A¢q) is an open set in [T].

Definition 2.4. A € L% is called (1) semi-open [3] if A < A”‘,‘éhre ularly
open [3] if A=° = A and (3) a-open [21] if A < A°~°. The R flf semi-
open L-set is called semi-closed, the complement of a regularly open L-set is called
regularly closed and the complement of an a-open L-set is called a-closed.
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Definition 2.5. Let (X. 7)) and (Y. T:) be two L-spaces. A map [ : (X.Tp) —
(Y, 73) is called (1) almost continuous [3] if f;i7(G) € T, for each regularly open
L-set 7 in (Y. T2), (2) weakly continuous [3] il fi(G) < fi (G7)° for each open
[-set G in (Y, T2) and (3) strongly continuous (2] if fi7(G) £ fi7(G) for each
L-seyr €& @S D

Definition 2.6. (23] A net § with index set D is denoted by {S(n) | n e D} or
{8(n)bncp. For G € LY, anet S is said to quasi-coincide with G if Vn € D, S(n) £
o,

Definition 2.7. [25] Let @ € M(L). A net {S(n) | n € D} in LY is called an
n~-net if there exists ng € D such that ¥n 2= ng V(S5(n)) £ a. where V(S(n))
denotes the height of S(n). A net {S(n)}uep in LY is said to be a constant a-net
if the height of each S(n) is a constant value .

Obwiously each constant c-net is an o™ -net.

Definition 2.8. [29] Let (X.T) be an L-space. A € T’ is called a closed remote
neighborhood of a fuzzy point r, if r, £ A. A € LY is called a remote neighborhood
of xy if there exists B € T"such that A £ 7 and B is a closed remote neighborhood
of &y, The set of all closed remote neighborhoods of «, and the set of all remote
neighborhoods of r, are denoted by n7(x,) and gz, ). respectively,

"It is evident that A € n(x,) if and only if A~ € n~ (x,).

Definition 2.9. [30] Let 4 € LY a & M(L). ® C 7' is called an a-remote
neighborhood family (briefly a-RF) of A, if for each z, = A there is 7 € € such
that P € g7 ({x,). P is called an ¢ -REF of A if there exists & € #*(a) such that
is a b-RF of A

Definition 2.10. [6) Lét A€ LY. u e M(L). € C T' is called an almost a-RF of
A, if for each x, £ A there is P € ¢ such that P° € g{z,). P is called an almost
a~-IF of 4 if there exists # € 3" (a) such that & is an almost ¢ RF of 4.

Definition 2.11. [22] Let A€ LY, r € P(L). 2 C LY is called an r-cover of A if,
for each r € A;), there is 7 € £ such that U(r) & r. £ is called an r™-cover of 4
if there exists £ € a"(r) such that £2 s a f-cover of A,

The notion of r-cover is equivalent to the notion of r-shading in [14].

Definition 2.12. [22] Let 4 € L*, r € P(L). 2 C L* is called an almost r-cover
of A, if for each x € A, there is U € () such that [/ (zx) ;; r. (1 is called an
almost rt-cover of A if there exists ¢ € 0 (r) such that £ is an almest t-cover of A,

Definition 2.13. (6] Let (X.T) be an L-space and G € LX. Then @ is called
almost F-compact if for any r € P(L), each apen r*-cover of ¢ has a finite suh-
family which is an almost r*-cover of &, (X, T) is said to be almost F-compact if

1 is almost F-compeet. .
WWw.SID.Ir

Definition 2.14. [24] Let (X,7) be an Lspace, a € M(L) and G € LY. A

subfamily I of LY is called a 3,-cover of G il for any & € X witha & 3(G'(:r)), there
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exists an A € I{ such that a € 3(A(x)). A 3,-cover U of G is called open(regularly
open, o-open, ete.) Ge-cover of @ il each member of & is open (regularly open,
a=Open, et ).

It is obvious that I is & J-cover of O I and only if for ooy 2 € X we have

ArcH{@ef §B(E))-

Definition 2.15. [24] Let (X, T) be an L-space, a € M(L) and G & LY. A

subfamily 8 of LY is called a @ -cover of G if for any x € X, Gr) £ o', implies
V oAlr) 2 a0 A Qu-cover I of 7 is called open (regularly open, a-open, ete,]
AEH

Qu-cover of (¢ if each member of If is open (regularly open. a-open, ete.).

Definition 2.16. [24] Let (X.7T) be an L-space and G € LY. @ is called S*-

compact if for any @ € M(L), each open dy-cover of & has a finite subfamily V
which is an open Qy-cover of . (X, T) is said to be 5*-compact if 1 Is 5" -compact,

In [15]. Kndri and Warner intradueed a notion of almost compactness based on
Kudri's compactness, Since Kudris compactness is equivalent to strong compact-
ness in the sense of [17, 29, we call this new notion, which is defined below, almost
Strang compactness,

Definition 2.17. Let (X, T) be an L-space and G © LY. Then @ is called almost
strongly compact if for any r € P L), each open r-cover {4 of (7 has a finite subfamily
V such that V= is an r-cover of . (X, 7)) is said to be almost strongly compact if
1 is almost strongly compact. .

Definition 2.18. [24] Let (X, 7) be an L-space. An open L-set [T is called a
strongly open neighborhood of a fuzzy point oy, A € F(U(x)), An L-set A is
ealled a strong neighborlivod of x, if there exists s strongly open neighborhood B
of r, such that B < A.

Definition 2,19, 3] An L-space (X, T) is said to be regular if and ouly if each
open L-set 4 is a union of open L-sets whose closure is less than A.

3. Definitions and Properties of Almost S*-compactness

Definition 3.1, Let (X, 7T) be an L-space and & € L*. Then G is called almost
S*-compact if for auy a € M(L), every open Jo-cover of G has o finite subfamily
V such that ¥V~ = {47 | A € V} is a Qu-cover of G. (X, T) is zaid to be almost
S -compact if 1 is almost S"-compact,

The following theorem is obvions.
Theorem 3.2. 5" -compuctness implics almost 8° -compactness.

Theorem 3.3. Let (X, T) be a regular L-space and G € Whgl [T if almost
S*-eaompaet if and anly if G is 8°-compaet.
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Proof. The sufficiency is obvious. Hence we only need to prove the necessity. Let
A = {A;}icr be an open 3,-cover of G. By regularity of (X, T), we know that for
each i € I, there exists a family {B;; | j € J;} of open L-sets such that A; = \/ B;;
: JEJ;
and BA I"ﬁ’vé"(t)fBSf [bBiJ- | i€ 1,7 € J;}, then B is an open 3,-cover of G. By
almost E -compactness of G, we know that B has a finite subfamily C such that
C~ ={C~ | C €} is aQ,-cover of G. Suppose C = {B;; | i € Iy,j € Jip}, where
Iy and Jjg are finite subfamilies of I and J; respectively. Obviously, \V \/ B <
; iely j€Jin

\/ A;, hence {A; | i € Iy} is a finite open Q,-cover of G. It follows that G is
ielp

S*-compact. ) O

Theorem 3.4. Let (X.T) be an L-space and G € L*. Then G is almost S*-
compact if and only if for any a € M(L). each regularly open 3,-cover of G has a
finite subfamily V such that V™ is a Q4-cover of G.

Proof. Again, the necessity is obvious. Now, for any a € M (L), suppose that I{ is an
open f(,-cover of G. Then H =U~° = {A~° | A € U} is a regularly open [3,-cover
of G. So there exists a finite subfamily V of i such that V=°7 = {47°~ | A € V}
is a Qq-cover of G. Since A7°" < A~ for any A € V, hence V™~ is a Q,-cover of G.
This shows that G is almost S*-compact. O

Theorem 3.5. If both G and H are almost S*-compact, then G v H is almost
S*-compact.

Proof. For any a € M (L), suppose that I is an open [3,-cover of GV H. Then from

(GVH)(@)v \/ A@) = (G"(a:) v\ A(r}) A (H'(x) v\ A{x})

Aeld Ael Aeld

we obtain that forany z € X, a8 (G’(m) vV A(:c)) anda € 8 (H’ (x)v \ A(z)).
Aelt Aeld

So U is an open (,-cover of G and H. From almost S*-compactness of G and H,
it follows that ¢ has finite subfamilies V; and Vs such that V| is a Q,-cover of G
and V; is a Q,-cover of H. Hence for any z € X, a < G'(z) v \ A~ (z) and
A€V,
a< H'(x)v \V A (z). Now let W=V, UV,. Then W is a finite subfamily of &
AeVs
and it satisfies the conditions a < G'(z)V \/ A~ (z)anda < H'(z)V \ A (z).
Aew Aew
It follows that a < (GV H) (z) v \/ A~ (z), which implies W~ is a Q,-cover of
Aew
G W H. Therefore G H is almost S*-compact. O

Theorem 3.6. If G is almost S*-compact and H is a clopen set, then G AN H is
almost S*-compact.

Proof. For any a € M(L), suppose that I is an open (3,-cover YENG\W [THén
U U {H'} is an open [,-cover of G. By almost S*-compactness of G, we know
that &4 U {H'} has a finite subfamily V such that V= is a Q,-cover of G. Take
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W =V\{H'}. Then W~ is a Q,-cover of G A H. This shows that G A H is almost
S*-compact. O

Theorem 3.7. Let f : (X.T1) — (Y.T2) be almost continuous. If G is almost
S*-compact in (X.Ty), then so is f; (G) in (Y. T5).

'%Lo%?li(g QI[}%[Q M(L), suppose that &/ C T is an open [(,-cover of fi (G).
Then U=° = {A~° | A € U} is a regularly open 3,-cover of f;"(G). Forany y € Y.

we have that a € 3 (ff(G)'(y) vV A_o(-y)). Since f is almost continuous and
Ael

I

@@V V A=w = A (G’(:r}\/ v A‘°(f(;n)))
Acu z€f=1(y) AcU

A, (¢@v V@),
:rEf_'(-g,rJ Aeld
It follows that f; (U~°) = {fi (A™°) | A € U} is an open 3,-cover of G. By
almost S*-compactness of G, U has a finite subfamily V such that f; (V7°)" is a
Qq-cover of G. Hence for any y € Y,
« < A (C@vy o)
.rEf_l{y) Aev

A (c@v V ira@)

zef~1(u) AgV

fr(@)yv 1\5\).4_"_(9)
< fL(@)'@Vv V A ().
A€V

A

This shows that V~ is a Q,-cover of f;7(G). Therefore f; (G) is almost S*-
compact. O

The following theorems can be proved similarly.

Theorem 3.8. Let f: (X, 7)) — (Y, T2) be weakly continuous. If G is S*-compact
in (X,71), then f;~(G) is almost S*-compact in (Y, T2).

Theorem 3.9. Let f : (X.7y) — (Y, T2) be strongly continuous. If G is almost
S*-compact in (X, T;), then f"(G) is S*-compact in (Y, T3).

The following theorem shows that the notion of almost S*-compactness is a good
extension of the notion of almost compactness in general topologyv.

Theorem 3.10. If (X,7) is a weakly induced L-space, then (X.T) is almost S*-
compact if and only if (X.[T]) is almost compact.

Proof. Let (X,[T]) be almost compact. For a € M(L), let U be an open [3,-cover
of 1 in (X,7). By Lemma 2.3, {A,) | A € U} is an open cover of (X, [7T]). By
almost compactness of (X, [T]), we know that there exists a finite subfamily V of
U such that (V(q))™ = {(A@))~ | A € V} is a cover of (X, | reany A €V, by
(A@@))” € (Ajg))” € (A7 )(a) we know that V™ is a Q,-cover of 1 it ()Q ). This
shows that (X.7) is almost S*-compact.
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Conversely let (X, 7) be almost S*-compact and W be an open cover of (X, [T]).
Then for each a € 3%(1), {xa | A € W} is an open f,-cover of 1 in (X,7T). By
almost S*-compactness of (X, 7), we know that there exists a finite subfamily V of
W such that {(xa)~ | 4 € V} is a Q4-cover of 1 in (X, 7). By (xa)~ = xa- we
know that V™ is a cover of (X, [7]). This shows that (X, [T]) is almost compact. [J

Coéqlgnlv:gqu gep(X,'r) be a topological space and (X,wr (7)) be generated
topologically by (X, 7). Then (X,wr(7)) is almost S*-compact if and only if (X, 7)
is almost compact.

4. The Relationship between Different Definitions of Almost
Compactness

In order to compare almost S*-compactness and almost F-compactness, we first
study some characterizations of almost F-compactness. The following lemma is
obvious. .

Lemma 4.1. Let (X,7T) be an L-space and G € LX, Q C LX. Then
(1) Q is an r-cover of G if and only if G'(z) v \/ A(z) £ r for any z € X;
Aef

(2) Q is an rT-cover of G if and only if A\ (G’(I) vV A(x)) £
TeX Aeq
(3) Q is an almost r-cover of G if and only if G'(z) Vv \/ A~ (z) £ r for any
AeQ

re X;
(4) Q is an almost r*-cover of G if and only if A\ (G"(:IT) vV A"(a:)) £r.

zeX Aefl

Analogous to the method in [26], the following two theorems are obtained easily
from Lemma 4.1.

Theorem 4,2. Let (X,T) be an L-space and G € L*. Then the following condi-
tions are equivalent.

(1) G is almost F-compact.

(2) For every subfamily U c T,

A (G’{:.-:}V \VJ A(:r.)) = N N (G’(x}\f \/ A—(x)).

xeX A€l yealt) zeX Aev

(3) For every subfamily P e T',

\ (G(w)!\ A B(o:)) = ANV (G(a;)A A B°(u.-)).'

TEX BeP ve2(P) zeX Bev

Theorem 4.3. Let (X,7T) be an L-space and G € L*. Then the following condi-
tions are equivalent:

(1) G is almost F-compact.

(2) For any r € L\{1}, each open r*-cover of G has a finite subfigm [Dhich is

an almost v -cover of G.
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(3) For any r € L\{1}, each open r*-cover of G has a finite subfamily which is
an almost r-cover of G.

(4) For any r € P(L), each open r*-cover of G has a finite subfamily which is
an_almost r-cover of G.

E}%&N&Qf Sr}ﬁ?L) and each open rT-cover U of G, there exists b € o*(r) and
a finite subfamily V such that V is an almost b-cover of G.

(6) For any a € L\{0} and any b € 3(a) \ {0}, each open Qq-cover U of G has
a finite subfamily V such that V™ is a Qy-cover of G.

(7) For any a € M(L) and any b € 3*(a), each open Q,-cover U of G has a
finite subfamily V such that V= is a Qp-cover of .

Theorem 4.4. Almost S*-compactness implies almost F-compactness.

Proof. Let G be almost S*-compact. For each @ € M (L), suppose that ® is an open

Qa-cover of G. Then a < G'(z) v \/ A(z) for any z € X. Thus for all b € 3*(a)
Ac®
we know that @ is an open [F,-cover of G. By almost S*-compactness of G we know

that ® has a finite subfamily ¥ such that ¥~ is a Qp-cover of G. By Lemma 4.3
this implies that G is almost F-compact. O

However, as the following example shows, F-compactness does not always imply
almost S*-compactness.

Example 4.5. Let L =[0,1], X = {2,3,4,---} and T be an L-topology generated
by ® = {A,,B, | n € X}, where

1 1 . 1 1 _
An(z) = §+ﬁ, Tr=n, B, (z) = 5= @ T=n,
0, T # n, 0, T # n.
From
%—l z=mn %+—1~ T=n
v =1- )= n = n 5 =1-—Bu(x)= n’ Ty
An(:r}. 1— Ap(z) { { wik and B, (z) =1 — Byn(z) { y i

we obtain -

-

141 —
A;(:c)={ PTE T B@=g-o
55— TFEN, 2 =z
Obviously if a € (0.5, 1], no subfamily of ® is an open Q,-cover of 1. Thus we only
need to consider a € (0,0.5]. Suppose that U is an open @Q,-cover of 1. For each
b€ (0,a), we can take A,, SU el or B, <U €U. Then b < A (z) < U (z)
orb< By (z) SU™(z) when 2 > = gl and 2 € X. Let I = {z |z € X and
x < 1}, then I is finite. For each = € I, there exists U, € U such that b < U,(x).
Let C = {Uy, @ € I}|J{U}, then C is finite subfamily of & and C~ is a Qy-cover of
1. Therefore (X,7) is almost F-compact.
It is also clear that 4 = {A,}nex is an open [y s-cover of 1, but U has no
finite subfamily V such that V~ is a Qg5 -cover of 1, hence (X, 7) is not almost

S*-compact. wwWww.SD.ir

Theorem 4.6. When L = [0,1], almost strong compactness implies almost S*-
compaciness.
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Proof. Suppose that G' is almost strongly compact and I is an open 3,-cover of G.
Then U is an a-cover of G since

a€f (G’(x} vV A(;I-‘}) e a<G(z)v V Alx)
Agl 4eu
& G'z)v V Alx)La.
Aeld
By almost strong compactness of G we know that there exists a finite subfamily V
of U such that V= = {A~ | A € V} is an a-cover of G. Obviously V™ is a Q,-cover
of GG. Therefore G is almost S*-compact. O

However, as the following example shows, almost S*-compactness does not al-
ways imply almost strong compactness.

Example 4.7. Let L = [0.1], X = {2.3,4,---} and 7 be an L-topology generated
by ® = {A,,B,.C, | n € X}, where

! . =1 1-1—l L= 1 o
Anlz) = T BTk ) = n T=M LT = 3 T =mn,
(I) { n & :"é n, B {l) %1 3 C {J-) 0._ €I .

It is obvious that when m # n we have

A.n A .:4”,, = Cn M C—_m = An A Cm — Q B-n, A Bm = %
and -
1 1 1 1
A A By =iy Cal\ Byy= G An/\—zAl. B"A§:§° Cn/\a-cn.
Thus { Ay, By G| 5=2,8,4,s5 } % } is a base of (X, 7). By
1 1 1 1 - 1
AT L DiERr r=n, s T r=n, 5 z=n,
Ap(x) { i z4n, B, (z) { ; r#n, On(2) = { L T #E N,

we have

1 e
A7) =55 Bi@ =B, *CW*:{?_;. e in,

I

ImlH
|N>|.—n

Obviously for any @ € (0.5, 1], no subfamily of ® is an open 3,-cover of 1. Thus we
only need to consider a € (0,0.5]. Suppose that U/ is an open F,-cover of 1. We can
take B < U e U or % < U €U, then {U™ } is a Q,-cover of 1. Othemlbe a < 0.5.

We can take A,, U el or C, < U € U, then when z = | O_"— and z € X,
we have a < A (z) S U (z)ora < C(z) U (z). Let I={z |z € X and
x < 1}, then I is finite. For each z € I, there exists U, € U such that a < U,(z).
Let C = {U,,z € I}|J{U}. Then C is a finite subfamily of ¢/ and C~ is a Q,-cover
of 1. Therefore (X, 7) is almost S*-compact.

Now U = {Bn}nex is a 0.5-cover of 1. However, for any finite, subfamily-V: of

U, there exists € X such that \/ A~ (z) = 0.5. So (X, 7T) is not almost strongly
Aev
compact.
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The notion of almost N-compactness was defined in [22] as follows:

Definition 4.8. [22] Let (X,7) be an L-space and G € LX. Then G is called
almost N-compact if for any @ € M(L), each a-RF ® of G has a finite subfamily
A(h is all alm gtlj_—RF of G. (X,7T) is said to be almost N-compact if 1 is

From the fact that P° € n(x,) < P°~ € 5~ (x,). it follows that ® is an almost
a”-RF of G if and only if ®°7 is an a™-RF of G. Hence Definition 4.8 is not a
generalization of almost compactness in general topology, but of near compactness.
In fact it is easily seen to be equivalent to near N-compactness as defined by Chen
in (7]. In the pmof of several theorems in [22], the authors have used the following
fact:

P® € y(z,) < a & P°(x).
This shows that results in [22] are correct. Thus we revise the definition of the
almost N-compactness as follows:

Definition 4.9. Let (X,7) be an L-space and G € LX. G is called almost N-

compact if for any ¢ € M(L) and any a-RF ® of G. there exists a finite subfamily

U of ® and ¢t € 3*(a) such that for all z € X, t £ G(z) A A\ P°(z) . (X,7) is
P

said to be almost N-compact if 1 is almost N-compact.
Theorem 4.10. Almost N-compactness implies almost strong compactness.

Proof. Suppose that G is almost N-compact. For any r € P(L). let U/ be an open r-

cover of G. Then U’ is an +'-RF of G. By almost N-compactness of G we know that

there exist t € 3*(r') and a finite subfamily V of I such that t £ G(z)A A A°(z).
Aey

This implies that

GV \ A~ (@) =GV \/ 4@ ¢t

AV AgV
By r < t' we know that G'(z)v \/ A~ (z) £ r.ie., V™ is an r-cover of G. Therefore
AeV
G is almost strongly compact. O

As the following example shows, almost strong compactness does not always
imply almost N-compactness.

Example 4.11. Let X = (0,1), 7 be a [0.1]-topology generated by A, B and all
constant L-sets, where A(z) = x, B(x) = 1—xz. Itis obvious that A~ = A, B~ = B.
For a € [0.1), suppose that I is an open a-cover of 1.
(1) If a = 0.5, take x = 0.5, then A(x) = B(xr) = 0.5. In this case. there exists
+ U € U such that U(x) > a = 0.5, this implies that there exists a constant fuzzy set
s < U such that s > a. Therefore {U~} is an a-cover of 1.

(2) If @ < 0.5, then we know from the structure of 7, that there exists a subfamily
Bof {r.r NA.r AB,r AN AAB | r€[0.1]} such that B is a ryfiugmess 6D fand B
is an a-cover of 1. Obviously B has a finite subfamily D which is an a-cover of 1,
hence U has a finite subfamily which is an a-cover of 1.
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This shows that (X, 7) is almost strongly compact.
Let U = {A}. Then U is a 1-RF of 1. But there is no t < 1 such that t £ A(x) =
A°(x) for all x € X. So (X, 7T) is not almost N-compact.

Corollary 4.12. When L = [0.1], almost N-compactness implies almost S*-

compab¥hediive of S D

5. Other Characterizations of Almost S*-compactness

Definition 5.1. Let {S(n) | n € D} be anet in (X.T), zx € M(LY). zy is called
a weak Og-cluster point of S, if for each strongly open neighborhood U of xy, S
is frequently in U~. =z, is called a weak Op-limit point of S, if for each strongly
open neighborhood U of xy, S is eventually in U~. In this case, we also say that

. : wo
S weakly Og-converges to x) and write S —— x).

From [24] we know that if S weakly O-converges to x then that S weakly Op-
converges to xy. and if zy is a weak O-cluster point of S then x is a weak Og-cluster
point of S.

Theorem 5.2. An L-set G is almost S*-compact in (X.T) if and only if ¥a €
M(L), each constant a-net quasi-coinciding with G has a weak Og-cluster point

2o & B(G).

Proof. Suppose that G is almost S*-compact. For a € M(L), let {S(n) | n € D}
be a constant a-net quasi-coinciding with G. Suppose that S has no weak Op-
cluster point z, ¢ 3(G’). Then for each z, ¢ 3(G’) there exists a strongly open
neighborhood U, of x, and n, € D such that ¥n = n,, S(n) £ Uy . Let @ = {U, |
z, & B(G')}. Then @ is an open §,-cover of G. Since G is almost S*-compact, ¢
has a finite subfamily ¥ = {U,: | i =1,2.--- .k} such that ¥~ is a Q,-cover of G.
Since D is a directed set. there exists ng € D such that ng = n,: for each ¢ < k.
Thus Yn > ng, S(n) £ V{U, | i =1,2,--- ,k}. This contradicts the fact that ¥~
is a Q,-cover of G. Therefore S has a weak Og-cluster point x, & 3(G’).
Conversely, suppose that for each a € M(L). each constant a-net quasi-coinciding
with G has a weak Og-cluster point x, ¢ 3(G’). We prove that G is almost 57-
compact. Let ® be an open ,-cover of G. If for each finite subfamily ¥ of @,
U~ is not a Qu-cover of G, then for each finite subfamily ¥ of @, there exists
S(W) € M(LX) with height a such that S(¥) £ G’ and S(¥) £ V¥~. Let
S = {S(¥) | ¥ is a finite subfamily of ®}. Then S is a constant a-net quasi-
coinciding with G. Suppose that S has a weak Og-cluster point x, ¢ 3(G’). Then
for each finite subfamily ¥ of ®, we have x, ¢ 5(\/ V). In particular, z, ¢ 3(B)
for any B € ®. But since ® is an open (,-cover of G. we know that there exists
B € ® such that x, € 3(B), which is in contradiction with z, ¢ G(B). So G is
almost S*-compact. ' O

Theorem 5.3. An L-set G is almost S*-compact in (X, T) if and only if Va €
M(L), each a™-net quasi-coinciding with G has a weak Og-cluster Poip\, & BIGT.

Proof. The sufficiency is obvious and so we only need to prove the necessity.
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Let G be almost S*-compact, a € M(L) and {S(n) | n € D} be an a™-net
quasi-coinciding with G. Then there exists ng € D such that Vn = ng, S(n) < a.
Put E={neD|nz=no}and

T={T(n)|neE,V(T(n))=a, the support point of T'(n) is same as S(n)}.

T ChiakeThDh-net quasi-coinciding with G. Let x, be a weak Og-cluster
point of T. It is easy to see that x, is also a weak Og-cluster point of S. O

Definition 5.4. Let A € LX. The 6-closure of A is defined to be
co(A) = N\{V| A<V, VeT}.
The #-interior of A is defined to be clg(A’)’, written as intg(A).
The following lemmas are obvious.

Lemma 5.5. Let A € LX, then clg(A) € T, intg(A) € T, A~ < clg(A), and
intg(A) < A°.

Lemma 5.6. If A€ T, then A~ =clg(A); If A€ T', then A®° = inty(A).

Definition 5.7. An L-set A is called a ©%-set if A = clg(B), for some B € L¥.
An L-set A is called ©%-set if A = inty(B), for some B € LX.

Obviously, a ©€-set is closed and a ©%-set is open.

Theorem 5.8. An L-set G is almost S*-compact in (X.T) if and only if for each
a € M(L) and for each family U of ©F -sets such that U° forms a B,-cover of G,
there exists a finite subfamily V of U such that V is a Q,-cover of G.

Proof. (=) Suppose that G is almost S*-compact. For any a € M (L), let U be a
family of ©C-sets such that ¢° forms a 3,-cover of G. By almost S*-compactness
of G, there exists a finite subfamily V of & such that V°7 = {V°7 |V € V} is a
Q.-cover of G. Now it follows from V°~ < V for each V € V that V is a Q,-cover
of G.

(<) For any a € M(L), let U be an open 3,-cover of G. Then by Lemma 5.6,
U~ ={U~ | U € U} is a family of O-sets. It follows from U~° > U for each
U € U that U~° is a B,-cover of G. Thus U has a finite subfamily V such that V~
is a @Q,-cover of G. So G is almost S*-compact. a

Theorem 5.9. An L-set G is almost S*-compact in (X,7T) if and only if Va €
M(L), every B,-cover of G by ©9-sets has a finite subfamily V such that clg(V) is
a Qg-cover of G.

Proof. (=) Suppose that G is almost S*-compact. For any a € M (L), let U be
a q-cover of G by ©9-sets. Then U is also an open [,-cover of G. By almost
S*-compactness of G, there exists a finite subfamily V of U such that {4~ | A € V}
is a Qq-cover of G. By A~ = clg(A) we know that clg(V) = {cls(A) | A€ V}isa
Q) ,-cover of G. .

(<) For any a € M(L), let U be an open 3,-cover of G. It M%&Lﬂlma
5.6 that U=° = {A™° | A € U} is a family of ©P-sets and it is a 3,-cover of G
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since A™% = A for each A € Y{. By hypothesis, U has a finite subfamily V such that
clg(V7°) is a Q,-cover of G. From

G'x)V V cde(A°)=CG'(z)V V A° () <G'(2)v V A (z),
Aev Aey AeV

we obtani (ar\VE @lag) -¢over of G. This shows that G is almost §*-compact. O
Definition 5.10. Let A € L*. The a-closure of A is defined by
clo(A) = \{B| A< B and B is a~closed}.

cla(A’)" is called the a-interior of A and denoted by int,(A).

Lemma 5.11. If A is a semi-open L-set, then cl,(A) = A™.

Proof. Obviously, ¢l,(4) < A™. In order to prove that A~ < ¢l,(A), suppose
that x, ;( clo(A). Then there exists an a-closed set B such that A < B and z, g B.
Since A is semi-open and B is a-closed, hence A~ < A°~ € B°~ £ B™° € B.
This shows that z, € A~. Thus A~ < cl(A). O

Theorem 5.12. An L-set G is almost S*-compact in (X,T) if and only if Va €
M(L), each a-open Bq-cover U of G has a finite subfamily V such that cl, (V) is a
QQq-cover of G.

Proof. (=) Suppose that G is almost S*-compact. For any a € M(L), let U be
an a-open Fy-cover of G. Let W = {A°7° | A € U4}, then W is an open [,-
cover of G. By almost S*-compactness of G, there exists a finite subfamily V of
U such that {A°7°7 | A € V} is a Q,-cover of G. Since A°~°~ = A~ = cl,(4),
elo (V) = {elo(A) | A €V} is also a Q,-cover of G.

(<) For any a € M(L), let U be an open [3,-cover of . Then U is also an
a-open [3,-cover of G. By hypothesis there exists a finite subfamily V of I such
that ¢l (V) is a Q,-cover of G. Since cl,(A) = A~ for any A € V, G is almost
S*-compact. O
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