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ABSTRACT. In this paper, the notion of almost S. -compactness in L-topological
spaces is introduced following Shi's definition of S.-compactness. The prop-
erties of this notion are studied and the relationship between it and other
definitions of almost compactness are discussed. Several characterizations of
almost S. -compactness are also presented.

1. Introduction

The concept of compactness is one of the most important concepts in general
topology. The notion of compactness in [0, l]-fuzzy set theory was first introduced
by C. L. Chang in terms of open cover [5]. However the analogue of Tychonoff
Theorem is false in Chang's compactness theory [13]. Hence Gantner, Steinlage
and Warren introduced the idea of a-compactness [11],Lowen introduced the-ideas
of fuzzy, strong fuzzy, as well as ultra-fuzzy compactness [18, 19], Liu defined Q-
compactness [16] and Wang and Zhao defined N-compactness [28, 30]. Recently
Shi has introduced SO-compactness [24]. In 1924, Alexandroff and Urysohn [1]
studied the idea of almost compactness (a weak form of compactness) in topological
spaces. The analogous concept in fuzzy topological spaces was first studied by
Concilio and Gerla [8] and developed by A. Haydar Es [10], M.N. Mukherjee and
R.P. Chakraborty [23]. However, Concilio and Gerla's definition of fuzzy almost
compactness is not a good extension of the notion in general topology.

In [4],the notion of almost compactness was again generalized to [0,1]-topological
spaces following Lowen's definition of compactness [19]. In [6, 15, 22], it was also
generalized to L-topological spaces following Lowen's definition of fuzzy compact-
ness, Kudri's definition of compactness, and Wang's definition of N-compactness.

In this paper, we generalize the concept of almost compactness to L-topological
spaces following Shi's definition of S*-compactness [24]. We call this concept al-
most S*-compactness. We first prove several properties of almost S* -compactness
and study some characterizations. Then we discuss the relationship between the
different definitions of fuzzy almost compactness in L-topological spaces.

2. Preliminaries

Throughout this paper (L, V, /\,') is a completely distributive DeMorgan alge-
bra, X is a nonempty set and LX is the set of all L-fuzzy sets on X. The smallest
element and the largest element in LX are denoted by Q and 1 respectively.
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An element a in L is called a prime element if a ~ b /\ c impliesa ~ b or a ~ c.
a in L is called a co-prime element if a' is a prime element [12]. The set of nonunit
prime elements in L is denoted by P(L) , the set of nonzero co-prime elements in
L is denoted by M(L) and the set of nonzero co-prime elements in LX is denoted
by M(LX).

The binary relation -< in L is defined as follows:for a,bEL, a -<b if and only
if for every subset D S; L, the relation b ~ sup D always implies the existence of
d E D with a ~ d [9]. In a completely distributive DeMorgan algebra L, each
element b is a sup of {a ELI a -< b}. In the sense of [17,29], {a ELI a -< b},
denoted by /3(b),is the greatest minimal familyof b. Moreover.for bEL, wedefine
a(b) = {a ELI a' -< b'} and a*(b) = a(b) n P(L).

Following[24,27], for a ELand A E LX, we write:

Afa~= {x E X IA(x) ~ a}, A(a) = {x E X Ia E /3(A(x))},A a = {x E X IA(x) ;t;a}.
An L-topological space (or L-space for short) is a pair (X, T), where T is a

subfamily of LX which contains Q, 1 and is closed for any suprema and finite
infima. T is called an L-topology on X. Each member of T is called an open L-set
and its complement is called a closed L-set.

For a subfamily ~ S; LX, 2(~) denotes the set of all finite subfamili'es of ~.

The operator w was first introduced by R. Lowen in [19]. It was generalized to
an L-fuzzy setting by T. Kubiak in [14]. Ttle following is an equivalent form of
their definition:

Definition 2.1. [14, 17, 29] For a topological space (X, T), let wL(T) denote the
family of all lower semi-continuous,maps from (X, T) to L, i.e., wL(T) = {A E
LX I A(a) E T, 'Va E L}. Then wL(T) is an L-topology on X and we said that
(X,wL(T)) is topologically generated by (X, T).

The concept of weakly induced spaces was introduced by H.W. Martin in [20]
and generalized to an L-fuzzy setting by Y.M.' Liu and M.K. Luo in 1987. An
equivalent form of their definition is as follows:

Definition 2.2. [17, 20, 29] An L-space (X, T) is called weakly induced if 'VaE L,
'VA E T, it follows that A(a) E [T], where [T] denotes the topology formed by all
crisp sets in T.

It is obvious that (X, wL(T)) is weakly induced.

Lemma 2.3. [20, 24] Let (X, T) be a weakly induced L-space, a E L, A E T. Then
A(a) is an open set in [T].

Definition 2.4. A E LX is called (1) semi-open [3] if A ~ AO-, (2) regularly
open [3] if A-o = A and (3) a-open [21] if A ~ AO-o. The complement of a semi-
open L-set is called semi-closed, the complement of a regularly open L-set is called
regularly closed and the compl~ment of an a-open L-set is called a-closed.
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Almost S.-compactness in L-topological Spaces 33

Definition 2.5. Let (X, 'Ii) and (Y,12) be two L-spaces. A map f : (X, 'Ii) -+
(Y,12) is called (1) almost continuous [3] if fI:(G) E 'Ii for each regularly open
L-set G in (Y,12), (2) weakly continuous [3] if fI:(G) ~ fI:(G-)O for each open
L-set G in (Y,12) and (3) strongly continuous [2] if fi: (G-) ~ fi: (G) for each
L-set G in (X, 'Ii).

Definition 2.6. [25] A net S with index set D is denoted by {S(n) I n E D} or
{S(n)}nED' For G E LX, a net S is said to quasi-coincide with G if'Vn E D, S(n) 1;.
G'.

Definition 2.7. [25] Let a E M(L). A net {S(n) I n E D} in LX is called an
a- -net if there exists no E D such that 'Vn ~ no, V(S(n)) ~ a, where V(S(n))
denotes the height of S(n). A net {S(n)}nED in LX is said to be a constant a-net
if the height of each S(n) is a constant value a.

Obviously each constant a-net is an a- -net.

Definition 2.8. [29] Let (X, T) be an L-space. A E T' is called a closed remote
neighborhood of a fuzzy point Xa if Xa 1;.A. A E LX is called a remote neighborhood
of Xa if there exists BET' such that A ~ Band B is a closed remote neighborhood
of Xa. The set of all closed remote neighborhoods of Xa and the set of all remote
neighborhoods of Xa are denoted by TJ-(xa) and TJ(xa),respectively.

It is evident that A E TJ(xa)if and only if A- E TJ-(xa).

Definition 2.9. [30] Let A E LX, a E M(L). ~ ~ T' is called an a-remote
neighborhood family (briefly a-RF) of A, if for each Xa ~ A there is P E ~ such
that P E TJ-(xa). ~ is called an a--RF of A ifthere exists bE {3*(a) such that ~
is a b-RF of A.

Definition 2.10. [6] Let A E LX, a E M(L). ~ ~ T' is called an almost a-RF of
A, if for each Xa ~ A there is P E ~ such that po E TJ(xa). ~ is called an almost
a- -RF of A if there exists t E {3*(a) such that ~ is an almost t-RF of A.

Definition 2.11. [22]Let A E LX, r E P(L). n ~ LX is called an r-cover of A if,
for each x E A[r'!' there is U E n such that U (x) 1;. r. n is called an r+ -cover of A
if there exists t E a* (r) such that n is a t-cover of A.

The notion of r-cover is equivalent to the notion of r-shading in [14].

Definition 2.12. [22]Let A E LX, r E P(L). n ~ LX is called an almost r-cover
of A, if for each x E A[r']' there is U E n such that U-(x) 1;.r. n is called an
almost r+-cover of A if there exists t E a* (r) such that n is an almost t-cover of A.

Definition 2.13. [6] Let (X, T) be an L-space and G E LX. Then G is called
almost F-compact if for any r E P(L), each' open r+-cover of G has a finite sub-
family which is an almost r+-cover of G. (X, T) is said to be almost F-compact if
1 is almost F-compact.

Definition 2.14. [24] Let (X, T) be an L-space, a E M(L) and G E LX. A
subfamily U of LX is called a {3a-coverof G iffor any x E X with a fj.{3(G'(x)), there
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exists an A E U such that a E ,s(A(x)). A ,sa-cover U of G is called open(regularly
open, a-open, etc.) ,sa-cover of G if each member of U is open (regularly open,
a-open, etc.).

It is obvious that U is a ,sa-cover of G if and only if for any x E X we have

aEf3 (C'(X)V V A(X)).
AEU

Definition 2.15. [24] Let (X, T) be an L-space, a E M(L) and G E LX. A
subfamily U of LX is called a Qa-cover of G if for any x E X, G(x) % a', implies
V A(x) ~ a. A Qa-cover U of G is called open (regularly open, a-open, etc.)

AEU
Qa-cover of G if each member of U is open (regularly open, a-open, etc.).

Definition 2.16. [24] Let (X, T) be an L-space and G E LX. G is called S*-
compact if for any a E M(L), each open ,sa-cover of G has a finite subfamily V
which is an open Qa-cover of G. (X, T) is said to be S*-compact if 1 is S*-compact.

In [15], Kudri and Warner introduced a notion of almost compactness based on
Kudri's compactness. Since Kudri's compactness is equivalent to strong compact-
ness in the sense of [17, 29], we call this new notion, which is defined below, almost
strong compactness.

Definition 2.17. Let (X, T) be an L-space and G E LX. Then G is called almost
strongly cOfi!.pactif for any r E P( L), each open r-cover U of G has a finite subfamily
V such that V- is an Ir-cover of G. (X, T) is said to be almost strongly compact if
1 is almost strongly compact. .

Definition 2.18. [24] Let (X, T) be an L-space. An open L-set U is called a
strongly open neighborhood of a fuzzy point x>., if A E ,s (U(x)). An L-set A is
called a strong neighborhood of Xa if there exists a strongly open neighborhood B
of Xa such that B ~ A.

Definition 2.19. [8] An L-space (X, T) is said to be regular if and only if each
open L-set A is a union of open L-sets whose closure is less than A.

3. Definitions and Properties of Almost S*-compactness

Definition 3.1. Let (X, T) be an L-space and G E LX. Then G is called almost
S* -compact if for any a E M (L), every open ,sa-cover of G has a finite subfamily
V such that V- = {A- I A E V} is a Qa-cover of G. (X, T) is said to be almost
S*-compact if lis almost S*-compact.

The following theorem is obvious.

Theorem 3.2. S* -compactness implies almost S* -compactness.

Theorem 3.3. Let (X, T) be a regular L-space and G E LX. Then G is almost
S*-compact if and only if G is S* -compact.
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Proof. The sufficiency is obvious. Hence we only need to prove the necessity. Let
A = {AdiEI be an open !3a-coverof G. By regularity of (X, T), we know that for
each i E I, there exists a family {Bij Ij E Ji} of open L-sets such that Ai = V Bij

jEJi

and Bij ::;;;Ai. Let B = {Bij liE I,j E Jd, then B is an open !3a-coverof G. By
almost B*-compactness of G, we know that B has a finite subfamily C such that
C- = {C- ICE C} is a Qa-cover of G. Suppose C = {Bij liE Io,j E JiO}, where
10and JiOare finite subfamiliesof I and Ji respectively.Obviously, V V Bij::;;;

. iE10 jEJiO

V Ai, hence {Ai liE Io} is a finite open Qa-cover of G. It follows that G is
iE10
B*-compact. 0

Theorem 3.4. Let (X. T) be an L-space and G E LX. Then G is almost B*-
compact if and only if for any a E M(L), each regularly open !3a-cover of G has a
finite subfamily V such that V- is a Qa -cover of G.

Proof. Again, the necessity is obvious. Now, for any a E M(L), suppose that U is an
open !3a-cover of G. Then H = U-o = {A-O I A E U} is a regularly open !3a-cover
of G. So there exists a finite subfamily V of U such that V-o- = {A-O- IA E V}
is a Qa-cover of G. Since A-o- ::;;;A- for any A E V, hence V- is a Qa-cover of G.
This shows that G is almost B*-compact. 0

Theorem 3.5. If both G and H are almost B*-compact, then G V H is almost
B*-compact.

Proof. For any a E M(L), suppose that U is an open !3a-coverof Gv H. Then from

(C v H)' (x) V V A(x) =
(

CI (x) V V A(X)
)

/\

(
HI (x) V V A(X)

)AEU AEU AEU

weobtainthatforanyxEx,aEt3 (CI(X)V V A(X)) andaEt3 (HI(X)V V A(X)).
A~ A~

SOU is an open !3a-cover of G and H. From almost B*-compactness of G and H,
it follows that U has finite subfamilies VI and V2 such that VI is a Qa-cover of G
and Vi is a Qa-cover of H. Hence for any x E X, a ::;;;G'(x) V V A-(x) and

AEVI

a::;;;H'(x) V V A-(x). Now let W = VI U V2. Then W is a finite subfamily of U
AEV2

and it satisfies the conditions a::;;;G'(x) V V A-(x) and a::;;;H'(x) V V A-(x).
AEW AEW

It follows that a ::;;;(G V H)'(x) V V A-(x), which implies W- is a Qa-cover of
AEW

G V H. Therefore G V H is almost B*-compact. 0

Theorem 3.6. If G is almost B*-compact and H is a clopen set, then G /\ H is
almost B*-compact.

Proof. For any a E M(L), suppose that U is an open !3a-coverof G /\ H. Then
U U {H'} is an open !3a-cover of G. By almost B*-compactness of G, we know
that U U {H'} has a finite subfamily V such that V- is a Qa-cover of G. Take
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W = V\{H'}. Then W- is a Qa-cover of G!\ H. This shows that G!\ H is almost
S. -compact. 0

Theorem 3.7. Let f : (X,7i.) -+ (Y,12) be almost continuous. If G is almost
S. -compact in (X, 7i.), then so is fi: (G) in (Y.12).

Proof. For any a E M(L), suppose that U ~ 12 is an open /3a-cover of fi:(G).
Then U-o = {A-OIA E U} is a regularly open /3a-cover of fi:(G). For any y E Y.

we have that a E /3(fi: (G)' (y) V V A -0 (y)). Since f is almost continuous and
AEU

fi:(C)'(y) V V A-O(y) = /\ (C1(x) V V A-o (J(x)) )AEU xEJ-1(y) AEU

= /\ (C1(x) V V fi:(A-O)(x) ) ,
xEJ-l(y) AEU

It follows that fi:(U-O) = {Ji:(A-O) I A E U} is an open /3a-cover of G. By
almost S.-compactness of G, U has a finite subfamily V such that fi:(V-O)- is a
Qa-cover of G. Hence for any y E Y,

a:>; /\ (C1(X)V V fi:(A-O)-(x) )XEJ-l(y) AEV

:>; /\ (C1(x) V V fi:(A-O-)(x) )XEJ-l(y) AEV

fi:(C)'(y) V V A-O-(y)
AEV

:>; fi:(C)/(y) V V A-(y).
AEV

This shows that V- is a Qa-cover of fi:(G). Therefore fi:(G) is almost S.-
compact. 0

The following theorems can be proved similarly.

Theorem 3.8. Let f: (X, 7i.) -+ (Y,12) be weakly continuous. IfG is S.-compact
in (X,7i.), then fi:(G) is almost S.-compact in (Y,12).

Theorem 3.9. Let f : (X,7i.) -+ (Y,12) be stro~gly continuous. If G is almost
S.-compact in (X,7i.), then fi:(G) is S.-compact in (Y,12).

The following theorem shows that the notion of almost S. -compactness is a good
extension of the notion of almost compactness in general topology.

Theorem 3.10. If (X, T) is a weakly induced L-space, then (X. T) is almost S.-
compact if and only if (X, [7]) is almost compact.

Proof. Let (X, [7]) be almost compact. For a E M(L), let U be an open /3a-cover
of 1 in (X, T). By Lemma 2.3, {A(a) I A E U} is an open cover of (X. [T]). By
almost compactness of (X, [T]), we know that there exists a finite subfamily V of
U such that (V(a»)- = {(A(a»)-IA E V} is a cover of (X, [T]). For any A E V. by
(A(a»)- ~ (A[a])- ~ (A-)[a] we know that V- is a Qa-cover of 1 in (X, T). This
shows that (X. T) is almost S.-compact.
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Conversely let (X, T) be almost B*-compact and W be an open cover of (X, [T]).
Then for each a E ,8*(1), {XA I A E W} is an open ,8a-cover of 1 in (X, T). By
almost B*-compactness of (X, T), we know that there exists a finite subfamily V of
W such that {(XA)- I A E V} is a Qa-cover of 1 in (X, T). By (XA)- = XA- we
know that V- is a cover of (X, [T]). This shows that (X, [T]) is almost compact. 0

Corollary 3.11. Let (X,r) be a topological space and (X,wL(r)) be generated
topologically by (X,r). Then (X,wL(r)) is almost B*-compact if and only if (X,r)
is almost compact.

4. The Relationship between Different Definitions of Almost
Compactness

In order to compare almost B*-compactness and almost F-compactness, we first
study some characterizations of almost F-compactness. The following lemma is
obvious.

Lemma 4.1. Let (X, T) be an L-space and G E LX, n ~ LX. Then
(1) n is anr-coverofG if andonlyifG'(x) V V A(x) 1:.l' for any x E X;

AEf!

(2) n is an r+-cover ofG if and only if 1\ (G'(X) V V A(X)) 1:. 1';
xEX AEf!

(3) n is an almost r-coveT of G if and only if G'(x) V V A-(x) 1:.l' for any
AEf!

x E X;

(4) n is an almost 1'+-cover of G if and only if 1\ (G' (x) V V A - (x ))1:. r.
xEX AEf!

Analogous to the method in [26], the following two theorems are obtained easily
from Lemma 4.1.

Theorem 4;2. Let (X, T) be an L-space and G E LX. Then the following condi-
tions are equivalent.

(1) G is almost F-compact.
(2) For every subfamily U C T,

/\
(

G'(X) v V A(X»
)

~ V /\
(

G/(X) V V A-(X»
)

.
:rEX AEU VE2(U) xEX AEV

(3) For every subfamily PET',

V
(

G(X) /\ /\ B(X»
)

~ /\ V
(

G(X) /\ /\ BO(X»
)

:
:rEX BEP VE2CP) xEX BEV

Theorem 4.3. Let (X, T) be an L-space and G E LX. Then the following condi-
tions are equivalent:

(1) G is almost F -compact.
(2) For any l' E L\{l}, each open 1'+-cover of G has a finite subfamily which is

an almost 1'+-cover of G.
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(3) For any r E L \ {I}, each open r+ -cover of G has a finite subfamily which i~
an almost r-cover of G.

(4) For any r E P(L), each open r+-cover of G has a finite subfamily which is
an almost r-cover of G.

(5) For any r E P(L) and each open r+ -cover U of G, there exists b E a*(r) and
a finite subfamily V such that V is an almost b-cover of G.

(6) For any a E L\{O} and any b E {3(a) \ {O}, each open Qa-cover U of G has
a finite subfamily V such that V- is a Qb-cover of G.

(7) For any a E M(L) and any b E {3*(a), each open Qa-cover U of G has a
finite subfamily V such that V- is a Qb-cover of G.

Theorem 4.4. Almost B*-compactness implies almost F -compactness.

Proof. Let G be almost B*-compact. For each a E M(L), suppose that <IIis an open
Qa-cover of G. Then a ~ G'(x) V V A(x) for any x E X. Thus for all b E {3*(a)

AE1>

we know that <IIis an open {3b-coverof G. By almost B*-compactness of G we know
that <IIhas a finite subfamily 111such that 111-is a Qb-cover of G. By Lemma 4.3
this implies that G is almost F-compact. 0

However, as the following example shows, F-compactness does not always imply
almost B*-compactness.

Example 4.5. Let L = [0,1],X = {2,3,4,. . . } and T be an L-topologygenerated
by <II= {An,Bn In E X}, where

{

II
An(x) = 2"+ n' x = n,

0, x =In, {

I 1 x = n,2" - n'
Bn(x) = 0, x =In.

From

A~(x) ~1- An(x) = {
we obtain

x = n, I

{

II

x "I n, and Bn(x) = 1- Bn(x) = f, + n;,
x=n,
x"I n,

A~(x) =
{

t + t' x = n, B~(x) = ~- .!..
2"- X' x =In, 2 x

Obviously if a E (0.5,1], no subfamily of <IIis an open Qa-cover of 1. Thus we only
need to consider a E (0,0.5]. Suppose that U is an open Qa-cover of 1. For each
bE (O,a), we can take Am ~ U E U or Bn ~ U E U. Then b ~ A;;'(x) ~ U-(x)

or b ~ B;;(x) ~ U-(x) when x ~ 1= 0.51_ b and x E X. Let I = {x Ix E X and
x < l}, then I is finite. For each x E I, there exists Ux E U such that b < Ux(x).
Let C = {Ux, x E I} U{U}, then C is finite subfamily of U and C- is a Qb-cover of
1. Therefore (X, T) is almost F-compact.

It is also clear that U = {An}nEX is an open {30.5-coverof 1, but U has no
finite subfamily V such that V- is a QO.5-cover of 1, hence (X, T) is not almost
B*-compact.

Theorem 4.6. When L = [0,1], almost strong compactness implies almost B*-
compactness.
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Proof. Suppose that G is almost strongly compact and U is an open (3a-coverof G.
Then U is an a-cover of G since

{:} a < G'(x) V V A(x)
AEU

{:} G'(x) V V A(x) 1, a.
AEU

By almost strong compactness of G we know that there exists a finite subfamily V
of U such that V- = {A- IA E V} is an a-cover of G. Obviously V- is a Qa-cover
of G. Therefore G is almost S*-compact. 0

a E (3(G'(x) V V A(X))AEU

However, as the following example shows, almost S*-compactness does not al-
ways imply almost strong compactness.

Example 4.7. Let L = [0,1],X = {2,3,4,... } and T be an L-topologygenerated
by it>= {An, Bn, Cn In E X}, where

{

II

{

II _
An(x) = '1 - 'ii> x = n, Bn(x) = t + 'ii> x - n,

0, x =1=n, '1' x =1=n,

It is obvious that when m =1= n we have

Cn(x)=
{

~,
0,

x=n,
x =1=n.

and

1 1 1 1

An 1\Bm = An' Cn 1\Bm = Cn, An 1\1. = An, Bn 1\1. = 1.' Cn 1\1. = Cn.

Thus {An, Bn, Cn In = 2,3,4,... } U {1} is a base of (X, T). By

{

II

{

1_1 _
{

I
A~(x)= '2+Ti' x=n, B~(x)= t n' x-n, C~(x)=. '2'

1, xi-n, '2' xi-n, 1,
we have

_ 1 1 _ 1 _ 1 -

{

1,
An (x) = 2 - x' Bn (x) = Bn(x), (2) = 2' Cn (x) = I _1- - 2 x'

x=n,
xi- n,

x=n,
x =1=n.

Obviously for any a E (0.5,1], no subfamily of it>is an open (3a-coverof 1. Thus we
only need to consider a E (0, 0.5]. Suppose that U is an open (3a-coverof 1. We can

take Bk ~ U E U or ~ ~ U E U, then {U-} is a Qa-cover of 1. Otherwise, a < 0.5.

We can take Am ~ UE U or Cn ~ U E U, then when x ~ l = ~ and x EX,
we have a ~ A~(x) ~ U-(x) or a ~ C;;(x) ~ U-(x) . Let I = {x I x E X and
x < l}, then I is finite. For each x E I, there exists Ux E U such that a < Ux(x).
Let C = {Ux,x E I} U{U}. Then C is a finite subfamily of U and C- is a Qa-cover
of 1. Therefore (X, T) is almost S*-compact.

Now U = {Bn}nEX is a 0.5-cover of 1. However, for any finite subfamily V of
U, there exists x E X such that V A-(x) = 0.5. So (X, T) is not almost strongly

AEV
compact.
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The notion of almost N-compactness was defined in [22] as follows:

Definition 4.8. [22] Let (X. T) be an L-space and G E LX. Then G is called
almost N-compact if for any a E M(L), each a-RF <I>of G has a finite subfamily
which is an almost a- -RF of G. (X, T) is said to be almost N-compact if 1 is
almost N-compact.

From the fact that po E r}(xa) <=}po- E r}-(xa). it follows that <I>is an almost
a- -RF of G if and only if <I>0-is an a- -RF of G. Hence Definition 4.8 is not a
generalization of almost compactness in general topology. but of near compactness.
In fact it is easily seen to be equivalent to near N-compactness as defined by Chen
in [7]. In the proof of several theorems in [22], the authors have used the following
fact:

po E 1J(xa) ~ a 1,PO(x).
This shows that results in [22] are correct. Thus we revise the definition of the
almost N -compactness as follows:

Definition 4.9. Let (X, T) be an L-space and G E LX. G is called almost N-
compact if for any a E M(L) and any a-RF <I>of G, there exists a finite subfamily
I}iof <I>and t E (3*(a) such that for all x E X. t 1,G(x) /\ /\ PO(x) . (X, T) is

PEW
said to be almost N-compact if 1 is almost N-compact.

Theorem 4.10. Almost N -compactness implies almost strong compactness.

Proof. Suppose that G is almost N-compact. For any r E P(L). let U be an open r-
cover of G. Then U' is an r'-RF of G. By almost N-compactness of G we know that
there exist t E (3*(,.') and a finite subfamily V ofU such that t 1,G(x)/\ /\ A'O(x).

AEV
This implies that

G'(x) V VA-(x) = G'(x) V VA'o'(x) 1, t'.
AEV AEV

By r ~ t' we know that G' (x) V V A - (x) 1,r. i.eooV- is an r-cover of G. Therefore
AEV

G is almost strongly compact. D

As the following example shows, almost strong compactness does not always
imply almost N -compactness.

Example 4.11. Let X = (0,1), T be a [O.I]-topology generated by A, B and all
constant L-sets, where A(.T) = :/:.B(x) = 1-:.z:.It is obvious that A- = A. B- = B.

For a E [0.1), suppose rhat U is an open a-cover of 1.
(1) If a ~ 0.5, take :r = 0.5, then A(:r) = B(:r) = 0.5. In this case, there exists

. U E U such that U(x) > a ~ 0.5, this implies that there exists a constant fuzzy set
§. ~ U such that s > a. Therefore {U-} is an a-cover of 1.

(2) If a < 0.5, then we know from the structure of T, that there exists a subfamily
B of {r:,r. /\ A, r. /\ B. r. /\ A /\ BIT E [0,I]} such that B is a refinement of U and B
is an a-cover of 1. Obviously B has a finite subfamily V which is an a-cover of 1,
hellce U has a finite subfamily which is an a-cover of 1.
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This shows that (X, T) is almost strongly compact.
Let U = {A}. Then U is a 1-RF of 1. But there is no t < 1 such that t 1. A(x) =

AO(x) for all x E X. So (X, T) is not almost N-compact.

Corollary 4.12. When L = [0,1], almost N-compactness implies almost S*-
compactness.

5. Other Characterizations of Almost S*-compactness

Definition 5.1. Let {S(n) In E D} be a net in (X, T), x.\ E M(LX). x.\ is called
a weak ~o-cluster point of S, if for each strongly open neighborhood U of x.\, S
is frequently in U-. x.\ is c~lled a weak ~o-limit point of S, if for each strongly
open neighborhood U of x.\, S is eventually in U-. In this case, we also say that

WOo
S weaklyOo-convergesto x.\ and write S + X.\.

From [24] we know that if S weakly O-converges to x.\ then that S weakly 00-
converges to x.\. and if x.\ is a weak O-cluster point of S then x.\ is a weak ~o-cluster
point of S.

Theorem 5.2. An L-set G is almost SO-compact in (X, T) if and only if Va E
}vI(L), each constant a-net quasi-coinciding with G has a weak 00 -cluster point
Xa ~ (3(G').

Proof. Suppose that G is almost SO-compact. For a E M(L), let {S(n) In E D}
be a constant a-net quasi-coinciding with G. Suppose that S has no weak 00-
cluster point Xa ~ (3(G'). Then for each Xa ~ (3(G') there exists a strongly open
neighborhood Ux of Xa and nx E D such that "In ~ nx, S(n) 1. U;. Let <I>= {Ux I
Xa ~ (3(G')}. Then <I>is an open {3a-coverof G. Since G is almost SO-compact, <I>
has a finite subfamily W = {UXi Ii = 1,2,... , k} such that w- is a Qa-cover of G.
Since D is a directed set, there exists no E D such that no ~ nxi for each i :::;;k.
Thus "In ~ no, S(n) 1. V{U;' Ii = 1,2,... , k}. This contradicts the fact that w-
is a Qa-cover of G. Therefore S has a weak ~o-cluster point Xa ~ (3(G').

Conversely, suppose that for each a E M (L ), each constant a-net quasi-coinciding
with G has a weak ~o-cluster point Xa ~ (3(G'). We prove that G is almost S*-
compact. Let <I>be an open (3a-cover of G. If for each finite subfamily W of <I>,
w-is not a Qa-cover of G, then for each finite subfamily W of <I>,there exists
S(W) E M(LX) with height a such that S(W) 1. G' and S(W) 1. V W-. Let
S = {S(w) I w is a finite subfamily of <I>}.Then S is a constant a-net quasi-
coinciding with G. Suppose that S has a weak ~o-cluster point Xa ~ (3(G'). Then
for each finite subfamily W of <I>,we have Xa ~ (3(Vw). In particular,Xa ~ (3(B)
for any B E <I>.But since <I>is an open {3a-coverof G, we know that there exists
B E <I>such that Xa E (3(B), which is in contradiction with Xa ~ (3(B). So G is
almost S* -compact. 0

Theorem 5.3. An L-set G is almost S* -compact in (X, T) if and only if Va E
M(L), each a- -net quasi-coinciding with G has a weak ~o-cluster point Xa ~ j3(G').

Proof. The sufficiency is obvious and so we only need to prove the necessity.
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Let G be almost S*-compact, a E M(L) and {S(n) I n E D} be an a- -net
quasi-coinciding with G. Then there exists no E D such that 'in ?;:no, S(n) ~ a.
Put E = {n E Din?;: no} and

T = {T(n) In E E, V (T(n)) = a, the support point of T(n) is same as S(n)}.

Then T is a constant a-net quasi-coinciding with G. Let Xa be a weak ~o-cluster
point of T. It is easy to see that Xa is also a weak ~o-cluster point of S. 0

Definition 5.4. Let A E LX. The B-closure of A is defined to be

clo(A) = f\{V IA ~ Vo,VET'}.

The B-interior of A is defined to be clo(A')', written as into(A).

The following lemmas are obvious.

Lemma 5.5. Let A E LX, then clo(A) E T', into(A) E T, A- ~ clo(A), and
into(A) ~ AO.

Lemma 5.6. If A E T, then A- = clo(A); If A E 7', then AO= into(A).

Definition 5.7. An L-set A is called a eC-set if A = clo(B), for some B E LX.
An L-set A is called eO-set if A = into(B), for some B E LX.

Obviously, a eC -set is closed and a eO -set is open.

Theorem 5.8. An L-set G is almost S* -compact in (X, T) if and only if for each
a E M(L) and for each family U of eC -sets such that UOforms a !3a-cover of G,
there exists a finite subfamily V of U such that V is a Qa-cover of G.

Proof. (~) Suppose that G is almost S*-compact. For any a E M(L), let U be a
family of eC-sets such that UOforms a !3a-coverof G. By almost S*-compactness
of G, there exists a finite subfamily V of U such that Vo- = {VO- IV E V} is a
Qa-cover of G. Now it follows from Vo- ~ V for each V E V that V is a Qa-cover
ofG.

({=:)For any a E M(L), let U be an open !3a-coverof G. Then by Lemma 5.6,
U- = {U- I U E U} is a family of eC-sets. It follows from U-o ?;: U for each
U E U that U-o is a !3a-coverof G. Thus U has a .finite subfamily V such that V-
is a Qa-cover of G. So G is almost S*-compact. 0

Theorem 5.9. An L-set G is almost S*-compact in (X, T) if and only if'ia E
M(L), every !3a-cover of G by eO -sets has a finite subfamily V such that clo(V) is
a Qa-cover of G.

Proof. (~) Suppose that G is almost S*-compact. For any a E M(L), let U be
a !3a-cover of G by eO-sets. Then U is also an open !3a-cover of G. By almost
S* -compactness of G, there exists a finite subfamily V of U such that {A-I A E V}
is a Qa-cover of G. By A- = clo(A) we know that clo(V) = {clo(A) I A E V} is a
Qa-cover of G.

({=:)For any a E M(L), let U be an open !3a-coverof G. It follows from Lemma
5.6 that U-o = {A -0 I A E U} is a family of eO -sets and it is a !3a-cover of G
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since A-o ? A for each A E U. By hypothesis,U has a finite subfamilyV such that
cle(V-O) is a Qa-cover of G. From

G'(x) V V cle(A-O) = G'(x) V V A-O-(x) ~ G'(x) V V A-(x),
AEV AEV AEV

we obtain that V- is a Qa-cover of G. This shows that G is almost S*-compact. 0

Definition 5.10. Let A E LX. The a-closure of A is defined by

cla(A) = f\{B IA ~ Band B is a-closed}.

cla(A')' is called the a-interior of A an.d denoted by inta(A).

Lemma 5.11. If A is a semi-open L-set, then cla(A) = A-.

Proof. Obviously, cla(A) ~ A-. In order to prove that A- ~ cla(A), suppose
that Xa 1; cla(A). Then there exists an a-closed set B such that A ~ Band Xa 1; B.
Since A is semi-open and B is a-closed, hence A- ~ AO- ~ BO- ~ B-o- ~ B.
This shows that Xa 1; A-. Thus A- ~ cla(A). 0

Theorem 5.12. An L-set G is almost S*-compact in (X, T) if and only if Va E
M(L), each a-open !3a-coverU ofG has ajinite subfamily V such that cla(V) is a
Qa-cover of G.

Proof. (~) Suppose that G is almost S* -compact. For any a E M (L), let U be
an a-open !3a-cover of G. Let W = {AO-O I A E U}, then W is an open !3a-
cover of G. By almost S*-compactness of G, there exists a finite subfamily V of
U such that {AO-O- I A E V} is a Qa-cover of G. Since AO-o- = A- = cla(A),
cla(V) = {cla(A) IA E V} is also a Qa-cover of G.

(~) For any a E M(L), let U be an open !3a-cover of G. Then U is also an
a-open !3a-coverof G. By hypothesis there exists a finite subfamily V of U such
that cla(V) is a Qa-cover of G. Since cla(A) = A- for any A E V, G is almost
S* -compact. 0
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