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ROBUST H∞ CONTROL FOR T–S TIME-VARYING DELAY
SYSTEMS WITH NORM BOUNDED UNCERTAINTY BASED ON

LMI APPROACH

H. L. HUANG AND F. G. SHI

Abstract. In this paper we consider the problem of delay-dependent robust

H∞ control for uncertain fuzzy systems with time-varying delay. The Takagi–

Sugeno (T–S) fuzzy model is used to describe such systems. Time-delay is
assumed to have lower and upper bounds. Based on the Lyapunov-Krasovskii
functional method, a sufficient condition for the existence of a robust H∞
controller is obtained. The fuzzy state feedback gains are derived by solving
pertinent LMIs. The proposed method can avoid restrictions on the derivative

of the time-varying delay assumed in previous works. The effectiveness of our

method is demonstrated by a numerical example.

1. Introduction

Since time delays and perturbations can be often sources of instability for a sys-
tem, stabilization problems and robust control of nonlinear uncertain systems with
time-delay have received considerable attention for decades [3, 5, 8, 9, 10, 13, 16, 17,
20]. Such systems occus very often in real life. Examples are electric power systems,
large electric networks, rolling mill systems, economic systems, aerospace systems,
several types of social systems and ecological systems. In practice, inevitable uncer-
tainties may enter a nonlinear system in a much more complex way. The uncertainty
may include modeling error, parameter perturbations, fuzzy approximation errors,
and external disturbances. To the best of the authors knowledge, delay-dependent
robust H∞ control for uncertain fuzzy systems with time-varying delay have not
yet been fully investigated and hence we attempt to do so in this paper.

Depending on whether the condition includes the information of delay or not,
stability criteria can be classified into two types: delay-independent and delay-
dependent. Delay-independent stability conditions are independent of the size of
the delays. They can be used to study systems without any information on the time
delays [13, 20]. Generally speaking, delay-dependent results are less conservative
than those for the delay-independent case, especially for time-delay systems with
small delay. But in [1, 6, 9], the stability conditions require that the upper bound
of derivative of the time-varying delay be less than 1. Our results do not need this
restriction.
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The Takagi–Sugeno (T–S) fuzzy model [12, 15] can represent nonlinear systems
using fuzzy rules with consequent part as local linear subsystems. This kind of
model provides an effective representation of complex nonlinear systems. When the
nonlinear plant is represented by a so-called T–S type fuzzy model, local dynamics
in different state-space regions are represented by linear models and the overall
model of the system is achieved by fuzzy “blending” of these fuzzy models. The
control design is carried out based on the fuzzy model via the so-called parallel
distributed compensation (PDC) scheme [15].

Linear matrix inequality (LMI) theory is a useful mathematical tool for opti-
mization problems [2, 4, 7, 11]. Many control problems can be converted to either
a feasible problem of an LMI system, or a convex optimization problem which has
the LMI restriction.

In this paper, we consider the problem of delay-dependent robust H∞ control for
uncertain fuzzy systems with time-varying delay. First we study the stability and
stabilization conditions of the closed-loop fuzzy system with no disturbance. Then
we consider the performance index J(ω) and derive a sufficient condition for the
existence of the delay-dependent robust H∞ controller by the Lyapunov-Krasovskii
functional method. Now, introducing free-weighting matrices and solving linear
matrix inequalities, state feedback gains can be obtained. Finally, we illustrate the
effectiveness of method by a numerical example.

The major contribution of this work is as follows. First, it gives a new method
to design the robust H∞ controller for uncertain fuzzy systems with time-varying
delay. Second, it presents time-dependent results which can be used to determine
the upper bound of the time-delay by using convex optimization to guarantee robust
H∞ fuzzy stablizable systems for all time-delays. These results are less conservative
than those for the delay-independent case. Third, it is able to treat systems with
no requirement regarding the information of the derivative of the time-delay; i.e.
our method allows for fast time-varying delay.

The paper is organized as follows. In Section 2, we present a T–S fuzzy model
for an uncertain system with time-varying delay and state some assumptions. In
Section 3, we derive the existence condition of a delay-dependent robust H∞ con-
troller in LMI form using the Lyapunov-Krasovskii approach. In Section 4, we give
a numerical example to demonstrate the results. Section 5 concludes the paper.

Notation. For a symmetric matrix X, X > 0 means that X is positive definite.
I is an identity matrix of appropriate dimension and XT denotes the transpose of
X. For any nonsingular matrix X, X−1 denotes the inverse of X. Rn denotes the
n-dimensional Euclidean space and Rm×n is the set of all m×n matrices. L2[0,∞)
refers to the space of square summable infinite vector sequences. ‖·‖2 stands for the
usual L2[0,∞) norm. ∗ denotes the transposed element in the symmetric position
of a matrix.

2. Problem Formulation and Assumptions

Consider the following parameter uncertain system with time-varying delay de-
scribed by the Takagi–Sugeno fuzzy model. The ith rule of the model is
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Plant Rule i:

If z1(t) is Mi1, z2(t) is Mi2,· · · , zg(t) is Mig,

Then 
ẋ(t) = (Ai1 + ∆Ai1(t))x(t) + (Ai2 + ∆Ai2(t))x(t− h(t))

+(Bi + ∆Bi(t))u(t) + Bωiω(t),
z̃(t) = Cix(t) + Diu(t),
x(t) = ϕ(t), t ∈ [−hM , 0], (1)

where i = 1, 2, · · · , n. n is the number of rules, z1(t), z2(t), · · · , zg(t) are the premise
variables and Mij(i = 1, 2, · · · , n, j = 1, 2, · · · , g) is the fuzzy set, x(t) ∈ Rl is the
state vector, u(t) ∈ Rm is the input vector, ω(t) is the disturbance which be-
longs to L2[0,∞), z̃(t) ∈ Rp is the controlled output. Ai1, Ai2, Bi, Bωi, Ci and
Di (i = 1, 2, · · · , n) are constant matrices of appropriate dimensions, ϕ(t) is the
initial condition of system (1), hM is the upper bound of time-delay h(t) and
∆Ai1(t),∆Ai2(t),∆Bi(t) (i = 1, 2, · · · , n) are unknown matrices representing time-
varying parameter uncertainties of (1) and satisfying the following assumption.

Assumption 2.1.

[∆Ai1(t),∆Ai2(t),∆Bi(t)] = UiFi(t)[Ei1, Ei2, Ei], (2)

where Ui, Ei1, Ei2 and Ei (i = 1, 2, · · · , n) are known real constant matrices of
appropriate dimensions. Fi(t) (i = 1, 2, · · · , n) is an unknown real time-varying
matrix with Lebesgue measurable elements satisfying

Fi(t)T Fi(t) ≤ I, i = 1, 2, · · · , n. (3)

Let µi(z(t)) be the normalized membership function of the inferred fuzzy set
ρi(z(t)), i.e.

µi(z(t)) =
ρi(z(t))∑n

i=1
ρi(z(t))

,

where z(t) = [z1(t), z2(t), · · · , zg(t)], ρi(z(t)) =
g∏

j=1

Mij(zj(t)). Mij(zj(t)) is the

grade of membership of zj(t) in Mij . It is assumed that

ρi(z(t)) ≥ 0, i = 1, 2, · · · , n,
n∑

i=1

ρi(z(t)) > 0, ∀t ≥ 0.

Then, it can be easily shown that

µi(z(t)) ≥ 0, i = 1, 2, · · · , n,
n∑

i=1

µi(z(t)) = 1, ∀t ≥ 0.
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By using the center-average defuzzifier, product inference and a singleton fuzzi-
fier, the T–S fuzzy model (1) can be expressed by the following global model

ẋ(t) =
n∑

i=1

µi(z(t))[Ãi1x(t) + Ãi2x(t− h(t)) + B̃iu(t) + Bωiω(t)],

z̃(t) =
n∑

i=1

µi(z(t))[Cix(t) + Diu(t)],

x(t) = ϕ(t), t ∈ [−hM , 0], (4)

where Ãi1 , Ai1+∆Ai1(t), Ãi2 , Ai2+∆Ai2(t), B̃i , Bi+∆Bi(t), i = 1, 2, · · · , n.
In this paper, a delay-dependent state feedback T–S fuzzy-model-based H∞

controller will be designed for the robust stabilization of the T–S fuzzy system
(4). The ith controller rule is

Ri : If z1(t) is Mi1, z2(t) is Mi2, · · · , zg(t) is Mig,

Then u(t) = Kix(t), (5)

where Ki (i = 1, 2, · · · , n) are the controller gains of (5) to be determined. The
defuzzified output of the controller rule is given by

u(t) =
n∑

i=1

µi(z(t))Kix(t). (6)

Combining (4) and (6) , the following closed-loop fuzzy system can be obtained.
ẋ(t) =

n∑
i=1

n∑
j=1

µi(z(t))µj(z(t))[(Ãi1 + B̃iKj)x(t) + Ãi2x(t− h(t)) + Bωiω(t)],

z̃(t) =
n∑

i=1

n∑
j=1

µi(z(t))µj(z(t))[(Ci + DiKj)x(t)],

x(t) = ϕ(t), t ∈ [−hM , 0]. (7)

Assumption 2.2. h(t) is a uniformly continuous time-varying function satisfying

0 ≤ hm ≤ h(t) ≤ hM . (8)

In this paper, we define

α =
1
2
(hM + hm), β =

1
2
(hM − hm). (9)

Then, h(t) is a function belonging to the interval [α − β, α + β], where β can be
taken as the range of variation of the time-varying delay h(t). When β = 0, h(t)
denotes a constant delay.

Definition 2.3. For a prescribed scalar γ > 0, we define the performance index

J(ω) ,
∫ ∞

0

[z̃T (θ)z̃(θ)− γ2ωT (θ)ω(θ)]dθ. (10)

Remark 2.4. The purpose of this paper is to design a delay-dependent robust H∞
controller (6) for the T–S global model (4) such that for all admissible uncertainties
satisfying (2), (3), and h(t) satisfying (8) for a prescribed scalar γ > 0,

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


Robust H∞ Control for T–S Time-Varying Delay Systems with Norm Bounded ... 5

(I) The closed-loop fuzzy system (7) is asymptotically stable when ω(t) = 0;
(II) The closed-loop fuzzy system (7) satisfies ‖z̃(t)‖2 < γ‖ω(t)‖2 for all nonzero

ω(t) ∈ L2[0,∞] under the zero initial condition.

3. Main Results

In this section, we present a method to design the robust H∞ controller for
uncertain systems with time-varying delay based on the Lyapunov-Krasovskii ap-
proach.

First, we state four lemmas which are the key to proving the main theorem of
our paper.

Lemma 3.1. [14] For any two matrices X and Y , we have

XT Y + Y T X ≤ εXT X + ε−1Y T Y,

where X ∈ Rm×n , Y ∈ Rm×n, and ε is any positive constant.

Lemma 3.2. [18] If Y , U , and E are matrices of appropriate dimensions, and
Y = Y T , then for any matrix F satisfying FT F ≤ I,

Y + UFE + ET FT UT < 0

if and only if there exists a constant ε > 0 satisfying

Y + εUUT + ε−1ET E < 0.

Lemma 3.3. [19] For any matrices R1 > 0, R2 > 0, N and T of appropriate
dimensions, we have

[a] − 2ξT (t)N
∫ t

t−α

ẋ(s)ds ≤ αξT (t)NR−1
1 NT ξ(t) +

∫ t

t−α

ẋT (s)R1ẋ(s)ds,

[b]− 2ξT (t)T
∫ t−α

t−h(t)

ẋ(s)ds = 2ξT (t)T
∫ t−h(t)

t−α

ẋ(s)ds

(as h(t) ≤ α) ≤ βξT (t)TR−1
2 TT ξ(t) +

∫ t−h(t)

t−α

ẋT (s)R2ẋ(s)ds

≤ βξT (t)TR−1
2 TT ξ(t) +

∫ t−α+β

t−α−β

ẋT (s)R2ẋ(s)ds,

−2ξT (t)T
∫ t−α

t−h(t)

ẋ(s)ds ≤ βξT (t)TR−1
2 TT ξ(t) +

∫ t−α

t−h(t)

ẋT (s)R2ẋds

(as h(t) ≥ α) ≤ βξT (t)TR−1
2 TT ξ(t) +

∫ t−α+β

t−α−β

ẋT (s)R2ẋ(s)ds.

Lemma 3.4. (Schur complements) For a symmetric matrix S =
[
S11 S12

S21 S22

]
, the

following conditions are equivalent:
[a] S < 0; [b] S11 < 0, S11−ST

12S
−1
22 S12 < 0; [c] S22 < 0, S11−S12S

−1
22 ST

12 < 0.

For the purpose given in Remark 2.4, our first result is with respect to the
stability of system (7) with no disturbance. For simplicity, let µi = µi(z(t)).
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Theorem 3.5. Suppose ω(t) = 0, for given scalars hm ≥ 0, hM ≥ 0 and matrix
Kj. If there exist matrices P > 0, Q > 0, R1 > 0, R2 > 0, Nk, Mk, Tk (i, j =
1, 2, · · · , n, k = 1, 2, 3, 4) of appropriate dimensions such that[

Ωii
11 ∗

Ω21 Ω22

]
< 0, 1 ≤ i ≤ n,

(11)[
Ωij

11 + Ωji
11 ∗

Ω21
1
2Ω22

]
< 0, 1 ≤ i < j ≤ n, (12)

then system (7) is asymptotically stable, where

Ωij
11 =


Hij

11 ∗ ∗ ∗
Hij

21 Hij
22 ∗ ∗

Hij
31 Hij

32 Hij
33 ∗

Hij
41 Hij

42 Hij
43 Hij

44

 ,

Ω21 =
[
αNT

1 αNT
2 αNT

3 αNT
4

βTT
1 βTT

2 βTT
3 βTT

4

]
, Ω22 =

[
−αR1 ∗

0 −βR2

]
,

Hij
11 = Q + N1 + NT

1 + M1Ãi1 + M1B̃iKj + ÃT
i1M

T
1 + KT

j B̃T
i MT

1 ,

Hij
21 = N2 − TT

1 + M2Ãi1 + M2B̃iKj + ÃT
i2M

T
1 ,

Hij
22 = −T2 − TT

2 + M2Ãi2 + ÃT
i2M

T
2 ,

Hij
31 = −NT

1 + TT
1 + N3 + M3Ãi1 + M3B̃iKj ,

Hij
32 = −NT

2 + TT
2 − T3 + M3Ãi2,

Hij
33 = −Q−NT

3 −N3 + TT
3 + T3,

Hij
41 = P + N4 + M4Ãi1 + M4B̃iKj −MT

1 ,

Hij
42 = −T4 + M4Ãi2 −MT

2 ,

Hij
43 = −N4 + T4 −MT

3 ,

Hij
44 = αR1 + 2βR2 −M4 −MT

4 , 1 ≤ i ≤ j ≤ n.

Proof. Using the Newton-Leibniz formula, we have

x(t)− x(t− α)−
∫ t

t−α

ẋ(s)ds = 0,

x(t− α)− x(t− h(t))−
∫ t−α

t−h(t)

ẋ(s)ds = 0.

From (7) we have
n∑

i=1

n∑
j=1

µiµj [(Ãi1 + B̃iKj)x(t) + Ãi2x(t− h(t)) + Bωiω(t)− ẋ(t)] = 0.
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Based on the equalities mentioned above, for any matrices Nk, Mk and Tk (i =
1, 2, 3, 4) of appropriate dimensions, we have

ξT (t)N{
n∑

i=1

n∑
j=1

µiµj [x(t)− x(t− α)−
∫ t

t−α

ẋ(s)ds]} = 0,
(13)

ξT (t)T{
n∑

i=1

n∑
j=1

µiµj [x(t− α)− x(t− h(t))−
∫ t−α

t−h(t)

ẋ(s)ds]} = 0,
(14)

ξT (t)M{
n∑

i=1

n∑
j=1

µiµj [(Ãi1 + B̃iKj)x(t) + Ãi2x(t− h(t)) + Bωiω(t)− ẋ(t)]} = 0,

(15)

where ξT (t) = [xT (t) xT (t− h(t)) xT (t− α) ẋT (t)] , NT = [NT
1 NT

2 NT
3 NT

4 ],
MT = [MT

1 MT
2 MT

3 MT
4 ], TT = [TT

1 TT
2 TT

3 TT
4 ].

We first consider the case when ω(t) 6= 0. Choose the Lyapunov-Krasovskii
functional

V (x(t)) =xT (t)Px(t) +
∫ t

t−α

xT (s)Qx(s)ds +
∫ t

t−α

∫ t

s

ẋT (ν)R1ẋ(ν)dνds

+
∫ −α+β

−α−β

∫ t

t+s

ẋT (ν)R2ẋ(ν)dνds,
(16)

where P > 0, Q > 0, R1 > 0, R2 > 0.
Combining (13)-(15), using Lemma 3.3 and taking the derivative of V (x(t)) with

respect to t along the trajectory of (7), we have

V̇ (x(t)) = 2xT (t)Pẋ(t) + xT (t)Qx(t)− xT (t− α)Qx(t− α)

+ ẋT (t)(αR1 + 2βR2)ẋ(t)−
∫ t

t−α

ẋT (s)R1ẋ(s)ds−
∫ t−α+β

t−α−β

ẋ(s)R2ẋ(s)ds

=2xT (t)Pẋ(t) + xT (t)Qx(t)− xT (t− α)Qx(t− α)

+ ẋT (t)(αR1 + 2βR2)ẋ(t)−
∫ t

t−α

ẋT (s)R1ẋ(s)ds−
∫ t−α+β

t−α−β

ẋ(s)R2ẋ(s)ds

+ 2ξT (t)N{
n∑

i=1

n∑
j=1

µiµj [x(t)− x(t− α)−
∫ t

t−α

ẋ(s)ds]}

+ 2ξT (t)T{
n∑

i=1

n∑
j=1

µiµj [x(t− α)− x(t− h(t))−
∫ t−α

t−h(t)

ẋ(s)ds]}

+ 2ξT (t)M{
n∑

i=1

n∑
j=1

µiµj [(Ãi1 + B̃iKj)x(t) + Ãi2x(t− h(t))

+ Bωiω(t)− ẋ(t)]}
≤2xT (t)Pẋ(t) + xT (t)Qx(t) + ẋT (t)(αR1 + 2βR2)ẋ(t)− xT (t− α)Qx(t− α)
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+ 2
n∑

i=1

n∑
j=1

µiµjξ
T (t)N [x(t)− x(t− α)]

+ 2
n∑

i=1

n∑
j=1

µiµjξ
T (t)T [x(t− α)− x(t− h(t))]

+ 2
n∑

i=1

n∑
j=1

µiµjξ
T (t)M [(Ãi1 + B̃iKj)x(t) + Ãi2x(t− h(t)) + Bωiω(t)

− ẋ(t)] + αξT (t)NR−1
1 NT ξ(t) + βξT (t)TR−1

2 TT ξ(t)

=
n∑

i=1

n∑
j=1

µiµj{ζT (t)Θij
11ζ(t) + ζT (t)

[
αNR−1

1 NT + βTR−1
2 TT ∗

0 0

]
ζ(t)}

=
n∑

i=1

µ2
i {ζT (t)Θii

11ζ(t) + ζT (t)
[
αNR−1

1 NT + βTR−1
2 TT ∗

0 0

]
ζ(t)}

+
n−1∑
i=1

n∑
j>i

µiµj{ζT (t)[Θij
11 + Θji

11]ζ(t)

+ ζT (t)
[
2αNR−1

1 NT + 2βTR−1
2 TT ∗

0 0

]
ζ(t)},

where

ζT (t) = [ξT (t) ωT (t)], Θij
11 =

[
Ωij

11 ∗
(2, 1) 0

]
, (2, 1) = [Hij

51 Hij
52 Hij

53 Hij
54],

Hij
51 = BT

ωiM
T
1 , Hij

52 = BT
ωiM

T
2 , Hij

53 = BT
ωiM

T
3 , Hij

54 = BT
ωiM

T
4 .

If ω(t) = 0 the result is proved using Schur complements. �

Since J(ω) plays an important role in designing a robust H∞ controller for
uncertain systems with time-varying delay, in the next theorem we consider the
performance index (10) of system (7) .

Theorem 3.6. J(ω) < 0, if[
Θii

11 + Γii ∗
Θ21 Θ22

]
< 0, 1 ≤ i ≤ n,

(17)[
Θij

11 + Θji
11 + Γij + Γji ∗
Θ21

1
2Θ22

]
< 0, 1 ≤ i < j ≤ n, (18)

where Γij = diag{(Ci +DiKj)T (Ci +DiKj) 0 0 0 −γ2I}, Θ21 = [Ω21 0],
Θ22 = Ω22.
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Proof. Assume that ϕ(t) = 0, t ∈ [−hM , 0]. From the proof of Theorem 3.5, we
have

J(ω) =
∫ ∞

0

[z̃T (θ)z̃(θ)− γ2ωT (θ)ω(θ) + V̇ (x(θ))]dθ − V (x(∞))

≤
∫ ∞

0

[z̃T (θ)z̃(θ)− γ2ωT (θ)ω(θ) + V̇ (x(θ))]dθ

≤
∫ ∞

0

n∑
i=1

n∑
j=1

µiµj{ζT (θ)[Θij
11 + Γij ]ζ(θ)

+ ζT (θ)
[
αNR−1

1 NT + βTR−1
2 TT ∗

0 0

]
ζ(θ)}dθ

=
∫ ∞

0

n∑
i=1

µ2
i {ζT (θ)[Θii

11 + Γii]ζ(θ)

+ ζT (θ)
[
αNR−1

1 NT + βTR−1
2 TT ∗

0 0

]
ζ(θ)}dθ

+
∫ ∞

0

n−1∑
i=1

n∑
j>i

µiµj{ζT (θ)[Θij
11 + Θji

11 + Γij + Γji]ζ(θ)

+ ζT (θ)
[
2αNR−1

1 NT + 2βTR−1
2 TT ∗

0 0

]
ζ(θ)}dθ.

Using Schur complements, we can prove that J(ω) < 0 when inequalities (17), (18)
hold. �

Remark 3.7. It is easy to see that (17) implies (11), and (18) implies (12).

The parameter uncertainties ∆Ai1(t), ∆Ai2(t), ∆Bi(t) are contained in (17)
and (18). So Theorem 3.6 cannot be directly used to determine whether J(ω) is
less than zero. The following theorem is concerned with these uncertainties and
provides a sufficient condition for J(ω) < 0.

Theorem 3.8. J(ω) < 0, ifΘ̂ii
11 + Γii ∗ ∗
Θ21 Θ22 ∗
Θi

31 0 Θii
33

 < 0, 1 ≤ i ≤ n,

(19)


Θ̂ij

11 + Θ̂ji
11 + Γij + Γji ∗ ∗ ∗
Θ21

1
2Θ22 ∗ ∗

Θi
31 0 Θij

33 ∗
Θj

31 0 0 Θji
33

 < 0, 1 ≤ i < j ≤ n,

(20)
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where

Θ̂ij
11 =

[
Ω̂ij

11 ∗
(2, 1) 0

]
, Θi

31 =

UT
i MT

1 UT
i MT

2 UT
i MT

3 UT
i MT

4 0
UT

i MT
1 UT

i MT
2 UT

i MT
3 UT

i MT
4 0

UT
i MT

1 UT
i MT

2 UT
i MT

3 UT
i MT

4 0

 ,

Θij
33 =diag{−εijI − εijI − εijI},

Θ21 and Θ22 are as given before and

Ω̂ij
11 =


Ĥij

11 ∗ ∗ ∗
Ĥij

21 Ĥij
22 ∗ ∗

Ĥij
31 Ĥij

32 Ĥij
33 ∗

Ĥij
41 Ĥij

42 Ĥij
43 Ĥij

44

 ,

Ĥij
11 = Q + N1 + NT

1 + M1Ai1 + M1BiKj + AT
i1M

T
1 + KT

j BT
i MT

1 + εijE
T
i1Ei1

+ εijK
T
j ET

i EiKj ,

Ĥij
21 = N2 − TT

1 + M2Ai1 + M2BiKj + AT
i2M

T
1 ,

Ĥij
22 = −T2 − TT

2 + M2Ai2 + AT
i2M

T
2 + εijE

T
i2Ei2,

Ĥij
31 = −NT

1 + TT
1 + N3 + M3Ai1 + M3BiKj ,

Ĥij
32 = −NT

2 + TT
2 − T3 + M3Ai2,

Ĥij
33 = −Q−NT

3 −N3 + T3 + TT
3 ,

Ĥij
41 = P + N4 + M4Ai1 + M4BiKj −MT

1 ,

Ĥij
42 = −T4 + M4Ai2 −MT

2 ,

Ĥij
43 = −N4 + T4 −MT

3 ,

Ĥij
44 = αR1 + 2βR2 −M4 −MT

4 .

Proof. Replacing Ãi1, Ãi2 and B̃i with Ai1 + UiFi(t)Ei1, Ai2 + UiFi(t)Ei2 and
Bi + UiFi(t)Ei in (17) (18), respectively, in terms of (2), (3) and Lemma 3.2 and
using Schur complements, we can obtain (19) and (20). �

Since (19) and (20) are not LMIs, we need to convert them into LMIs before
using the MATLAB LMI Toolbox to solve them . The following theorem gives
a sufficient condition for the existence of a robust H∞ controller and the state
feedback controller gains are derived by solving pertinent LMIs.

Theorem 3.9. For a prescribed scalar γ > 0 and given scalars δl(l = 2, 3, 4), δ4 6=
0, hm ≥ 0 and hM ≥ 0, system (7) is stable and satisfies ‖z̃(t)‖2 < γ‖ω(t)‖2 for all
nonzero ω(t) ∈ L2[0,∞) and any h(t) satisfying (8), if there exist P̃ > 0, Q̃ > 0,
R̃1 > 0, R̃2 > 0, X, Yj (j = 1, 2, · · · , n), Ñk and T̃k (k = 1, 2, 3, 4) of appropriate
dimensions and positive constant ηij such that the following LMIs simultaneously
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hold. 
Ξii

11 ∗ ∗ ∗
Ξii

21 Ξ22 ∗ ∗
Ξ31 0 Ξ33 ∗
Ξii

41 0 0 Ξii
44

 < 0, 1 ≤ i ≤ n,
(21)

Ξij
11 + Ξji

11 ∗ ∗ ∗ ∗ ∗
Ξij

21 Ξ22 ∗ ∗ ∗ ∗
Ξji

21 0 Ξ22 ∗ ∗ ∗
Ξ31 0 0 1

2Ξ33 ∗ ∗
Ξij

41 0 0 0 Ξij
44 ∗

Ξji
41 0 0 0 0 Ξji

44


< 0, 1 ≤ i < j ≤ n,

(22)

where

Ξij
11 =


Πij

11 ∗ ∗ ∗ ∗
Πij

21 Πij
22 ∗ ∗ ∗

Πij
31 Πij

32 Πij
33 ∗ ∗

Πij
41 Πij

42 Πij
43 Πij

44 ∗
Πij

51 Πij
52 Πij

53 Πij
54 Πij

55

 , Ξij
21 = [CiX

T + DiYj 0 0 0 0],

Ξ22 = −I, Ξ31 =
[
αÑT

1 αÑT
2 αÑT

3 αÑT
4 0

βT̃T
1 βT̃T

2 βT̃T
3 βT̃T

4 0

]
, Ξ33 =

[
−αR̃1 ∗

0 −βR̃2

]
,

Ξij
41 =

Ei1X
T 0 0 0 0

0 Ei2X
T 0 0 0

EiYj 0 0 0 0

 , Ξ44 = diag{−ηijI − ηijI − ηijI},

Πij
11 = Q̃ + Ñ1 + ÑT

1 + Ai1X
T + BiYj + XAT

i1 + Y T
j BT

i + 3ηijUiU
T
i ,

Πij
21 = Ñ2 − T̃1 + δ2Ai1X

T + δ2BiYj + XAT
i2 + 3ηijδ2UiU

T
i ,

Πij
22 = −T̃2 − T̃T

2 + δ2Ai2X
T + δ2XAT

i2 + 3ηijδ
2
2UiU

T
i ,

Πij
31 = −ÑT

1 + T̃T
1 + Ñ3 + δ3Ai1X

T + δ3BiYj + 3ηijδ3UiU
T
i ,

Πij
32 = −ÑT

2 + T̃T
2 − T̃3 + δ3Ai2X

T + 3ηijδ2δ3UiU
T
i ,

Πij
33 = −Q̃− ÑT

3 − Ñ3 + T̃3 + T̃T
3 + 3ηijδ

2
3UiU

T
i ,

Πij
41 = P̃ + Ñ4 + δ4Ai1X

T + δ4BiYj −X + 3ηijδ4UiU
T
i ,

Πij
42 = −T̃4 + δ4Ai2X

T − δ2X + 3ηijδ2δ4UiU
T
i ,

Πij
43 = −Ñ4 + T̃4 − δ3X + 3ηijδ3δ4UiU

T
i ,

Πij
44 = αR̃1 + 2βR̃2 − δ4X

T − δ4X + 3ηijδ
2
4UiU

T
i ,

Πij
51 = BT

ωi, Πij
52 = δ2B

T
ωi, Πij

53 = δ3B
T
ωi, Πij

54 = δ4B
T
ωi, Πij

55 = −γ2I.

Moreover, the state feedback controller gains of (6) are given by Kj = YjX
−T for

j = 1, 2, · · · , n.

Proof. By Remark 3.7, we know when (19) and (20) hold, system (7) with ω(t) = 0
is asymptotically stable. Denote M2 = δ2M1, M3 = δ3M1, M4 = δ4M1. It can be

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


12 H. L. Huang and F. G. Shi

seen that δ4 6= 0 and M1 is nonsingular from (19) and (20). Now define X = M−1
1 ,

P̃ = XPXT , Q̃ = XQXT , R̃1 = XR1X
T , R̃2 = XR2X

T , Ñk = XNkXT , T̃k =
XTkXT (k = 1, 2, 3, 4), Yj = KjX

T (j = 1, 2, · · · , n) and ηij = ε−1
ij . Then pre

and post-multiplying both sides of (19) by diag{X X X X I X X I I I} and its
transpose, pre and post-multiplying both sides of (20) by diag{X X X X I X X I
I I I I I} and its transpose, we obtain (21) and (22) using Schur complements. �

Remark 3.10. From the proofs of Theorem 3.5 and Theorem 3.6, one can see
that no restriction on the derivative of the time-varying delay is needed(In[1, 6, 9],
h(t) should satisfy ḣ(t) ≤ h0 < 1), which means that a fast time-varying delay is
allowed.

Remark 3.11. Theorem 3.9 helps us calculate the upper bound of h(t) as follows.
First, given α or hm(if hm is given, replace α and β with 1

2 (hM+hm) and 1
2 (hM−hm)

in (21) and (22)). Second, find the maximum allowable value of β or hM satisfying
(21), (22) by setting the proper values for δ2, δ3 and δ4, then solve the corresponding
feedback gains Kj = YjX

−T . Finally calculate βmax or hMmax.

4. A Numerical Example

In this section, we apply the proposed method to design a delay-dependent robust
H∞ controller for an uncertain nonlinear delay system. Consider an uncertain
nonlinear time-delay system as follows:

ẋ1(t) =− x1(t)(3 + cos2 x2(t)) + x2(t)− x1(t− h(t))− x2(t− h(t))(2 + sin2 x2(t))

+ c(t)x2(t) sin2 x2(t) + c(t)x1(t) cos2 x2(t) + (1 + sin2 x2(t))ω(t),

ẋ2(t) =0.5x1(t)(1 + cos2 x2(t))− x2(t)− x2(t− h(t))(1 + sin2 x2(t)) + u(t),
(23)

where c(t) is an uncertain parameter satisfying c(t) ∈ [−0.2, 0.2]. If we select the
membership function as M1(x2(t)) = sin2(x2(t)) and M2(x2(t)) = cos2(x2(t)), then
the nonlinear time-delay system (23) can be represented by the following uncertain
time-varying delay T–S model

Plant Rule 1:
If x2(t) is M1,
Then{

ẋ(t) = (A11 + ∆A11(t))x(t) + A12x(t− h(t)) + B1u(t) + Bω1ω(t),
z̃(t) = C1x(t) + D1u(t);

Plant Rule 2:
If x2(t) is M2,
Then{

ẋ(t) = (A21 + ∆A21(t))x(t) + A22x(t− h(t)) + B2u(t) + Bω2ω(t),
z̃(t) = C2x(t) + D2u(t), (24)

where

A11 =
[
−3 1
0.5 −1

]
, A12 =

[
−1 −3
0 −2

]
, A21 =

[
−4 1
1 −1

]
, A22 =

[
−1 −2
0 −1

]
,
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α βmax Feedback gain K1 Feedback gain K2

0.7 0.2781 [-0.7602 -7.7387] [-1.2089 -10.3102]
0.8 0.2765 [-0.7682 -7.6759] [-1.2139 -10.1248]
1.0 0.2749 [-0.7766 -7.6550] [-1.2202 -10.0355]

Table 1. The maximum allowable bound βmax and the corre-
sponding state-feedback gains Kj

hm hMmax Feedback gain K1 Feedback gain K2

0 0.61 [-0.6543 -8.9925] [-1.1295 -11.5260]
0.4 0.95 [-0.7591 -7.1916] [-1.1609 -9.0167]
0.8 1.34 [-0.7815 -7.0236] [-1.1672 -8.4982]
1.4 1.94 [-0.7844 -7.2100] [-1.1846 -8.7907]

Table 2. The maximum allowable bound hMmax and the corre-
sponding state-feedback gains Kj

B1 = B2 =
[
0
1

]
, Bω1 =

[
2
0

]
, Bω2 =

[
1
0

]
, C1 = C2 =

[
0.1 0
0 0.1

]
,

D1 = D2 =
[
1
1

]
, U1 = U2 =

[
1 0
0 0

]
, E11 =

[
0 0.2
0 0

]
, E21 =

[
0.2 0
0 0

]
.

By Remark 3.11, we choose the H∞ performance level γ = 1, δ2 = 0.1, δ3 = −0.5,
δ4 = 0.3. For different α, using the MATLAB LMI Toolbox to solve the LMIs (21)
and (22), we get the results shown in Table 1.

From Table 1, we can see that the maximum allowable bound βmax may be
obtained for several values of α. We can also get the corresponding state-feedback
gains Kj of H∞ controller by solving the equation “Kj = YjX

−T ”. In this case,
for any h(t) ∈ [α−βmax, α + βmax], the fuzzy system (24) is asymptotically stable
and satisfies ‖z̃(t)‖2 < γ‖ω(t)‖2 under controller (6).

Analogously, we can get the results for different hm, as shown in Table 2.

5. Conclusion

In this paper, we have studied the delay-dependent robust H∞ controller design
for a class of T–S fuzzy-model-based systems with time-varying delay and norm-
bounded parameter uncertainty. A sufficient condition for the existence of a robust
H∞ controller has been obtained in an LMI form by introducing free-weighting
matrices and using the Lyapunov-Krasovskii functional approach. No restriction
on the derivative of the time-varying delay is needed. Finally, a numerical example
is used to illustrate the effectiveness of the proposed robust H∞ control design
method.
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