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ON L-FUZZIFYING CONVERGENCE SPACES

W. YAO

Abstract. Based on a complete Heyting algebra L, the relations between L-
fuzzifying convergence spaces and L-fuzzifying topological spaces are studied.
It is shown that, as a reflective subcategory, the category of L-fuzzifying topo-

logical spaces could be embedded in the category of L-fuzzifying convergence

spaces and the latter is cartesian closed. Also the specialization L-preorder
of L-fuzzifying convergence spaces and that of L-fuzzifying topological spaces

are investigated.

1. Introduction

Since Chang [2] introduced fuzzy set theory to topology, many researchers have
successfully generalized the theory of general topology to the fuzzy setting with
crisp methods. In Chang’s I-topology on a set X, each open set was fuzzy, while
the topology itself was a crisp subset of the family of all fuzzy subsets of X. From
a different direction, the fundamental idea of a topology itself being fuzzy was first
defined by Höhle [7] in 1980, then was independently generalized by each of Kubiak
[13] and Šostak [19] in 1985, and then independently rediscovered by Ying [21] in
Höhle’s original setting in 1991: in Höhle’s approach a topology was an L-subset
of a traditional powerset. In 1999, the axioms of many valued L-fuzzy topological
spaces and L-fuzzy continuous maps are given a lattice-theoretical foundation by
Höhle and Šostak [9] and a categorical foundation by Rodabaugh [18].

Convergence theory of filters or nets provides a good tool for interpreting topo-
logical structures and plays an important role in fuzzy topology. In crisp situation,
there are close relations between topological spaces and convergence spaces. For
a nonempty set X, let F(X) denote the set of all filters (which are equivalent to
proper lattice-theoretical filters of (2X , ⊆)) on X and for each x ∈ X, let [x] denote
the principal filter generated by {x}. A convergence structure [22] on X is a subset
R ⊆ F(X)×X satisfying the following conditions:

(Conv1) ([x], x) ∈ R for all x ∈ X;
(Conv2) (F, x) ∈ R and F ⊆ G ∈ F(X) imply (G, x) ∈ R.

A convergence structure R on X is called a limit structure if R satisfies the addi-
tional condition:

(Lim) (F, x), (G, x) ∈ R implies (F ∩G, x) ∈ R.
For a convergence structure (resp., limit structure) R on X, the pair (X, R) is
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64 W. Yao

called a convergence space (resp., limit space). A map f : (X, RX) −→ (Y, RY )
between two convergence spaces is called continuous if ∀F ∈ F(X), (F, x) ∈ RX

implies (f(F ), f(x)) ∈ RY , where f(F ) is a filter on Y generated by the filter base
{f(A)| A ∈ F}. Conv denotes the category of convergence spaces with continuous
maps and Lim the full subcategory of Conv formed by all limit spaces. It is well-
known that both Conv and Lim are cartesian closed and the category of topological
spaces Top can be embedded in them as a reflective subcategory [22].

Many researchers extended convergence structures and limit structures to fuzzy
setting. In the framework of I-topology, Lowen [16] defined the concept of a prefilter
as a subset of IX (a lattice-theoretical filter of IX under pointwise order) in order
to study the theory of fuzzy topological spaces. Also, K.C. Min [17] introduced
fuzzy limit spaces using prefilters. In the framework of fuzzy topology, Xu [20]
introduced fuzzy topological limit structures and characterized fuzzy topologies by
filter convergence structures. In L-fuzzy setting, Lowen et al. [15] used prefilters
to define the notion of an I-fuzzy convergence space, and showed that the category
of all such objects had several desirable properties, such as being cartesian closed.
Höhle and Šostak [9] introduced the idea of an (resp., a stratified) L-filter as a
map from LX to L and showed that stratified L-filters provided a fruitful tool
employed in the development of general lattice-valued topological spaces. Later,
for a complete Heyting algebra L, Jäger [11] defined stratified L-fuzzy convergence
spaces (which are called L-generalized convergence spaces in [12]) and proved that
the resulting category is a cartesian closed topological category and the category
of stratified L-topological spaces can be embedded in it as a reflective subcategory.

The aim of this paper is to propose the concept of L-fuzzifying convergence spaces
and study the relations between L-fuzzifying convergence spaces and L-fuzzifying
topological spaces. As is suggested in [12], we replace stratified L-filters in [11, 12]
by L-filters of ordinary sets and define the concept of L-fuzzifying convergence
spaces. This paper is organized as follows. In Section 2, some basic concepts and
notions which will be used throughout this paper are listed. In Section 3, some
basic notions of L-fuzzifying topological spaces are recalled and the definition of
L-fuzzifying convergence spaces is presented. In Section 4, the relations between L-
fuzzifying topological spaces and L-fuzzifying convergence spaces are studied. It is
shown that the category of L-fuzzifying topological spaces can be embedded in the
category of L-fuzzifying convergence spaces as a reflective subcategory. In Section
5, the category of L-fuzzifying convergence spaces is shown to be a cartesian closed
topological category. In Section 6, the specialization L-preorder of L-fuzzifying
convergence spaces and L-fuzzifying topological spaces is studied.

2. Preliminaries

A complete lattice L is a complete Heyting algebra or a frame if the binary meets
are distributive over arbitrary joins, i.e.,

a ∧ (
∨
i

bi) =
∨
i

(a ∧ bi)

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


On L-fuzzifying Convergence Spaces 65

holds for all a, bi(i ∈ I) ∈ L. For a complete Heyting algebra L, an implicative
operator →: L× L −→ L can be defined as

∀a, b ∈ L, a → b =
∨
{c ∈ L| a ∧ c ≤ b}.

Then (∧, →) forms a Galois connection [6] on L, i.e.,

∀a, b, c ∈ L, a ∧ c ≤ b ⇐⇒ c ≤ a → b.

Theorem 2.1. ([9]) Let L be a complete Heyting algebra. Then
(H1) a → (

∧
i bi) =

∧
i(a → bi);

(H2) (
∨

i bi) → a =
∧

i(bi → a);
(H3) b → c ≤ (a → b) → (a → c);
(H4) a = 1 → a;
(H5) a ≤ b iff a → b = 1;
(H6) a → (b → c) = (a ∧ b) → c;
(H7) a → b ≤ (a ∧ c) → (b ∧ c);
(H8) a → b ≥ b;
(H9) a ∧ b = a ∧ (a → b);
(H10) a ≤ (a → b) → b;
(H11) (a → c) ∧ (b → d) ≤ (a ∧ b) → (c ∧ d).

A complete lattice L is said to be completely distributive if it satisfies the com-
pletely distributive law, i.e.,∨

i

(
∧
j

aj
i ) =

∧
f∈

∏
i∈I Ji

(
∨
i

a
f(i)
i )

or ∧
i

(
∨
j

aj
i ) =

∨
f∈

∏
i∈I Ji

(
∧
i

a
f(i)
i )

hold for all Xi = {aj
i | j ∈ Ji} ⊆ 2L(∀i ∈ I). Clearly, every completely distributive

complete lattice is a frame.

Lemma 2.2. ([1]) Let F : A −→ B and G : B −→ A be two functors. Then the
followings are equivalent:

(1) ∀A ∈ ob(A), B ∈ ob(B) and any A-morphism f : A −→ G(B), there exists
a A-morphism ηA : A −→ GF (A) and a unique B-morphism g : F (A) −→ B such
that f = G(g) ◦ ηA;

(2) ∀A ∈ ob(A), B ∈ ob(B) and any B-morphism h : F (A) −→ B, there exists
a B-morphism ξB : FG(B) −→ B and a unique A-morphism t : A −→ G(B) such
that h = ξB ◦ F (t);

(3) ∀A ∈ ob(A), B ∈ ob(B), there is a bijection between homA(A, G(B)) and
homB(F (A), B).

(F, G) is called an adjunction betweenA and B if it satisfies any of the conditions
in Lemma 2.2, in symbols F ` G. F is called the left adjoint of G and G the right
adjoint functor of F . IfA is a subcategory of B and the inclusion functor i : A −→ B
has a left (resp., right) adjoint F , then A is called a reflective (resp., coreflective)
subcategory of B and F is called the reflector (resp., coreflector).

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


66 W. Yao

Throughout this paper, unless otherwise statement, L always denotes a complete
Heyting algebra and → is the implicative operator induced by the binary meets.
For other notions related to category theory we refer you to [1].

3. L-fuzzifying Topological Space and L-fuzzifying Convergence Space

Definition 3.1. ([21]) An L-fuzzifying topology on a nonempty set X is a function
τ : 2X −→ L which satisfies:

(FO1) τ(∅) = τ(X) = 1;
(FO2) τ(A ∩B) ≥ τ(A) ∧ τ(B);
(FO3) τ(

⋃
i Ai) ≥

∧
i τ(Ai).

For an L-fuzzifying topology τ on X, the pair (X, τ) is called an L-fuzzifying
topological space.

Let (X, τ) be an L-fuzzifying topological space. We define Ux
τ : 2X −→ L by

∀A ⊆ X, Ux
τ (A) =

∨
B∈ẋ|A

τ(B),

where B ∈ ẋ|A means x ∈ B ⊆ A. Ux
τ (A) can be interpreted as the degree of A

to be a neighborhood of x. {Ux
τ | x ∈ X} is called the L-fuzzifying neighborhood

system [25] of (X, τ).

Theorem 3.2. ([25]) ∀A ⊆ X,
∧

x∈A

Ux
τ (A) ≥ τ(A) and if L is completely distribu-

tive then
∧

x∈A

Ux
τ (A) = τ(A).

Definition 3.3. ([25]) An L-generalized neighborhood system on X is defined to
be a set P = {px| x ∈ X} of maps px : 2X −→ L such that ∀ U, V ∈ X,

(GN1) px(X) = 1, px(∅) = 0;
(GN2) px(U) > 0 implies x ∈ U ;
(GN3) px(U ∩ V ) = px(U) ∧ px(V );
(GN4) px(U) =

∨
V ∈ẋ|U

∧
y∈V

px(V ).

It was proved in [25] that for any completely distributive complete lattice L,
L-generalized neighborhood systems and L-fuzzifying topologies are conceptually
equivalent with the transferring process px = Ux

τ and τ(A) =
∧

x∈A

px(A).

A map f : X −→ Y is called continuous with respect to the given L-fuzzifying
topological spaces (X, τ1) and (Y, τ2) iff ∀B ∈ 2Y , τ1(f−1(B)) ≥ τ2(B). The
category of L-fuzzifying topological spaces with continuous maps as morphisms
will be denoted by L-FYS. It is well-known that L-FYS is a topological category,
but not cartesian closed (for a completely distributive complete lattice L)1.

1Top is not cartesian closed [1]. If L is completely distributive, then Top can be embedded in

L-FYS as a simultaneously reflective and coreflective isomorphism-closed full subcategory [23, 24].

By Proposition 27.9 in [1], L-FYS is not cartesian closed.
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Definition 3.4. ([10]) A map F : 2X −→ L is called an L-filter of ordinary subsets
on a nonempty set X if it satisfies

(F1) F(∅) = 0, F(X) = 1;
(F2) ∀A, B ⊆ X, A ⊆ B implies F(A) ≤ F(B);
(F3) ∀A, B ⊆ X, F(A ∩B) ≥ F(A) ∧ F(B).

An L-filter of ordinary subsets is called an L-filter in brief if no confusion arises.

Theorem 3.5. ([6]) F : 2X −→ L is an L-filter if and only if it fulfils (F1) and
(F4) ∀A, B ⊆ X, F(A ∩B) = F(A) ∧ F(B).

In the following discussion, we just call an L-filter of ordinary subsets an L-filter.

Example 3.6. (1) Define [x] : 2X −→ L by [x](A) = 1 if x ∈ A and 0 otherwise.
Then [x] is an L-filter.

(2) Let (X, τ) be an L-fuzzifying topological space. Then ∀x ∈ X, Ux
τ is an

L-filter.

The family of all L-filters on X will be denoted by FL(X). Then FL(X) is a
poset under pointwise order. The smallest element of FL(X) is F0(A) = 1 if A = X
and 0 otherwise. Furthermore

∧
i Fi is also an L-filter for {Fi| i ∈ I} ⊆ FL(X).

Thus FL(X) is a complete semilattice.
∀F ∈ FL(X), G ∈ FL(Y ), F × G ∈ FL(X × Y ) is defined by

∀C ⊆ X × Y, (F × G)(C) =
∨

A×B⊆C

F(A) ∧ G(B).

Let F be an L-filter on X and f : X −→ Y be a map. Define f⇒(F) : LX −→ L
by

∀B ⊆ Y, f⇒(F)(B) = F(f−1(B)).

Theorem 3.7. Let F be an L-filter on X and f : X −→ Y be a map. Then f⇒(F)
is an L-filter on Y .

Proof. Straightforward. �

Theorem 3.8. Let f : X −→ Y and g : Y −→ Z be two maps. Then
(1) ∀x ∈ X, f⇒([x]) = [f(x)];
(2) ∀F ∈ FL(X), g⇒(f⇒(F)) = (g ◦ f)⇒(F).

Proof. Straightforward. �

Definition 3.9. ([7], or [11] for L-fuzzy version) An L-fuzzifying convergence struc-
ture on X is a map R : FL(X)×X −→ L satisfying that

(FCS1) ∀x ∈ X, R([x], x) = 1;
(FCS2) ∀x ∈ X, F , G ∈ FL(X), F ≤ G implies R(F , x) ≤ R(G, x).

The pair (X, R) is called an L-fuzzifying convergence space.

For an L-fuzzifying convergence space (X, R), define Ux
R : LX −→ L by

∀A ⊆ X, Ux
R(A) =

∧
F∈FL(X)

R(F , x) → F(A).
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68 W. Yao

Then Ux
R is an L-filter (See Proposition 6.1 in [11] for stratified L-fuzzy convergence

spaces).
A map f : X −→ Y is called continuous with respect to the given L-fuzzifying

convergence spaces (X, R1) and (Y, R2) iff ∀(F , x) ∈ FL(X) × X, R1(F , x) ≤
R2(f⇒(F), f(x)). The category of L-fuzzifying convergence spaces with continuous
maps as morphisms will be denoted by L-FYCS.

Let {Ri| i ∈ I} be a family of L-fuzzifying convergence structures on X. Then
(
∧

i Ri)(F , x) :=
∧

i(Ri(F , x)) also is an L-fuzzifying convergence structure on
X. By L-FYCS(X) we denote the set of all L-fuzzifying convergence structures
on X. Then L-FYCS(X) is a complete lattice under the partial order of R1 � R2

iff ∀(F , x) ∈ FL(X)×X, R1(F , x) ≤ R2(F , x). Thus L-FYCS is fibre-complete
[1].

4. Relations Between Categories of L-FYS and L-FYCS

In this section, we will construct an L-fuzzifying topology by an L-fuzzifying con-
vergence structure and conversely construct an L-fuzzifying convergence structure
by an L-fuzzifying topology. Then we will study the relations between categories
of L-FYS and L-FYCS.

Theorem 4.1. Let R be an L-fuzzifying convergence structure on X. Define τR :
2X −→ L by

∀A ⊆ X, τR(A) =
∧

x∈A

Ux
R(A) =

∧
(F, x)∈FL(X)×A

(R(F , x) → F(A)).

Then τR is an L-fuzzifying topology on X.

Proof. (FO1) Obviously, τR(∅) = τ(X) = 1.
(FO2) ∀A, B ⊆ X,

τR(A) ∧ τR(B) = (
∧

x∈A

Ux
R(A)) ∧ (

∧
y∈B

Uy
R(B))

≤
∧

x∈A∩B

(Ux
R(A) ∧ Ux

R(B))

=
∧

x∈A∩B

Ux
R(A ∩B)

= τR(A ∩B).

(FO3) ∀{Ai| i ∈ I} ⊆ 2X(I 6= ∅),

τR(
⋃

i Ai) =
∧

x∈
⋃

i Ai

Ux
R(

⋃
i Ai)

=
∧

i

∧
x∈Ai

Ux
R(

⋃
j Aj)

≥
∧

i

∧
x∈Ai

Ux
R(Ai)

=
∧

i τR(Ai).

�
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Conversely, for an L-fuzzifying topology τ on X, define Rτ : FL(X) ×X −→ L
[9] by ∀(F , x) ∈ FL(X)×X,

Rτ (F , x) =
∧

A⊆X

(Ux
τ (A) → F(A)) =

∧
A∈ẋ

(Ux
τ (A) → F(A)).

Theorem 4.2. (1) ∀x ∈ L, Rτ (Ux
τ , x) = 1;

(2) ∀x ∈ L, Ux
τ = Ux

Rτ
;

(3) ∀(F , x) ∈ FL(X)×X, Rτ (F , x) =
∧

A∈ẋ

(τ(A) → F(A)).

(4) Rτ is an L-fuzzy convergence structure on X.

Proof. (1) and (4) are trivial and straightforward.
(2) ∀A ⊆ X, on one hand,

Ux
Rτ

(A) =
∧

F∈FL(X)

(Rτ (F , x) → F(A)) ≤ Rτ (Ux
τ , x) → Ux

τ (A) = 1 → Ux
τ (A) = Ux

τ (A).

On the other hand,

Ux
Rτ

(A) =
∧

F∈FL(X)

(Rτ (F , x) → F(A))

=
∧

F∈FL(X)

((
∧

B⊆X

Ux
τ (B) → F(B)) → F(A))

≥
∧

F∈FL(X)

((Ux
τ (A) → F(A)) → F(A))

≥ Ux
τ (A).

(3) ∀(F , x) ∈ FL(X)×X,

Rτ (F , x) =
∧

A∈ẋ

(Ux
τ (A) → F(A))

=
∧

A∈ẋ

((
∨

x∈B⊆A

τ(B)) → F(A))

=
∧

A∈ẋ

∧
x∈B⊆A

(τ(B) → F(A))

≥
∧

A∈ẋ

∧
B≤A

(τ(B) → F(B))

≥
∧

A∈ẋ

(τ(A) → F(A)).

and
Rτ (F , x) =

∧
A∈ẋ

((
∨

x∈B⊆A

τ(B)) → F(A)) ≤
∧

A∈ẋ

(τ(A) → F(A)). �

In the following, we will study the relations between L-fuzzifying topologies and
L-fuzzy convergence structures.

Theorem 4.3. τRτ
≥ τ and if L is completely distributive then τRτ

= τ .

Proof. ∀A ⊆ X, since Ux
Rτ

= Ux
τ , τRτ (A) =

∧
x∈A

Ux
Rτ

(A) =
∧

x∈A

Ux
τ (A) ≥ τ(A). By

Theorem 3.2, the equation holds obvious if L is completely distributive. �

Theorem 4.4. RτR
≥ R.
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Proof. ∀(F , x) ∈ FL(X)×X, we have

RτR
(F , x) =

∧
A∈ẋ

(τR(A) → F(A))

=
∧

A∈ẋ

((
∧

(G, y)∈FL(X)×A

R(G, y) → G(A)) → F(A))

≥
∧

A∈ẋ

((R(F , x) → F(A)) → F(A))

≥ R(F , x).

�

Remark 4.5. RτR
≤ R does not hold even if L = {0, 1}. For example, let X =

{x, y}. Then F(X) = {[x], [y], {X}}. Suppose that R = {([x], x), ([y], y), ([y], x)}.
It’s easy to verify that τR = {∅, {y}, X} and RτR

= R ∪ {({X}, x)}.

An L-fuzzifying convergence structure R on X is called topological if it can be
induced by an L-fuzzifying topology, that is there exists an L-fuzzifying topology
τ on X such that R = Rτ .

Theorem 4.6. The followings are equivalent:
(1) RτR

= R;
(2) ∀F ∈ FL(X), ∀x ∈ X, Ux

R = Ux
τR

and R(F , x) =
∧

A⊆X

Ux
R(A) → F(A),

which imply
(3) R is topological.

If L is completely distributive, then the above three are equivalent.

Proof. Obviously (1)=⇒(3) holds.
(1)=⇒(2): By Theorem 4.2(3), we have

Ux
τR

= Ux
RτR

= Ux
R

and then

R(F , x) = RτR
(F , x) =

∧
A⊆X

(Ux
τR

(A) → F(A)) =
∧

A⊆X

(Ux
R(A) → F(A)).

(2)=⇒(1): ∀(F , x) ∈ FL(X)×X,

RτR
(F , x) =

∧
A⊆X

Ux
τR

(A) → F(A) =
∧

A⊆X

Ux
R(A) → F(A) = R(F , x).

If L is completely distributive, then (3)=⇒(1) can be easily implied by Theorem
4.3. �

Corollary 4.7. If L is completely distributive, then R is topological if and only if

∀(F , x) ∈ FL(X)×X, R(F , x) =
∧

A⊆X

Ux
R(A) → F(A)

and
∀A ⊆ X, Ux

R(A) =
∨

B∈ẋ|A

∧
y∈B

Uy
R(B).
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Proof. The necessity is obvious by Theorem 4.6 and the properties of neighborhood
system of L-fuzzifying topological spaces. To show the sufficiency, we only need to
prove that ∀x ∈ X, Ux

R = Ux
τR

. In fact, ∀A ⊆ X, Ux
τR

(A) =
∨

B∈ẋ|A
τR(B) =∨

B∈ẋ|A

∧
y∈B

Uy
R(B) = Ux

R(A). This completes the proof. �

Theorem 4.8. (1) RT : L-FYS −→ L-FYCS(τ 7→ Rτ ) is a functor.
(2) TR : L-FYCS −→ L-FYS(R 7→ τR) is a functor.

Proof. (1) Suppose that f : (X, τX) −→ (Y, τY ) is continuous. ∀(F , x) ∈ FL(X)×
X,

RτY
(f⇒(F), f(x)) =

∧
B∈ ˙f(x)

(τY (B) → f⇒(F)(B))

≥
∧

f−1(B)∈ẋ

(τX(f−1(B)) → F(f−1(B)))

≥
∧

A∈ẋ

(τX(A) → F(A))

= RτX
(F , x).

(2) Suppose that f : (X, RX) −→ (Y, RY ) is a continuous map. ∀B ⊆ Y ,

τRX
(f−1(B)) =

∧
(F, x)∈FL(X)×f−1(B)

(RX(F , x) → F(f−1(B)))

≥
∧

(F, x)∈FL(X)×f−1(B)

(RY (f⇒(F), f(x)) → f⇒(F)(B))

≥
∧

(G, y)∈FL(Y )×B

(RY (G, y) → G(B))

= τRY
(B).

�

Corollary 4.9. RT is the right adjoint of TR. Thus L-FYS can be embedded in
L-FYCS as a reflective subcategory.

5. L-FYCS Is a Cartesian Closed Topological Category

The aim of this section is to show that L-FYCS is a cartesian closed topological
category.

A functor T : A −→ B is called topological [1] provided every T -source {fj :
X −→ (Xj , Dj)}j∈J has a unique T -initial lift. A concrete category on Set
is called a construct. A construct C is called topological if the forgetful functor
U : C −→ Set is topological.

Theorem 5.1. L-FYCS is topological over Set with respect to the expected for-
getful functor.

Let U : L-FYCS −→ Set be the forgetful functor. Let (X; (fi, (Yi, Ri))i∈I)
be a U -structured source, i.e., X is a set and (Yi, Ri) is a family of L-fuzzifying
convergence spaces and ∀i ∈ I, fi : X −→ Yi is a map. We only need to prove
that there exists an L-fuzzifying convergence structure RX on X such that for
any L-fuzzifying convergence space (Z, RZ), a map g : (Z, RZ) −→ (X, RX)
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is an L-FYCS-morphism if and only if ∀i ∈ I, fi ◦ g : (Z,RZ) −→ (Yi, Ri) is
L-FYCS-morphism since L-FYCS is amnestic clearly.

In fact, defining RX : FL(X)×X −→ L by ∀(F , x) ∈ FL(X)×X,

RX(F , x) =
∧
i

Ri(fi
⇒(F), fi(x)).

It’s easy to verify that RX is an L-fuzzifying convergence structure on X. On one
hand, if g : (Z, RZ) −→ (X, RX) is an L-FYCS-morphism, then ∀(F , x) ∈
FL(Z)× Z,

RZ(F , x) ≤ RX(g⇒(F), g(x))
=

∧
i Ri(fi

⇒(g⇒(F)), fi(g(x)))
=

∧
i Ri((fi ◦ g)⇒(F), (fi ◦ g)(x)),

which implies that ∀i ∈ I, RZ(F , x) ≤ Ri((fi ◦ g)⇒(F), (fi ◦ g)(x)) and fi ◦ g :
(Z, RZ) −→ (Yi, Ri) is also an L-FYCS-morphism. On the other hand, if ∀i ∈
I, fi◦g : (Z, RZ) −→ (Yi Ri) is an L-FYCS-morphism, then ∀(F , x) ∈ FL(Z)×Z,

RZ(F , x) ≤
∧

i Ri((fi ◦ g)⇒(F), (fi ◦ g)(x))
=

∧
i Ri(fi

⇒(g⇒(F)), fi(g(x)))
= RX(g⇒(F), g(x)).

Hence g : (Z, RZ) −→ (X, RX) is an L-FYCS-morphism.
Let {(Xi, Ri)| i ∈ I} be a family of L-fuzzifying convergence spaces and X =∏

i Xi the cartesian product of {Xi| i ∈ I}. Define RX : FL(X) × X −→ L by
∀(F , x) ∈ FL(X)×X,

RX(F , x) =
∧
i

Ri(pi
⇒(F), xi),

where ∀i ∈ I, pi : X −→ Xi is the projection and x = (xi)i∈I . It’s easy to verify
that RX is an L-fuzzifying convergence structure on X and ∀i ∈ I, pi : X −→ Xi

is continuous. Thus (X, RX) is the product object of {(Xi, Ri)| i ∈ I} in the
category L-FYCS.

A category with finite products is cartesian closed [1] if and only if for each pair
(A, B) of objects there exists an object [A → B] and an evaluation morphism
ev : [A → B]× A −→ B with the following universal property: for each morphism
f : C × A −→ B there exists a unique morphism f̂ : C −→ [A → B] such that the
following diagram commutes

C ×A

[A → B]×A B-
?

HH
HHH

HHH
HHjev

ff̂ × idA
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In the following, using the ideas in [11]2, we will show that L-FYCS is cartesian
closed.

For two L-fuzzifying convergence spaces (X, RX) and (Y, RY ), let [X → Y ]
denote the set of all continuous maps from (X, RX) to (Y, RY ). Define R[X→Y ] :
FL([X → Y ]) × [X → Y ] −→ L (See the L-fuzzy version in [11]) by ∀(F , f) ∈
FL([X → Y ])× [X → Y ],

R[X→Y ](F , f) =
∧

(G, x)∈FL(X)×X

RX(G, x) → RY (ev⇒(F × G), f(x)).

Lemma 5.2. Let g : X −→ Y be a map and G ∈ FL(X). Then

g⇒(G) ≤ ev⇒([g]× G),

where ev : [X → Y ]×X −→ Y is the evaluation map.

Proof. ∀C ⊆ Y ,

ev⇒([g]× G)(C) = ([g]× G)(ev−1(C))
=

∨
A×B⊆ev−1(C)

([g](A) ∧ G(B))

=
∨

A×B⊆ev−1(C), g∈A

G(B)

≤ G(g−1(C))

= g⇒(G)(C),

where A ⊆ [X → Y ], B ⊆ X. Hence g⇒(G) ≤ ev⇒([g]× G). �

Theorem 5.3. R[X→Y ] is an L-fuzzifying convergence structure on [X → Y ].

Proof. Obviously, (FCS1) holds. To show (FCS2), ∀g ∈ [X → Y ], by Lemma 5.2,

R[X→Y ]([g], g) =
∧

(G, x)∈FL(X)×X

RX(G, x) → RY (ev⇒([g]× G), g(x))

≥
∧

(G, x)∈FL(X)×X

RX(G, x) → RY (g⇒(G), g(x))

= 1,

since g : X −→ Y is continuous. �

Lemma 5.4. Let G ∈ FL(X × Y ). Then pX
⇒(G)× pY

⇒(G) ≤ G.

2Reference [11] is a fundamental reference in this paper, especially in this section. The ap-
proaches used in this section are mainly imitated from it.
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Proof. ∀C ⊆ X × Y ,

(pX
⇒(G)× pY

⇒(G))(C) =
∨

A×B⊆C

(pX
⇒(G)(A) ∧ pY

⇒(G)(B))

=
∨

A×B⊆C

(G(p−1
X (A)) ∧ G(p−1

Y (B)))

≤
∨

A×B⊆C

G((A× Y ) ∩ (X ×B))

=
∨

A×B⊆C

G(A×B)

≤ G(C).

�

Theorem 5.5. The evaluation map ev : [X → Y ]×X −→ Y is continuous.

Proof. Suppose that p1 : [X → Y ]×X −→ [X → Y ] and p2 : [X → Y ]×X −→ X
are the corresponding projections. ∀H ∈ FL([X → Y ]×X), ∀(g, x) ∈ [X → Y ]×X,

R[X→Y ]×X(H, (g, x))
= R[X→Y ](p1

⇒(H), g) ∧RX(p2
⇒(H), x)

≤ (RX(p2
⇒(H), x) → RY (ev⇒(p1

⇒(H)× p2
⇒(H)), g(x))) ∧RX(p2

⇒(H), x)
≤ RY (ev⇒(p1

⇒(H)× p2
⇒(H)), g(x))

≤ RY (ev⇒(H), g(x)).

�

Now let’s consider the following situation. Let f : X × Y −→ Z be a map.
Define for x ∈ X the map fx : Y −→ Z, y 7−→ f(x, y) and with this the map
f∗ : X −→ ZY , x 7−→ fx. The map ϕ : ZX×Y −→ (ZY )X , f 7−→ f∗ is called the
exponential map.

Lemma 5.6. Let f : X × Y −→ Z be a map and let x ∈ X. Then for an L-filter
F ∈ FL(Y ), it holds that fx

⇒(F) ≥ f⇒([x]×F).

Proof. ∀C ⊆ Y ,

f⇒([x]×F)(C) =
∨

A×B⊆f−1(C)

[x](A) ∧ F(B)

=
∨

A×B⊆f−1(C), x∈A

F(B)

≤ F(f−1
x (C))

= fx
⇒(F)(C).

�

Lemma 5.7. ∀F ∈ FL(X), G ∈ FL(Y ), we have pX
⇒(F × G) = F and pY

⇒(F ×
G) = G.

Proof. Straightforward. �

Lemma 5.8. Let f : (X, RX) × (Y, RY ) −→ (Z, RZ) be continuous. Then for
each x ∈ X also fx : (Y, RY ) −→ (Z, RZ) is continuous.
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Proof. ∀(F , y) ∈ FL(Y )× Y ,

RZ(fx
⇒(F), fx(y)) ≥ RZ(f⇒([x]×F), f(x, y))

≥ RX×Y ([x]×F , (x, y))
= RX(pX

⇒([x]×F), x) ∧RY (pY
⇒([x]×F), y)

= RX([x], x) ∧RY (F , y)
= RY (F , y).

�

Lemma 5.9. ∀F ∈ FL(X), G ∈ FL(Y ), we have ev⇒(ϕ(f)⇒(F)×G) = f⇒(F×G).

Proof. ∀C ⊆ Z,

ev⇒(ϕ(f)⇒(F)× G)(C) =
∨

D×B⊆ev−1(C)

ϕ(f)⇒(F)(D) ∧ G(B)

=
∨

ev(D×B)⊆C

F(ϕ(f)−1(D)) ∧ G(B)

=
∨

ev(D×B)⊆C

F({x ∈ X| fx ∈ D}) ∧ G(B),

and
f⇒(F × G)(C) =

∨
A×B⊆f−1(C)

F(A) ∧ G(B)

=
∨

ev(D×B)⊆C

F(ϕ(f)−1(D)) ∧ G(B)

=
∨

f(A×B)⊆C

F(A) ∧ G(B).

If ev(D × B) ⊆ C, put A = {x ∈ X| fx ∈ D}, then we have f(A × B) ⊆ C.
And if f(A×B) ⊆ C, put D = {fx| x ∈ A}, then we have ev(D ×B) ⊆ C. Hence
ev⇒(ϕ(f)⇒(F)× G) = f⇒(F × G). �

Lemma 5.10. If the map f : X × Y −→ Z is continuous, then also ϕ(f) : X −→
[Y → Z] is continuous.

Proof. By Lemma 5.9, ϕ(f) is well-defined. ∀(F , x) ∈ FL(X) × X, ∀(G, y) ∈
FL(Y )× Y , we have

RX(F , x) ∧RY (G, y) = RX×Y (F × G, (x, y))
≤ RZ(f⇒(F × G), f(x, y))
= RZ(ev⇒(ϕ(f)⇒(F)× G), ϕ(f)(x)(y)).

By the arbitrariness of (G, y) ∈ FL(Y )× Y , we have

RX(F , x)
≤

∧
(G, y)∈FL(Y )×Y

(RY (G, y) → RZ(ev⇒(ϕ(f)⇒(F)× G), ϕ(f)(x)(y)))

= R[Y→Z](ϕ(f)⇒(F), ϕ(f)(x)).

Hence ϕ(f) : X −→ [Y → Z] is continuous. �

By Theorem 5.3, Theorem 5.5 and Lemma 5.10, we have

Theorem 5.11. L-FYCS is cartesian closed.
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Remark 5.12. (1) In [12], Jäger defined and studied several subcategories of the
category of stratified L-fuzzy convergence spaces. One of which was called stratified
L-limit spaces. It was shown that the category of stratified L-limit spaces can be
embedded in the category of stratified L-fuzzy convergence spaces as a reflective
subcategory and is also cartesian closed.

(2) An L-fuzzifying space (X, R) is called an L-fuzzifying limit space if it satisfies
(FLim) ∀F , G ∈ FL(X), ∀x ∈ X, R(F , x) ∧R(G, x) ≤ R(F ∧ G, x).

It’s easy to verify that for any L-fuzzifying topological space (X, τ), (X, Rτ ) is
an L-fuzzifying limit space. Denote by L-FYLim the full subcategory of L-FYCS
formed by all L-fuzzifying limit spaces. Restricting the two functors RT and TR

to L-FYLim, we get that L-FYS can be embedded in L-FYLim as a reflective
subcategory. Also, it can be shown that L-FYLim is cartesian closed by a similar
fashion.

6. Specialization L-preorder

For a classical topological space X, define a binary relation ≤ on X by

x ≤ y iff x ∈ {y}−,

where {y}− is the closure of {y} in X. Then ≤ is a preorder on X, called the
specialization preorder [6] of X. If X satisfies the T0 axiom, then the specialization
preorder is a partial order. Likewise, each L-topological space (resp., L-fuzzifying
spaces, L-fuzzy spaces) can induced an L-preorder (See Definition 6.1), called the
specialization L-preorder of the corresponding spaces. For L = [0, 1] with a left
continuous t-norm, from viewpoint of category theory, the specialization L-preorder
of L-topological spaces (resp., L-fuzzifying topological spaces, L-fuzzy topological
spaces) was studied in [14] (resp., [3], [4]).

In this section, we will study the specialization L-preorder of L-fuzzifying con-
vergence spaces.

Definition 6.1. ([5] for L a residuated lattice, or [3, 4, 14] for L = [0, 1]) An
L-relation on a set X is a map P : X × X −→ L. An L-relation P is called an
L-preorder if

(Pr1) (reflexivity) P (x, x) = 1 for all x ∈ X;
(Pr2) (transitivity) P (x, y) ∧ P (y, z) ≤ P (x, z) for all x, y, z ∈ X.

The pair (X, P ) is called an L-preordered set. For two L-preordered sets (X, PX)
and (Y, PY ), a map f : X −→ Y is called order-preserving if PX(x, y) ≤
PY (f(x), f(y)) for all x, y ∈ X. The category of all the L-preordered sets and
order-preserving maps is denoted by L-PrOrd.

Theorem 6.2. Let (X, R) be an L-fuzzifying convergence space, define a map
PR : X ×X −→ L by

∀x, y ∈ X, PR(x, y) =
∧

F∈FL(X)

R(F , y) → R(F , x).

Then PR is an L-preorder.
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Proof. (Pr1) holds clearly. To show (Pr2), ∀x, y, z ∈ X,

PR(x, y) ∧ PR(y, z)
= (

∧
F∈FL(X)

R(F , y) → R(F , x)) ∧ (
∧

G∈FL(X)

R(G, z) → R(G, y))

≤
∧

F∈FL(X)

(R(F , y) → R(F , x)) ∧ (R(F , z) → R(F , y))

≤
∧

F∈FL(X)

R(F , z) → R(F , x)

= PR(x, z).

�

Remark 6.3. PR : L-FYCS −→ L-PrOrd is not a functor even if L = {0, 1}
as the following example shows. Let X = {x, y}, Y = {a, b, c} and f :
X −→ Y be defined by f(x) = a, f(y) = b. Then F(X) = {[x], [y], {X}}
and F(Y ) = {[a], [b], [c], ↑ {a, b}, ↑ {b, c}, ↑ {c, a}, {X}}. Suppose that RX =
{([x], x), ([y], y), ([y], x)} and RY = {([a], a), ([a], c), ([b], b), ([b], a), ([c], c),
([c], b), (↑ {a, b}, a), (↑ {b, c}, b), (↑ {c, a}, c)}. Then RX and RY are {0, 1}-
fuzzifying convergence structures on X and Y respectively and f : (X, RX) −→
(Y, RY ) is continuous. It’s easy to verify that x ≤ y in PRX

while a 6≤ b in PRY

since (↑ {b, c}, b) ∈ RY and (↑ {b, c}, a) 6∈ RY .

In [14], based on a left continuous t-norm ∗ on the unit interval [0, 1], Lai and
Zhang studied the relations between the categories of FPrOrd (i.e., I-FPrOrd)
and FTS (i.e., the category of stratified fuzzy topological spaces). Recently Fang
and Chen analogized Lai and Zhang’s results to fuzzifying setting in [3].

For a fuzzy preordered set (X, P ), its associated I-fuzzifying topology ∇(P ) :
2X −→ [0, 1] is defined by

∀A ⊆ X, ∇(P )(A) =
∧

x∈A, y 6∈A

1− P (x, y).

Conversely, for an I-fuzzy topology τ on X, its associated fuzzy preorder Θ :
X ×X −→ I is defined by

∀x, y ∈ X, Θ(τ)(x, y) =
∧

A∈ẋ, A 6∈ẏ

1− τ(A).

Fang and Chen showed that (∇, Θ) is a Galois connection [1] between the categories
FPrOrd and FYS.

The results in [3] can be easily extended to any complete Heyting algebra.

Theorem 6.4. (1) Let τ be an L-fuzzifying topology on X. Then the map Θτ :
X ×X −→ L defined by

∀x, y ∈ X, Θτ (x, y) =
∧

A∈ẋ, A 6∈ẏ

τ(A) → 0

is an L-preorder on X.

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


78 W. Yao

(2) Let P be an L-preorder on X. Then the map ∇P : 2X −→ L defined by

∀A ⊆ X, ∇P (A) =
∧

x∈A, y 6∈A

P (x, y) → 0

is an L-fuzzifying topology on X.

Proof. Trivial. �

Remark 6.5. Since there need not exist a reverse involution on L, we replace
1 − τ(A) (resp., 1 − P (x, y)) by τ(A) → 0 (resp., P (x, y) → 0). Still we can
prove that τ ≤ ∇(Θ(τ)) and P ≤ Θ(∇(P )) for any L-fuzzifying topology τ and any
L-preorder P on X. Thus (∇, Θ) is a Galois connection between the categories
L-PrOrd and L-FYS.

Theorem 6.6. The following diagram commutes, where | · | stands for the class of
objects of the category ·.

|L-FYS| |L-FYCS|-

|L-FPrOrd|

RT

S
S
Sw

�
�

�/
Θ PR

Proof. Let (X, τ) be an L-fuzzifying topological space. Then ∀(F , x) ∈ FL(X)×X,

Rτ (F , x) =
∧

x∈A

τ(A)) → F(A)

and

Rτ ([y], x) =
∧

A∈ẋ, A 6∈ẏ

τ(A) → 0 = Θ(τ)(x, y).

We only need to show that PRτ (x, y) = Rτ ([y], x) in the following. In fact, it is
easy to see that

PRτ
(x, y) =

∧
F∈FL(X)

Rτ (F , y) → Rτ (F , x) ≤ Rτ ([y], x).

Secondly, ∀F ∈ FL(X),

Rτ (F , y) → Rτ (F , x) = Rτ (F , y) → (
∧

A∈ẋ

(τ(A)) → F(A))

=
∧

A∈ẋ

Rτ (F , y) → (τ(A) → F(A))

≥
∧

A∈ẋ

τ(A) → (Rτ (F , y) → F(A)).
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If A ∈ ẏ, then Rτ (F , y) ≤ τ(A) → F(A) and Rτ (F , y) → F(A) ≥ (τ(A) →
F(A)) → F(A) ≥ τ(A) and τ(A) → (Rτ (F , y) → F(A)) = 1. Thus

∧
A∈ẋ

τ(A) → (Rτ (F , y) → F(A))

=
∧

A∈ẋ, A 6∈ẏ

τ(A) → (Rτ (F , y) → F(A))

≥
∧

A∈ẋ, A 6∈ẏ

τ(A) → 0

= Rτ ([y], x).

Hence PRτ
(x, y) = Rτ ([y], x) and by the arbitrariness of (x, y), PR ◦RT = Θ. �

Corollary 6.7. If (X, R) is a topological L-fuzzifying convergence space, then it’s
specialization L-preorder is PR(x, y) = R([y], x)(∀x, y ∈ L).
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