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ABSORBENT ORDERED FILTERS AND THEIR
FUZZIFICATIONS IN IMPLICATIVE SEMIGROUPS

Y. B. JUN, C. H. PARK AND D. R. P. WILLIAMS

Abstract. The notion of absorbent ordered filters in implicative semigroups
is introduced, and its fuzzification is considered. Relations among (fuzzy) or-

dered filters, (fuzzy) absorbent ordered filters, and (fuzzy) positive implicative

ordered filters are stated. The extensionproperty for (fuzzy) absorbent or-
dered filters is established. Conditions for (fuzzy) ordered filters to be (fuzzy)
absorbent ordered filters are provided. The notions of normal/maximal fuzzy

absorbent ordered filters and complete absorbent ordered filters are introduced
and their properties are investigated.

1. Introduction

The notions of implicative semigroups and ordered filters were introduced by
Chan and Shum [3]. The first is a generalization of implicative semilattices (see
Nemitz [13] and Blyth [2]) and is closely related to implication in mathematical
logic and set theoretic differences (see Birkhoff [1] and Curry [4]). As shown by
Nemitz [13], ordered filters play an important role in the general development of im-
plicative semilattice theory. Motivated by this fact, Chan and Shum [3] established
some elementary propositions and constructed the quotient structure of implicative
semigroups via ordered filters. Jun et al. [10] discussed ordered filters of implicative
semigroups. To study implicative semigroups in depth, it is necessary to establish
a more complete theory of ordered filters. Jun [7] investigated further properties of
implicative semigroups and of their ordered filters. In particular, he introduced the
notion of n-fold implicative ordered filters in implicative semigroups, stated some
equivalent conditions for an ordered filter to be an implicative ordered filter and
obtained the so called extension property for implicative ordered filters. He also
stated a condition for the ordered filter {1} to be n-fold implicative.
In this paper, we introduce the notion of (fuzzy) absorbent ordered filters in implica-
tive semigroups. We give relations among (fuzzy) ordered filters, (fuzzy) absorbent
ordered filters, and (fuzzy) positive implicative ordered filters and provide condi-
tions for (fuzzy) ordered filters to be (fuzzy) absorbent ordered filters. Then, using
the notion of level sets, we establish a characterization of fuzzy absorbent ordered
filters. Furthermore, we demonstrate an extension property for (fuzzy) absorbent
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ordered filters and derive a fuzzy absorbent ordered filter from a collection of ab-
sorbent ordered filters with additional conditions. We alao prove a characterization
theorem for the set of values of any fuzzy absorbent ordered filter which is a well
ordered subset of [0, 1]. Finally, we introduce the concept of normal/maximal fuzzy
absorbent ordered filters and complete absorbent ordered filters, and investigate
their properties.

2. Preliminaries

We first recall some definitions and results. By a negatively partially ordered
semigroup (briefly, n.p.o. semigroup) we mean a set S with a partial ordering “≤”
and a binary operation “·” such that for all x, y, z ∈ S, we have:

(a1) (x · y) · z = x · (y · z),
(a2) x ≤ y implies x · z ≤ y · z and z · x ≤ z · y,
(a3) x · y ≤ x and x · y ≤ y.
A n.p.o. semigroup (S;≤, ·) is said to be implicative if there is an additional

binary operation ∗ : S × S → S such that

(2.1) (∀x, y, z ∈ S) (z ≤ x ∗ y ⇔ z · x ≤ y).

The operation ∗ is called implication. Henceforth, an implicative n.p.o. semi-
group will be simply called an implicative semigroup.

An implicative semigroup (S;≤, ·, ∗) is said to be commutative if it satisfies

(2.2) (∀x, y ∈ S) (x · y = y · x).

In other words, (S, ·) is a commutative semigroup.
In any implicative semigroup (S;≤, ·, ∗), x ∗ x = y ∗ y and, in fact, this is the

greatest element in S. We shall denote it by 1. Some elementary properties of
implicative semigroups are summarized in the following proposition.

Proposition 2.1. [3, Theorem 1.4] Let S be an implicative semigroup. Then for
every x, y, z ∈ S, the following hold:

(b1) x ≤ 1, x ∗ x = 1, x = 1 ∗ x,
(b2) x ≤ y ∗ (x · y),
(b3) x ≤ x ∗ (x · x),
(b4) x ≤ y ∗ x,
(b5) if x ≤ y then x ∗ z ≥ y ∗ z and z ∗ x ≤ z ∗ y,
(b6) x ≤ y if and only if x ∗ y = 1,
(b7) x ∗ (y ∗ z) = (x · y) ∗ z,
(b8) if S is commutative then x ∗ y ≤ (s · x) ∗ (s · y) for all s in S.

Definition 2.2. [3, Definition 2.1] Let S be an implicative semigroup and let F be
a nonempty subset of S. Then F is called an ordered filter of S if

(F1) x · y ∈ F for every x, y ∈ F ; i.e. F is a subsemigroup of S.
(F2) if x ∈ F and x ≤ y, then y ∈ F .

The following proposition gives a characterization of ordered filters.
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Proposition 2.3. [10, Proposition 2] Suppose S is an implicative semigroup. Then
a non-empty subset F of S is an ordered filter if and only if it satisfies the following
conditions:

(F3) 1 ∈ F,
(F4) x ∗ y ∈ F and x ∈ F imply y ∈ F .

Proposition 2.4. [12] If S is a commutative implicative semigroup, then for any
x, y, z ∈ S,

(b9) x ∗ (y ∗ z) = y ∗ (x ∗ z).
(b10) y ∗ z ≤ (x ∗ y) ∗ (x ∗ z).
(b11) x ≤ (x ∗ y) ∗ y.

Proposition 2.5. [5] Let S be a commutative implicative semigroup and let F be
a non-empty subset of S. Then F is an ordered filter of S if and only if

(2.3) (∀x, y ∈ F ) (∀z ∈ S) (x ≤ y ∗ z ⇒ z ∈ F ).

Definition 2.6. [5] Let S be an implicative semigroup. A non-empty subset F of
S is called an implicative ordered filter of S if it satisfies (F3) and

(F5) x ∗ (y ∗ z) ∈ F and x ∗ y ∈ F imply x ∗ z ∈ F

for all x, y, z ∈ S.

Definition 2.7. [8] Let S be an implicative semigroup. A non-empty subset F of
S is called a positive implicative ordered filter of S if it satisfies (F3) and

(F6) (∀x, y, z ∈ S) (x ∗ ((y ∗ z) ∗ y) ∈ F, x ∈ F ⇒ y ∈ F ).

Proposition 2.8. [8] Let S be an implicative semigroup and let F be an ordered
filter of S. Then F is a positive implicative ordered filter of S if and only if

(2.4) (∀x, y ∈ S) ((x ∗ y) ∗ x ∈ F ⇒ x ∈ F ).

Definition 2.9. [11] A fuzzy set A in S is called a fuzzy ordered filter of S if the
following conditions hold.

(c1) (∀x ∈ S) (A(x) ≤ A(1)).
(c2) (∀x, y ∈ S) (A(y) ≥ min{A(x ∗ y),A(x)}).

We note that every fuzzy ordered filter is order preserving.

Proposition 2.10. [6] Let A be a fuzzy set in a commutative implicative semigroup
S. Then A is a fuzzy ordered filter of S if and only if

(2.5) (∀x, y, z ∈ S) (x · y ≤ z ⇒ A(z) ≥ min{A(x),A(y)}).

Definition 2.11. [6] A fuzzy set A in S is called a fuzzy implicative ordered filter
of S if it satisfies the conditions (c1) and

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


48 Y. B. Jun, C. H. Park and D. R. P. Williams

(c3) (∀x, y, z ∈ S) (A(x ∗ z) ≥ min{A(x ∗ (y ∗ z)),A(x ∗ y)}).
We may show that every fuzzy implicative ordered filter is a fuzzy ordered filter,

but the converse is not true in general [6].

Definition 2.12. [9] A fuzzy set A in S is called a fuzzy positive implicative ordered
filter of S if it satisfies the conditions (c1) and

(c4) (∀x, y, z ∈ S) (A(y) ≥ min{A(x ∗ ((y ∗ z) ∗ y)),A(x)}).

3. Absorbent Ordered Filters

In this section, we introduce the notion of an absorbent ordered filter which lies
somewhere between the notions of an ordered filter and a positive implicative or-
dered filter. In what follows S will denote an implicative semigroup unless otherwise
specified.

Definition 3.1. A non-empty subset F of S is called an absorbent ordered filter of
S if it satisfies (F3) and

(F7) (∀x, y, z ∈ S) (z ∗ (y ∗ x) ∈ F, z ∈ F ⇒ ((x ∗ y) ∗ y) ∗ x ∈ F ).

Example 3.2. Consider an implicative semigroup S = {1, a, b, c, d, 0} with Cayley
tables and Hasse diagram as follows:

· 1 a b c d 0
1 1 a b c d 0
a a b b d 0 0
b b b b 0 0 0
c c d 0 c d 0
d d 0 0 d 0 0
0 0 0 0 0 0 0

∗ 1 a b c d 0
1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

r
0

JJ 


rb rZ
Z

d

rJJ cr

a

r1

Then I = {1, a, b} is an absorbent ordered filter of S.

Theorem 3.3. Every absorbent ordered filter is an ordered filter.

Proof. Let F be an absorbent ordered filter of S and let x, y, z ∈ S be such that
z ∗ x ∈ F and z ∈ F . Then z ∗ (1 ∗ x) ∈ F and z ∈ F . It follows from (F7) that
x = ((x ∗ 1) ∗ 1) ∗ x ∈ F so that F is an ordered filter of S. �

As the following example shows, the converse of Theorem 3.3 is not true in
general.

Example 3.4. Consider an implicative semigroup S = {1, a, b, c, d} with Cayley
tables and Hasse diagram as follows:

· 1 a b c d
1 1 a b c d
a a a d c d
b b d b d d
c c c d c d
d d d d d d

∗ 1 a b c d
1 1 a b c d
a 1 1 b c d
b 1 a 1 c c
c 1 1 b 1 b
d 1 1 1 1 1

r
d
B

B
BB
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 raJJ
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Then F = {1, b} is an ordered filter of S, but it is not an absorbent ordered filter
of S since 1 ∗ (c ∗ a) = 1 ∗ 1 = 1 ∈ F and

((a ∗ c) ∗ c) ∗ a = (c ∗ c) ∗ a = 1 ∗ a = a /∈ F.

The following theorem gives a necessary and sufficient condition for an ordered
filter to be an absorbent ordered filter.

Theorem 3.5. An ordered filter F of S is absorbent if and only if it satisfies:

(3.1) (∀x, y ∈ S) (y ∗ x ∈ F ⇒ ((x ∗ y) ∗ y) ∗ x ∈ F ).

Proof. Assume that F is an absorbent ordered filter of S and let x, y ∈ S be such
that y ∗ x ∈ F . Then 1 ∗ (y ∗ x) = y ∗ x ∈ F and 1 ∈ F . It follows from (F7) that
((x ∗ y) ∗ y) ∗ x ∈ F . Conversely, let F be an ordered filter of S satisfying (3.1) and
let x, y, z ∈ S be such that z ∗ (y ∗ x) ∈ F and z ∈ F . Then y ∗ x ∈ F by (F4) and
hence ((x ∗ y) ∗ y) ∗ x ∈ F by (3.1). Therefore F is an absorbent ordered filter of
S. �

Theorem 3.6. Every positive implicative ordered filter is an absorbent ordered
filter.

Proof. Let F be a positive implicative ordered filter of S. Then F is an ordered filter
of S [8, Theorem 2.2]. Let x, y ∈ S be such that y ∗ x ∈ F . It is sufficient to show
that ((x∗y)∗y)∗x ∈ F . Since x ≤ ((x∗y)∗y)∗x, hence (((x∗y)∗y)∗x)∗y ≤ x∗y.
Putting a = ((x ∗ y) ∗ y) ∗ x, we obtain

(3.2)
(a ∗ y) ∗ a = ((((x ∗ y) ∗ y) ∗ x) ∗ y) ∗ (((x ∗ y) ∗ y) ∗ x)

≥ (x ∗ y) ∗ (((x ∗ y) ∗ y) ∗ x)
= ((x ∗ y) ∗ y) ∗ ((x ∗ y) ∗ x) ≥ y ∗ x.

It follows from (F2) that (a ∗ y) ∗ a ∈ F so from Proposition 2.8, a ∈ F , i.e.,
((x ∗ y) ∗ y) ∗ x ∈ F . Hence F is an absorbent ordered filter of S. �

As the following example shows, the converse of Theorem 3.6 is not true in
general.

Example 3.7. Let S be the implicative semigroup in Example 3.2. Then I = {1, a}
is an absorbent ordered filter of S, but it is not a positive implicative ordered filter
of S since a ∗ ((b ∗ a) ∗ b) = a ∗ (1 ∗ b) = a ∗ b = a ∈ I, but b /∈ I.

Theorem 3.8. (Extension property) Let F and G be ordered filters of a commu-
tative implicative semigroup S such that F ⊆ G. If F is absorbent, then so is
G.

Proof. Let x, y ∈ S be such that y ∗x ∈ G. Then y ∗ ((y ∗x)∗x) = (y ∗x)∗ (y ∗x) =
1 ∈ F . Since F is absorbent, it follows from Theorem 3.5 that

(3.3) ((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ ((y ∗ x) ∗ x) ∈ F
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so that (y ∗ x) ∗ (((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x) ∈ F ⊂ G. Since y ∗ x ∈ G, therefore
((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x ∈ G. But

(3.4)

(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x) ∗ (((x ∗ y) ∗ y) ∗ x)
≥ ((x ∗ y) ∗ y) ∗ ((((y ∗ x) ∗ x) ∗ y) ∗ y)
≥ (((y ∗ x) ∗ x) ∗ y) ∗ (x ∗ y)
≥ x ∗ ((y ∗ x) ∗ x) = (y ∗ x) ∗ (x ∗ x)
= (y ∗ x) ∗ 1 = 1.

Now, by Proposition 2.5, ((x ∗ y) ∗ y) ∗ x ∈ G. Hence, by Theorem 3.5, G is an
absorbent ordered filter of S. �

4. Fuzzy Absorbent Ordered Filters

Definition 4.1. A fuzzy set A in S is called a fuzzy absorbent ordered filter of S if
it satisfies the conditions (c1) and

(c5) (∀x, y, z ∈ S) (A(((x ∗ y) ∗ y) ∗ x) ≥ min{A(z ∗ (y ∗ x)),A(z)}).

Example 4.2. Let S be the implicative semigroup in Example 3.2. Define a
fuzzy set A in S by A(1) = 0.6 and A(x) = 0.3 for all x ∈ S with x 6= 1. Then
A is a fuzzy absorbent ordered filter of S. Also a fuzzy set B in S defined by
B(1) = B(a) = B(b) = 0.7 and B(c) = B(d) = B(0) = 0.2 is a fuzzy absorbent
ordered filter of S.

Theorem 4.3. Every fuzzy absorbent ordered filter is a fuzzy ordered filter.

Proof. Let A be a fuzzy absorbent ordered filter of S. Taking y = 1 in (c5) and
using (b1), we have

A(x) = A(((x ∗ 1) ∗ 1) ∗ x)
≥ min{A(z ∗ (1 ∗ x)),A(z)}
= min{A(z ∗ x)),A(z)}

for all x, z ∈ S. Hence A is a fuzzy ordered filter of S. �

As the following example shows, the converse of Theorem 3.3 is not true in
general.

Example 4.4. Let S be the implicative semigroup in Example 3.4. A fuzzy set A
in S given by

A(1) = 0.5 > 0.3 = A(x)
for all x ∈ S with x 6= 1, is a fuzzy ordered filter of S. But A is not a fuzzy absorbent
ordered filter of S since

A(((a ∗ d) ∗ d) ∗ a) = 0.3 < 0.5 min{A(1 ∗ (d ∗ a)),A(1)}.

The following theorem provides a condition for a fuzzy ordered filter to be a
fuzzy absorbent ordered filter.

Theorem 4.5. Let A be a fuzzy ordered filter of S. Then the following are equiva-
lent.
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(i) A is a fuzzy absorbent ordered filter of S.
(ii) (∀x, y ∈ S) (A(y ∗ x) ≤ A(((x ∗ y) ∗ y) ∗ x)).

Proof. Assume that A is a fuzzy absorbent ordered filter of S. Putting z = 1 in
(c5), by (b1) and (c1), we have

A(((x ∗ y) ∗ y) ∗ x) ≥ min{A(1 ∗ (y ∗ x)),A(1)} = A(y ∗ x)

for all x, y ∈ S. Conversely let A be a fuzzy ordered filter of S satisfying the
condition (ii). Let x, y, z ∈ S. Then by (ii) and (c2),

A(((x ∗ y) ∗ y) ∗ x) ≥ A(y ∗ x) ≥ min{A(z ∗ (y ∗ x)),A(z)}

Hence A is a fuzzy absorbent ordered filter of S. �

Lemma 4.6. [9] Let A be a fuzzy ordered filter of S. Then A is a fuzzy positive
implicative ordered filter of S if and only if

(4.1) (∀x, y ∈ S) (A(x) ≥ A((x ∗ y) ∗ x)).

Lemma 4.7. [6] Let A be a fuzzy ordered filter of S. Then the following are equiv-
alent:

(i) A is a fuzzy implicative ordered filter of S.
(ii) (∀x, y ∈ S) (A(x ∗ y) ≥ A(x ∗ (x ∗ y))).
(iii) (∀x, y, z ∈ S) (A((x ∗ y) ∗ (x ∗ z)) ≥ A(x ∗ (y ∗ z))).

Theorem 4.8. Let A be a fuzzy set in a commutative implicative semigroup S.
Then A is a fuzzy positive implicative ordered filter of S if and only if it is both a
fuzzy implicative ordered filter and a fuzzy absorbent ordered filter of S.

Proof. Suppose that A is a fuzzy positive implicative ordered filter of S. Then A is a
fuzzy implicative ordered filter of S (see [9, Theorem 3.6]). Since x ≤ ((x∗y)∗y)∗x
for all x, y ∈ S, we have

(4.2) (∀x, y ∈ S) ((((x ∗ y) ∗ y) ∗ x) ∗ y ≤ x ∗ y).

Setting b := ((x ∗ y) ∗ y) ∗ x,, by (4.2), (b5), (b9), and (b10) we obtain

(b ∗ y) ∗ b = ((((x ∗ y) ∗ y) ∗ x) ∗ y) ∗ (((x ∗ y) ∗ y) ∗ x)
≥ (x ∗ y) ∗ (((x ∗ y) ∗ y) ∗ x)
= ((x ∗ y) ∗ y) ∗ ((x ∗ y) ∗ x)
≥ y ∗ x.

Since A is order preserving, it follows from Lemma 4.6 that

A(((x ∗ y) ∗ y) ∗ x) = A(b) ≥ A((b ∗ y) ∗ b) ≥ A(y ∗ x).

Hence by Theorem 4.5, A is a fuzzy absorbent ordered filter of S. Conversely, assume
that A is both a fuzzy implicative ordered filter and a fuzzy absorbent ordered filter
of S. By (b5) and (b11), we have (x ∗ y) ∗ x ≤ (x ∗ y) ∗ ((x ∗ y) ∗ y) for all x, y ∈ S.
It follows from Lemma 4.7 that

(4.3) (∀x, y ∈ S) (A((x ∗ y) ∗ y) ≥ A((x ∗ y) ∗ ((x ∗ y) ∗ y)) ≥ A((x ∗ y) ∗ x)).
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On the other hand, since (x ∗ y) ∗x ≤ y ∗x for all x, y ∈ S, it follows from Theorem
4.5 that

A(((x ∗ y) ∗ y) ∗ x) ≥ A(y ∗ x) ≥ A((x ∗ y) ∗ x).
Therefore, by (c2) and (4.3) we have

A(x) ≥ min{A((x ∗ y) ∗ y),A(((x ∗ y) ∗ y) ∗ x)} ≥ A((x ∗ y) ∗ x)

for all x, y ∈ S. Hence, by Lemma 4.6, A is a fuzzy positive implicative ordered
filter of S. �

Theorem 4.9. (Extension property) Let A and B be fuzzy ordered filters of a
commutative implicative semigroup S such that A(1) = B(1) and A ⊂ B, ; i.e.
A(x) ≤ B(x) for all x ∈ S. If A is a fuzzy absorbent ordered filter of S, then so is
B.

Proof. Let x, y ∈ S. By Theorem 3.5, (b9), (b1) and the assumption of the theorem,
we have

B(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ ((y ∗ x) ∗ x))
≥ A(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ ((y ∗ x) ∗ x))
≥ A(y ∗ ((y ∗ x) ∗ x))
= A((y ∗ x) ∗ (y ∗ x))
= A(1) = B(1).

(4.4)

By (3.4), (2.1), Proposition 2.10, (c1), (c2), (b9) and (4.4), we have

B(((x ∗ y) ∗ y) ∗ x) ≥ min{B(1),B(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x)}
= B(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x)
≥ min{B((y ∗ x) ∗ (((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ x)),B(y ∗ x)}
= min{B(((((y ∗ x) ∗ x) ∗ y) ∗ y) ∗ ((y ∗ x) ∗ x)),B(y ∗ x)}
≥ min{B(1),B(y ∗ x)}
= B(y ∗ x).

(4.5)

Hence it follows from Theorem 4.5 that B is a fuzzy absorbent ordered filter of
S. �

Theorem 4.10. Let A be a fuzzy set in S. Then A is a fuzzy absorbent ordered
filter of S if and only if every nonemptythe level set

U(A; t) := {x ∈ S | A(x) ≥ t}, t ∈ [0, 1]

is an absorbent ordered filter of S .

Proof. Note that A is a fuzzy ordered filter of S if and only if U(A; t) 6= ∅ is an
ordered filter of S for all t ∈ [0, 1] [11, Theorem 1]. Assume that A is a fuzzy
absorbent ordered filter of S. Let x, y ∈ S be such that y ∗ x ∈ U(A; t). Then
t ≤ A(y ∗x) ≤ A(((x ∗ y) ∗ y) ∗x), and so ((x ∗ y) ∗ y) ∗x ∈ U(A; t). Hence U(A; t) is
an absorbent ordered filter of S. Conversely, suppose that A is not a fuzzy absorbent
ordered filter of S. Then we can take a, b ∈ S such that A(b∗a) > A(((a∗b)∗b)∗a).
Putting

t0 :=
1
2

(
A(b ∗ a) + A(((a ∗ b) ∗ b) ∗ a)

)
,

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


Absorbent Ordered Filters and Their Fuzzifications in Implicative Semigroups 53

we have A(((a ∗ b) ∗ b) ∗ a) < t0 < A(b ∗ a). It follows that b ∗ a ∈ U(A; t0), but
((a ∗ b) ∗ b) ∗ a /∈ U(A; t0). Thus U(A; t0) is not an absorbent ordered filter. Hence
A satisfies the inequality A(y ∗ x) ≤ A(((x ∗ y) ∗ y) ∗ x) for all x, y ∈ S, and A is a
fuzzy absorbent ordered filter of S. �

Theorem 4.11. For ∅ 6= Λ ⊂ [0, 1], let {Fk | k ∈ Λ}, be a collection of absorbent
ordered filters of S such that

(i) S =
⋃

k∈Λ

Fk,

(ii) (∀k, r ∈ Λ) (k > r ⇔ Fk ⊂ Fr).
Then a fuzzy set A in S defined by

(4.6) A(x) = sup{r ∈ Λ | x ∈ Fr}
is a fuzzy absorbent ordered filter of S.

Proof. Let k ∈ [0, 1] be such that U(A; k) 6= ∅. Note that either

k = sup{r ∈ Λ | r < k} = sup{r ∈ Λ | Fk ⊂ Fr}
or

k 6= sup{r ∈ Λ | r < k} = sup{r ∈ Λ | Fk ⊂ Fr}.
In the first case, U(A; k) =

⋂
k>r

Fr which is an absorbent ordered filter, because

x ∈ U(A; k) ⇔ x ∈ Fr for all r < k ⇔ x ∈
⋂
k>r

Fr.

In the second case, there exists ε > 0 such that (k − ε, k) ∩ Λ = ∅. We prove that
U(A; k) =

⋃
k≤r

Fr, which is an absorbent ordered filter. Indeed, if x ∈
⋃

k≤r

Fr then

x ∈ Fr for some r ≥ k. Hence A(x) ≥ r ≥ k, and so x ∈ U(A; k). Now if x /∈
⋃

k≤r

Fr,

then x /∈ Fr for all r ≥ k. Therefore x /∈ Fr for all r > k − ε, which shows that if
x ∈ Fr then r ≤ k − ε. Thus A(x) ≤ k − ε, and so x /∈ U(A; k). It follows from
Theorem 4.10 that A is a fuzzy absorbent ordered filter of S. �

Theorem 4.12. Let A be a fuzzy set in S with Im(A) = {t1, t2, · · · tn}, where
ti < tj whenever i > j. Let {Fk | k = 1, 2, · · · , n} be a family of absorbent ordered
filters of S such that

(i) F1 ⊂ F2 ⊂ · · · ⊂ Fn = S

(ii) A(F̃k) = tk, where F̃k = Fk \ Fk−1, F0 = ∅ for k = 1, 2, · · · , n.
Then A is a fuzzy absorbent ordered filter of S.

Proof. Since U(A; tk) = Fk for all k = 1, 2, · · · , n, the proof follows easily from
Theorem 4.10. �

Corollary 4.13. Let A be a fuzzy set in S and let Im(A) = {t1, t2, · · · , tn}, where
t1 > t2 > · · · > tn. If F1 ⊂ F2 ⊂ · · · ⊂ Fn = S are absorbent ordered filters of S
such that A(Fk) ≥ tk for k = 1, 2, · · · , n, then A is a fuzzy absorbent ordered filter
of S.
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Theorem 4.14. Let {Fk | k ∈ N} be a nested family of absorbent ordered filters of
S; i.e. F1 ⊃ F2 ⊃ · · · . Let A be a fuzzy set in S defined by

A(x) =


k

k+1 for x ∈ Fk \ Fk+1, k = 0, 1, 2, · · · ,

1 for x ∈
∞⋂

k=0

Fk

for all x ∈ S, where F0 stands for S. Then A is a fuzzy absorbent ordered filter of
S.

Proof. Clearly A(1) ≥ A(x) for all x ∈ S. Let x, y, z ∈ S. Suppose that z ∗ (y ∗x) ∈
Fk \ Fk+1and z ∈ Fr \ Fr+1 for k = 0, 1, 2, · · · ; r = 0, 1, 2, · · · . Without loss of
generality, we may assume that k ≤ r. Then, obviously, z ∈ Fk. Since Fk is a
absorbent ordered filter, it follows from (F7) that ((x ∗ y) ∗ y) ∗ x ∈ Fk so that

A(((x ∗ y) ∗ y) ∗ x) ≥ k

k + 1
= min {A(z ∗ (y ∗ x)),A(z)} .

If z ∗ (y ∗ x) ∈
∞⋂

k=0

Fk and z ∈
∞⋂

k=0

Fk, then ((x ∗ y) ∗ y) ∗ x ∈
∞⋂

k=0

Fk. Hence

A(((x ∗ y) ∗ y) ∗ x) = 1 = min {A(z ∗ (y ∗ x)),A(z)} .

If z ∗ (y ∗ x) /∈
∞⋂

k=0

Fk and z ∈
∞⋂

k=0

Fk, then there exists i ∈ N such that z ∗ (y ∗ x) ∈

Fi \ Fi+1. It follows that ((x ∗ y) ∗ y) ∗ x ∈ Fi so that

A(((x ∗ y) ∗ y) ∗ x) ≥ i

i + 1
= min {A(z ∗ (y ∗ x)),A(z)} .

Finally, assume that z ∗ (y ∗ x) ∈
∞⋂

k=0

Fk and z /∈
∞⋂

k=0

Fk. Then z ∈ Fj \ Fj+1 for

some j ∈ N. Hence ((x ∗ y) ∗ y) ∗ x ∈ Fj , and thus

A(((x ∗ y) ∗ y) ∗ x) ≥ j

j + 1
= min {A(z ∗ (y ∗ x)),A(z)} .

Consequently, A is a fuzzy absorbent ordered filter of S. �

Corollary 4.15. If every fuzzy absorbent ordered filter A of S has a finite image,
then every descending chain of absorbent ordered filters of S terminates after a
finite number of steps.

Theorem 4.16. Assume that every descending chain F1 ⊃ F2 ⊃ · · · of absorbent
ordered filters of S terminates after a finite number of steps; i.e. there exists r ∈ N
such that Fr = Fk for all k ≥ r. Let A be a fuzzy absorbent ordered filter of S in
which a sequence of elements of Im(A) is strictly increasing. Then A has a finite
number of values.

Proof. Assume that Im(A) is not finite. Let {tk} be a strictly increasing sequence of
elements of Im(A), that is, 0 ≤ t1 < t2 < · · · ≤ 1. Then by Theorem 4.10, U(A; tr)
is an absorbent ordered filter of S for all r ∈ N, and we get a strictly descending
chain

U(A; t1) ⊃ U(A; t2) ⊃ U(A; t3) ⊃ · · ·
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of absorbent ordered filters of S which is not terminating. This is a contradiction,
and so A has finite number of values. �

Theorem 4.17. Every ascending chain of absorbent ordered filters of S terminates
after a finite number of steps if and only if the set of values of any fuzzy absorbent
ordered filter in S is a well-ordered subset of [0, 1].

Proof. Assume that the set of values of a fuzzy absorbent ordered filter A of S
is not well ordered. Then there exists a strictly decreasing sequence {tn} such
that tn = A(xn) for some xn ∈ S. But in this case the family {U(A; tn)} of level
absorbent ordered filters form a strictly ascending chain, which is a contradiction.
To prove the converse, suppose that there exists a strictly ascending chain F1 ⊂
F2 ⊂ F3 ⊂ · · · of absorbent ordered filters of S. Then F :=

⋃
n∈N

Fn is an absorbent

ordered filter of S. Define a fuzzy set A in S by

A(x) =
{

0 for x /∈ F,
1
k where k = min{n ∈ N | x ∈ Fn}.

Since 1 ∈ Fn for all n ∈ N, we have A(1) = 1 ≥ A(x) for all x ∈ S. For any
x, y, z ∈ S, if z ∗ (y ∗ x) /∈ F or z /∈ F then

A
(
((x ∗ y) ∗ y) ∗ x

)
≥ 0 = min{A(z ∗ (y ∗ x)), A(z)}.

Now let x, y, z ∈ S be such that z∗(y∗x) ∈ F and z ∈ F . If z∗(y∗x), z ∈ Fn\Fn−1

for some n ∈ N, then ((x ∗ y) ∗ y) ∗ x ∈ Fn. Hence

A
(
((x ∗ y) ∗ y) ∗ x

)
≥ 1

n
= min{A(z ∗ (y ∗ x)), A(z)}.

If z ∗ (y ∗ x) ∈ Fn \ Fn−1 and z /∈ Fn \ Fn−1, then either z ∈ Fn−1 ⊂ Fn or
z ∈ Fm \ Fm−1 for some m > n. In the first case, ((x ∗ y) ∗ y) ∗ x ∈ Fn and so

A
(
((x ∗ y) ∗ y) ∗ x

)
≥ 1

n
= A(z ∗ (y ∗ x)) ≥ min{A(z ∗ (y ∗ x)), A(z)}.

In the second case, we have ((x ∗ y) ∗ y) ∗ x ∈ Fm and thus A(z ∗ (y ∗ x)) = 1
n >

1
m = A(z). Therefore

A
(
((x ∗ y) ∗ y) ∗ x

)
≥ 1

m
= min{A(z ∗ (y ∗ x)), A(z)}.

Similarly, we get

A
(
((x ∗ y) ∗ y) ∗ x

)
≥ min{A(z ∗ (y ∗ x)), A(z)}

for z ∗ (y ∗ x) /∈ Fn \ Fn−1 and z ∈ Fn \ Fn−1. This proves that A is a fuzzy
absorbent ordered filter of S. Since the chain of absorbent ordered filters F1 ⊂
F2 ⊂ F3 ⊂ · · · is not terminating, A has a strictly descending sequence of values.
This contradicts that the value set of any fuzzy absorbent ordered filter is well
ordered. This completes the proof. �

Theorem 4.18. Let A be a fuzzy absorbent ordered filter of S with Im(A) = {ti |
i ∈ Λ} and let Ω := {U(A; t) | t ∈ Im(A)}. Then

(i) there exists a unique t0 ∈ Im(A) such that t0 ≥ t for all t ∈ Im(A).
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(ii) S is the set-theoretic union of all U(A; t) ∈ Ω.
(iii) the members of Ω form a chain.
(iv) Ω contains all level absorbent ordered filters of A if and only if A attains

its infimum on all absorbent ordered filters of S.

Proof. (i) follows from the fact that t0 = A(1) ≥ A(x) for all x ∈ S.
(ii) If x ∈ S, then A(x) = tx ∈ Im(A). This implies that

x ∈ U(A; tx) ⊂
⋃

t∈Im(A)

U(A; t) ⊂ S,

which proves (ii).
(iii) Note that U(A; ti) ⊂ U(A; tj) ⇔ ti ≥ tj for i, j ∈ Λ. Hence Ω is totally

ordered by inclusion.
(iv) Suppose that Ω contains all level absorbent ordered filters of A. Let F be

a absorbent ordered filter of S. If A is constant on F , then we are done. Now
assume that A is not constant on F . We consider two cases: F = S and F ⊂ S.
If F = S, let β = inf Im(A). Then β ≤ t ∈ Im(A); i.e. U(A;β) ⊇ U(A; t) for all
t ∈ Im(A). But U(A; 0) = S ∈ Ω because Ω contains all level absorbent ordered
filters of A. Hence there exists α ∈ Im(A) such that U(A;α) = S. It follows
that S = U(A;α) ⊂ U(A;β) so that U(A;β) = U(A;α) = S because every level
absorbent ordered filter of A is a absorbent ordered filter of S. Now it is sufficient
to show that β = α. If β < α, then there exists γ ∈ Im(A) such that β ≤ γ < α.
Thus U(A; γ) ⊃ U(A;α) = S, a contradiction. Therefore β = α ∈ Im(A). In the
case F ⊂ S, we consider the fuzzy set AF in S defined by

AF (x) =
{

δ 6= 0 for x ∈ F,
0 for x ∈ S \ F.

It is easily verified that AF is a fuzzy absorbent ordered filter of S. Let

J := {i ∈ Λ | A(y) = ti for some y ∈ F}

and ΩF := {U(AF ; ti) | i ∈ J}. Now ΩF contains all level absorbent ordered
filters. Hence there exists x0 ∈ F such that A(x0) = inf{AF (x) | x ∈ F}, which
implies that A(x0) = {A(x) | x ∈ F}. This proves that A attains its infimum
on all absorbent ordered filters of S. To prove the converse, let U(A;α) be a level
absorbent ordered filter of A. If α = t for some t ∈ Im(A), then clearly U(A;α) ∈ Ω.
If α 6= t for all t ∈ Im(A), then there does not exist x ∈ S such that A(x) = α.
Let F = {x ∈ S | A(x) > α}. Obviously, 1 ∈ F . Now let x, y, z ∈ S be such that
z ∗ (y ∗ x) ∈ F and z ∈ F . Then A

(
z ∗ (y ∗ x)

)
> α and A(z) > α. It follows from

(c5) that

A
(
((x ∗ y) ∗ y) ∗ x

)
≥ min

{
A

(
z ∗ (y ∗ x)

)
, A(z)

}
> α

so that ((x∗y)∗y)∗x ∈ F . Hence F is a absorbent ordered filter of S. By hypothesis
there exists y ∈ F such that A(y) = inf{A(x) | x ∈ F}. But A(y) ∈ Im(A)
implies that A(y) = s for some s ∈ Im(A). Hence inf{A(x) | x ∈ F} = s > α.
Note that there does not exist z ∈ S such that α ≤ A(z) < s. It follows that
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U(A;α) = U(A; s), and so U(A;α) ∈ Ω. Thus Ω contains all level absorbent
ordered filters of A. �

5. Normalization of Fuzzy Absorbent Ordered Filters

Definition 5.1. A fuzzy absorbent ordered filter A of S is said to be normal if
there exists a ∈ S such that A(a) = 1.

We note that if A is a normal fuzzy absorbent ordered filter of S, then A(1) = 1,
hence a fuzzy absorbent ordered filter A of S is normal if and only if A(1) = 1. Let
NFAO(S) denote the set of all normal fuzzy absorbent ordered filters of S.

Theorem 5.2. Let A be a fuzzy absorbent ordered filter of S and let A+ be a fuzzy
set in S given by A+(x) = A(x) + 1 − A(1) for all x ∈ S. Then A+ ∈ NFAO(S)
and A ⊂ A+.

Proof. For any x, y, z ∈ S we have A+(1) = A(1) + 1−A(1) = 1 ≥ A+(x), and

(5.1)

min{A+(z ∗ (y ∗ x)),A+(z)}
= min{A(z ∗ (y ∗ x)) + 1−A(1),A(z) + 1−A(1)}
= min{A(z ∗ (y ∗ x)), A(z)}+ 1−A(1)
≤ A(((x ∗ y) ∗ y) ∗ x) + 1−A(1)
= A+(((x ∗ y) ∗ y) ∗ x).

Hence A+ ∈ NFAO(S). Obviously, A ⊂ A+. �

Corollary 5.3. If A is a fuzzy absorbent ordered filter of S satisfying A+(a) = 0
for some a ∈ S, then A(a) = 0.

It is clear that a fuzzy absorbent ordered filter A of S is normal if and only if
A+ = A, and for any fuzzy absorbent ordered filter A of S we have (A+)+ = A+.
Hence if A is a normal fuzzy absorbent ordered filter of S, then (A+)+ = A.

Theorem 5.4. Let A be a fuzzy absorbent ordered filter of S. If there exists a fuzzy
absorbent ordered filter B of S satisfying B+ ⊂ A, then A ∈ NFAO(S).

Proof. Suppose that there exists a fuzzy absorbent ordered filter B of S such that
B+ ⊂ A. Then 1 = B+(1) ≤ A(1), whence A(1) = 1. Hence A ∈ NFAO(S). �

Theorem 5.5. Let A be a fuzzy absorbent ordered filter of S and let φ : [0,A(1)] →
[0, 1] be an increasing function. Let Aφ be a fuzzy set in S defined by Aφ(x) =
φ(A(x)) for all x ∈ S. Then Aφ is a fuzzy absorbent ordered filter of S. Moreover,
if φ(A(1)) = 1 then Aφ ∈ NFAO(S); and if φ(t) ≥ t for all t ∈ [0,A(1)], then
A ⊂ Aφ.

Proof. Since φ is increasing and A(1) ≥ A(x) for all x ∈ S, we have

Aφ(1) = φ(A(1)) ≥ φ(A(x)) = Aφ(x), ∀x ∈ S.

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


58 Y. B. Jun, C. H. Park and D. R. P. Williams

Let x, y, z ∈ S. Then

(5.2)

min{Aφ(z ∗ (y ∗ x)),Aφ(z)} = min{φ(A(z ∗ (y ∗ x))), φ(A(z))}
= φ(min{A(z ∗ (y ∗ x)), A(z)})
≤ φ(A(((x ∗ y) ∗ y) ∗ x)
= Aφ(((x ∗ y) ∗ y) ∗ x).

Hence Aφ is a fuzzy absorbent ordered filter of S. If φ(A(1)) = 1, then obviously
Aφ is normal and so Aφ ∈ NFAO(S). Assume that φ(t) ≥ t for all t ∈ [0,A(1)].
Then Aφ(x) = φ(A(x)) ≥ A(x) for all x ∈ S, which proves that A ⊂ Aφ. �

Theorem 5.6. Let A ∈ NFAO(S) be a non-constant maximal element of the poset
(NFAO(S),⊂). Then A takes only the values 0 and 1.

Proof. Note that A(1) = 1. Let x ∈ S be such that A(x) 6= 1. It is sufficient to
show that A(x) = 0. If not, then there exists a ∈ S such that 0 < A(a) < 1. Let B
be a fuzzy set in S defined by B(x) = 1

2

(
A(x) + A(a)

)
for all x ∈ S. Then, clearly,

B is well defined and we have

B(1) = 1
2

(
A(1) + A(a)

)
≥ 1

2

(
A(x) + A(a)

)
= B(x), ∀x ∈ S.

Let x, y, z ∈ S. Then

(5.3)

B(((x ∗ y) ∗ y) ∗ x) = 1
2

(
A(((x ∗ y) ∗ y) ∗ x) + A(a)

)
≥ 1

2

(
min{A(z ∗ (y ∗ x)),A(z)}+ A(a)

)
= min

{
1
2 (A(z ∗ (y ∗ x)) + A(a)), 1

2 (A(z) + A(a))
}

= min{B(z ∗ (y ∗ x)), B(z)}.
Hence B is a fuzzy absorbent ordered filter of S, and so, by Theorem 5.2, B+ ∈
NFAO(S). Now,

B+(1) = 1 > B+(a) = 1
2

(
A(a) + 1

)
> A(a).

Hence B+ is non-constant. From B+(a) > A(a) it follows that A is not maximal in
(NFAO(S),⊂), which is a contradiction. �

For an absorbent ordered filter F of S, if we define a fuzzy set AF in S by

AF (x) :=
{

1 for x ∈ F ,
0 otherwise,

then AF ∈ NFAO(S) and

[1)AF
:= {x ∈ S | AF (x) = AF (1)} = F.

Let AOF (S) denote the set of all absorbent ordered filters of S. For all F ∈ AOF (S)
and A ∈ NFAO(S), we define the mappings Φ : AOF (S) → NFAO(S) and
Ψ : NFAO(S) → AOF (S) by Φ(F ) = AF and Ψ(A) = [1)A. Then ΨΦ = 1AOF (S)

and ΦΨ(A) = Φ([1)A) = A[1)A ⊂ A.

Theorem 5.7. If F,G ∈ AOF (S), then AF∩G = AF ∩ AG, that is, Φ(F ∩ G) =
Φ(F )∩Φ(G). If A,B ∈ NFAO(S), then [1)A∩B = [1)A ∩ [1)B, that is, Ψ(A∩B) =
Ψ(A) ∩Ψ(B).
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Proof. Let x ∈ S. If x ∈ F ∩ G, then AF∩G(x) = 1 and AF (x) = 1 = AG(x). It
follows that

AF∩G(x) = 1 = min{AF (x),AG(x)} =
(
AF ∩AG

)
(x).

If x /∈ F ∩G, then x /∈ F or x /∈ G, and thus

AF∩G(x) = 0 = min{AF (x),AG(x)} =
(
AF ∩AG

)
(x).

Therefore AF∩G = AF ∩ AG. Now let A,B ∈ NFAO(S). Obviously A ∩ B ∈
NFAO(S) and so

Ψ(A ∩ B) = [1)A∩B

=
{
x ∈ S | (A ∩ B)(x) = (A ∩ B)(1)

}
=

{
x ∈ S | min{A(x), B(x)} = 1

}
=

{
x ∈ S | A(x) = 1 = B(x)

}
=

{
x ∈ S | A(x) = 1

}
∩

{
x ∈ S | B(x) = 1

}
=

{
x ∈ S | A(x) = A(1)

}
∩

{
x ∈ S | B(x) = B(1)

}
= [1)A ∩ [1)B = Ψ(A) ∩ Ψ(B).

�

Definition 5.8. A fuzzy absorbent ordered filter A of S is said to be maximal if
(c6) A is non-constant,
(c7) A+ is a maximal element of (NFAO(S),⊂).

Theorem 5.9. If A is a maximal fuzzy absorbent ordered filter of S, then
(i) A is normal,
(ii) A+ takes only the values 0 and 1,
(iii) A[1)A = A,
(iv) [1)A is a maximal absorbent ordered filter of S.

Proof. Let A be a maximal fuzzy absorbent ordered filter of S. Then A+ is a non-
constant maximal element of the poset (NFAO(S),⊂). It follows from Theorem
5.6 that A+ takes only the values 0 and 1. Note that A+(x) = 1 if and only if
A(x) = A(1); and A+(x) = 0 if and only if A(x) = A(1)− 1. By Corollary 5.3, we
get A(x) = 0, that is, A(1) = 1. Hence A is normal. This proves (i) and (ii).

(iii) Obviously A[1)A ⊂ A and A[1)A takes only the values 0 and 1. Let x ∈ S. If
A(x) = 0, then clearly A ⊂ A[1)A . If A(x) = 1, then x ∈ [1)A and so A[1)A(x) = 1.
This shows that A ⊂ A[1)A .

(iv) Since A is non-constant, [1)A is a proper absorbent ordered filter of S. Let
G be a absorbent ordered filter of S such that [1)A ⊂ G. Now, AF ⊂ AG if and
only if F ⊂ G for every absorbent ordered filters F and G of S. Hence. by (iii),
A = A[1)A ⊂ AG. Since A,AG ∈ NFAO(S) and A = A+ is a maximal element
of NFAO(S), it follows that either AG = A or AG = 1 where 1 : S → [0, 1] is a
fuzzy set defined by 1(x) = 1 for all x ∈ S. If AG = A, then [1)A = [1)AG

= G. If
AG = 1, then G = S. Hence [1)A is a maximal absorbent ordered filter of S. �
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Definition 5.10. A fuzzy absorbent ordered filter A of S is said to be complete if
it is normal and there exists z ∈ S such that A(z) = 0.

Note that AF is a complete fuzzy absorbent ordered filter of S for every absorbent
ordered filter F of S.

Theorem 5.11. Let A be a fuzzy absorbent ordered filter of S and let w be a fixed
element of S such that A(1) 6= A(w). Define a fuzzy set A∗ in S by A∗(x) =
A(x)−A(w)
A(1)−A(w) for all x ∈ S. Then A∗ is a complete fuzzy absorbent ordered filter of S.

Proof. For any x ∈ S, we have

A∗(1) = A(1)−A(w)
A(1)−A(w) = 1 ≥ A∗(x).

Let x, y, z ∈ S. Then

min{A∗
(
z ∗ (y ∗ x)

)
, A∗(z)}

= min
{

A(z∗(y∗x))−A(w)
A(1)−A(w) , A(z)−A(w)

A(1)−A(w)

}
= 1

A(1)−A(w)

(
min

{
A(z ∗ (y ∗ x))−A(w), A(z)−A(w)

})
= 1

A(1)−A(w)

(
min{A(z ∗ (y ∗ x)), A(z)} −A(w)

)
≤ 1

A(1)−A(w)

(
A

(
((x ∗ y) ∗ y) ∗ x

)
−A(w)

)
= A∗

(
((x ∗ y) ∗ y) ∗ x

)
.

Hence A∗ ∈ NFAO(S). Since A∗(w) = 0, we conclude that A∗ is a complete fuzzy
absorbent ordered filter of S. �

Let C(S) denote the set of all complete fuzzy absorbent ordered filters of S.
Note that C(S) ⊂ NFAO(S) and the restriction of the partial ordering “⊂” of
NFAO(S) gives a partial ordering of C(S). Note that if A ∈ C(S), then A∗ = A.

Theorem 5.12. Every non-constant maximal element of (NFAO(S),⊂) is also a
maximal element of (C(S),⊂).

Proof. Let A be a non-constant maximal element of (NFAO(S),⊂). Then A takes
only the values 0 and 1(Theorem 5.6) and, in fact, A(1) = 1 and A(w) = 0 for
some w(6= 1) ∈ S. Hence A is complete. Assume that there exists B ∈ C(S)
such that A ⊂ B. It follows that A ⊂ B in NFAO(S). Since A is maximal in
(NFAO(S),⊂) and B is non-constant, we have A = B. Thus A is a maximal
element of (C(S),⊂). �

Theorem 5.13. Every maximal fuzzy absorbent ordered filter of S is complete.

Proof. Let A be a maximal fuzzy absorbent ordered filter of S. Then A is normal
and A = A+ takes only the values 0 and 1. Since A is non-constant and A(1) = 1, it
is clear that there exists w(6= 1) ∈ S such that A(w) = 0. Hence A is complete. �
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