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A NOTE ON EVALUATION OF FUZZY LINEAR REGRESSION
MODELS BY COMPARING MEMBERSHIP FUNCTIONS

H. HASSANPOUR, H. R. MALEKI AND M. A. YAGHOOBI

Abstract. Kim and Bishu (Fuzzy Sets and Systems 100 (1998) 343-352) pro-
posed a modification of fuzzy linear regression analysis. Their modification

is based on a criterion of minimizing the difference of the fuzzy membership

values between the observed and estimated fuzzy numbers. We show that their
method often does not find acceptable fuzzy linear regression coefficients and

to overcome this shortcoming, propose a modification. Finally, we present two

numerical examples to illustrate efficiency of the modified method.

1. Introduction

Since Zadeh [20] introduced fuzzy set theory, it has been widely developed in
theory and application (e.g. see [2], [3], [5], [15], [16], [17], [19]) and in particular,
there has been much research in the area of fuzzy regression analysis (e.g. see [1],[4],
[6], [7], [8], [9], [10], [12], [13], [14], [18]). Regression analysis is a methodology for
analyzing phenomena in which a variable (output or response) depends on other
variables called input (independent or explanatory) variables. A function is fitted
to a set of given data, to predict the value of dependent variable for a specified
value(s) of the independent variable(s). However, the phenomena in the real world
cannot be analyzed exactly, because they depend on some uncertain factors and in
some cases, it may be appropriate to use fuzzy regression analysis.

Kim and Bishu [9] proposed a model called the fuzzy membership function least-
squares (FMLS) regression model. This paper shows that FMLS often does not
work properly and a modification is suggested to improve it.

Suppose the data (x1j , x2j , · · · , xmj , yj), j = 1, · · · , n, are given. For each j,
x1j , x2j , · · · , xmj are the values of m crisp input variables x1, x2, · · · , xm, and yj

is the corresponding value of fuzzy output variable y. The purpose of fuzzy linear
regression (FLR) is to fit a fuzzy linear relation to this data as follows [1], [4], [6],
[7], [8], [9], [10], [14], [18]:

Y = A0 + A1x1 + A2x2 + · · ·+ Amxm =
m∑

i=0

Aixi, (1)

where x0 = 1. In model (1), A0, A1, · · · , Am are fuzzy numbers, called the coeffi-
cients (parameters) of the model. These coefficients must be estimated such that
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the estimated responses Yj ,

Yj = A0 + A1x1j + A2x2j + · · ·+ Amxmj , j = 1, · · · , n, (2)

are the best fit to the observed responses yj , j = 1, · · · , n, with respect to a given
criterion.

2. The FMLS Method

In this section, we briefly review the method of Kim and Bishu (FMLS) [9]. In
[9], it is assumed that the coefficients of model (1) and the observed responses yj

are all triangular fuzzy numbers. In their paper, Kim and Bishu have attempted
to bring the membership functions of the estimated responses as close as possible
to those of the corresponding observed values. Before describing their method, we
recall the following definitions.

Definition 2.1. A fuzzy number A is said to be an L-R fuzzy number if its mem-
bership function has the following form:

µA(x) =

{
L

(
c−x
α

)
x ≤ c α > 0

R
(

x−c
β

)
x ≥ c β > 0

(3)

where c is the mean value of A, α and β are respectively its left and right spreads,
and L(.) is a left shape function satisfying

(1) L(x)=L(-x)
(2) L(0)=1
(3) L(x) is nondecreasing on [0,∞).

The right shape function R(.) is defined similarly.

Definition 2.2. If, in Definition 2.1, L(x) = R(x) = 1 − |x| for 0 ≤ x ≤ 1 and
0 elsewhere, then we say that A is a triangular fuzzy number and denote it by
A = (l, c, r). c is called the center of A, and l = c−α and r = c+β are respectively
called the left and right end points. Also, if α = β, then A is called a symmetric
triangular fuzzy number. Clearly, the membership function of a triangular fuzzy
number A is as follows:

µA(x) =


x−l
c−l l ≤ x ≤ c,
r−x
r−c c ≤ x ≤ r,

0 otherwise. (4)

Based on Definition 2.2, Kim and Bishu suggested a fuzzy membership function
least-squares regression model. In their model, the regression function is defined as
[9]:

Y = (y − |L−1(α)|e , y , y + |L−1(α)|e)
= (l0, c0, r0) + (l1, c1, r1)x1 + · · ·+ (lm, cm, rm)xm

= (
m∑

i=0

lixi,

m∑
i=0

cixi,

m∑
i=0

rixi), (5)
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where x0 = 1, e is the spread of the symmetric fuzzy response Y , and α ∈ [0, 1]. The
regression coefficients Ai = (li, ci, ri) are also (not necessarily symmetric) triangular
fuzzy numbers. When minimizing the difference of the membership values of the
observed and estimated fuzzy numbers, the regression model is decomposed into
three ordinary least-squares regression models as follows [9]:

y − |L−1(α)|e =
m∑

i=0

lixi,
(6)

y =
m∑

i=0

cixi, (7)

y + |L−1(α)|e =
m∑

i=0

rixi. (8)

The least-squares estimators for li , ci and ri are obtained by solving the least-
squares normal equations for (6), (7), and (8). In fact in [9], it is assumed that
α = 0.

3. Examples and a Modification

As mentioned above, FMLS has been studied by many authors. However, as the
following example illustrates, it sometimes finds FLR coefficients Ai = (li, ci, ri)
that are unacceptable.

Example 3.1. Consider the data of Table 1.

j xj yj = (lyj , cyj , ryj )
1 2 (8 , 10 , 12)
2 4 (6 , 8 , 10)
3 6 (6 , 7 , 8)
4 8 (5 , 6.5 , 8)
5 10 (2 , 4 , 6)

Table 1. The given data

Taking α = 0 and L(x) = 1 − |x| (as in [9]), the least-squares estimators for the
coefficients of model (5) are obtained as:

l0 = 9.3, c0 = 11.15, r0 = 13,
l1 = −0.65, c1 = −0.675, r1 = −0.7.

Note that (l0, c0, r0) = (9.3, 11.15, 13) is a triangular fuzzy number. However,
(l1, c1, r1) = (−0.65,−0.675,−0.7) is not a triangular fuzzy number, since it does
not satisfy the conditions of Definition 2.2 In particular, we have the following
inequalities: l1 = −0.65 > c1 = −0.675 > r1 = −0.7.
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At first, it may seem that such a problem may rarely appear in real world
problems. However, the following simulation study refutes this idea.

1000 samples were generated, each containing 100 xj values, uniformly dis-
tributed on the interval (0,10). Also, for each j, the observed response yj =
(lyj

, cyj
, ryj

) was chosen as:

cyj = A0 + A1xj + εj , lyj = cyj − αj , ryj = cyj + βj , (9)

where A0 = 1, A1 varies over 0.6, 0.8, 1, 1.2, 1.4, and εj is a standard normal
variable. Also, (αj , βj) corresponding to yj was taken to be a random point in the
unit square. The procedure was replicatied 10 times i.e. 10000 random problems
were generated and solved and it was found that for approximately 75% of the
instances, FMLS obtained unacceptable FLR coefficients. This is certainly not
negligible.

3.1. A Modification. Consider model (1) and the three least-squares models (6),
(7) and (8). For a triangular fuzzy number it is necessary to have li ≤ ci ≤ ri. How-
ever, these inequalities are not guaranteed in the solution of the normal equations
used in the FMLS method. To overcome this problem, we first obtain c0, c1, · · · , cm

by solving the usual least-squares normal equations for (7). Then to obtain the left-
end points l0, l1, · · · , lm, we add the constraints li ≤ ci ∀i, to (6) and to obtain the
right-end points r0, r1, · · · , rm, we add the constraints ri ≥ ci ∀i, to (8). In other
words, we first obtain c0, c1, · · · , cm, as in [9]. Then, we obtain l0, l1, · · · , lm and
r0, r1, · · · , rm as solutions to the following non-linear programming problems:

min

n∑
j=1

(
m∑

i=0

lixij − (yj − |L−1(α)|ej))2

s.t. li ≤ ci, i = 0, 1, · · ·m,
(10)

min
n∑

j=1

(
m∑

i=0

rixij − (yj + |L−1(α)|ej))2

s.t. ri ≥ ci, i = 0, 1, · · ·m.
(11)

Indeed, (10) and (11) are classical least-squares problems with additional condi-
tions.

Example 3.2. The FLR model for the data of Table 1 obtained using the modified
method is as follows:

Y = A0 + A1x = (9.45, 11.15, 12.85) + (−0.675,−0.675,−0.675)x.

It has been suggested that one may replace negative spreads by zero. However,
we note that although the spreads of A1 in the above example are zero, the coef-
ficient A0 is not the same as that obtained by the FMLS method. Therefore, to
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obtain the best acceptable minimizing solutions of least-squares models it is nec-
essary to solve problems (10) and (11). Moreover, these problems can be solved
easily, for example using MATLAB software [11].

When the FMLS method obtains acceptable coefficients, the coefficients obtained
by the modified method and FMLS are identical. Indeed, in this case, since they
minimize the objective functions of (10) and (11) as well as satisfy the additional
constraints, the FLR coefficients of FMLS are the best solutions of problems (10)
and (11). This matter is illustrated by the following example.

Example 3.3. Consider the data of Table 2 which have been used in [9].

j xj yj = (lyj
, cyj

, ryj
)

1 1 (6.2 , 8 , 9.8)
2 2 (4.2 , 6.4 , 8.6)
3 3 (6.9 , 9.5 , 12.1)
4 4 (10.9 , 13.5 , 16.1)
5 5 (10.6 , 13 , 15.4)
Table 2. The given data

Using the modified method, the FLR model is:

Y = A0 + A1x = (3.11, 4.95, 6.79) + (1.55, 1.71, 1.87)x.

which is the same as the FMLS model.

4. Concluding Remarks

In this short note the method of Kim and Bishu [9] is briefly reviewed and it is
shown by an example that their method may obtain unacceptable fuzzy linear re-
gression coefficients. Also, by a simulation study it is shown that this shortcoming
appears in about 75% of simulated samples, which is not negligible. To overcome
this problem, a modification is proposed and the ability of the modified method to
rectify the shortcoming is illustrated by a numerical example.
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