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UNIFORM AND SEMI-UNIFORM TOPOLOGY ON GENERAL
FUZZY AUTOMATA

M. HORRY AND M. M. ZAHEDI

Abstract. In this paper, we define the concepts of compatibility between two

fuzzy subsets on Q, the set of states of a max- min general fuzzy automaton

and transitivity in a max-min general fuzzy automaton. We then construct a
uniform structure on Q, and define a topology on it. We also define the concept

of semi-uniform structures on a nonempty set X and construct a semi-uniform
structure on the set of states of a general fuzzy automaton. We then construct
a semi-uniform structure on Σ∗, the set of all finite words on Σ, the set of

input symbols of a general fuzzy automaton and, finally, using these semi-
uniform structures, we construct two topologies on Q and Σ∗ and discuss their
properties.

1. Introduction and Preliminaries

The theory of fuzzy sets was introduced by Zadeh [12] and Wee [11] introduced
the idea of fuzzy automata.

A fuzzy finite-state automaton (FFA) is a six-tuple F̃ = (Q,Σ, R, Z, δ, ω), where
Q is a finite set of states, Σ is a finite set of input symbols, R is the initial state of
F̃ , Z is a finite set of output symbols, δ : Q×Σ×Q → [0, 1] is the fuzzy transition
function which is used to map a state (current state) into another state (next state)
upon an input symbol, attributing a value in the interval [0, 1] and ω : Q → Z is the
output function. Associated with each fuzzy transition, there is a membership value
in [0, 1] called the weight of the transition. The transition from state qi (current
state) to state qj (next state) upon input ak is denoted by δ(qi, ak, qj).

We use δ(qi, ak, qj) to refer both to a transition and its Weight in the sense that
whenever δ(qi, ak, qj) is used as a value, it refers to the weight of the transition,
and otherwise, specifies the transition itself. The set of all transitions of F̃ will be
denoted by ∆. The above definition is generally accepted as a formal definition of
an FFA [6], [7], [8], [9].

The question of assignment of membership values to the next states is an im-
portant problem which should be clarified in the definition of FFA.When assigning
membership values to states, there are two issues which must be dealt with: the
assignment of a membership value to a state upon the completion of a transition
and the cases where a state is forced to take several membership values simulta-
neously via overlapping transitions. In 2004, M. Doostfatemeh and S.C. Kremer
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extended the notion of fuzzy automata and introduced the notion of general fuzzy
automata to deal with this issues [1]. We follow [1] and introduce some new notions
and obtain related results.

Let Σ be a set. A word in Σ is the product of a finite sequence of elements in Σ.
Λ will denote the empty word and Σ∗ the set of all words on Σ. The length `(x) of
the word x ∈ Σ∗ is the number of its letters, so `(Λ) = 0. For a nonempty set X,
P̃ (X) will denote the set of all fuzzy sets on X.

Definition 1.1. [1] A general fuzzy automaton (GFA) is an eight-tuple machine
F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2), where
(i) Q is a finite set of states, Q = {q1, q2, . . . , qn},
(ii) Σ is a finite set of input symbols, Σ = {a1, a2, . . . , am},
(iii) R̃ is the set of fuzzy start states, R̃ ⊂ P̃ (Q),
(iv) Z is a finite set of output symbols, Z = {b1, b2, . . . , bk},
(v) ω : Q → Z is the output function,
(vi) δ̃ : (Q× [0, 1])× Σ×Q → [0, 1] is the augmented transition function,
(vii) F1 : [0, 1]× [0, 1] → [0, 1] is the membership assignment function,
(viii) F2 : [0, 1]∗ → [0, 1] is called the multi-membership resolution function.

We note that the function F1(µ, δ) has two parameters, µ and δ, where µ is
the membership value of a predecessor and δ is the weight of a transition. In this
definition, the process that takes place upon the transition from state qi to qj on
input ak is represented as:

µt+1(qj) = δ̃((qi, µ
t(qi)), ak, qj) = F1(µt(qi), δ(qi, ak, qj)).

This means that the membership value (mv) of the state qj at time t+1 is computed
by function F1 using both the membership value of qi at time t and the weight of
the transition.

The usual options for the function F1(µ, δ) are max{µ, δ}, min{µ, δ} and (µ +
δ)/2.

The multi-membership resolution function resolves the multi-membership active
states and assigns a single membership value to them.

Let Qact(ti) be the set of all active states at time ti, ∀i ≥ 0. We have Qact(t0) = R̃
and

Qact(ti) = {(q, µti(q)) : ∃q′ ∈ Qact(ti−1),∃a ∈ Σ, δ(q′, a, q) ∈ ∆},∀i ≥ 1.

Since Qact(ti) is a fuzzy set, in order to show that a state q belongs to Qact(ti)
and T is a subset of Qact(ti), we should write: q ∈ Domain(Qact(ti)) and T ⊂
Domain(Qact(ti)).

Hereafter, we simply denote them as: q ∈ Qact(ti) and T ⊂ Qact(ti).
The combination of the operations of functions F1 and F2 on a multi-membership

state qj leads to the multi-membership resolution algorithm.

Algorithm 1.2. [1] (Multi-membership resolution) If there are several simulta-
neous transitions to the active state qj at time t + 1, the following algorithm will
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assign a unified membership value to it:
(1) Each transition weight δ(qi, ak, qj) together with µt(qi), will be processed by the
membership assignment function F1, and will produce a membership value. Call
this vi.

vi = δ̃((qi, µ
t(qi)), ak, qj) = F1(µt(qi), δ(qi, ak, qj)).

(2) These membership values are not necessarily equal. Hence, they need to be
processed by the multi-membership resolution function F2.
(3) The result produced by F2 will be assigned as the instantaneous membership
value of the active state qj ,

µt+1(qj) =
n

F2
i=1

[vi] =
n

F2
i=1

[F1(µt(qi), δ(qi, ak, qj))].

where
• n is the number of simultaneous transitions to the active state qj at time t + 1.
• δ(qi, ak, qj) is the weight of a transition from qi to qj upon input ak.
•µt(qi) is the membership value of qi at time t.
• µt+1(qj) is the final membership value of qj at time t + 1.

Definition 1.3. [13] Let F̃ = (Q,Σ, R̃, Z, ω, δ̃, F1, F2) be a general fuzzy automa-
ton. We define max-min general fuzzy automata as F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2)
such that :

δ̃∗ : Qact × Σ∗ ×Q → [0, 1]
where Qact = {Qact(t0), Qact(t1), Qact(t2), . . . } and for all i ≥ 0,

δ̃∗((q, µti(q)),Λ, p) =
{

1, q = p,
0, otherwise

Also, if the input at time ti be ui, where ui ∈ Σ,∀1 ≤ i ≤ n, then
δ̃∗((q, µti−1(q)), ui, p) = δ̃((q, µti−1(q)), ui, p),
δ̃∗((q, µti−1(q)), uiui+1, p) =

∨
q′∈Qact(ti)

(δ̃((q, µti−1(q)), ui, q
′)∧δ̃((q′, µti(q′)), ui+1, p)),

and recursively
δ̃∗((q, µt0(q)), u1u2 . . . un, p) = ∨{δ̃((q, µt0(q)), u1, p1) ∧ δ̃((p1, µ

t1(p1)), u2, p2) ∧ . . .

∧δ̃((pn−1, µ
tn−1(pn−1)), un, p)|p1 ∈ Qact(t1), p2 ∈ Qact(t2), . . . , pn−1 ∈ Qact(tn−1)}.

Definition 1.4. [13] Let F̃ ∗ be a max-min GFA. The response function rF̃∗
:

Σ∗ ×Q → [0, 1] of F̃ ∗, for any x ∈ Σ∗, q ∈ Q, is defined by

rF̃∗
(x, q) =

∨
q′∈Qact(t0)

δ̃∗((q′, µt0(q′)), x, q).

Definition 1.5. [13] Let F̃ ∗ be a max-min GFA, λ be a fuzzy subset on Q, p, q

belong to Q and D(λ)(p) = ∨{λ(p)∧ rF̃∗
(x, p) : x ∈ Σ∗\{Λ}}. Also, let ρ′ : q0 = p,

q1, . . . , qn = q be a path from p to q and Sλ(ρ′) = ∧{D(λ)(qi) : 0 ≤ i ≤ n}. Then
the degree of connectedness of states p and q with respect to λ is defined by

degλ(p, q) = ∨{Sλ(ρ) : ρ is a path from p to q}.
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Theorem 1.6. [13] Let F̃ ∗ be a max-min GFA and λ be a fuzzy subset on Q.
Then
(i) degλ(q, q) = D(λ)(q), ∀q ∈ Q,
(ii) degλ(p, q) = degλ(q, p), ∀p, q ∈ Q.

Definition 1.7. [13] Let F̃ ∗ be a max-min GFA and λ be a fuzzy subset on Q.
Then we say that p and q are connected with respect to λ if

degλ(p, q) = D(λ)(p) ∧D(λ)(q).

Theorem 1.8. [13] Let F̃ ∗ be a max-min GFA and λ be a fuzzy subset on Q.
Then p and q are connected with respect to λ if and only if there exists a path
ρ′ : q0 = p, q1, . . . , qn = q such that D(λ)(qi) ≥ D(λ)(p) ∧D(λ)(q), 0 ≤ i ≤ n.

Definition 1.9. [3] Let X be a nonempty set and U , V be any subsets of X ×X.
We now recall a definition and some notation, which will be used in the sequel.
(i) ∆ = {(x, x) ∈ X ×X : x ∈ X},
(ii) U−1 = {(x, y) ∈ X ×X : (y, x) ∈ U},
(iii) U♦V = {(x, y) ∈ X ×X : ∃z ∈ X s.t. (x, z) ∈ U , (z, y) ∈ V }.

Definition 1.10. [3], [4], [10] By a uniformity on X we shall mean a nonempty
collection κ of subsets of X ×X which satisfies the following conditions:
(i) ∆ ⊆ U for any U ∈ κ,
(ii) If U ∈ κ, then U−1 ∈ κ,
(iii) If U ∈ κ, then there exists a V ∈ κ, such that V♦V ⊆ U ,
(iv) If U, V ∈ κ, then U ∩ V ∈ κ,
(v) If U ∈ κ and U ⊆ V ⊆ X ×X, then V ∈ κ.
The pair (X, κ) is called a uniform structure.

2. Uniform Topology on Max-Min General Fuzzy Automata

Definition 2.1. Let F̃ ∗ be a max-min GFA and λ1, λ2 be two fuzzy subsets on Q.
We say that λ1 is compatible with λ2 if

D(λ1)(p) = D(λ2)(p), ∀p ∈ Q.

Example 2.2. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min GFA and λ1, λ2 be
two fuzzy subsets on Q, where Q = {q0}, Σ = {a}, R̃ = {(q0, µ

t0(q0))} = {(q0, 1)},
F1(µ, δ) = Min(µ, δ), Z = ∅, ω and F2 are not applicable, δ(q0, a, q0) = 0.4,
λ1(q0) = 0.4 and λ2(q0) = 0.5. Then we have

µt1(q0) = δ̃((q0, µ
t0(q0)), a, q0) = F1(µt0(q0), δ(q0, a, q0)) = F1(1, 0.4) = 0.4,

δ̃∗((q0, µ
t0(q0)), a2, q0) =

∨
q∈Qact(t1)

[δ̃((q0, µ
t0(q0)), a, q) ∧ δ̃((q, µt1(q)), a, q0)]

= δ̃((q0, µ
t0(q0)), a, q0) ∧ δ̃((q0, µ

t1(q0)), a, q0)
= F1(1, 0.4) ∧ F1(0.4, 0.4) = 0.4 ∧ 0.4 = 0.4,
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δ̃∗((q0, µ
t0(q0)), an, q0) = 0.4, ∀n = 1, 2, 3, . . . ,

rF̃∗
(a, q0) =

∨
q∈Qact(t0)

δ̃∗((q, µt0(q)), a, q0) = δ̃∗((q0, µ
t0(q0)), a, q0) = 0.4,

rF̃∗
(a2, q0) =

∨
q∈Qact(t0)

δ̃∗((q, µt0(q)), a2, q0) = δ̃∗((q0, µ
t0(q0)), a2, q0) = 0.4,

rF̃∗
(an, q0) = 0.4, ∀n = 1, 2, 3, . . . .

D(λ1)(q0) = ∨{λ1(q0) ∧ rF̃∗
(x, q0) : x ∈ Σ∗\{Λ}}

= [λ1(q0) ∧ rF̃∗
(a, q0)] ∨ [λ1(q0) ∧ rF̃∗

(a2, q0)] ∨ . . .

= (0.4 ∧ 0.4) ∨ (0.4 ∧ 0.4) ∨ · · · = 0.4,

D(λ2)(q0) = ∨{λ2(q0) ∧ rF̃∗
(x, q0) : x ∈ Σ∗\{Λ}}

= [λ2(q0) ∧ rF̃∗
(a, q0)] ∨ [λ2(q0) ∧ rF̃∗

(a2, q0)] ∨ . . .

= (0.5 ∧ 0.4) ∨ (0.5 ∧ 0.4) ∨ · · · = 0.4.

Since D(λ1)(q0) = D(λ2)(q0), therefore λ1 is compatible with λ2.

Definition 2.3. Let F̃ ∗ be a max-min GFA and λ be a fuzzy subset on Q. Then
we say that λ is transitive if when p and q are connected with respect to λ and q
and r are connected with respect to λ, then p and r are connected with respect to λ.

Theorem 2.4. Let F̃ ∗ be a max-min GFA and λ be a transitive fuzzy subset on
Q. Define

Uλ = {(p, q) ∈ Q×Q : p, q are connected with respect to λ},
κ∗ = {Uλ : λ is compatible with the all fuzzy subsets on Q}.

Then κ∗ satisfies the conditions (i)-(iv) of Definition 1.10.

Proof. (i) Let Uk ∈ κ∗ and (q, q) ∈ ∆. By Theorem 1.6, since degλ(q, q) = D(λ)(q),
hence q and q are connected with respect to λ. Thus (q, q) ∈ Uλ. Therefore ∆ ⊆ Uλ

for any Uλ ∈ κ∗.
(ii) Let Uλ ∈ κ∗. Then we have

(p, q) ∈ U−1
λ ⇐⇒ (q, p) ∈ Uλ ⇐⇒ q and p are connected with respect to λ

⇐⇒ p and q are connected with respect to λ

⇐⇒ (p, q) ∈ Uλ.

Thus U−1
λ = Uλ ∈ κ∗.

(iii) Let Uλ ∈ κ∗. We claim Uλ♦Uλ ⊆ Uλ. Let (p, q) ∈ Uλ♦Uλ. Then there exists
r ∈ Uλ such that (p, r) ∈ Uλ and (r, q) ∈ Uλ. Thus p and r are connected with
respect to λ, r and q are connected with respect to λ. Since λ is transitive, then p
and q are connected with respect to λ. So (p, q) ∈ Uλ and Uλ♦Uλ ⊆ Uλ.
(iv) If Uλ1 ∈ κ∗, Uλ2 ∈ κ∗, then Uλ1 ∩ Uλ2 ⊆ Uλ1 . We show that Uλ1 ⊆ Uλ1 ∩ Uλ2 .
Let (p, q) ∈ Uλ1 . Then p and q are connected with respect to λ1. Thus, by Theorem
1.8, there exists a path ρ′ : q0 = p, q1, . . . , qn = q such that D(λ1)(qi) ≥ D(λ1)(p)∧

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


24 M. Horry and M. M. Zahedi

D(λ1)(q), 0 ≤ i ≤ n. Since λ1 is compatible with λ2, hence D(λ1)(p) = D(λ2)(p),
∀p ∈ Q. Thus D(λ2)(qi) ≥ D(λ2)(p) ∧ D(λ2)(q), 0 ≤ i ≤ n. So by Theorem
1.8, p and q are connected with respect to λ2. Therefore (p, q) ∈ Uλ2 . Thus
Uλ1 ⊆ Uλ1 ∩ Uλ2 . Consequently, Uλ1 ∩ Uλ2 = Uλ1 ∈ κ∗. �

Theorem 2.5. Let F̃ ∗ be a max-min GFA, λ be a transitive fuzzy subset on Q
and

Uλ = {(p, q) ∈ Q×Q : p, q are connected with respect to λ},
κ∗ = {Uλ : λ is compatible with the all fuzzy subsets on Q},

κ = {U ⊆ Q×Q : there exists Uλ ∈ κ∗ and Uλ ⊆ U}.
Then κ satisfies a uniformity on Q and the pair (Q, κ) is a uniform structure.

Proof. (i) Let U ∈ κ. Then there exists Uλ ∈ κ∗ such that Uλ ⊆ U . By Theorem
2.4, ∆ ⊆ Uλ. So ∆ ⊆ U .
(ii) Let U ∈ κ. So there exists Uλ ∈ κ∗ such that Uλ ⊆ U . By Theorem 2.4,
U−1

λ ∈ κ∗. Now, let (p, q) ∈ U−1
λ . Then we have

(q, p) ∈ Uλ ⊆ U ⇒ (q, p) ∈ U ⇒ (p, q) ∈ U−1.

Thus U−1
λ ⊆ U−1 and U−1

λ ∈ κ∗. Therefore U−1 ∈ κ.
(iii) Let U ∈ κ. Then there exists Uλ ∈ κ∗ such that Uλ ⊆ U . By Theorem 2.4,
Uλ♦Uλ ⊆ Uλ. On the other hand, since κ∗ ⊆ κ, then Uλ ∈ κ. So Uλ♦Uλ ⊆ U and
Uλ ∈ κ.
(iv) Let U1, U2 ∈ κ. Then there exist Uλ1 , Uλ2 ∈ κ∗ such that Uλ1 ⊆ U1, Uλ2 ⊆ U2.
Thus Uλ1 ∩ Uλ2 ⊆ U1 ∩ U2. By Theorem 2.4, Uλ1 ∩ Uλ2 = Uλ1 . So we get that
Uλ1 ⊆ U1 ∩ U2 and Uλ1 ∈ κ∗. Therefore U1 ∩ U2 ∈ κ.
(v) Let U ∈ κ, U ⊆ V ⊆ Q × Q. Then there exists Uλ ∈ κ∗ such that Uλ ⊆ U .
Thus Uλ ⊆ V and Uλ ∈ κ∗. Therefore V ∈ κ. �

Theorem 2.6. Let F̃ ∗ be a max-min GFA, p ∈ Q, U ∈ κ, U [p] = {q ∈ Q : (p, q) ∈
U} and τ = {Q′ ⊆ Q : ∀p ∈ Q′, ∃U ∈ κ, U [p] ⊆ Q′}. Then τ is a topology on Q.

Proof. (i) It is clear that ∅ and Q are in τ .
(ii) Let Q1, Q2 ∈ τ and q ∈ Q1 ∩ Q2. Then there exist U, V ∈ κ such that
U [q] ⊆ Q1 and V [q] ⊆ Q2. Let W = U ∩ V . By Theorem 2.5, W ∈ κ and also
W [q] ⊆ U [q] ∩ V [q] ⊆ Q1 ∩Q2. Thus Q1 ∩Q2 ∈ τ .
(iii) Let Qi ∈ τ , ∀i ∈ I. Then ∀p ∈ Qi, ∃Ui ∈ κ : Ui[p] ⊆ Qi. Let U =

⋃
i∈I

Ui. By

Theorem 2.5, since we have U1 ⊆
⋃
i∈I

Ui ⊆ Q × Q, U1 ∈ κ, hence U =
⋃
i∈I

Ui ∈ κ.

Also, U [p] =
⋃
i∈I

Ui[p] ⊆
⋃
i∈I

Qi, ∀p ∈
⋃
i∈I

Qi. Therefore
⋃
i∈I

Qi ∈ τ . Consequently τ

is a topology on Q. �

Remark. τ is called the uniform topology on Q induced by κ.

Theorem 2.7. Let F̃ ∗ be a max-min GFA and λ be a transitive fuzzy subset on
Q. Then Uλ[q] is clopen in (Q, τ), for any q ∈ Q.
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Proof. (i) We first show that Uλ[q] is open. Let p ∈ Uλ[q]. If r ∈ Uλ[p], then
(q, p) ∈ Uλ, (p, r) ∈ Uλ. Thus q and p are connected with respect to λ and p and
r are also connected with respect to λ. Since λ is transitive, hence q and r are
connected with respect to λ. So r ∈ Uλ[p]. Therefore Uλ[p] ⊆ Uλ[q], ∀p ∈ Uλ[q]
and Uλ ∈ κ. So Uλ[q] ∈ τ . Consequently Uλ[q] is an open set in (Q, τ).
(ii) We now show that Uλ[q] is closed. Let p ∈ (Uλ[q])C . Then q and p are not
connected with respect to λ. If r ∈ Uλ[p], then p and r are connected with respect
to λ. Also, if r ∈ Uλ[q], then q and r are connected with respect to λ. Since λ
is transitive, q and p are connected with respect to λ, which is a contradiction.
So r ∈ (Uλ[q])C . Therefore Uλ[p] ⊆ (Uλ[q])C , ∀p ∈ (Uλ[q])C and Uλ ∈ κ. Thus
(Uλ[q])C ∈ τ . Consequently Uλ[q] is a closed set in (Q, τ). �

3. Semi-Uniform Topology on General Fuzzy Automata

Definition 3.1. By a semi-uniformity on X we shall mean a nonempty collection
κ of subsets of X ×X which satisfies the following conditions:
(i) ∆ ∩ U 6= ∅ for some U ∈ κ,
(ii) If U ∈ κ, then U−1 ∈ κ,
(iii) If U ∈ κ, then there exists a V ∈ κ, such that V♦V ⊆ U ,
(iv) If U, V ∈ κ, then U ∩ V ∈ κ,
(v) If U ∈ κ and U ⊆ V ⊆ X ×X, then V ∈ κ.
The pair (X, κ) is called a semi-uniform structure.

Definition 3.2. Let F̃ be a GFA and p ∈ Q. If n =
∧

q0∈R̃

(∧{|ρ| : ρ is a path of q0

to p}), then we say that the order of p is n + 1.
In fact, if ρ is the path q0, q1, . . . , qm = p and q0 ∈ R̃ = Qact(t0), then m = |ρ|. We
denote the order of p by ord(p).

Theorem 3.3. Let F̃ be a GFA and

Un = {(p, q) ∈ Q×Q : ord(p) = ord(q) = n},∀n ≥ 1, U0 = ∅,
Vn = {(x, y) ∈ Σ∗ × Σ∗ : `(x) = `(y) = n− 1},∀n ≥ 1, V0 = ∅,

κ∗1 = {Un : n = 0, 1, 2, 3, . . . },
κ∗2 = {Vn : n = 0, 1, 2, 3, . . . }.

Then κ∗1, κ∗2 satisfy the conditions (i)-(iv) of Definition 3.1.

Proof. (i) Let q ∈ Q and ord(q) = n. Since (q, q) ∈ ∆ and (q, q) ∈ Un, hence
∆ ∩ Un 6= ∅ for some Un ∈ κ∗1.
(ii) Let Un ∈ κ∗1. Then

(p, q) ∈ U−1
n ⇐⇒ (q, p) ∈ Un ⇐⇒ ord(q) = ord(p) = n ⇐⇒ (p, q) ∈ Un.

Thus U−1
n = Un ∈ κ∗1.

(iii) If Un ∈ κ∗1, then it is clear that Un♦Un ⊆ Un.
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(iv) If Un ∈ κ∗1, Um ∈ κ∗1, then Un ∩Um =
{

U0, n 6= m
Un, n = m

. Thus Un ∩Um ∈ κ∗1. So

κ∗1 satisfies the conditions (i)-(iv) of Definition 3.1. Also,
(a) If x ∈ Σ∗ and `(x) = n, since (x, x) ∈ Vn+1 and (x, x) ∈ ∆, hence ∆∩Vn+1 6= ∅
for some Vn+1 ∈ κ∗2.
(b) If Vn ∈ κ∗2, then

(x, y) ∈ V −1
n ⇐⇒ (y, x) ∈ Vn ⇐⇒ `(x) = `(y) = n− 1 ⇐⇒ (x, y) ∈ Vn.

Thus V −1
n = Vn ∈ κ∗2.

(c) If Vn ∈ κ∗2, then it is clear that Vn♦Vn ⊆ Vn.

(d) If Vn ∈ κ∗2, Vm ∈ κ∗2, then Vn ∩ Vm =
{

V0, n 6= m
Vn, n = m

. Thus Vn ∩ Vm ∈ κ∗2.

Therefore κ∗2 satisfies the conditions (i)-(iv) of Definition 3.1. �

Example 3.4. Consider the general fuzzy automaton in Fig. 1, where Q =
{q0, q1, q2, q3, q4} is the set of states, Σ = {a, b} is the set of input symbols and
R̃ = Qact(t0) = {(q0, µ

t0(q0))} = {(q0, 1)}.

Fig. 1. The GFA of Example 3.4
Then we have
ord(q0) = 1, ord(q1) = ord(q3) = ord(q4) = 2, ord(q2) = 3,
U0 = ∅, U1 = {(q0, q0)}, U3 = {(q2, q2)}, Un = ∅,∀n ≥ 4,
U2 = {(q1, q1), (q1, q3), (q1, q4), (q3, q1), (q3, q3), (q3, q4), (q4, q1), (q4, q3), (q4, q4)},
V0 = ∅, V1 = {(Λ,Λ)}, V2 = {(a, a), (a, b), (b, a), (b, b)},
V3 = {(aa, aa), (aa, ab), (aa, ba), (aa, bb), . . . }, . . . .

Theorem 3.5. Let F̃ be a GFA and

κ1 = {U ⊆ Q×Q : Un ⊆ U, ∃Un ∈ κ∗1},
κ2 = {V ⊆ Σ∗ × Σ∗ : Vn ⊆ V, ∃Vn ∈ κ∗2}.

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


Uniform and Semi-Uniform Topology on General Fuzzy Automata 27

Then κ1 satisfies a semi-uniformity on Q and the pair (Q,κ1) is a semi-uniform
structure. Also κ2 satisfies a semi-uniformity on Σ∗ and the pair (Σ∗, κ2) is a
semi-uniform structure.

Proof. By Theorem 3.3, κ1 satisfies the conditions (i)-(iv) of Definition 3.1.
Now, let U ∈ κ1, U ⊆ U ′ ⊆ Q×Q. Then there exists Un ∈ κ∗1 such that Un ⊆ U .

Thus Un ⊆ U ′ and Un ∈ κ∗1. Therefore U ′ ∈ κ1.
Again, by Theorem 3.3, κ2 satisfies the conditions (i)-(iv) of Definition 3.1.
Now, let V ∈ κ2, V ⊆ V ′ ⊆ Σ∗ × Σ∗. Then there exists Vn ∈ κ∗2 such that

Vn ⊆ V . Thus Vn ⊆ V ′ and Vn ∈ κ∗2. Therefore V ′ ∈ κ2. �

Theorem 3.6. Let F̃ be a GFA, p ∈ Q, x ∈ Σ∗, U ∈ κ1, V ∈ κ2 and

U [p] = {q ∈ Q : (p, q) ∈ U}, V [x] = {y ∈ Σ∗ : (x, y) ∈ V },
τ1 = {Q′ ⊆ Q : ∀p ∈ Q′, ∃U ∈ κ1 , U [p] ⊆ Q′},
τ2 = {T ⊆ Σ∗ : ∀x ∈ T, ∃V ∈ κ2 , V [x] ⊆ T}.

Then τ1 is a topology on Q and τ2 is a topology on Σ∗.

Proof. (i) It is clear that ∅ and Q are in τ1.
(ii) Let Q1, Q2 ∈ τ1 and q ∈ Q1 ∩ Q2. Then there exist U1, U2 ∈ κ1 such that
U1[q] ⊆ Q1 and U2[q] ⊆ Q2. Let W = U1 ∩ U2. By Theorem 3.5, W ∈ κ1 and also
W [q] ⊆ U1[q] ∩ U2[q] ⊆ Q1 ∩Q2. Thus Q1 ∩Q2 ∈ τ1.
(iii) Let Qi ∈ τ1, ∀i ∈ I. Then ∀p ∈ Qi, ∃Ui ∈ κ1 : Ui[p] ⊆ Qi. Let U =

⋃
i∈I

Ui. By

Theorem 3.5, since U1 ⊆
⋃
i∈I

Ui ⊆ Q × Q and U1 ∈ κ1, hence U =
⋃
i∈I

Ui ∈ κ1. So

U [p] =
⋃
i∈I

Ui[p] ⊆
⋃
i∈I

Qi, ∀p ∈
⋃
i∈I

Qi. Therefore
⋃
i∈I

Qi ∈ τ1. Consequently, τ1 is a

topology on Q.
Also ,
(i) ∅ and Σ∗ are in τ2.
(ii) Let T1, T2 ∈ τ2 and x ∈ T1 ∩ T2. Then there exist V1, V2 ∈ κ2 such that
V1[x] ⊆ T1 and V2[x] ⊆ T2. Let T = V1 ∩ V2. By Theorem 3.5, T ∈ κ2 and
T [x] ⊆ V1[x] ∩ V2[x] ⊆ T1 ∩ T2. Thus T1 ∩ T2 ∈ τ2.
(iii) Let Ti ∈ τ2, ∀i ∈ I. Then ∀x ∈ Ti, ∃Vi ∈ κ2 : Vi[x] ⊆ Ti. Let V =

⋃
i∈I

Vi. By

Theorem 3.5, since V1 ⊆
⋃
i∈I

Vi ⊆ Σ∗ × Σ∗, V1 ∈ κ2, hence V =
⋃
i∈I

Vi ∈ κ2. So

V [x] =
⋃
i∈I

Vi[x] ⊆
⋃
i∈I

Ti, ∀x ∈
⋃
i∈I

Ti. Therefore
⋃
i∈I

Ti ∈ τ2. Consequently τ2 is a

topology on Σ∗. �

Definition 3.7. Let F̃ be a GFA, Q′ ⊆ Q, Σ′ ⊆ Σ∗, q, q′ ∈ Q, x, y ∈ Σ∗,
ord(q) = ord(q′) and `(x) = `(y). We say that F̃ is absorbing with respect to Q′

and Σ′ if
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(i) q ∈ Q′ ⇒ q′ ∈ Q′,
(ii) x ∈ Σ′ ⇒ y ∈ Σ′.

Also, F̃ is absorbing if F̃ is absorbing with respect to Q′ and Σ′ for every Q′ ⊆ Q
and Σ′ ⊆ Σ∗.

Theorem 3.8. Let F̃ be an absorbing GFA, Q′ ⊆ Q and Σ′ ⊆ Σ∗. Then Q′ is a
clopen set in (Q, τ1) and Σ′ is a clopen set in (Σ∗, τ2).

Proof. (i) We first show that Q′ =
⋃

q∈Q′

Un[q], where n = ord(q). Let q ∈ Q′. Since

q ∈ Un[q], hence Q′ ⊆
⋃

q∈Q′

Un[q]. Conversely, let q′ ∈
⋃

q∈Q′

Un[q]. Then there exists

q ∈ Q′ such that q′ ∈ Un[q]. Thus q ∈ Q′, ord(q) = ord(q′) = n. Since F̃ is
absorbing, hence q′ ∈ Q′. So

⋃
q∈Q′

Un[q] ⊆ Q′. Consequently, Q′ is an open set in

(Q, τ1).
Now, we show that Q′C =

⋃
q 6∈Q′

Un[q]. Let q ∈ Q′C . Since q ∈ Un[q], hence

Q′C ⊆
⋃

q 6∈Q′

Un[q].

Conversely, let q′ ∈
⋃

q 6∈Q′

Un[q]. Then there exists q ∈ Q′C such that q′ ∈ Un[q].

Thus q ∈ Q′C and ord(q) = ord(q′) = n. Since F̃ is absorbing, hence q′ ∈ Q′C . So⋃
q 6∈Q′

Un[q] ⊆ Q′C . Consequently, Q′ is a closed set in (Q, τ1).

(ii) We first show that Σ′ =
⋃

x∈Σ′

Vn[x], where n = `(x) + 1. Let x ∈ Σ′. Since

x ∈ Vn[x], hence Σ′ ⊆
⋃

x∈Σ′

Vn[x]. Conversely, let y ∈
⋃

x∈Σ′

Vn[x]. Then there exists

x ∈ Σ′ such that y ∈ Vn[x]. Thus x ∈ Σ′, `(x) = `(y) = n−1. Since F̃ is absorbing,
hence y ∈ Σ′. So

⋃
x∈Σ′

Vn[x] ⊆ Σ′. Consequently, Σ′ is an open set in (Σ∗, τ2).

Now, we prove Σ′C =
⋃

x6∈Σ′

Vn[x], where n = `(x) + 1. Let x ∈ Σ′C . Since

x ∈ Vn[x], hence Σ′C ⊆
⋃

x6∈Σ′

Vn[x]. Conversely, let y ∈
⋃

x6∈Σ′

Vn[x]. Then there

exists x ∈ Σ′C such that y ∈ Vn[x]. Thus x ∈ Σ′C and `(x) = `(y) = n − 1. Since
F̃ is absorbing, hence y ∈ Σ′C . So

⋃
x6∈Σ′

Vn[x] ⊆ Σ′C . Therefore Σ′ is a closed set in

(Σ∗, τ2). �

Corollary 3.9. Let F̃ be an absorbing GFA. Then τ1 is a discrete topology on Q
and τ2 is a discrete topology on Σ∗.
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Proof. F̃ is an absorbing GFA. Hence, by Theorem 3.8, if p ∈ Q and x ∈ Σ∗, then
{p} is a clopen set in (Q, τ1) and {x} is a clopen set in (Σ∗, τ2). Thus τ1 is a discrete
topology on Q and τ2 is a discrete topology on Σ∗. �
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