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ON FUZZY HYPERIDEALS OF Γ-HYPERRINGS

R. AMERI, H. HEDAYATI AND A. MOLAEE

Abstract. The aim of this paper is the study of fuzzy Γ-hyperrings. In this

regard the notion of ν-fuzzy hyperideals of Γ-hyperrings are introduced and

basic properties of them are investigated. In particular, the representation
theorem for ν-fuzzy hyperideals are given and it is shown that the image of a
ν-fuzzy hyperideal of a Γ-hyperring under a certain conditions is two-valued.
Finally, the product of ν-fuzzy hyperideals are studied.

1. Introduction

Hyperstructure theory was born in 1934 when Marty defined hypergroups, began
to analysis their properties and applied them to groups, rational algebraic functions
[16]. Now they are widely studied from theoretical point of view and for their appli-
cations to many subjects of pure and applied properties and applied mathematics
(for example see [5], [6], [22]).

Also, following the introduction of fuzzy sets by L. A. Zadeh in 1965 [23], the
fuzzy set theory were developed by Zadeh himself and many researchers in mathe-
matics and it was applied in many pure and applied areas. For example the concept
of a fuzzy group was introduced by A. Rosenfeld and the notion of fuzzy ideal in
a ring introduced and studied by W. J. Liu [15]. Recently fuzzy set theory have
been had good develop in hyperstructures theory (for example see [7], [8], [9], [10],
[11],[24]).

The notion of Γ−rings introduced by N. Nobosawa in [19] and immediately after
him in 1966, Barnes extended this notion and obtained more results [4]. Kyuno
investigated the new aspects of Γ-rings such as, prime Γ-rings and left and right
unities of Γ-rings. Also in recent years Ozturk, Y. B. Jun and C. Y. Lee in [12] and
[20] applied the concept of fuzzy sets to the theory of Γ-rings.

In this paper, first we introduce the notion of (ν-)fuzzy hyperideals of Γ-hyperrings
and, then we obtain some related basic results. We characterize (ν-)fuzzy hyper-
ideals based on their level subsets and associate a new (ν-fuzzy) hyperideal from a
given fuzzy hyperideal of a Γ-hyperring. In particular, we show that under certain
conditions ν-fuzzy hyperideals of Γ-hyperrings are two-valued. Finally we describe
ν-fuzzy hyperideals of product of Γ-hyperrings.
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2. Preliminaries

In this section we gather all definitions and simple properties of Γ−hyperrings that
we require in the next notions.

Let H be a nonempty set. A map + : H ×H −→ P∗(H) is called hyperoperation
or join operation, where P∗(H) denotes the set of all nonempty subsets of H.

Definition 2.1. [6] A nonempty set M together a hyperoperation + is called a
polygroup if the following conditions are satisfied:

(1) for all x, y, z ∈ M , (x + y) + z = x + (y + z);
(2) for all x ∈ M there exist an unique element e ∈ M such that e+x = x = x+e

(we denote e by 0) ;
(3) for all x ∈ M there exists an unique element x′ ∈ M such that e ∈ x+x′∩x′+x

(we denote x′ by −x);
(4) for all x, y, z ∈ M , z ∈ x + y =⇒ x ∈ z − y =⇒ y ∈ z − x .
By U <p M , we mean U is a subpolygroup of M . We denote the set of all sub-

polygroup of M , by SP (M). A canonical hypergroup is a commutative polygroup.

Definition 2.2. [15, 19] An algebraic structure (R,+, .) is called a hyperring if the
following statements are satisfied:

(i) (R,+) is a canonical hypergroup ;
(ii) (R, .) is a semigroup having zero as a bilaterally absorbing element, i.e.,

x.0 = 0 = 0.x;
(iii) The multiplication is distributive with respect to the hyperoperation +, i.e.,

x.(y + z) = x.y + x.z and (y + z).x = y.x + z.x ∀x, y, z ∈ R.

Remark 2.3. (i) It can be easily proved that zero is unique.
(ii) For simplicity of notation, sometimes we write xy instead of x.y in Definition

2.2.
(iii) If A,B ⊆ R and x ∈ R, then A + B =

⋃
{a + b|a ∈ A, b ∈ B}. Also, A + x

is used for A + {x}.
(iv) By axioms of Definition 2.2, it is easy to see that, −(−x) = x and −(x+y) =

−x− y, where −A = {−a | a ∈ A}. Also, (a + b).(c + d) ⊆ a.c + b.c + a.d + b.d.

Definition 2.4. Let R be a hyperring. Then
(i) R is commutative if x.y = y.x ∀x, y ∈ R;
(ii) R is called with identity, if there exists an element, say 1 ∈ R, such that

1.x = x = x.1,∀x ∈ R;
(iii) A nonempty subset A of R is said to be a subhyperring of R if (A,+, .) is

itself a hyperring. If R \ {0} is a multiplicative group, then (R,+, .) is a hyperfield.

Example 2.5. [18] (i) Let (A,+, .) be a ring and N a normal semigroup of (A, .).
Then the multiplicative classes x = xN, x ∈ A form a partition of A. Let A = A/N
be the set of these classes. If we define the product x� y in A of x, y ∈ A as equal
to their product as subsets of A, and their sum x ⊕ y in A as the set of all z ∈ A
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contained in their sum as subsets of A, i.e.,

x⊕ y = {z|z ∈ x + y} and x� y = x.y.

Then (A,⊕,�) is a hyperring.
(ii) Let R be a commutative ring with identity. Letting R = {x = {x,−x}|x ∈

R}. Then R is a hyperring with respect to the hyperoperation x⊕y = {x + y, x− y}
and multiplication x� y = x.y.

Definition 2.6. (i) A nonempty subset I of a hyperring R is called a ( resp. left)
right hyperideal of R if ( resp. x.r ∈ I) r.x ∈ I ∀r ∈ R, ∀x ∈ I;

(ii) I is called a hyperideal if I is both left and right hyperideal;
(iii) A proper hyperideal I of R ( I 6= R) is called a prime hyperideal if a.b ∈ I

implies that a ∈ I or b ∈ I ( for a study of prime hyperideals and prime subhyper-
modules see [36]). The set of all prime hyperideal of R is called the prime spectrum
of R and it is denoted by Spec(R).

Definition 2.7. Let (M,+) and (Γ,+) be canonical hypergroups. Then M is said
to be a Γ−hyperring if there exists a mapping . : M × Γ×M → P∗(M) such that
the following conditions are satisfied:

(1) (x + y)αz ⊆ xαz + yαz , xα(y + z) ⊆ xαy + xαz, ∀x, y, z ∈ M, ∀α ∈ Γ;
(2) x(α + β)y ⊆ xαy + xβy, ∀x, y ∈ M, ∀α, β ∈ Γ;
(3) (xαy)βz = xα(yβz), ∀x, y, z ∈ M, ∀α, β ∈ Γ.
If in Definition 2.2, we replace all inclusions by equality, then M is called a strong

Γ-hyperring.

Definition 2.8. A right (resp. left) hyperideal of Γ-hyperring M is a subpolygroup
U of M such that UΓM ⊆ U (resp. MΓU ⊆ U). Also if ∆ is a subpolygroup
of Γ, then the subpolygroup I of M is said to be a right (left) ∆-hyperideal if
I∆M ⊆ I (resp. M∆I ⊆ I). By U <h M , we mean U is a hyperideal of Γ-
hyperring M . Also we denote the set of all hyperideals of M by HI(M).

Clearly every hyperideal of a Γ-hyperring is a ∆-hyperideal for some ∆ ⊆ Γ.

We use I = [0, 1], the real unit interval as a chain with the usual ordering, in
which

∧
stands for minimum or infimum (inf)(or intersection) and

∨
stands for

maximum or supremum(sup) (or union), for the degree of membership. A fuzzy
subset of a given set X is a mapping µ : X −→ I. We denote the set of all fuzzy
subset of X by FS(X), that is FS(X) = {µ| µ : X −→ [0, 1] is a function}. For
µ ∈ FS(X), the level subset of µ is defined by µt = {x ∈ X| µ(x) ≥ t}. For a fuzzy
set µ of X we denote by Im(µ) the image of µ.

Definition 2.9. [20] Let (M,+) be a canonical hypergroup and µ ∈ FS(M). Then
µ is a fuzzy subpolygroup of M if for all a, b ∈ M the following conditions hold:

(1)
∧

z∈a+b

µ(z) ≥ µ(a) ∧ µ(b);

(2) µ(−a) ≥ µ(a).
By µ <FP M , we mean µ is a fuzzy subpolygroup of M . Also we denote the set

of all fuzzy subpolygroups of M , by FP (M).
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3. ν-Fuzzy Hyperideals of Γ-Hyperrings

In the sequel by M we mean a Γ−hyperring.

Definition 3.1. (i) A fuzzy subset µ of M is said to be a left (resp. right) fuzzy
hyperideal of M if and only if for all x, y ∈ M and γ ∈ Γ we have

(1) µ ∈ FP (M);
(2)

∧
z∈xγy

µ(z) ≥ µ(y) (resp.
∧

z∈xγy

µ(z) ≥ µ(x)).

By µ <FHI M , we mean µ is a fuzzy hyperideal of M . Also we denote the set
of all fuzzy hyperideals of M by FHI(M).

(ii) A fuzzy subset µ of M is said to be a left (resp. right) ν-fuzzy hyperideal of
M if and only if for all x, y ∈ M and γ ∈ Γ we have

(1) µ ∈ FP (M) and ν ∈ FP (Γ);
(2)

∧
z∈xγy

µ(z) ≥ µ(y) ∧ ν(γ) (resp.
∧

z∈xγy

µ(z) ≥ µ(x) ∧ ν(γ)).

By µ <FHIν
M , we mean µ is a ν-fuzzy hyperideal of M . Also we denote the

set of all ν-fuzzy hyperideals of M by FHIν(M).
Clearly, every fuzzy hyperideal is a ν-fuzzy hyperideal, for some ν ∈ FP (Γ), by

letting ν = χΓ, where χΓ denotes the characteristic function of Γ.

Example 3.2. Let (M,+, ·) be an hyperring and Γ be an hyperideal of M. Define
◦ : M × Γ×M −→ P∗(M) by (a, γ, b) 7→ a ◦ γ ◦ b = {z ∈ M | z ∈ a.γ.b}. Then it
is easy to verify that M is a strong Γ−hyperring. Also if I and ∆ are hyperideals of
hyperring (M,+, .) and ∆ ⊆ Γ, then I is a ∆−hyperideal of Γ−hyperring M , since
I∆M ⊆ I and M∆I ⊆ I. Now define µ and ν on I and ∆ respectively as follow:

µ(x) =
{

0.8 if x ∈ I,
0 Otherwise ν(δ) =

{
0.5 if δ ∈ ∆,
0 Otherwise

It is easy to verify that µ and ν are fuzzy subpolygroups of M and Γ respectively.
Suppose that x, y ∈ M and δ ∈ ∆ and z ∈ x ◦ δ ◦ y. We can consider two cases:

(1) x ∈ I or y ∈ I then we can say that x ◦ δ ◦ y ⊆ I and so for all z ∈ x ◦ δ ◦ y,
we have µ(z) = 0.8 ≥ 0.5 = (µ(x) ∨ µ(y)) ∧ ν(δ).

(2) x, y 6∈ I then µ(z) ≥ 0 = (µ(x) ∨ µ(y)) ∧ ν(δ).
Therefore µ is a ν−fuzzy hyperideal of M as a Γ−hyperring.

Example 3.3. Let R be a hyperring and let Mm,n (R) be the set of all matrices by
the size m×n with entries of R . Define ◦ : Mm,n (R)×Mn,m (R)×Mm,n (R) −→
P∗(Mm,n (R)) by:

A ◦B ◦ C = {Z ∈ Mm,n(R) |Z ∈ ABC, A, C ∈ Mm,n(R), B ∈ Mn,m (R)} .

Then it easy to verify that Mm,n(R) is a Mn,m(R)−hyperring. Also if I and J
are hyperideal of hyperring (R,+, .), then it is easy to verify that Mm,n(I) is a
Mn,m(J)−hyperideal of Mm,n(R) since Mm,n(I) ◦Mn,m(J) ◦Mm,n(R) ⊆ Mm,n(I)
(by Definition 2.3) and Mm,n(R) ◦ Mn,m(J) ◦ Mm,n(I) ⊆ Mm,n(I) (by Definition
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2.3). Now define µ and ν on Mm,n(I) and Mn,m(J) respectively as follow:

µ(X) =
{

4/5 if X ∈ Mm,n(I),
7/10 if X 6∈ Mm,n(I) ν(Y ) =

{
1/2 if Y ∈ Mn,m(J),
1/4 if Y 6∈ Mn,m(J)

It is routine to check that µ is a ν−fuzzy hyperideal of Mm,n(R) as an Mn,m(R)−
hyperring.

Lemma 3.4. Let µ be a ν-fuzzy hyperideal of M . Then µ(x) ≤ µ(0M ), for all
x ∈ M .

Proof. For any x ∈ M we have 0M ∈ x − x. Thus µ(0M ) ≥ µ(x) ∧ µ(−x) =
µ(x). �

Theorem 3.5.(Representation Theorem) Let µ be a fuzzy set in a Γ-hyperring M .
Then µ is a left (resp. right) ν-fuzzy hyperideal of M if and only if each level subset
µt of µ is a left (resp. right) νt-hyperideal of M , for each t ∈ [0, µ(0M ) ∧ ν(0Γ)].

Proof. Suppose that µ is a left(resp. right) ν-fuzzy hyperideal of M and let µt 6= ∅.
We have µt ⊆ M , then for any x, y, z ∈ µt, (x+ y)+ z = x+(y + z). We show that

∀a ∈ µt, ∃0M ∈ µt : a + 0M = a.

Since a ∈ µt and µt ⊆ M , so a ∈ M then there exists an unique 0M ∈ M such
that a+0M = a. Also we have 0M ∈ a−a, thus µ(0M ) ≥ µ(a)∧µ(−a) ≥ t, therefore
0M ∈ µt. Similarly for all x ∈ µt, there exists −x ∈ µt, such that 0M ∈ x− x. We
now show that

Mνtµt ⊆ µt (resp. µtνtM ⊆ µt).

Let m ∈ M,γ ∈ νt, u ∈ µt, and z ∈ mγu, then we have

µ(z) ≥
∧

z∈mγu

µ(z) ≥ µ(u) ∧ ν(γ) ≥ t;

thus z ∈ µt. Therefore Mνtµt ⊆ µt. Similarly we can prove that µtνtM ⊆ µt.
Conversely, suppose that µt is a left (resp. right) νt-hyperideal of M . We show

that for all a, b ∈ M ,
∧

z∈a+b

µ(z) ≥ µ(a) ∧ µ(b).

If a, b ∈ M , then there exist t1, t2 ∈ [0, 1], µ(a) = t1, µ(b) = t2. Put t = t1 ∧ t2,
thus a, b ∈ µt, and a + b ⊆ µt. Also if z ∈ a + b, we have µ(z) ≥ t = µ(a) ∧ µ(b),
therefore

∧
z∈a+b

µ(z) ≥ µ(a)∧µ(b). Obviously for all x ∈ M , we have µ(x) ≥ µ(−x).

Let x, y ∈ M and γ ∈ Γ and µ(y) = t1 and ν(γ) = t3. Put t = t1 ∧ t3, thus
y ∈ µt and γ ∈ νt. So xγy ⊆ µt, since µt is a νt-hyperideal. Then for all z ∈ xγy
we have

µ(z) ≥ t = µ(y) ∧ ν(γ).

Similarly, we obtain that
∧

z∈xγy

µ(z) ≥ µ(x) ∧ ν(γ). This completes the proof. �
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Example 3.6.
(1) Let I1 ⊂ I2 ⊂ ... ⊂ In ⊂ ... be a strictly increasing sequence of left (resp.

right)hyperideals of an arbitrary Γ-hyperring M and {tj}∞j=1 be a strictly increasing
sequence in [0, 1]. Define µ on M as follows:

µ(x) = tj if x ∈ Ij\Ij−1, where tj−1 < tj , j = 1, 2, ... and µ(x) = 0, ifx ∈ M\∪∞j=1Ij ,

It is easy to verify that µtj+1 ⊆ µtj and the only level subsets of M are M , and
µtj = Ij , j = 1, 2, .... Then by Theorem 3.5 µ is a left (resp. right) fuzzy hyperideal
of M .

(2) Let I1 ⊃ I2 ⊃ ... ⊃ In ⊃ ... be a strictly decreasing sequence of left (resp.
right)hyperideals of an arbitrary Γ-hyperring M and {tj}n

j=1 be a strictly decreasing
sequence in [0, 1].

Define fuzzy subset µ on V by µ(x) = tj−1, if x ∈ Ij−1\Ij where

tj−1 > tj , j = 1, 2, 3, ... and µ(x) = 1 if x ∈ ∩∞j Ij .

Again by Theorem 3.5 it is easy to verify that µ is a left (resp. right) fuzzy
hyperideal of M , since the only level subsets of M are M and µtj = Ij , j = 1, 2, ....

(3) In Example 3.3, µ is ν-fuzzy hyperideal of Mm,n(R), since µ4/5 = Mm,n(R)
and µ7/10 = Mm,n(I) and ν4/5 = ν7/10 = ν1/4 = Mn,m(J), which are hyperideals.

Lemma 3.7. If µ ∈ FHIν(M) and
∧

t∈x−y

µ(t) = µ(0M ), then µ(x) = µ(y).

Proof. We have

µ(x) ≥
∧

t∈x−y+y

µ(t) ≥ (
∧

t′∈x−y

µ(t′)) ∧ µ(y) = µ(0M ) ∧ µ(y) = µ(y).

Then, µ(x) ≥ µ(y). Similarly, we have µ(y) ≥ µ(x). Therefore µ(x) = µ(y). �

In next propositions we construct new (ν-fuzzy) hyperideals by given fuzzy hy-
perideals of Γ-hyperrings.

Proposition 3.8. Let µ be a left (resp. right) ν-fuzzy hyperideal of M and
µ(0M ) = ν(0Γ). Then the set

Mµ = {x ∈ M | µ(x) = µ(0M )}

is a left (resp. right) νµ(0M )-hyperideal of M .

Proof. A direct verification shows that Mµ is a canonical hypergroup and Mµ ⊆ M .
We show that Mνµ(0M )Mµ ⊆ Mµ. Let z ∈ xγy such that x ∈ M,γ ∈ νµ(0M ) and
y ∈ Mµ. We have µ(z) ≥ µ(y)∧ν(γ) ≥ µ(0M ). Then by Lemma 3.4, µ(z) = µ(0M ),
thus z ∈ Mµ. Similarly, we obtain Mµνµ(0M )M ⊆ Mµ. �

Proposition 3.9. Let µ be a left (resp. right) ν-fuzzy hyperideal of M , then

supp(µ) = {x ∈ M | µ(x) > 0}
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is a left (resp. right) supp(ν)-hyperideal of M .

Proof. The proof is similar to the proof of Proposition 3.5 by some modification. �

Proposition 3.10. If µ is a ν-fuzzy hyperideal of Γ-hyperring M , then

R(µ)(x) =
∨
n∈N

{
∧
{µ(z) | z ∈ nx,∃n ∈ N}}

is a ν-fuzzy hyperideal of M .

Proof. Let z ∈ x + y. We prove that

R(µ)(z) ≥ R(µ)(x) ∧R(µ)(y).

For this we have

R(µ)(z) =
∨
n∈N

{
∧
{µ(a)| a ∈ nz,∃n ∈ N}}

≥
∨
n∈N

{
∧
{µ(a)|a ∈ nx + ny, ∃n ∈ N}} (since z ∈ x + y)

≥
∨
n∈N

[{
∧
{µ(t1)|t1 ∈ nx,∃n ∈ N}} ∧ {

∧
{µ(t2)|t2 ∈ ny, ∃n ∈ N}}]

= [
∨
n∈N

{
∧
{µ(t1)|t1 ∈ nx,∃n ∈ N}}] ∧ [

∨
n∈N

{
∧
{µ(t2)|t2 ∈ ny, ∃n ∈ N}}]

= R(µ)(x) ∧R(µ)(y).

Also we have

R(µ)(x) =
∨
n∈N

{
∧
{µ(z)|z ∈ nx,∃n ∈ N}}

≥
∨
n∈N

{
∧
{µ(−z)| − z ∈ n(−x),∃n ∈ N}}

= R(µ)(−x).

Now suppose that z ∈ xγy. We prove that

R(µ)(z) ≥ (R(µ)(x) ∨R(µ)(y)) ∧ ν(γ).

For this we have

R(µ)(z) =
∨
n∈N

{
∧
{µ(a)|a ∈ nz,∃n ∈ N}}

≥
∨
n∈N

{
∧
{µ(a)|a ∈ (nx)γy, ∃n ∈ N}} (since z ∈ xγy)

≥ [
∨
n∈N

{
∧
{µ(b)|b ∈ nx,∃n ∈ N}}] ∧ ν(γ) (since µ ∈ FHI(M))

= R(µ)(x) ∧ ν(γ).

Similarly, we can prove that R(µ)(z) ≥ R(µ)(y) ∧ ν(γ). Therefore R(µ) ∈
FHIν(M). �
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Proposition 3.11. Let µ ∈ FHIν(M) and µ+(x) = µ(x) + 1− µ(0M ).
(i) Then µ+ is a ν-fuzzy hyperideal of M .
(ii) If µ(0M ) = ν(0Γ), then µ+ is a ν+−fuzzy hyperideal of M , where ν+(x) =

ν(x) + 1− ν(0Γ).

Proof. (i) Let z ∈ x + y, then we have

µ+(z) = µ(z) + 1− µ(0M )
≥ (µ(x) ∧ µ(y)) + 1− µ(0M ) (since µ ∈ FHIν(M))
= (µ(x) + 1− µ(0M )) ∧ (µ(y) + 1− µ(0M ))
= µ+(x) ∧ µ+(y).

Also we have

µ+(z) = µ(z) + 1− µ(0M )
≥ µ(−z) + 1− µ(0M ) (since µ ∈ FHIν(M))
= µ+(−z).

Now suppose z ∈ xγy, then we have

µ+(z) = µ(z) + 1− µ(0M ) ≥ (µ(x) ∧ ν(γ)) + 1− µ(0M ). (1)

We consider the following cases.

Case 1. If µ(x) ≥ ν(γ), then

(µ(x) ∧ ν(γ)) + 1− µ(0M ) = ν(γ) + 1− µ(0M )
(2)

we have µ(x) + 1− µ(0M ) ≥ µ(x) ≥ ν(γ), then

(µ(x) + 1− µ(0M )) ∧ ν(γ) = ν(γ).
(3)

Then from (1), (2) and (3) it is concluded that µ+(z) ≥ ν(γ)+1−µ(0M ) ≥ ν(γ).
Thus µ+(z) ≥ µ+(x) ∧ ν(γ).

Case 2. If µ(x) ≤ ν(γ), then

µ+(z) ≥ (µ(x) ∧ ν(γ)) + 1− µ(0M )
= µ(x) + 1− µ(0M )
= µ+(x)
≥ µ+(x) ∧ ν(γ).

Similarly to the both cases 1 and 2 we can obtain µ+(z) ≥ µ+(y) ∧ ν(γ). Thus

µ+(z) ≥ (µ+(x) ∨ µ+(y)) ∧ ν(γ).

Therefore µ+ ∈ FHIν(M).
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(ii) Let µ is a ν-fuzzy hyperideal of Γ−hyperring M and µ(0M ) = ν(0Γ) and
z ∈ x − y, for all x, y ∈ M . Obviously µ+(z) ≥ µ+(x) ∧ µ+(y). Suppose that
z ∈ xγy, for x, y ∈ M and γ ∈ Γ. Then

µ+(z) = µ(z) + 1− µ(0M )
≥ {[µ(x) ∨ µ(y)] ∧ ν(y)}+ 1− µ(0M )
= [(µ(x) + 1− µ(0M )) ∨ (µ(y) + 1− µ(0M ))] ∧ (ν(γ) + 1− µ(0M ))
= [µ+(x) ∨ µ+(y)] ∧ ν+(γ) (since µ(0M ) = ν(0Γ)).

Therefore µ+ is a ν+-fuzzy hyperideal of M . �

Proposition 3.13. Let M be a Γ-hyperring and µ ∈ FHIν(M).
(i) If f : [0, µ(0M )∨ ν(0Γ)] −→ [0, 1] is an increasing map, then µf : M −→ [0, 1]

defined by µf (x) = f(µ(x)) for all x ∈ M is a νf -fuzzy hyperideal of M , where
νf : Γ −→ [0, 1] is defined by νf (γ) = f(ν(γ)) for all γ ∈ Γ.

(ii) If µ(0M ) = ν(0Γ) and µ̃ : M −→ [0, 1] defined by µ̃(x) = µ(x)µ(0M ) for
all x ∈ M is a ν̃-fuzzy hyperideal of M , where ν̃ : Γ −→ [0, 1] is defined by
ν̃(γ) = ν(γ)ν(0Γ) for all γ ∈ Γ.

Proof. (i) Let z ∈ x + y then µ(z) ≥ µ(x) ∧ µ(y). Since f is increasing then,
f(µ(z)) ≥ f(µ(x)) ∧ f(µ(y)), therefore µf (z) ≥ µf (x) ∧ µf (y). Also we have

µf (z) = f(µ(z)) ≥ f(µ(−z)) = µf (−z).

Suppose that z ∈ xγy, then we have

µ(z) ≥ (µ(x) ∨ µ(y)) ∧ ν(γ) (since µ ∈ FHIν(M))
=⇒ f(µ(z)) ≥ [f(µ(x)) ∨ f(µ(y))] ∧ f(ν(γ)) (since f is increasing)
=⇒ µf (z) ≥ (µf (x) ∨ µf (y)) ∧ νf (γ).

Therefore µf ∈ FHIνf
(M).

(ii) Let z ∈ x + y then we have

µ̃(z) = µ(z)/µ(0M )
= (1/µ(0M ))µ(z)
≥ (1/µ(0M ))(µ(x) ∧ µ(y)) (since µ ∈ FHIν(M))
= (µ(x)/µ(0M )) ∧ (µ(y)/µ(0M ))
= µ̃(x) ∧ µ̃(y).

Also we have

µ̃(z) = (1/µ(0M ))µ(z)
≥ (1/µ(0M ))µ(−z) (since µ ∈ FHIν(M))
= µ̃(−z).
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Suppose that z ∈ xγy, then we have

µ̃(z) = (1/µ(0M ))µ(z)
≥ (1/µ(0M ))[(µ(x) ∨ µ(y)) ∧ ν(γ)] (since µ ∈ FHIν(M))
= [µ̃(x) ∨ µ̃(y)] ∧ ν̃(γ).

Therefore, µ̃ ∈ FHIν̃(M). �

In the next theorem, we prove that under certain conditions, fuzzy hyperideal of
Γ-hyperring is two-valued.

Theorem 3.14. Let µ ∈ FHIη′(M), η = 1/2η′ and µ be maximal in the set
X = {ν ∈ FHIη(M) | ν(x) = 1, ∃x ∈ M} under conclusion. Then µ is two-valued
fuzzy hyperideal of M and it takes just 0 and 1.

Proof. Clearly µ ∈ FHIη(M). We know that there exists x ∈ M such that µ(x) =
1, thus µ(0M ) ≥ µ(x) = 1, hence µ(0M ) = 1.

Let x ∈ M be such that µ(x) 6= 1. We show that µ(x) = 0. Suppose that
there exists a ∈ M such that 0 < µ(a) < 1. Define ν : M → [0, 1] by ν(x) =
1/2(µ(x) + µ(a)), for all x ∈ M . We show that ν ∈ FHIη(M). Suppose that
z ∈ x + y, then we have

ν(z) = 1/2(µ(z) + µ(a))
≥ 1/2[(µ(x) ∧ µ(y)) + µ(a)] (since µ ∈ FHIη(M))
= 1/2[(µ(x) + µ(a)) ∧ (µ(y) + µ(a))]
= 1/2(µ(x) + µ(a)) ∧ 1/2(µ(y) + µ(a))
= ν(x) ∧ ν(y).

Also it is easy to verify that if z ∈ M , then ν(z) ≥ ν(−z). Now suppose z ∈ xγy,
we prove ν(z) ≥ ν(x) ∧ η(γ). We have

ν(z) = 1/2(µ(z) + µ(a))

≥ 1/2[(µ(x) ∧ η
′
(γ)) + µ(a)] (since µ ∈ FHIη′(M))

= 1/2[µ(x) + µ(a)] ∧ 1/2[η
′
(γ)) + µ(a)]

= ν(x) ∧ (η(γ) + 1/2µ(a))
≥ ν(x) ∧ η(γ).

Similarly we can prove that ν(z) ≥ ν(y) ∧ η(γ). Therefore ν ∈ FHIη(M).
Hence, by Proposition 3.10, ν+ ∈ FHIη(M). Also we have

ν+(x) = ν(x) + 1− ν(0M )
= 1/2(µ(x) + µ(a)) + 1− 1/2(µ(0M ) + µ(a))
= 1/2(µ(x) + 1). (since µ(0M ) = 1)

So we have
ν+(0M ) = 1/2(µ(0M ) + 1) = 1/2(1 + 1) = 1.
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Thus ν+ ∈ X. Also we have

ν+(0M ) = 1 > ν+(a) = 1/2(µ(a) + 1) > µ(a) 6= 1.

Hence ν+ is non-constant and ν+(a) > µ(a). So µ is not maximal, this is a
contradiction. Therefore there is not any a ∈ M such that 0 < µ(a) < 1. �

4. Fuzzy Product of ν-Fuzzy Hyperideals

Suppose that (Mi,+i)i∈I is a family of canonical hypergroups. Then
∏
i∈I

Mi =

{(xi)i∈I | xi ∈ Mi}, the cartesian product of (Mi,+i)i∈I , with following hyperop-
eration is a canonical hypergroup:

(xi)i∈I + (yi)i∈I = {(zi)i∈I | zi ∈ xi +i yi}.

It is easy to verify that if Mi is a Γi-hyperring, then
∏
i∈I

Mi is
∏
i∈I

Γi-hyperring

by the following rule:

◦ : (
∏
i∈I

Mi)× (
∏
i∈I

Γi)× (
∏
i∈I

Mi) −→ P ∗(
∏
i∈I

Mi),

which is defined by

(xi)i∈I ◦ (γi)i∈I ◦ (yi)i∈I = {(zi)i∈I | zi ∈ xiγiyi,∀i ∈ I}.

Notation. In the next proposition, by
∏
i∈I

µi, we mean the fuzzy product of µis,

which is defined as follows:

(
∏
i∈I

µi)((xi)i∈I) =
∧
i∈I

µi(xi).

In the next proposition we describe fuzzy hyperideals of product of Γ-hyperrings.

Proposition 4.1. Let µi be νi-fuzzy hyperideal of Mi as Γi-hyperring (∀i ∈ I).
Then

∏
i∈I

µi is a
∏
i∈I

νi- fuzzy hyperideal of
∏
i∈I

Mi as
∏
i∈I

Γi-hyperring.

Proof. Suppose (zi)i∈I ∈ (xi)i∈I + (yi)i∈I . Then zi ∈ xi +i yi, so µi(zi) ≥ µi(xi) ∧
µi(yi), for all i ∈ I. Also we have

(
∏
i∈I

µi)((zi)i∈I) =
∧
i∈I

µi(zi)

≥
∧
i∈I

(µi(xi) ∧ µi(yi)) (since µi ∈ FHIνi(Mi))

= (
∧
i∈I

µi(xi)) ∧ (
∧
i∈I

µi(yi))

= (
∏
i∈I

µi)((xi)i∈I) ∧ (
∏
i∈I

µi)((yi)i∈I).
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Also it is easy to verify that (
∏
i∈I

µi)((xi)i∈I) ≥ (
∏
i∈I

µi)(−(xi)i∈I).

Suppose that (zi)i∈I ∈ (xi)i∈I(γi)i∈I(yi)i∈I , then we have
zi ∈ xiγiyi, ∀i ∈ I

=⇒ µi(zi) ≥ (µi(xi) ∨ µi(yi)) ∧ νi(γi), ∀i ∈ I (since µi ∈ FHIνi
(Mi))

=⇒
∧
i∈I

µi(zi) ≥
∧
i∈I

[(µi(xi) ∨ µi(yi)) ∧ νi(γi)]

=⇒ (
∏
i∈I

µi)((zi)i∈I) ≥ [(
∏
i∈I

µi)((xi)i∈I) ∨ (
∏
i∈I

µi)((yi)i∈I)] ∧ (
∏
i∈I

νi)((γi)i∈I).

Therefore
∏
i∈I

µi is a
∏
i∈I

νi-fuzzy hyperideal of
∏
i∈I

Mi. �
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