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EXACT AND APPROXIMATE SOLUTIONS OF FUZZY LR
LINEAR SYSTEMS: NEW ALGORITHMS USING A LEAST
SQUARES MODEL AND THE ABS APPROACH

R. GHANBARI, N. MAHDAVI-AMIRI AND R. YOUSEFPOUR

ABSTRACT. We present a methodology for characterization and an approach
for computing the solutions of fuzzy linear systems with LR fuzzy variables.
As solutions, notions of exact and approximate solutions are considered. We
transform the fuzzy linear system into a corresponding linear crisp system and
a constrained least squares problem. If the corresponding crisp system is in-
compatible, then the fuzzy LR system lacks exact solutions. We show that the
fuzzy LR system has an exact solution if and enly if the corresponding crisp
system is compatible (has a solution) and the solution of the corresponding
least squares problem is equal to zero. In this case, the exact solution is de-
termined by the solutions of the two corresponding problems. On the other
hand, if the corresponding crisp system is compatible and the optimal value
of the corresponding constrained least squares problem is nonzero, then we
characterize approximate solutions of the fuzzy system by solution of the least
squares problem. Also, we characterize solutions by defining an appropriate
membership function so that an exact solution is a fuzzy LR vector having the
membership function value equal to one and, when an exact solution does not
exist, an approximate solution is a fuzzy LR vector with a maximal member-
ship function value. We propose a class of algorithms based on ABS algorithm
for solving the LR fuzzy systems. The proposed algorithms can also be used
to solve the extended dual fuzzy linear systems. Finally, we show that, when
the system has more than one solution, the proposed algorithms are flexible
enough to compute special solutions of interest. Several examples are worked
out to demonstrate the various possible scenarios for the solutions of fuzzy LR
linear systems.

1. Introduction

Linear systems arise from many areas of science and engineering. For real world
problems, some parameters of a linear system may be uncertain. Therefore, various
types of fuzzy linear systems and their solutions have attracted much interest in
recent years. An approach for solving a particular fuzzy linear system (FLS) would
oftenbe specific to the way the solution is characterized. Solutions of several kinds
of fuzzy linear systems under various assumptions have been proposed in recent
years (see [3], [4], [6], [10], [11], [13], [18], [23], [24], as examples).
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A particular type of fuzzy linear systems is defined to be:

Az = b, (1)

where the coefficient matrix A € R™*"™, m < n, is crisp, by,x1 and Z,x; are
fuzzy vectors. Friedman et al. [10] use an embedding method for solving an special
case of (1) when A is a square (m = n) nonsingular matrix. They introduce new
notions for solutions of a square FLS (strong and weak solutions) and transform
the FLS to a crisp square system. In their method, the inverse matrix is used to
solve the FLS.
Here, we develop an embedding method of fuzzy LR linear system (FLRLS; fuzzy
linear system with LR fuzzy variable and LR fuzzy right hand side) for the system,
in its general setting, where A € R™*" m < n, binx1 afid @ny1 are LR fuzzy
vectors (see Definition 2.13). Theses types of systems are of particular interest,
as the LR fuzzy numbers may be considered for use in real world problems (see
[4, 7, 15, 16, 19, 25]).
First, we develop an adaptation of the approach in-Friedman et al. [10] to nonsquare
LR systems. Then, we introduce a new notion of (exact-er approximate) solution for
the FLRLS after transforming the FLRLS into a.corresponding crisp linear system
and a constrained least squares problem. We show that if the corresponding crisp
system is incompatible, then FLRLS lacks any exact solution; in such a case, we do
not consider any approximate solution for the system either. We further show that
the fuzzy LR system has an exact solution if and only if the corresponding crisp
system is compatible and the solution of the corresponding least squares problem
is equal to zero. In this case, an exact. solution of the FLRLS can be computed
using the extension principal (ifsm= n and A is a square nonsingular matrix, then
the exact solution computed by our method is equivalent to the strong solution
computed by Friedman et al. [10]). On the other hand, if the corresponding crisp
system is compatible and the optimal value of the corresponding constrained least
squares problem is‘nonzero,:then no exact solution exists. In this situation, it is
reasonable to seek approximate solutions, which, in some meaningful sense, would
minimize the residue of the systems of equations. For crisp systems, the need for
such approximate solutions arise from many “data fitting” applications and our
suggested approach for computing such solutions is widely practiced. The most
common model foriminimization of the residue is the least squares model ( see [5]
and [14] for excellent treatments of the least squares model).
Thus, here, we introduce and compute approximate solutions of FLRLS when an
exact solution dose not exist. It should be pointed out that an idea of using a
constrained. least squares problem was also used by Abramovich et al. [4] on a
different type of FLS.
There are many methods for solving the corresponding crisp linear system. For
several reasons, we use an ABS algorithm to find all solutions of the corresponding
crisp linear system. Since there is a variety of the ABS algorithms within ABS
class, then our approach would offer a variety of algorithmic techniques for various
possible versions of the FLRLS. Moreover, when there are more than one solution,
then we will see that certain specific solutions of interest may be computed using
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a particular algorithm within the class.

ABS methods were first introduced by Abaffy et al. [1], based upon Egervary’s rank
reducing algebraic process [8]. ABS methods comprise a large class of methods that
are used for solving linear algebraic systems, nonlinear algebraic equations, linear
least squares problems, optimization problems and Diophantine equations (see [2],
[9], [12], [20, 21, 22]). Using a particular ABS method in our proposed algorithm,
we would be able to adapt the algorithm to solve special cases of FLS to obtain a
specific solution as well (e.g., solution with the least Euclidean norm in the solution
space; see Section 2.2). Also, with a small modification, we would be able to extend
our proposed algorithm to solve an extended dual fuzzy linear system [13].

In Section 2, we give the necessary definitions, some properties of fuzzy arithmetic
and basic aspects of ABS algorithms. We introduce the leastisquares model and
develop our proposed algorithm with the corresponding results and present relevant
discussions in Section 3. We conclude in Section 4.

2. Preliminaries
Here, we give some basic definitions and results concerning fuzzy numbers in
Section 2.1, followed by a brief description of basic steps of the ABS algorithms for
solving liner equations in Section 2.2.

2.1. Fuzzy Numbers. A fuzzy number is a fuzzy quantity A (see [19]) that rep-
resents a generalization of a real number.7. Intuitively, u4(x) should be a measure
of how good p4(z) “approximates” r,and certainly one reasonable requirement is
that pa(r) =1 [19].

Definition 2.1. [19] A fuzzy number isiafuzzy quantity A that satisfies the fol-
lowing conditions:

(1) pa(z) =1 for exactly one z.
(2) The support {z : pa(z) >0} of A is bounded.
(3) The a-cuts.of Atare closed intervals.

Remark 2.2. There are several other definitions for fuzzy number in the literature
( see [25]) which differ from the above definition.

Proposition 2.3. The followings hold [19]:

(1) Reallnumbers are fuzzy numbers.

(2) A fuzzy number is a convex fuzzy quantity.

(3) .A fuzzy mumber is upper semicontinuous.

(4) If A is a fuzzy number with pa (r) = 1, then p4 is nondecreasing on
(—o0,r ]| and nonincreasing on (7,00 |.

Theorem 2.4. [19] If A and B are fuzzy numbers, then so are A+ B and —A,
with A+ B and —A as defined in [19].

Definition 2.5. [7] The decreasing map L : Rt — [0,1] is a shape function if the
followings hold:

L(0) =1,

L(1) =0,

0<L(z)<1, =x#0,1.
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Definition 2.6. A fuzzy number Ais of LR-type if there exist shape functions L
(for left), R (for right) and scalars a > 0, 8 > 0 with

{L(%, r<a,

pi(r) = Iz(x_a)’ ¢ >a.

B

The mean value of fl,Na, is a real number, and «, # are called the left and right
spreads respectively. A is denoted by (a,a, 8); p. A crisp number “a“ is specified
to be (a,0,0)LR.

Definition 2.7. A fuzzy number A = (m,a,a)r, is a symmetric fuzzy number.

Remark 2.8. According to Definition 2.1, throughout the paper, we assume that
all the supports of LR-type fuzzy numbers are bounded.

Note that there are many candidates for a shape function; for example, max(0, 1—
z)? and max(0,1 — zP), where p > 0.

Example 2.9. Let M = (0,1,2)1r, L = max(0,1 —&) and R = max(0,1 — 22).
Then,
_ T+ 1, QTE[—].,O],
ir () = { 142, ze10,2).
Definition 2.10. M = (m,, B) p isva triangular fuzzy number if L = R =
max(0,1 — z).

Theorem 2.11. [25] Let M = (m, o, B) g N = (n,v,8) ;. r and X € RY. Then,
(1) AM = (Am, A, AB) 1 -
(2) _~M :~(_maﬁaa)LR'
(3) MN=(m+n,a+58+08) 5

Note 2.12. Here, we denote the set of LR fuzzy numbers by F (]Rl)LR.

Definition 2.13. =(&,, Zs,... ,in)T, denoted by € F(R™) g, is called a fuzzy
vector where, Z; € F(R' )z r,i=1,...,n.

2.2. Basic ABS Algorithms. ABS methods, in their general forms, have been
developed by Abaffy, Broyden and Spedicato [1]. Consider the system of linear
equations

Az = b, (2)

where A € R™*" b € R™ and rank(A) = m. Let A = (a1,...,an)",a; € R*,i =
1,...omand b= (by,...,by,)7T. Also, let A; = (ay,...,a;) and b = (by, ... b;)7T.
Assume z1 € R" arbitrary and H; € R"*" Spedicato’s parameter, arbitrary and
nonsingular. Note that for any * € R* we can write * = x; + H{ ¢ for some
q € R™. The ABS class of methods contains direct iterative methods for computing
the general solution of (2). In the beginning of the ith iteration, i > 1, the general
solution of the first ¢ — 1 equation is at hand. We realize that if x; is a solution for
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the first ¢ — 1 equations and if H; € R**" with rank(H;) =n — i + 1, is so that
the columns of H] span the null space of AT |, then

r=x;+H ZT q
with arbitrary ¢ € R", forms the general solution of the first i — 1 equations. That
is, with

H;A; =0,

we have,

ATz =pl1),
Now, since rank(H;) = n —i + 1 and H! is a spanning matrix for null(AT) by
assumption (one that is trivially valid for ¢ = 1), then letting

with arbitrary z; € R, Broyden’s parameter, we have A;fr_lpi = 0/and

r(a) = x; — ap;,

for any scalar a solves the first i — 1 equations. We can set @ = a; so that
x;41 = x(a;) solves the ith equation as well. If wedet
aiTa;i — bl
a; = T~ T
a; Pi

with assumption a! p; # 0, then
Ti+1 = Ti — Q4P;,

is a solution for the first i equations. Now;, to complete the ABS step, H; must be
updated to H;y1 so that H;11A4; = 0. It will suffice to let

Hi = H; —up], (3)
and select u; and vy so‘that Hjiq1a; = 0,5 = 1,...,i. The updating formula (3)
for H; is a rank-one correction to H;. The matrix H; is generally known as the
Abaffian. The ABS'methods usually use u; = H;a; and v; = HiTwi/wiTHiai, where
w;, Abaffy’s parameter,is an arbitrary vector satisfying

wiTHiai 75 0.
Thus, the updating formula can be written as:
HiainHi
Hiy.=H,— —————.
i+1 i wZﬂHlal

We now give the general steps of an ABS algorithm [1, 2]. We have given the
steps of the algorithms, since, later on, we make specific use of the parameters for
computing special solutions from amongst the general solution. Below, ;1 denotes
the rank of A; and hence the rank of H;y; equals n —r;y;.

We note that after the completion of the algorithm, the general solution of (2),
if compatible, is written as x = z,;,+1 + H£+1q, where ¢ € R” is arbitrary. Below,
we list certain properties of the ABS methods [2].
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Algorithm 1 ABS Algorithm

Step 1: Choose z; € R", arbitrary, and H; € R"*" arbitrary and nonsingu-
lar. Set i =1, ry =0.

Step 2: Compute 7; = aZTa:i — b; and s; = H;a;.

Step 3: If (s; = 0 and 7; = 0) then let z;11 = z;, Hiy1 = H;, ri41 = r; and
go to Step 7 (the ith equation is redundant). If (s; = 0 and 7; # 0) then
Stop (the ith equation and hence the system is incompatible).

Step 4: {s; # 0} Compute the search direction p; = H] z;, where z; € R is
an arbitrary vector satisfying z] H;a; = z1's; # 0. Compute a; = 7;/al p;
and let ;41 = x; — a;p;.

Step 5: Update H; to H;41 by:

HiaiwlTHi

wiTHiai ’
where w; € R" is an arbitrary vector satisfying w] s; # 0.

Step 6: Let r;0q =7; + 1.

Step 7: If i = m then Stop (z,,41 is a solution) else let i = i + 1 and go
to Step 2.

Hi1 = H; —

e The direction search vectors py, ..., p; are linearly independent.

e The set of directions py, ..., p; together with independent columns of H, 5_1
form a basis for R™.

e H;a; # 0 if and only if a; is linearly independent of aq,...,a;—1. Equiva-
lently, H;a; = 0 if and only-if a; is linearly dependent of ay,...,a; 1.

e Rank(H;41) = n=r;+q1, where riy 1 = rank(4;).

e Since rank(A) = rpm,+1 then the general solution of (2) is written as =z =

Tmi1 + H g, where ng(n—rmﬂ) is a matrix with n — rp, 41 independent
columns.and ¢ € R"~"+1 ig arbitrary. Note that since wiTHiH =0, then
any row.of H; 1 corresponding to a nonzero component of w; is a dependent
row and can be removed in Step 5. The matrix H is the final Abaffian
obtained by removal of a dependent row at every step.

eThe Huang’s algorithm [2] is a special ABS algorithm with, Spedicato’s
parameter, H; = I in Step 1, z; = a; in Step 4, w; = ai/aiTHiai. If, in
addition, we let 1 = Aa; where X is a scalar then the sequence of iterates
Z2,. .., Tmt+1 generated by Algorithm 1 has the minimal Euclidean norm
amongst all solutions of the corresponding subsystems [2]. Also, we have
the same property when we use Algorithm 1 by setting H; = I in Step
1, 2; = H;a; in Step 4, w; = 2;/2'z; (resulting in the modified Huang’s
algorithm; see [2]) and z1 = Aa1 where A is a scalar. It is shown that
the modified Huang’s algorithm is more stable numerically than Huang’s
algorithm [2].
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3. Fuzzy LR Linear Systems

In many applications, fuzzy LR numbers are used to describe the models, because
fuzzy LR numbers increase computational efficiency without limiting the generality
beyond acceptable limits [25]. Thus, we focus on solving fuzzy LR systems as
defined below.

Definition 3.1. The system,
A7 = b, (4)

eR™" m<n,and b€ F(R™)Lr, an LR fuzzy vector, are

given and # € F(R") g is an unknown LR fuzzy vector (of the same LR type as b)
to be found, is called a fuzzy LR linear system (FLRLS).

where A = [a], . .

~ - ~ T
In Definition 3.1, let b = (bl,...,bm) , & = (&1,...,%)" and aT be the ith

row of A. We can reformulate (4) in the form,
ald=b;, i=1,0..,my

or,
n ~
Zai]’fﬁj:bi, .=1,...,m. (5)
j=1
Let B; = {j :ai; <0} and B;f = {j:ai; > 0}. Then, from (5) we have,

Z ai]’.’i”j + Z ai]’.’i”j = Ei, 1=1,...,m. (6)
Jj€EB; j€B;F
Let &; = (xj, 0 ,3;), p- Then, we can write (6) as follows:
Z (o (.’L”j,Oéj,Bj)LR-F Z Qjj (.’L”j,Oéj,Bj)LR:bi, 1=1,...,m.
jeBf JEB;

From Theorem-2.11, we obtain,

> aijry, odwgag, Y aigfy |+ Y aizi = Y aigB— Y aija

jeBt jeBf jeBt JEB] JEB; JEB;

Let b; = (b;,b},b7), - Then,

iy Uiy Uy

E aijwj—i— E Qi Ty, E AijQj—

jeB} JEB; jeBf

Z aijﬁj, Z ai]ﬂj— Z 7718 = (bi’bé’bg)LR’ i:l,...,m.

- — . + . —
]EBi ]EBi ]EBi LR

LR
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So, we must have,

n
E ai]’m]’:bi, 7,:1,...,m,
j=1

z;eER, j=1,...,n,
and simultaneously,

§ § — pl -
i — ai]ﬂj = biv 1= 1,. ..,y

jeBf JEB;

— KT —
Z ai]ﬂj— Z 7718 _bi7 1= 1,...,m, (9)
JE€B jEB;

aj,f; >0, j=1,...,n.

Therefore, the system (4) is equivalent to the crisp linear systems (8) and (9).
Now, define two matrices,

1.} oai, ai >0, . i, ai <O,
[B ]ZJ N { 07 Qg < 07 [B ]Z] y { 07 Ajj Z 07

foralli=1,...,mand j =1,...,n. Also, let x = (a:l,...,a:n)T,b: (bl,...,bm)T,
a=(ay,....,an)T, 8= (Br,...,0.)7, b= (@,...,00)T and b" = (b7,...,b")7.
Then, the systems (8) and (9) are respectively written in the matrix forms,

Az = b, (10)

Gl-lv] 5] w

T _
Note 3.2. For more abbreviation, denote f = (aT,BT)T, bs = (blT,b’T) , A=
Bt —-B—
_B- Bt
sponding fuzzy vector z € F(R™)r by = (%4, ... ,i“n)T with Z; = (2, a;,8:),1 <
1 < n.

and

Bt <B=
B~ Bt

], and for the vector z and positive vectors «a, 3 define the corre-

Now, we give the fundamental theorem for the fuzzy LR linear system.

Theorem 3.3. (Fundamental Theorem of FLRLS) Let A € R™*" and b € F(R™).
Then, © = (xl,...,a:n)T ER” and f = (aT,ﬂT)T are solutions of (10) and (11)
respectively if and only if the corresponding T is a solution of (4).

Corollary 3.4. Let S; be the set of solutions of (10) and S, be the set of solutions
of (11). Then, Vz € S;,Vf = (aT,BT)T € S», the corresponding # is a solution of

(4)-
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3.1. Solution Strategy. According to the Fundamental Theorem of FLRLS (The-
orem 3.3), for solving (4), we must solve systems (10) and (11). The system (10) is
a crisp linear system and there are various methods for solving it. If the system (10)
lacks solution, then the corresponding fuzzy system does not have any solution. To
find the general solution of (10), we make use of the class of ABS algorithms [1].
Our reasons for using the ABS approach are:

(1) Not only ABS algorithms find all solutions of a crisp linear system but
also Spedicato et al. in [21] reported that on some classes of significant
problems, ABSPAK (a mathematical package using ABS algorithm) codes
have better performances in both accuracy and speed than the codes in
LAPACK. Therefore, the implementation of the proposed algorithm using
the ABS approach is expected to be more effective than the extended ap-
proach introduced by Friedman et al. [10].

(2) We can obtain specific solutions by a proper choice of/parameters of an
ABS algorithm. For example, the unique-solution with minimal Euclidean
norm in the solution space (see Section 2.2) would be an interesting one,
whenever more than one solution exist.

Proceeding with the solution of the system (4), after solving (10), we need to solve
the system (11). In (11), we have A > Orand b > 0. So we must find positive

solutions of a nonnegative crisp system. If m = n and A > 0 then a! > 0 if only
if A is a general permutation matrix/[17]. Friedman et al. [10] gave an example

with coefficient matrix 4 > 0, a! # 0.and Ay # 0, for which a positive solution
does not exist. Thus, they introduced the concept of weak solution of the fuzzy
linear system.

Here, we introduce a new notion/of fuzzy LR solution for (4). Suppose that Z is so
that its mean value z is a solutionof (10). Then, we define,

ry = ||B+a—B—ﬁ—bl||§+||—B—a+B+5—br||j. (12)

If rz = 0, theti (o', BT)T is a solution of (11), and hence # = (z, a, 3) is a solution
of (4). We refer to.such a solution as an exact solution.

Definition 3.5. If\w is so that Az = b, a and § are so that (12) evaluates to be
zero them the corresponding & = (z, «, 8) g is said to be an exact solution of (4).

Note 3.6. Definition 3.5 is equivalent to the definition given by Friedman et al.
[10],'when A is restricted to a nonsingular matrix. In this case, one can compute
an exact solution using the extension principle (see [10]).

But, if rz > 0 for all # € F(R")rg, then the system (11) lacks a solution, and
hence FLRLS lacks an exact solution. In this case, in analogy with the case of
crisp least squares problem, it would be appropriate to specify a fuzzy LR vector
as an approximate solution, using the minimizer of (12) as the spreads and the
mean value of its components as a solution of the crisp system (10). We note that
this solution would be, in general, different from the weak solution considered by
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Friedman et al. [10] in the special nonsingular case. Thus, we have the following
definition of an approximate solution.

Definition 3.7. If z is so that Az = b, and f = (a”,87)T = argmin{r;|j €
F(R™)rr} so that (12) yields to be nonzero, then the corresponding Z(z, a, 8) LR is
said to be an approximate solution of (4).

Note that in [10], & = A7 'h is computed first, and then it is checked whether &

is a fuzzy vector. If Z is not a fuzzy vector then a corresponding weak solution is
constructed from . Our approach here is different from [10]. We first solve (10).
If (10) lacks a solution, then it is apparent that the original fuzzy system (4) does
not have any solution. On the other hand, when (10) has a solution, then we find a
fuzzy LR vector with a minimal value in (12). If the minimalvalue of (12) is zero
then we have an exact solution; otherwise, we have an approximate solution. We
realize that in our approach there is no need to check whether a solution is fuzzy,
as required by the approach in [10].
We next introduce an algorithm for solving FLRLS, to. compute exact or approx-
imate solutions. We must find a fuzzy LR vector in F(R™)z g, say ¢, such that ry
(as defined in (12)) is minimal and the mean value.of components of § is a solution
of the crisp system (10). Thus, making use of the Fundamental Theorem of FLRLS
(Theorem 3.3), after solving (10), we would need tosolve the following constrained
least squares problem,

z=min {||Ba~ B~ AW Fl-Ba + B3 1", }
s.t.
a = (al,...,an)T >0,8= (ﬂl,---,ﬂn)T > 0.

Remark 3.8. For the above optimization problem, we may consider the numbers
aj,B; for j = 1,...,n to have small positive values (e.g., 10729). In this case, the
fuzzy numbers (z;, a;, 3;)T , are very close to the crisp numbers z;. Thus, the user
can define a positive parameter, €, such that a;,3; > € for all j. By this setting, it
is guaranteed that each fuzzy number has left and right spreads as much as € (see
Definition 2.6). Therefore, instead of the above optimization problem, we consider
the following optimization problem,

z= min{”B*a -B p-— bl”; +[-B a+ B*j — er;}

S.t. (13)
o= (al,...,an)T >ce, = (Bl,...,ﬂn)T > ce,

wherere= (1,...,1)7 € R* and € > 0 is a user-defined parameter.

We observe that an exact solution exists if and only if (13) has a solution with
z* =0 (in this case, a solution of (13) is a solution of the system (11)); otherwise,
system (11) lacks an exact solution and thus approximate solutions can be com-
puted for the FLRLS. In any case, a solution (approximate or exact) is determined
by a corresponding # composed of any solution of the crisp system (10) and the
linear least squares problem (13).
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3.1.1. A Fuzzy Concept for LR Solutions. It is possible to characterize the
set of solutions of FLRLS as a fuzzy set. For this, we propose defining exact and
approximate solutions based on a proposed membership function. We introduce a
new notion of fuzzy LR solution for (4). Let § = (yi,ai,ﬂi)f}z ,1 < i < n, where
y is a solution of (10). Define the fuzzy set of LR solutions of (4) by the following
membership function,

. g(ry), 0<ry<wu,Ay=0,

{ 0, 0., (14)
where § € F(R")rr and ry is as defined in (12), v > 0 is a user-defined parameter
and ¢ : [0,u] — [0,1] is a strictly decreasing linear function with ¢g(0) = 1 and
g(u) = 0. An example function g may be:

{ 1-L, 0<r<u,

0, O.Wx (15)

g(r) =
(We note that other appropriate functions g with the specified conditions (14) may
also serve as membership functions, but we would make use of (15) in our experi-
ments at the end of this section.)
In this definition, S, the set of LR solutions of (4);is a fuzzy set and each § €
F(R™)rR is seen as a solution of FLRLS./Also, the solution set of FLRLS at the
a-level is defined to be S, = {Z|us (Z) = al.

Note 3.9. 7 is an exact solution of FLRLS if and only if 7z = 0 (see Definition
3.5), or equivalently g(rz) = 1 or ug(Z) = 1.

Since ps(§) = 1 impliesithat y is an exact solution of FLRLS, then it would
be appropriate to find solutions of FLRLS in F(R™),z with maximum membership
function value. In<other words, to solve FLRLS, we need to solve the following
problem,

max J),
jemmax s ()

or equivalently;
max T5),
ge]F(R")LRg( 7)
where 7 is defined as in (12). Next, we can redefine an exact solution of FLRLS
in the following context.

Definition 3.10. # € F(R").g is an exact solution of FLRLS if us () = 1 (or
equivalently & € Sy).

It is now apparent that if S; = (), then FLRLS lacks an exact solution. In
other words, for all § € F(R™)r we have r; > 0 (as defined in (12)), and so, the
system (11) lacks an exact solution. In this case, it would be useful to find a fuzzy
LR vector with the maximum ug value. We can thus characterize an approximate
solution as being a fuzzy LR vector with the maximum ug value as follows.
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Definition 3.11. We say that Z is an approximate solution of FLRLS if Z € S, ..,
where amayx = max {a|S, # 0}. We call such an # an approximate solution at the
Qmax-level.

3.1.2. Finding General Solution of FLRLS. We have seen that, for solving
FLRLS, we need to solve a crisp linear system and a constrained least squares
problem. Here, we propose the following algorithm to solve the FLRLS or equiva-
lently find the general solution (either exact or approximate).

Algorithm 2 Find general solution of FLRLS.

Step 0: (Initialization) Give u > 0 for (15) and £ > 0 for (13).

Step 1: Find general solution of (10) by an ABS algorithm and let Saps be
a set of all solutions of (10). If Sips = 0 then stop (the fuzzy linear
system (4) does not have any solution; see Definitions 3.10 and 3.11).

Step 2: Solve the optimization problem (13) and let.(«,3) be an optimal
solution of (13) with optimal value z*.

Step 3:

If 2* =0 then
FLRLS has exact solutions and

S:{j | j:(ji)%Raji:(ziaaiaﬂi)alSisnaxESABS}a

is the set of all exact solutions
else
FLRLS has approximate solutions and

Seey =42 | &= (%)L & =@, 0;,8;),1<i<n,x €Saps},

is the set of all g(z*)-levelssolutions of FLRLS, where the function g(z) is
as defined in (15).
Step 4: Stop.

Remark 3.12. Insystem (10), Ayxn, m < n, is a crisp matrix. If rank(A) =m =
n, then system(10) has a unique solution. If, however, rank(A) < m < n then
system (10) may either lack a solution or have infinitely many solutions (whenever
there is one'solution). Using an ABS Algorithm, we can recognize that system
(10) is compatible or not (see Step 1 in Algorithm 2 and Step 3 in Algorithm 1).
If system (10) is'incompatible, then based on Definitions 3.10 and 3.11, the fuzzy
linear system (4) lacks any solution (either exact or approximate). But, if system
(10) isrcompatible then, using Algorithm 1, we can obtain the general solution of
system (10).

3.2. Further Constraint Specifications. Algorithm 2 is flexible enough to be
modified for special applications easily. For example, suppose the user wants to
impose a; , 8; < M; or decides to have some LR fuzzy numbers to be approximately
symmetric, then the user adjoins appropriate constraints to the constrained least
squares problem (13); e.g., |a; — 3;] < 107* for some j, j € {1,...,n}. Also, as
mentioned in Remark 3.8, the user can control the right and left spreads of each
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fuzzy number delicately by adding «;, 8; > €; for some j, j =1,...,n, to (13).
Other constraints can also be interesting. Assume the user wants the measure
of fuzziness of some fuzzy numbers to be smaller than certain predefined positive
numbers N;. In this case, the user adds a; + 3; < N; to the constrained least
squares problem (13).

So, one can change the constrained least squares problem in Step 2 of Algorithm
2 to:

2 =min {||Bta= B8~V +|-B-a+ B8 -}
s.t. (16)

a = (ala"'aa’n)T ZEC,B: (617"'7/8n)T 2867
a, B €C,

where C' is the feasible space defined by user’s specified conditions. So, we can
change Step 2 in Algorithm 2 to “Solve the optimization problem (16) and let
(a, B8) be an optimal solution of (16)”.

To illustrate the effectiveness of our approach, we discuss the following two exam-
ples.

Example 3.13. [10] Consider,

i‘l - i‘2 - (13 ]-7 ]-)LR
F1 + 3F3=(50L,2) L.x.

Case 1: We solve the following two problems using v = 4 in (15) and ¢ = 102
in (13) or (16):

z = min [(a1 + By — 1)2 + (81 + as — 1)2

2 N + (01 + 302 — 1)” + (b1 + 32 — 2)°
T1 + 3T2 =5, st

ajaﬂjzga j=12

Then, we‘obtain &y = 2,75 = 1 and 2* = 0 with ay = 0.625,8; =
0.875, g = 0.125; 3> = 0.375. Thus,i = (#1,42)Tz with & = (2,0.625,0.875) g,
#9 = (1,0:125,0.375) 1,z iS an exact solution.

Case 2: Consider desiring a; ~ f; and a2 ~ 5 in the sense of |a; — 51| <
1072 and |as — 32| < 1072. Thus, we add these inequalities to the con-
strained least squares problem. Then, the global optimum is computed to
be: 1 =2,25 = 1,0 = 0.745, 81 = 0.755, a = 0.245, B> = 0.255 and z* =
0.4608. Therefore, the approximate solution is a (0.8848)-level solution
& = (&1,%2)T, with & = (2,0.745,0.755) g and &> = (1,0.245,0.255) 1R,
(with u =4 in (15)).

Case 3: Consider desiring ay = ;1 and as = (s, by adding them as con-
straints. Then, the global optimum is computed as: 1 = 2,22 = 1,1 =
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B1 = 0.75, a5 = B2 = 0.25 and z* = 0.5. Therefore, the approximate solu-
tion is a (0.875)-level solution with & = (#1,%2)T 5 , #1 = (2,0.75,0.75) LR
and 7, = (1,0.25,0.25) g, (with u = 4 in (15)).

Remark 3.14. Cases 2 and 3 in Example 3.13 show that if we desire oy ~ [
and as ~ B2 then we can achieve an approximate solution with a higher a-level of
solution as compared with the case a; = 1 and as = f3s.

Example 3.15. Consider,
il + j2 + '%3 = (17 17 1)LR
T1+d— 23 =(2,1,1)Lr
Using Algorithm 2 (with u = 4 in (15) and ¢ = 1072 in (13) or(16)), we obtain z =

0.75 0.5
0.75 |+| —0.5 |xq,whereq € R, is general solution of (10). One optimal solu-
-0.5 0

(0.75 + 0.5¢,0.3333,0.3333) L
tion of (13) is a; = f; = 0.3333,5 = 1,2,3. Then, # = | (0.75.— 0.5¢,0.3333,0.3333) . |,
(=0.5,0.3333,0.3333) . &

for all ¢ € R, is a symmetric exact solution of FLRLS. In a similar way,z =

(0.75 + 0.5¢, 0.4698, 0.3556) 1,
(0.75 — 0.5¢,0.2415,0.3556) g |, for all ¢ € R, is another exact solution.
(—0.5,0.2887,0.2887) L r

Remark 3.16. If in (16), we select ¢ =0, then it is possible that the fuzzy system
(4) has solution with a higher aslevel of solution as compared with the case, £ > 0.
Of course, in this case (¢ = 0 in (16)),solution of (4) may not be a fuzzy LR vector
as shown by the following example.

Example 3.17. Consider;

T1 + 3T = (1, lal)LR
781 — 1052 = (7,7, 7)1k

Case 1: We solved the above fuzzy LR system using u = 4 in (15) and e =0
in (13) or (16). Then, we obtained z; = 1,22 = 0 and z* = 0 with
ap =1,81 =1,a2 = 0,82 = 0. Thus, & = (¥1,72)L x with #; = (1,1,1) g,
Z» = 0=10,0,0) is an exact solution.

Case 2: We solved the above fuzzy LR system using « = 4 in (15) and € =
10! in (13) or (16). Then, we obtained z; = 1,75 = 0 and 2* = 0.0484
with a; = 0.854,8;, = 0.854,as = 0.1,82 = 0.1. Thus, the fuzzy LR
vector ¥ = (#1,%2)T p with #; = (0,0.854,0.854) ., &> = (0,0.1,0.1) R is
a (0.9879)-level solution (in this case, fuzzy system lacks an exact solution).

Remark 3.18. System (9) or (11), or correspondingly the constrained least squares
problem (13), may have more than one solution (e.g., when m is smaller than n).
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In such a case, the user may be interested in a particular solution by defining some
constrains in (13). An interesting solution is one with the least Euclidean norm
in the solution space (this solution is unique [14]). By this selection, we choose a
solution of system (11) or equivalently the optimization problem (13) that has the
least measure of fuzziness in the fuzzy solution space. To illustrate this, see the
following example.

Example 3.19. Consider,

B — 28y + 3@ — 4 = (5,5,4.5) LR
#1 4 By — B3 + 74 = (—1,3,3.25) L.

Using Algorithm 2 (with u = 4 in (15) and € = 1072 in (13), or (16)), we obtain:

0.7143
—-0.5714 [ 0.1714 —0.0571 —-0.2000 —0.3143 .
1.0000 —0.0571  0.6857  0.4000 ~ —0.2286 e
—0.1429

where g € R? is the general solution of (10); this solutionis obtained from the modi-
fied Huang’s algorithm, as pointed out in Section 2.2, and the solution of constrained
least squares problem! with ‘Isqlin’ function of MATLAB software. The optimal so-
lution of (13) with the least Euclidean norm.in the solution space is: (a7, 87)T ,where
a=1[ 09701, 0.6766, 0.5045, 0.9487 ]Tandﬂ =[ 0.9844, 0.7552, 0.4045, 1.0058 ]T.
Thus,
(4+0.7143,0.9701,0.9844) . r
.| (—0.5714,0.6766,0.7552).r
| (41:0000,0.5045,0.4045) g
(—041429,0.9487,1.0058) .k

is the unique exact solution of FLRLS with the least Euclidean norm in the solution
space (with the Euclidean norm of mean values equal to 1.3628 and the Euclidean
norm of spread values equal to 2.2953). This problem has more than one exact
solution. The other solutions have higher Euclidean norms. It can be seen that

(0.5,0.1550, 1.6250) . »
(0.0,0.0100, 0.0100) . &
(1.5,1.6050,0.0100) . &
(0.0,2.8250, 0.0100) . &

is another exact solution with the Euclidean norm of mean values equal to 1.5811
and. the Euclidean norm of spread values equal to 3.6362 (this solution is obtained
using ‘\”command and ‘Isqlin’ function of MATLAB software).

8

T =

Remark 3.20. (Duality in fuzzy linear systems) Usually, there is no inverse ele-
ment for an arbitrary fuzzy LR number. Also, if # € F(R!)x is an arbitrary LR
fuzzy number, then we have,

z @ (-%) #0

Ymin { fT f|Af = b%, f > ee}; see Note 3.2.
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Therefore, the following two fuzzy linear systems are not equivalent:
A1.’1~7+l~)1 :AQ.’INT-FIN)Q, (A1 —AQ).’INTZ (?)2—51).

In [13], the necessary and sufficient conditions for A& = As% + by are given, where
A; and A, are square matrices. With a similar argument as in the proof of Theorem
3.3, using the same notation, we can prove the following theorem.

Theorem 3.21. Suppose A; = [a%j] JAs = [a?j] € R™*" and 51,52 € F(R™) g
are given. Then, & = (%;),%; = (xs, a4, 08:),1 < i < n, is a solution of A1 % + b =
AsF+bs if and only if x = (x4, . .. ,a:n)T € R" is a solution of (A1 —A2)x = (ba—b1)
and (aT,ﬂT)T is a positive solution of the following system,
[ Bf -Bf -B-+B; [a } ~ { by ]
—Br+B; Bf-Bf || 8| -]
a, B >0,

where,

ij°

ak afj <0,
07 ayl,'cj 2 07

k
1. ) @y a5 20, —
(B lis = { 0, af <0, [By lij=
forall k = 1,2, i = 1,...,m, j = I,...,n, bha=" (b"* ... bF)T and b; =
@0k, T for k=1,2.
Analogous to our previous arguments, suppose § = (4:), ¥; = (yi, @, 5i),1 <1i < n,
let o' = b, — b, b" = b5 — b7 and

ry = ||(Bf =B3)a + (—Bf + By )B — b’2||§ +
|(=By. + B )i+ (Bf —B)B 07|,

Now, define the fuzzy set of solutions of A% + by = AsF + by by the following
membership function,

i ), 0<ry<u, (A — As)y = by — b,
HS(y):{g(ry) —Oggv‘—“(l 2)y = b1 — b

where u > 0 is.a user-defined parameter and g is defined as in (15).

Let S, = {&|us (£) =«a}. Then, # is an exact solution of A% + by = AsF + by
if and only if & €/5,. If S; = 0, then no solution exists and S, . is a set of
approximate solutions, where a;q, = max{a|S, # 0}. The solution strategy for
solving the system A;% + by = A>7 + by is similar to the one given in Section 3.1.

4. Conclusions

We presented a methodology for characterization and an approach for computing
the solutions of fuzzy linear systems with LR fuzzy variables. Notions of exact and
approximate solutions were characterized. We transformed the fuzzy linear system
to a corresponding linear crisp system and a constrained least squares problem. If
the corresponding crisp system is incompatible, then the fuzzy LR system lacks an
exact solution. We showed that the fuzzy LR system had an exact solution if and
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only if the corresponding crisp system would be compatible (had a solution) and
the solution of the corresponding least squares problem would equal zero. In this
case, the exact solution was determined by the solutions of the two corresponding
problems. On the other hand, if the corresponding crisp system was compatible
and the optimal value of the corresponding constrained least squares problem was
nonzero, then we identified approximate solutions by solving the least squares prob-
lem. Also, we characterized solutions by defining a membership function so that an
exact solution was a fuzzy LR vector with the value of membership function equal
to one and, when an exact solution did not exist, an approximate solution was a
fuzzy LR vector with a maximal membership function value. We proposed a class
of algorithms based on ABS algorithm A for solving these systems. The proposed
algorithms can also be used to solve the extended dual fuzzy linear systems. Fi-
nally, we showed that, when the system had more than ene solution, the proposed
algorithms were flexible enough to compute special solutions of interest. Various
scenarios for solutions were demonstrated by working out several examples.
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