Iranian Journal of Fuzzy Systems Vol. 7, No. 2, (2010) pp. 19-39 19

FUZZY LINEAR REGRESSION MODEL WITH CRISP
COEFFICIENTS: A GOAL PROGRAMMING APPROACH

H. HASSANPOUR, H. R. MALEKI AND M. A. YAGHOOBI

ABSTRACT. The fuzzy linear regression model with fuzzy input-output data
and crisp coefficients is studied in this paper. A linear programming model
based on goal programming is proposed to calculate the regression coefficients.
In contrast with most of the previous works, the proposed model takes into
account the centers of fuzzy data as an important feature as well as their
spreads in the procedure of constructing the regression model. Furthermore,
the model can deal with both symmetric and non-symmetric triangular fuzzy
data as well as trapezoidal fuzzy data which have rarely been considered in the
previous works. To show the efficiency of the proposed model, some numerical
examples are solved and a simulation study is performed. The computational
results are compared with some earlier methods.

1. Introduction

Since Zadeh [52] introduced fuzzy set theory, it has been widely developed in
theory and application (e.g. see [1, 2;.5, 34, 39, 43, 51]). Regression analysis is
one of the areas in which fuzzy set theory has been used frequently. Since Tanaka
et al. [42] initiated research on fuzzy linear regression (FLR) analysis, this area
has been widely developed</and‘a wide variety of methods have been proposed.
Putting the exact phrase “fuzzy linear regression” on googlescholar search engine
yields about 950 references: One approach to deal with FLR is linear programming
(LP). This approach was first introduced by Tanaka et al. [42] and developed by
others (e.g. see [16417, 31,32, 36, 37, 38, 40, 41]). Another approach is least-squares
method, which was first introduced by Celmins [6] and developed by others (see e.g.
[9, 10, 13, 15,20, 21, 27, 28, 29, 30, 47, 48, 50]). Some authors discussed features,
advantages and shortcomings of different methods. To overcome the shortcomings,
some new methods have been proposed (see e.g. [7, 9, 16, 17, 18, 21, 22, 33]). A
relatively comprehensive literature review on FLR can be seen e.g. in [9, 16, 22,
44, 45, 46, 49].

FLR models can be classified into two general categories according to the type
of dependent and independent variables:

(a) Input data are non-fuzzy and output data are fuzzy numbers.
(b) Both input and output data are fuzzy numbers.
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The FLR model in case (a) can be expressed as follows:
Y = Ay + Ayzy + Asao + ... + Ay, (1)

(The symbol “ = ” over a letter indicates a fuzzy number). The FLR model in case
(b) can be expressed as follows:

(b-i) FLR model with crisp coefficients:

Y =ap+a1Z1 + asa + - - + apZyp- (2)

(b-ii) FLR model with fuzzy coefficients:

Y = Ay + A13y + Aoiig + - + Ayl (3)

The authors applied goal programming approach te.construct. the FLR model (1)
in [14]. The present paper focuses on case (b-i) which has been presented in [11].
Further researches on case (b-i) can be found elg. in [3;7,19, 20].

Diamond in [11] defined a metric on triangular fuzzy numbers and formulated a
least-squares model to estimate the regression coefficients ag, a1, - - - , ap of model (2).

Arabpour and Tata [3] considered the .metric of Diamond [11] on triangular
fuzzy numbers and extended it to trapezoidal fuzzy numbers. They calculated the
coefficients of model (2) by using the normal equations corresponding to a least-
squares model.

Kao and Chyu in [19] considered the FLR model (2) with an additional triangular
fuzzy error term E = (0,1,r) in-the right-hand side. They proposed a two-stage
approach to construct the FLR model. In the first stage, the fuzzy observations
are defuzzified, using the centroid method, so that the traditional least-squares
method can be applied to find a crisp regression line showing the general trend
of the data. In the second: stage, the error term of the fuzzy regression model,
representing the fuzziness of the data in a general sense, is determined to give the
regression model the best explanatory power for the data. To this end, the total
non-overlapped area between the graphs of membership functions of the observed
and estimated triangular fuzzy responses is minimized under some constraints. In
[19], an algebraic formula has been presented to calculate the mentioned areas.
Howevery it cannot be used in a general situation. Because, the relative status of
the observed and estimated responses are not known. Furthermore, their method
does not guarantee the non-negativity of the spreads [ and r.

Also, Kao and Chyu in [20] proposed an idea, stemmed from the classical least
squares, to handle fuzzy observations in regression analysis. They minimized fuzzy
sum of squared errors via a nonlinear programming model.

Choi and Buckley [7] also considered the FLR model similar to Kao and Chyu’s
model [19] and proposed a fuzzy least absolute deviations method to calculate the
regression coefficients. They first calculate the crisp coefficients ag,aq,--- ,a, by
defuzzifying the fuzzy data, using the centroid method, and minimizing a non-linear
function. Then, to calculate the error term (0,/,r), they solve two unconstrained
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non-linear programming problems. Their method does not guarantee the non-
negativity of the spreads [ and r, like Kao and Chyu’s method.

In literature, various distances (metrics) between fuzzy numbers have been pro-
posed which are appropriate for using the least-squares method (e.g. see [3, 11, 12,
13, 48]). However, as mentioned by Choi and Buckley [7], the least-squares method
is so sensitive to the outliers that it could be greatly affected by a small number of
outliers. Since outliers in the response variable represent model failure, there has
been an increased interest in robust estimation procedures, which are insensitive
to some outliers, applied to the regression analysis. Like to an ordinary regres-
sion, we need robust methods in order to estimate the fuzzy regression coefficients.
The least absolute deviation estimators were proposed, based on the medians, as
an alternative to least squares method. Under some conditions; the least absolute
deviation estimators were more efficient than the least squares method in ordinary
regression models [7, 8, 23]. Moreover, Choi and Buckley [7] pointed out that in the
fuzzy regression model using the least squares methed there is a_tendency that the
larger the values of independent variables, the wider the spreads of the estimated
dependent variables. Thus, they suggested thedeast absolute deviation estimators
using the Li-norm instead of the least squares method in estimation of the regres-
sion coefficients. So they used the absolute deviations between the centers and
end-points of h-level sets of two triangular fuzzy numbers in their models.

The authors formulated a simple goal programming (GP) model to calculate the
fuzzy coefficients of model (1) in [14], when the input data are crisp and the output
data are triangular fuzzy numbers. Their GP model minimizes the total absolute
deviations between the middle points of observed and estimated responses, and
absolute deviations between their spreads. Then they showed that the proposed
model has better performance than some similar models based on both the Kim
and Bishu’s [21] criterion of goodness and closeness of the centers of observed and
estimated responses (note that closeness of the centers of observed and estimated
responses has a special importance because they have the highest membership func-
tion value). Also, they showed that the proposed model is less sensitive to outliers
than some similar-models in the literature. In this paper, the mentioned absolute
deviations are used in both triangular and trapezoidal cases. Then, a simple GP
model is formulated to calculate the coefficients of model (2), when the input data
Zij, 1 =1,2,---,n3 3= 1,2,--- ,p and the observed responses §;, ¢ =1,2,--- ,n
are triangular (trapezoidal) fuzzy numbers (Note that n is the number of observa-
tions and p is the number of independent variables).

A triangular fuzzy number (TFN), say C, is denoted by C' = (¢, a,3) where
¢, o, and.§ are the center (middle point), left spread, and right spread of C,
respectively. ¢ is a real number and a, 8 > 0. The membership function of C is as
follows:

(=) o _g<z<e,
Cl)={ == c<z<ctp, (4)
0 otherwise.
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The intervals [¢e — (1 — h)a , ¢+ (1 —h)B] and [c — a, ¢+ f] are called h-level set
(h € (0,1]) and support of C, respectively. If @ = 3, then C is a symmetric TFN
and is denoted by C' = (¢,a). A real number can be considered as a degenerated
TFN whose spreads are zero, and vice versa. The set of all TFNs is denoted by
T(R). The following formulas for addition of two TFNs and multiplication of a
TFN by a scaler are drawn from the extension principle of Zadeh [53].

IfC, = (c1,04, 1) and Cy = (2,2, B2) be in T(R) and r € R, then:

C~'1+C~'2:(cl+02,a1+a2,51+52)’ 5)
5 _ [ (re,rag,rB) r >0,
= { (rei, —rpr, —rai) r<0. (6)

A trapezoidal fuzzy number (TPFN), say C, is denoted by C'= (cz, cv, a, 3) where
cr, and ¢y are lower and upper middle points and o, 8 are left and right spreads
of C, respectively. ¢r and ¢y are real numbers (¢;, <'¢y) and o, > 0. The
membership function of C is as follows:

z—(cL—a)

= cr-a<zx<cr, a>0,

é(w) _ 1 CL S €z S cu,
B % cr<x<cy+p B>0, (7)
0 otherwise.

The intervals [c, — (1 —h)a, ¢y +(1 —h)B] and [c, —a , cy + 3] are called h-level
set (h € (0,1]) and support.of C, respectively. If a = f, then C is a symmetric
TPFN and is denoted by C'= (égyey,a). Also, C is a TFN if ¢ = ¢p. A real
number can be considered:as a degenerated TPFN whose spreads are zero, and its
middle points are equal, and vice versa. The set of all TPFNs is denoted by T P(R).
The following formulas for addition of two TPFNs and multiplication of a TPFN
by a scaler are drawn from the extension principle of Zadeh [53].

If C~'1 = (ClL,ClU,Oq,Bl) and 02 = (CQL,CQU,QQ,BQ) be in TP(]R) and r € R,
then:

C1+Cy = (c1p + cap, v + v, 00 + a2, Br + o), (8)
O = (reir,raiv,ras,rfr) r >0,
Y7\ (reww,rein, =By, —ra1) r < 0. 9)
The purpose of this paper is to estimate the FLR parameters ag, a1, - - - , a, for both

triangular and trapezoidal fuzzy input-output data so that the estimated responses
Yi

Yi=a0+a1Zin + asZip + -+ aply, t=1,---,n, (10)
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have the best fitness to the given data according to a criterion of goodness. Kim and
Bishu [21] introduced a difference between two membership functions. We adopt it
as a criterion of goodness. Also, a new parameter (named A) which measures the
total distance between the centers of observed and estimated responses has been
introduced in [14]. We use it in this paper.

The paper is organized as follows: A GP approach is introduced in Section 2,
the numerical examples and comparisons are presented in Section 3, and Section 4
is devoted to discussion and conclusion.

2. A Goal Programming Approach (GPA) for Estimating the
Regression Coefficients

The purpose of classical regression is to fit a function toa set of real (crisp) data,
so that the estimated responses from the regression model be close to the corre-
sponding observed responses as much as possible. To this end, classical regression
methods minimize a function of differences between the observed and estimated
responses. Similarly, in fuzzy regression, we attempt to fit a fuzzy regression model
to the given fuzzy data, so that the fuzzy estimated responses be close to the corre-
sponding fuzzy observed responses, as much as possible. Therefore, we try to close
the membership functions of observed and estimated. responses as much as possible.
Clearly, it is important that a point with the highest membership value in a fuzzy
estimated response be close to the point with the highest membership value in the
corresponding observed response, and.the points with other membership values be,
too. Since the observed data in our study are assumed to be triangular or trape-
zoidal fuzzy numbers, we try to close the membership functions of observed and
estimated responses by closing their middle points as well as their spreads. To do
this, we use the following definition of distance between two TFNs, and extend it
to trapezoidal fuzzy numbers. Then we try to minimize the total distance between
the observed and estimated responses.

Definition 2.1. Let '€, = (c1,0q, 1) and Cy = (c2, 2, B2) be in T(R). Define
d:T(R) x T(R) - Ras follows:
d(C1,C5) = |e1 — | + oy — aa| + B — Bal.

Proposition 2.2. .The function d defined in Definition 2.1 is a metric on T'(R) x
T(R), i.e» foreach A, B,C € T(R):

1.7d(A, B) > 0 and d(A, A) =0.

2. d(A,B) =4d(B,A).

3. d(A;C) <d(A,B) +d(B,0).
Proof. Straightforward. O

Remark 2.3. For two crisp numbers, the above distance is reduced to the absolute
difference between them.

Remark 2.4. Some metrics on fuzzy numbers (such as Xu and Li’s distance [48]
and Yang and Ko’s distance [49]) use the membership functions of fuzzy numbers



24 H. Hassanpour, H. R. Maleki and M. A. Yaghoobi

explicitly. Although the membership functions did not appear in the above defi-
nition explicitly, it uses the membership functions implicitly. Because the TFNs
are completely characterized by their centers and spreads. Therefore, closing the
centers and the spreads of two TFNs is enough (in fact necessary and sufficient) to
close their membership functions, which is the purpose of this paper.

Remark 2.5. Some other metrics on fuzzy numbers (such as Diamond and Kloe-
den’s distance [12] and D’Urso’s distance [13]) incorporate the middle points of
triangular fuzzy numbers in the metric as well as our distance. Their metrics use
the Ly-norm. So they use the least-squares method to calculate the FLR coeffi-
cients. As mentioned above, the solutions of least-squares method are so sensitive
to the outliers that they could be greatly affected by a small number of outliers [7].
So using Li-norm has been suggested in [7] instead of Ls-norm. Further, as seen
in [14], using Li-norm to a set of crisp input-fuzzy output data reduces the effect
of outliers. Furthermore, as it will be seen later, by using .L;-norm we convert a
non-linear programming problem to a linear one. “The advantage of this conver-
sion is that linear programming problems can be solved exactly by the Simplex
method whereas most of algorithms for solving non-linear programming problems
yield approximate solution.

Suppose the given inputs are non-symmetric TFNs &;; = (z45,1;5,7;) for i =
1,---,n and j=1,---  p, and the observed responses are non-symmetric TFNs
vi = (yi,l;,m) for i = 1,--- 'n. To_.calculate the coefficients of model (2), we
need to multiply the TFN Z; by the scaler a;. This multiplication depends on
the sign of the scaler, as seen in (9). Therefore, for different states of the signs
of regression coefficients, different.models (different LP models or different least-
squares models,...) must be formulated and solved to estimate the coefficients.
To avoid this, we propose a goal programming model to estimate the regression
coefficients which is independent of the sign of them. Therefore, only one model is
enough to be formulated and solved irrespective of the sign of coefficients.

Definition 2.6. [35] Let'A and B be two fuzzy sets. A is said to be a subset of B,
denoted by A'C B, if and only if its membership function is less than or equal to
that of B everywhere on X:

ACB& A(x) < B(z) VzeX. (11)
Proposition 2.7. Suppose r and s are real numbers and A is a fuzzy number. Then
(r+s)ACrA+sA. (12)

Proof. We have to show that:
(r+s)A)(z) < (rA + sA)(z) Yz e R (13)

If 0 is a binary operation on real numbers and A and B are two fuzzy numbers
with membership functions A(xz) and B(z), respectively, then by the extension
principle of Zadeh [53] we have:
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(AoB)(z) = sup {inf{A(y), B(2)}}. (14)

yoz=x

Let us denote the membership function of the real numbers r and s by their
characteristic functions yx, and s, respectively. By using (14) we have:

((r + 5)A)(2) = sup {inf{(x, + xs) (), A(v)}}

UV=T

= sup {lnf{yililz)u{lnf{Xr(y)a Xs (Z)}}7 A(’U)}}

UV=T

= sup  {inf{x,(r), xs(s), A®)}} (15)

wv=z, r+s=u

= swp {A()}
(r+s)v=z

= sup {inf{A(v), AP
(r+s)v=z

On the other hand:

(rd+sA)(@) = sup {inf{(x,A) ), (: A)(2)}}

y+z=x
= sup {inf{tili%{inf{XT (t), A(“) s

y+z=zx
sup {inf{x;(w), A(v)}}}}

WUV=2

= sup {inf{x(r), A(U): Xs(s), A(U)}}

y+z=a, ru=y, sv=z

— sup {inf{Au), A(v)}}.

ru+sv=zc

(16)

The Inequality (13) is.obtained from (15) and (16) because
{(v,v)|v € R} C {(u,v)|u,v € R}.

O
A real'number a has infinite representations in the form of a = o’ — a”, where a’
and a""are nonnegative real numbers. This matter leads to the following lemma.

Lemma 2.8. Suppose a; € R, j =0,---,p and T;; = (z45,0i5,755) € T(R), i =
L,-+4m, j=1,---,p. Seta; =aj —af for j=1,---,p where a’;,aj > 0. Then
for each choice of a} and aj we have:

P P

p
Y C (a0 + Y _(af —a)ay, Y _(ajlyy + affryy), Y (ajryj + afly)), (17)
=1

j=1 j=1

where Y; is given by (10).
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Proof. By using Proposition 2.7 and Equations (8) and (9) we have:

p
Y; ag + E aji“ij
Jj=1

P
=ap+ Z(a;- — aj)Ty
=t

p
!~ "y,
ap + E (a;%ij — a)jTij)
Jj=1

N

p
ap + Z(a; (.’Eij, lij, Tij) - a;-'(wij y lij, Tij))
Jj=1

p
! ! ! n n "
=ap+ E (ajmij,alij, ajrij) + (—aj migyaireg, ajli;))
Jj=1

P P P
= (ap + Z(a; —aj)zij, Z(a;li]’ +ajrj), Z(a}’l"i]’ + ajli;)),
j=1 j=1 j=1
and the proof is completed. a

Let us denote the right hand side of relation (17) by Y;(a’,a”) where a’ and a”
are nonnegative p-dimensional vectors with jth element a and a, respectively.
Clearly, for each choice of a’ and a”, Yj(a',a") is a TFN, and we consider it as an
approximation for ;. Indeed; there are many approximations for Y;, among which,
we try to choose the best.approximation. Figure 1 depicts ;,Y;, and Y;(a’,a") for
a special choice of a’ and a”. We have to find Y; as close as possible to §;. Instead,

first we approximate Y; to its supersets Y;(a',a") for different choices of a’ and
a’, as seen in Lemma 2.8. Then, we try to find appropriate values of a’ and a”
so that Y;(a’;a") be close to §; as much as possible. To this end, we attempt to
close the membership function of each approximated response Y;(a’,a") to that of
corresponding observed response y; as much as possible. Therefore, we introduce
the following mathematical programming model, which finds the best choices of a’

and a’ for the coefficients of model (2):

n
min Y _d(Yi(a',a"), 7)

=1 (18)
s.t. ag € R, a;.,a;.’ >0 j=1,2,---,p,

where d was introduced in Definition 2.1.
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b'e
Figure 1. The Membership Functions of Observed, Estimated,
and Approximated Responses

The model (18) can be converted to a GP model.by choosing appropriate devi-
ation variables. To this end, set Y;(a',a") = (Y;(a',a"), L;(a",a"), R;(a’,a")) for
i1=1,---,n and define

nic = {|Yi(a',a") —yil - (Yi(a',a") = vi)}/2, (19)
pic ={|Yi(a',a") — gl (Vi(a',a") —vi)}/2, (20)
na = {|Li(@,a") = li| = (Li(a',a") —1:)}/2, (21)
pi = {|Li(a’sa") = Li + (Li(a’,a") = 1:)}/2, (22)
nip ={|Ri(@,a") — il = (Ri(a',a") — 1) }/2, (23)
pie.= {IRi(a’,2") — i + (Ri(a’,a") —ri)}/2. (24)

In fact, n;. and p;..are the negative and positive deviations between the centers of
ith estimated and observed response, respectively. Also, ny and py (ns and p;)
are the‘negative and positive deviations between their left spreads (right spreads),
respectively. It can be easily seen that

_ [ yi—Yi(@ha") if Yi(a'a") <y,

Nje = { 0 if Yi(a’,a”) > v, (25)
_ [ vi@,a") -y if g <Vi(a',a"), (26)

Pie =1 ¢ if y; >Yi(a',a").

Similar relations are hold true for the other deviation variables. By using the
above deviation variables, the model (18) converts to the following GP model:
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(GP1):
min Z(nzc + Dic + nir + pu + nir + Pir) (27)
i=1
p
s.t. ap + Z(a; — a;-')wij + Nie — Pic = Yi t=1,2,---,n, (28)
=1
p
> (allij + alfris) +ni —pa =1 i=1,2,---,n, (29
Jj=1
p
Z(a;rij +ayl7,])+nzr —Pir =T4 i= 1727"' y Ty (30)
Jj=1
nikpikzo i:1727"'7n7 kzl,c,r, (31)
G,OE]R, a},a}IZO j:1727”'7p7 (32)
Nk, Pir, > 0 i=12---,n, k=lc,r (33)

Now we point out to some properties of GP1. The constraints (31) can be
removed and the obtained LP model.can be solved by the Simplex method [4].
Moreover, since for symmetric data(l; = r; and l;; = r;; for each ¢ and j, the
constraints (29) and (30) are the same. So, one of them (in fact n constraints)
can be removed. Note that if we-use the Choi and Buckley’s deviations (i.e., the
absolute deviations between both the_centers and the end-points of the h-level sets
or supports of two TFNs), then the constraints (29) and (30) will not be the same
for symmetric data, so the reduction of the constraints will not be possible. Another
feature of GP1 is that in spite of some other methods such as [7] and [19], it does
not produce negative spreads for TFNs. This fact has been shown in the following
proposition.

Proposition 2.9. The estimated responses from GP1 have non-negative spreads.

Proof. The estimated responses from GP1 are:

Y;(a',a") = (Y;(a',a"), L;(a’,a"), R;(a’,a")), i=1,--- n.
We have to show that L;(a’,a"), R;(a’,a’") > 0 for each i. According to the proof of
Lemma 2.8, L;(a’,a") = >2%_, (a}lij +affri;) and Ri(a’,a") = Y28, (ajr; +affli;),

j=1 j=1
which are both non-negative. Because a}, a7, l;; and r;; are all non-negative. [

Although the estimated responses Y;, i = 1,---,n have been approximated to
Yi(a',a"),i=1,---,n (see Figure 1 and the relation (17)), the following theorem
shows that GP1 yields the exact regression coefficients and estimated responses if
the given fuzzy input-output data satisfy in a fuzzy linear model.
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Theorem 2.10. Suppose that the observed fuzzy input-output data satisfy in the
fuzzy linear model:

]j:(_lo-i-(_lli'l +c"125:2 +"'+dpi'p.
Then:

(i) The optimal solution of GP1 contains dg,- - , Gyp.
(i) The estimated responses from GP1 and the observed responses are exactly the

same (i.e., Yi(a',a") = i;).
PTOOf. (1) Set ag = ag,
r_ a; if (_ljZO "_ 0 if C_ljZO
ay—{o if a; <0 and aj = —a; if @y <0
fOI'j = ]-; D, and Nik = Pik = 0; for i = 1727"' , 10 and k = l,C,T‘. FiI‘St, we

show that these values yield a feasible solution for GP1. Clearly, they satisfy in
the constraints (31)-(33). Without loss of generality, for simplicity, suppose that

a;j >0, j=1,---,p. By the assumption we have:
p P
ao + Z(a; - a;',)xij + Nie — Pic = Go + Z a;jTij = Yi, (34)
Jj=1 j=1

p p
Z(a;‘lij + ajrij) +ni — pu = Zdjlij =1 (35)
j=1 j=1

p p
Z(a}rij +afli;) + nimemPir = Z a;rij =r;. (36)

j=1

~.
Il
-

The Equations (34), (35), and (36) show that the suggested values satisfy in the
constraints (28), (29), and (30) (i-e., we have a feasible solution for GP1). To
show the optimality; note that the objective function value of GP1 for this feasible
solution is 0, which is the least possible value for a non-negative function. Therefore,
the suggested. values yield the optimal solution of GP1. Indeed, in the optimal
solution we have a); — af = a;.

(ii). The second part of the theorem immediately follows from (34)-(36). In fact,
from (34)-(36) we have:

Yi(a',a") =y;, Li(a’,a")=1;, R;(a',a")=r;.
and the proof is completed. O

The explained method can be applied to trapezoidal fuzzy numbers easily. It is
enough to modify the distance introduced in Definition 2.1 for two TPFNs C; =
(cir, Giv, i, Bi), © = 1,2 as follows:

d(C1,Cs) = |erp —car |+ lerw — eau| + o — 2| +(B1 — Bal- (37)

In the case of trapezoidal fuzzy input-output data, suppose &;; = (z;r, Ziju, lij,
rij) and §; = (vir, yiv, li, i), i =1,-+-,n, j =1,--- , p. Following a process similar
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to the triangular case leads to the following GP model to estimate the coefficients
of model (2):

n

(GP2): min z= Z(ML +pir + niv + piv + na + pa + Nir + Pir)

i=1

P
s.t. ap+ Z(a;xijL — a;.'a:ijU) + niL — Pir = YiL i=1,2,---,n,

=1

P
ap+ Z(a;'xijU - a;-'a:ijL) + n;u — Piv = YiU i=1,2,---,n,

=1

P
Z(a;'lij"'a;!rij)"‘nil—pu =1 i=1,2,---,n,

=1

P
Z(G;-T'ij +a;-’lij)+nir_pir =7 1=1,2,---,n,

j=1
nlkplk:o 7::1,2,"-,71, k:L7U7l7T7
a €R  ajaj >0 i=1,2,---,p,
nik, Pik 2 0 i=1,2,,n, k=IL,Ulr

The deviation variables in GP2 have a similar definition as in GP1. In a similar

way, Proposition 2.9, Theorem 2.10, and the other properties of GP1 can be proved
for GP2.

3. Numerical'Results and Comparisons

In this section two criteria of goodness are presented. Then, GPA is compared
with some similar methods. by solving some numerical examples and performing a
simulation study.

3.1. Performance Evaluation. To evaluate the performance of fuzzy regression
model, Kim and Bishu [21] introduced the following scaler as the difference between
the triangular membership functions Y;(z) and g;(x):

E; = \Y;(z)—5;(2)|de, i=1,2,---,n, (38)

Sy, U Sy,
where Sy, and Sy, are the supports of the TFNs Y; and Ui, respectively. Note that
E; is the non-overlapped area between the graphs of Yj(z) and g;(z) (Figure 2). It
is clear that a smaller value of F; denotes a better estimation, or a better fitness

of the ith estimated response to the ith observed response. We use the total errors
(TE) in our comparisons:

TE =Y E;. (39)
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X
Figure 2. The Difference between Two Membership Functions

It is notable that the centers of TFNs have a special impeortance since they have
the highest membership value. Therefore, to evaluate the performance of fuzzy
regression model a new parameter named A has been introduced in [14]. A measures
the total difference between the centers of observed and estimated responses as
follows:

n p
A= Z /\z where /\z = |a0 -+ Zaja:ij — yi|- (40)

i—1 j=1
Similarly, in the trapezoidal case we use the non-overlapped area between the
membership functions of the ith observed and estimated response, as the error of
the ith estimated response. Furthermore;similar to the triangular case, to measure
the fitness of the middle points, we use two parameters named Ay, and Ay. A (A\v)
is the total difference between the lower (upper) middle points of observed and

estimated responses:

n p

)\L = Z)\l[‘ where /\iL = |a0+2(a}xiﬂ—a;-':rijU)—yiLL (41)
i=1 j=1
n p

/\U = Z /\iU where /\iU = |a0+2(a}wijU—a;-'a:ijL)—yiUL (42)
i=1 j=1

3.2. Numerical Examples and Simulation Study. In this subsection, some
numerical examples are solved. One of them (Example 3.1) has been presented
in [19] which contains symmetric triangular fuzzy input-output data. The crisp
coefficients have been considered in the model of Diamond [11] (D), the models
of Kao and Chyu in [19] and [20] (KC1 and KC2, respectively), the model (7)
of Arabpour and Tata [3] (AT), and the model of Choi and Buckley [7] (CB).
Therefore, based on Example 3.1, GPA is compared with D, KC1, KC2, AT and
CB. Moreover, a simulation study is made to compare GPA with D and AT. Also,
an example having trapezoidal fuzzy input-output data is solved and compared
with [3]. Finally, an application is presented.

Example 3.1. The data of Table 1 are those of [19]. They have also been used in
[3, 20]. The errors of estimations are presented in Table 1.
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Data Errors (E;)

Z; Ui D | KCl | KC2| AT | CB | GPA
(2,05) | (4,05) |0.704]0.849 | 1.004 | 0.704 | 0.722 | 0.722
(3.5,0.5) | (5.,5,0.5) |0.306 | 0.208 | 0.723 | 0.306 | 0.722 | 0.278
(55,1) | (7.5,1) |1.406|1.490 | 1.683 | 1.406 | 1.444 | 1.368
(7,0.5) (6.5,0.5) |0.760 | 0.914 | 1.122 | 0.760 | 0.722 | 0.684

0 ~J O UL I W N =,

(8.5,0.5) | (85,0.5) | 0.675|0.763 | 0.924 | 0.675 | 0.722 | 0.722
(105, 1) (8,1) |1.385|1.453 | 1.636 | 1.385 | 1.444 | 0.964
(11,0.5) | (10.5,0.5) | 0.765 | 1.000 | 1.561 | 0.765 | 0.722 | 0.722
(12.5,0.5) | (9.5,0.5) | 0.738 | 0.809 | 0.986 | 0.738 | 0.722 | 0.278
TE 6.739 | 7.486 | 9.640 | 6.739 | 7.220 | 5.737
A 5.857 | 5.818 | 5.827 | 5.857:{.5.556 | 5.556

Table 1. The Data and Errors of Example 3.1

The last two rows of Table 1 show better estimation-of GPA in comparison with the
other methods according to both TE and X in this example. The different regression
models are as follows: (As mentioned above, KC1 cannot be used practically. The
values of F; and TE for KC1, given in Table 1, and the FLR model Yx ¢, given in
the following, have been taken from [19].)

Yp = 3.4877 + 0.5306

Yicr = 3.5724 4 0.5193% + (0,0.24, 0.24)
Yicce = 3.565 + 0.522& +(—0.011, 0.951, 0.949)
Y = 3.4877 + 0.5306%

Yop = 3.9443 % 0.4445% + (0,0.2777,0.2777)
Yapa =:3.9444 + 0.44447.

Note that the results of AT and D are the same. Because, AT uses the metric
and method of Dy when the data are TFNs. Among the methods which have con-
sidered crisp coefficients AT and CB are more up to date. However, as mentioned
previously, CB does not guarantee the nonnegativity of the spreads of TFNs (see
also the result of CB in the application (restaurant data) in the following). There-
fore, a simulation study is used in the following example to compare GPA with AT
(and D which have the same results as AT).

Example 3.2. To compare GPA with AT and D a simulation study was performed
as follows:

N=100 samples were generated, each containing n=100 observations. The cen-
ters x;; of fuzzy inputs &;; = (x5, li;, ;j) were drawn from the uniform distribution
on the interval (0,100), and the spreads (I;;,7;;) were random points in the unit
square. Also, for each i, the center of ith observed response §; = (yi,l;,r;) was
chosen as:

y; = Ao+ A zi+ey, (43)
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where ¢; %4 N(0,1), A9 = 1, and A; varies over 0.6, 0.8, 1, 1.2, 1.4. Further,
(1;,r;) corresponding to §; was a random point in the unit square. The results of
simulation study are as follows:

Figure 3 depicts TE and A in GPA versus AT and D in 10 runs of a program
written by MATLAB software [25] (i.e. in solving 1000 samples). More details of
the results are given in Table 2. In each run, k1 is the number of samples in which
TE in GPA is better than TE in AT and D, and k2 is the number of samples in
which A in GPA is better than A in AT and D. In 602 out of 1000 samples (i.e. in
60.2% of instances), TE in GPA is better than TE in AT and D. Also, in 970 out
of 1000 samples (i.e. in 97% of instances) A in GPA is better than A in AT and D
(Number of points over the bisectors).

Runno. |1 2 3 4 5 6 7 8 “9. 10 | Average
ki 64 64 52 63 61 65 54 62 60 57 60.2
k2 98 97 98 95 97 95 99 96 .95 100 97

Table 2. The Results of Simulation Study.in 10 Runs to Compare
GPA with AT and D

2000 100

1500 _ 80
<

2 £ 60
£ 1000 kS

= £ 40
®©

500 20

04— 0

0 500 1000 1500 2000 0 50 100
TE in GPA lambda in GPA

Figure 3. The Results of Simulation Study in Example 3.2 to Compare
GPA with AT and D

Example 3.3. Consider the 8 trapezoidal fuzzy data which have been presented in
[3], and given in the left half of Table 3. The errors of estimations in AT and GPA
(the FLR model obtained from GP2) are presented in the right half of Table 3.
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Data Errors
i T; Ui AT GPA
1| (1.75,2.25,0.25, 0.25) (3.75, 4.25, 0.25, 0.25) 1.604 | 1.083
2| (3.25,3.75,0.25, 0.25) (5.25, 5.75, 0.25, 0.25) 0.363 | 0.417
3| (5.00, 6.00, 0.50, 0.50) (7.00, 8.00, 0.50, 0.50) 2.051 | 2.013
4| (6.75, 7.25, 0.25, 0.25) (6.25, 6.75, 0.25, 0.25) 1.308 | 1.006
51| (8.25,8.75,0.25, 0.25) (8.25, 8.75, 0.25, 0.25) 0.966 | 1.083
6 | (10.00, 11.00,0.50, 0.50) | (7.50, 8.50, 0.50, 0.50) 3.236 | 1.221
71 (10.75, 11.25,0.25, 0.25) | (10.25, 10.75, 0.25, 0.25) | 1.149 | 1.083
8 | (12.25, 12.75,0.25, 0.25) | (9.25, 9.75, 0.25, 0.25) | 1.463 | 0.417
TE 12.140 | 8.323
AL 5.862 | 5.833
Au 5.862 | 5.834

Table 3. The Data and Errors of Example 3.3

The last three rows of Table 3 show that the values of TE, Ay and Ay in GPA
are better than their values in AT. The FLR models derived from AT and GPA are
as follows:

Yar = 3.47734 0.5319%
Yopa = 39444 +0.44445F.

3.2.1. An Application: Restaurants Data. Consider the data of Table 4 which
have been presented in [13]. The data contains n=30 observations of a fuzzy output
(decision on cellar) and two fuzzy input variables (decision on cooking and decision
on environment) in a set of testaurants in Rome.

Comparing the obtained results*(the last two rows of Table 4) shows that both
TE and X in GPA ate better than those of D and AT (which are the same) for these
data. This results confirm again better performance of GPA than D and AT which
have used similar FLR model. The regression models of the compared methods are
as follows:

Yp = 0.0164 + 0.60217; + 0.36237>
Yar = 0.0164 + 0.60217; + 0.36237
Yapa = —0.0000 + 1.0000F; + 0.0000%s.

Also, the regression model of CB is f’CB = —0.0006 + 0.9999z; + 0.00022> +
(0,=0.0070,—0.0083) ( The non-linear programming models of Choi and Buck-
ley [7] have been solved by LINGO software [24]). Note that the error term of their
model has negative spreads in this example.
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Data Errors

i T Tio Ui D AT GPA
11(7,05,1.25) | (8,0.75,1) (8,0.75,1) 1.1888 | 1.1888 | 1.250
2 | (7,0.5,1.25) | (7,0.5,1.25) | (6,0.25,0.5) | 1.1717 | 1.1717 | 1.250
3 |(6,0.25,0.5) | (7,0.5,1.25) | (6,0.25,0.5) | 0.3832 | 0.3832 | 0.000
4 | (8,0.75,1) (9,0 ,1) (9,0 ,1) 1.2045 | 1.2045 | 1.375
5 (8,0.75,1) (8,0.75,1) (8,0.75,1) 0.4996 | 0.4996 | 0.000
6 | (6,0.25,0.5) | (7,0.5,1.25) (5,0 ,1) 1.0219 | 1.0219 | 0.825
7 1(7,05,1.25) | (8,0.75,1) | (7,0.5,1.25) | 0.1457 | 0.1457 | 0.000
8 | (7,0.5,1.25) | (7,0.5,1.25) (5,0 ,1) 1.3438 | 1.3438 | 1.375
9 |(7,0.5,1.25) | (8,0.75,1) | (7,0.5,1.25) | 0.1457 | 0.1457 | 0.000
10 | (6,0.25,0.5) | (7,0.5,1.25) | (6,0.25,0.5) | 0.383270:3832 | 0.000
11| (7,0.5 ,1.25) | (8,0.75,1) (8,0.75,1) 1.1888 | 1.1888 | 1.250
12| (7,0.5 ,1.25) | (6,0.25,0.5) | (6,0.25,0.5) | 0.7718 | 0.7718 | 1.250
13| (7,0.5 ,1.25) | (8,0.75,1) (9,0 1) 1.3438 |.1.3438 | 1.375
14 | (7,0.5,1.25) | (8,0.75,1) (8,0.75,1) 1.1888 | 1.1888 | 1.250
15| (7,0.5,1.25) | (7,0.5,1.25) | (7,0.5,1.25) | 0.4475 | 0.4475 | 0.000
16 | (7,0.5 ,1.25) | (7,0.5 ,1.25) | (7,0.5 ,1.25) |<0.4475 | 0.4475 | 0.000
17| (6,0.25,0.5) | (7,0.5 ,1.25) | (6,0.25,0.5) | 0.3832 | 0.3832 | 0.000
18 | (7,0.5,1.25) | (8,0.75,1) | (740.5,1.25) |“0:1457 | 0.1457 | 0.000
19 | (7,0.5,1.25) | (7,0.5,1.25) | (8,0.75,1) 1.4519 | 1.4519 | 1.250
20 | (7,0.5 ,1.25) (9,0 ,1) (7;0.5 ,1.25) | 0.8592 | 0.8592 | 0.000
211 (7,0.5,1.25) | (8,0.75,1) |/(7,0.5,1.25) | 0.1457 | 0.1457 | 0.000
22| (7,0.5,1.25) | (8,0.75,1) |[(6,0.25,0.5) | 1.2188 | 1.2188 | 1.250
23 | (7,0.5 ,1.25) (9,0 ,1) (7,0.5,1.25) | 0.8592 | 0.8592 | 0.000
24 | (7,0.5,1.25) | (7,0.5 41.25) | (8,0.75,1) 1.4519 | 1.4519 | 1.250
25| (7,0.5,1.25) | (7,045 ,1.25) |(6,0.25,0.5 ) | 1.1717 | 1.1717 | 1.250
26 | (7,0.5,1.25) | (7,0.5,1.25)"| (6,0.25,0.5 ) | 1.1717 | 1.1717 | 1.250
27| (7,0.5 ,1.25) | (7,0:5.,1.25) | (7,0.5 ,1.25) | 0.4475 | 0.4475 | 0.000
28 | (7,0.5,1.25):.(8,0.75,1 ) | (7,0.5 ,1.25) | 0.1457 | 0.1457 | 0.000
29 | (7,0.5 ,1.25)| (7,0.5 ,1.25) | (7,0.5 ,1.25) | 0.4475 | 0.4475 | 0.000
30 | (6,0.25,0.5 ) | (7,0.5,1.25) | (6,0.25,0.5 ) | 0.3832 | 0.3832 | 0.000

TE 23.1594 | 23.1594 | 17.450

A 18.1118 | 18.1118 | 16.000

35

Table 4. The Restaurants Data and Errors of Estimations

4. Concluding Remarks

A fuzzy linear regression model with fuzzy input-output data and crisp coeffi-
cients has been considered in this paper. Some available methods which have con-
sidered similar model have been introduced and some shortcomings of them have
been discussed. Then, a new distance between triangular and trapezoidal fuzzy
numbers has been introduced. The proposed distance takes into account both the
middle points and the spreads of fuzzy data. Based on the suggested distance,



36 H. Hassanpour, H. R. Maleki and M. A. Yaghoobi

a non-linear programming model has been formulated to calculate the regression
coefficients. It minimizes the total absolute deviations between the middle points
(and spreads) of observed and estimated responses. Some features of the proposed
approach are as follows:

1. The nonlinear programming model which has been presented to calculate the
regression coefficients is converted to a goal programming model and then to a linear
programming (LP) model easily. The advantage of this conversion is that simplex
method yields the exact solution od LP models. Whereas, the available algorithms
for solving nonlinear programming models often give approximate solutions.

2. The estimated responses from the proposed model are very close to the
observed responses in comparison with some other methods in view of membership
function.

3. Closeness of the centers of estimated responses to the centers of correspond-
ing observed responses has a special importance. Because, they have the highest
membership value. A new parameter (A) has been used to measure the total dis-
tance between the centers of observed and estimated responses. This parameter
in the proposed approach is better than that of some other methods in numerical
examples and simulation study.

4. Handling both the problems with triangular fuzzy numbers (symmetric and
asymmetric) and the problems with trapezoidal fuzzy numbers (symmetric and
asymmetric) is another feature of the proposed approach.

5. Obtaining the negative spreads for-fuzzy numbers is one of the shortcomings
of some previous methods, which is not encountered in the proposed method.

6. The multiplication of trapezoidal and triangular fuzzy numbers by a scaler
depend on the sign of the scaler. Therefore, different models (least-squares or
linear programming, ---) are/required to be formulated and solved based on the
sign of regression coefficients. The advantage of the proposed model in this paper
is that it is independent of the sign of regression coefficients. So, only one linear
programming model is solved for any status of the sign of regression coefficients.

7. One shortcoming of LP-based approaches in general is that the LP models
which are used to.estimate the parameters of FLR models have a large number of
constraints, specially for.a large number of observations. Although it seems that
our approach also has this shortcoming, with available LP solvers (e.g. LINGO [24]
and MPL [26]), the:size of LP is not important.
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