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FUZZY CONVEX SUBALGEBRAS OF COMMUTATIVE
RESIDUATED LATTICES

S. GHORBANI AND A. HASANKHANI

Abstract. In this paper, we define the notions of fuzzy congruence relations

and fuzzy convex subalgebras on a commutative residuated lattice and we ob-

tain some related results. In particular, we will show that there exists a one
to one correspondence between the set of all fuzzy congruence relations and

the set of all fuzzy convex subalgebras on a commutative residuated lattice.

Then we study fuzzy convex subalgebras of an integral commutative residu-
ated lattice and will prove that fuzzy filters and fuzzy convex subalgebras of

an integral commutative residuated lattice coincide.

1. Introduction

The concept of fuzzy sets was firstly introduced by Zadeh in 1965 ([15]). The
theory of fuzzy sets has been developed in a wide variety of fields such as fuzzy
mathematics. One of the important branch of fuzzy mathematics is fuzzy algebras.
Many researchers have studied some algebraic structure such as fuzzy group, fuzzy
ring, fuzzy modules, ... . Also, the concept of fuzzy sets was applied to BCI,
BCK, MV, BL-algebras. The concept of a commutative residuated lattice was
firstly introduced by M. Ward and R. P. Dilworth as generalization of ideal lattices
of rings (See [4], [13] and [14]). A commutative residuated lattice is an ordered
algebraic structure L = (L,∧,∨, ∗, :, e) such that (L,∧,∨) is a lattice, (L, ∗, e) is a
commutative monoid and for all x, y, z ∈ L

x ∗ y ≤ z ⇐⇒ x ≤ z : y ⇐⇒ y ≤ z : x.
The class of commutative residuated lattices is denoted by CRL. It was shown
that CRL is an ideal variety in the sense that its congruence correspond to convex
subalgebra. An integral commutative residuated lattice is an algebraic structure
L = (L,∧,∨, :, ∗, e) such that L = (L,∧,∨, :, ∗, e) is a commutative residuated
lattice and e is the greatest element of this algebra. In this case, we define 1 := e
([1]). We denote the class of integral commutative residuated lattice by ICRL
which is a subclass of CRL. As an example, every BL-algebra is a member of the
class ICRL. In fact, we consider a BL-algebra as a member of the subvariety of
ICRL such that 0 is the least element of this algebra and it satisfies the additional
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identities x ∗ (y : x) = x ∧ y and (y : x) ∨ (x : y) = 1. In the next section,
some preliminary definitions and theorems are stated. In section 3, first of all
we define the notion of fuzzy congruence relations on a commutative residuated
lattice, state and prove some related results. Then, using the concept of fuzzy
sets to a commutative residuated lattice, we introduce the notion of fuzzy convex
subalgebras of a commutative residuated lattice to investigate their properties. In
particular, we will prove that there exists a bijection between the set of all fuzzy
convex subalgebras and the set of all fuzzy congruence relations on a commutative
residuated lattice. Then we will introduce the notion of fuzzy quotient algebras in
a commutative residuated lattice and will prove that the fuzzy quotient algebras
induced by fuzzy convex subalgebras are commutative residuated lattices.
Fuzzy filter on a BL-algebra was introduced and studied by L. Z. Liu and K. T.Li
in ([10]). Finally, in section 4, using this definition for fuzzy filters of an integral
commutative residuated lattice, we will show that each fuzzy filter of an integral
commutative residuated lattice is a convex fuzzy subalgebra and vice versa, i.e.,
every convex fuzzy subalgebra of an integral commutative residuated lattice is a
fuzzy filter.

2. Preliminaries

Here we review some definitions and results which are needed in the other sec-
tions.

Definition 2.1. A commutative binary operation ∗ : P ×P → P on a poset (P,≤)
is said to be residuated iff there exists a binary operation :: P × P → P such that

x ∗ y ≤ z ⇐⇒ x ≤ z : y
for all x, y, z ∈ P . Then : is called a residual of the ∗ and (P,≤) is called a
residuated poset under the operation ∗.

Theorem 2.2. [5] Let (P,≤) be a poset. Then ∗ : P × P → P is residuated if and
only if it is order preserving in each component and max{p ∈ P : x ∗ p ≤ y} exists
for all x, y ∈ P . In this case, y : x = max{p ∈ P : x ∗ p ≤ y} for all x, y ∈ P .

Definition 2.3. [5] A commutative residuated lattice is an ordered algebraic struc-
ture L = (L,∧,∨, :, ∗, e) such that (L,∧,∨) is a lattice, (L, ∗, e) is a commutative
monoid and the operation : serves as the residual for the monoid multiplication
under the lattice ordering.

Theorem 2.4. [2] Let (L,∧,∨, ∗, :, e) be a commutative residuated lattice. Then
we have the following properties:
(1) x : e = x, e ≤ x : x,
(2) x ∗ (y : x) ≤ y,
(3) y : x ≤ (y ∗ z) : (x ∗ z),
(4) if x ≤ y, then x ∗ z ≤ y ∗ z,
(5) (z : y) : x = z : (x ∗ y),
(6) (e : x) ∗ (e : y) ≤ e : (x ∗ y),
(7) x ∗ (y ∨ z) = (x ∗ y) ∨ (x ∗ z),
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(8) x ∗ (y ∧ z) ≤ (x ∗ y) ∧ (x ∗ z),
(9) y : x ≤ (y : z) : (x : z),
(10) y : x ≤ (z : x) : (z : y),
(11) y ≤ (x ∗ y) : x,
for all x, y, z ∈ L.

Definition 2.5. [5] Let (L,∧,∨, ∗, :, e) be a commutative residuated lattice and
X ⊆ L. Then we denote the upper set generated by X in L with ↑ X, that is
↑ X = {y ∈ L : ∃x ∈ X 3 x ≤ y}. If X = {x} is a singleton, we will use the symbol
↑ x in place of ↑ {x}. The lower set ↓ X generated by X in L is defined dually.

Definition 2.6. A non-empty subset S of a commutative residuated lattice which
is a commutative residuated lattice with respect to the operations of residuated
lattice is called a subalgebra of the commutative residuated lattice.

Definition 2.7. [5] Let S be a subalgebra of a commutative residuated lattice L.
S is called a convex subalgebra of L if a, b ∈ S, then ↑ a∩ ↓ b ⊆ S.

Theorem 2.8. [9, 12] Let (L,∧,∨, ∗, :, 1) be an integral commutative residuated
lattice. Then we have the following properties:
(1) x : 1 = x, x : x = 1, 1 : x = 1,
(2) x ∗ y ≤ x ∧ y,
(3) x ≤ y if and only if y : x = 1,
(4) y ≤ y : x,
(5) x ∗ (y : x) ≤ x, y and hence x ∗ (y : x) ≤ x ∧ y,
(6) (z : y) : x = (z : x) : y,
for all x, y, z ∈ L.

Definition 2.9. [9, 12] A non-empty subset F of an integral commutative residu-
ated lattice (L,∧,∨, ∗, :, 1) is called filter if
(F1) 1 ∈ F ,
(F2) if x ∈ F and y : x ∈ F , then y ∈ F ,
for all x, y ∈ L.

Theorem 2.10. [9, 12] A non-empty subset F of an integral commutative residu-
ated lattice (L,∧,∨, ∗, :, 1) is a filter of L iff
(F1)́ if x, y ∈ F , then x ∗ y ∈ F ,
(F2)́ if x ∈ F , y ∈ L and x ≤ y, then y ∈ F .

Filters of a commutative residuated lattice are also called congruence filters or
deductive systems in literature.

Definition 2.11. [15] A fuzzy set of a non-empty setX is a mapping µ : X → [0, 1].

Definition 2.12. [3] Let µ be a fuzzy set of a non-empty set X. For each t ∈ [0, 1],
the set µt = {x ∈ X : µ(x) ≥ t} is called t-level subset of µ.
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Definition 2.13. let {µi}i∈I be a family of fuzzy sets of a non-empty set X. Then
the fuzzy sets

⋃
i∈I

µi and
⋂
i∈I

µi are defined by

⋃
i∈I

µi(x) = sup
i∈I

µi(x) and
⋂
i∈I

µi(x) = inf
i∈I

µi(x),

for all x ∈ X.

Definition 2.14. [11] A fuzzy equivalence relation R on a non-empty set X is a
fuzzy subset of X ×X satisfying the following conditions:
(R1) R(x, x) = Sup{R(y, z) : y, z ∈ X} (reflexive),
(R2) R(x, y) = R(y, x)(symmetric),
(R3) R(x, z) ≥ min{R(x, y), R(y, z)} (transitive),
for all x, y, z ∈ X.

3. Fuzzy Convex Subalgebras of CRL

Throughout this section, L will denote a commutative residuated lattice.

Lemma 3.1. If R is a fuzzy equivalence relation on L, then
(1) R(e, e) = R(x, x), for all x ∈ L,
(2) R(e, e) ≥ R(x, y), for all x, y ∈ L.

Proof. (1) It will be followed by Definition 2.14 part (R1).
(2) Let x, y ∈ L. Then R(e, e) = R(x, x) = sup{R(y, z) : for all y, z ∈ L} ≥
R(x, y). �

Definition 3.2. A fuzzy equivalence relation θ on L is called a fuzzy congruence
relation on L if
(C1) θ(y : x,w : z) ≥ min{θ(x, z), θ(y, w)},
(C2) θ(x ∗ y, z ∗ w) ≥ min{θ(x, z), θ(y, w)},
(C3) θ(x ∧ y, z ∧ w) ≥ min{θ(x, z), θ(y, w)},
(C4) θ(x ∨ y, z ∨ w) ≥ min{θ(x, z), θ(y, w)},
for all x, y, z, w ∈ L.

Example 3.3. Let L = {0, a, b, e, 1} with 0 < a < b < e < 1. We define
∗ 0 a b e 1
0 0 0 0 0 0
a 0 a a a a
b 0 a b b 1
e 0 a b e 1
1 0 a 1 1 1

: 0 a b e 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 a e e 1
e 0 a b e 1
1 0 a a a 1

and so L become a commutative residuated lattice. Define
θ (0, a) = θ(0, 1) = θ(0, b) = θ(0, e) = x,
θ(1, a) = θ(a, b) = θ(e, 1) = θ(a, e) = θ(b, 1) = y,
θ(b, e) = z,
such that 0 ≤ x ≤ y ≤ z ≤ θ(e, e) ≤ 1. Then θ is a fuzzy congruence relation on L.
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Theorem 3.4. Let θ be a fuzzy equivalence relation on L. Then θ is a fuzzy
congruence relation on L iff
(C1)′ θ(z : x, z : y) ≥ θ(x, y),
(C1)′′ θ(x : z, y : z) ≥ θ(x, y),
(C2)′ θ(x ∗ z, y ∗ z) ≥ θ(x, y),
(C3)′ θ(x ∧ z, y ∧ z) ≥ θ(x, y),
(C4)′ θ(x ∨ z, y ∨ z) ≥ θ(x, y),
for all x, y, z ∈ L.

Proof. Let θ be a fuzzy congruence relation on L and let x, y, z ∈ L. Then

θ(z : x, z : y) ≥ min{θ(x, y), θ(z, z)} = θ(x, y)

by Lemma 3.1 and (C1). Similarly, we can show that the other conditions of Defi-
nition 3.2 hold.

Conversely, let θ be a fuzzy equivalence relation on L which satisfies conditions
(C1)′ - (C4)′ and let x, y, z, w ∈ L. Then

θ(y : x,w : z) ≥ min{θ(y : x, y : z), θ(y : z, w : z)}
= min{θ(x, z), θ(y, w)}

by (R3), (C1)′ and (C1)′′. Similarly, one can show that the other conditions hold.
Hence θ is a fuzzy congruence relation on L. �

Theorem 3.5. Let θ be a fuzzy relation on L. θ is a fuzzy congruence relation on
L iff for all t ∈ [0, 1], θt is either empty or a congruence relation on L.

Proof. The proof is routine. �

Notation: The set of all fuzzy congruence relations on L is denoted by FCon(L).

Definition 3.6. A fuzzy subset S of L is called a fuzzy subalgebra of L iff
(1) S(e) ≥ S(x),
(2) S(y : x) ≥ min{S(x), S(y)},
(3) S(x ∗ y) ≥ min{S(x), S(y)},
(4) S(x ∧ y) ≥ min{S(x), S(y)},
(5) S(x ∨ y) ≥ min{S(x), S(y)},
for all x, y ∈ L.

Example 3.7. Consider the commutative residuated lattice which is defined in
Example 3.3 and define

0 < S(0) < S(b) < S(a) = S(1) < S(e) < 1.
Then S is a fuzzy subalgebra of L.

Definition 3.8. A fuzzy subalgebra S of L is said to be a fuzzy convex subalgebra
of L if for a ∈ Sα, b ∈ Sβ and a ≤ c ≤ b, there exists a γ between α and β such
that c ∈ Sγ .

Example 3.9. [6] Let L = {0, a, b, e, 1} with 0 < a, b < e < 1 and elements a, b are
incomparable. We define
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∗ 0 a b e 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
e 0 a b e 1
1 0 a b 1 1

: 0 a b e 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
e 0 a b e 1
1 0 a b 1 1

and so L is a commutative residuated lattice. Define fuzzy set S1 of L by S1(0) =
S1(a) = x, S1(b) = y and S1(1) = z, where 0 ≤ x ≤ y ≤ z ≤ S1(e) ≤ 1. Also,
define fuzzy set S2 of L by S2(0) = S2(b) = t, S2(a) = s and S2(1) = w, where
0 ≤ t ≤ s ≤ w ≤ S2(e) ≤ 1. It is easy to show that S1 and S2 are fuzzy convex
subalgebras of L.

Remark 3.10. We notice that each fuzzy subalgebra of L may not be a fuzzy
convex subalgebra of L. Consider the fuzzy subalgebra S of L in Example 3.7
which is not a fuzzy convex subalgebra of L.

Theorem 3.11. Let S be a fuzzy subset of L. S is a fuzzy (convex ) subalgebra of
L iff for all t ∈ [0, 1], St is either empty or a (convex) subalgebra of L.

Proof. It is easy to show that S is a fuzzy subalgebra of L iff for all t ∈ [0, 1], St is
either empty or a fuzzy subalgebra of L.
Suppose that S is a fuzzy convex subalgebra of L and for t ∈ [0, 1], St is not empty.
Let a, b ∈ St and a ≤ c ≤ b. Then there exists t ≤ γ ≤ t such that c ∈ Sγ , i.e.,
c ∈ St.

Conversely, suppose that for all t ∈ [0, 1], St is either empty or a convex subalge-
bra of L. It is easy to show that S is a fuzzy subalgebra of L. Let a ∈ Sα, b ∈ Sβ ,
a ≤ c ≤ b. Without loss of generality, assume that α ≤ β. Then b ∈ Sβ ⊆ Sα.
Since Sα is a convex subalgebra of L, c ∈ Sα, i.e., S(c) ≥ α. Consider the following
cases:
Case 1: S(c) ≤ β. Put γ = S(c).
Case 2: S(c) > β. Put γ = β. Therefore S(c) > γ = β and α ≤ γ ≤ β.
Hence c ∈ Sγ where α ≤ γ ≤ β. �

Corollary 3.12. Let S be a non-empty subset of L. S is a convex subalgebra of L
iff χS is a fuzzy convex subalgebra of L, where χS is the characteristic function of
S.

Theorem 3.13. Let {Sα}α∈I be an arbitrary family of fuzzy convex subalgebras of
L. Then

⋂
α∈Γ

Sα is a fuzzy convex subalgebra of L.

Proof. The proof is routine. �

Remark 3.14. Let {Sα}α∈I be an arbitrary family of fuzzy convex subalgebras
of L. Then

⋃
α∈Γ

Sα may not be a fuzzy convex subalgebra of L. See the following

example:

Example 3.15. Consider the fuzzy convex subalgebras S1 and S2 in Example 3.9
and suppose that 0 < x < t < s < y < w < z < 1. Then we get

Archive of SID

www.SID.ir

v


Fuzzy Convex Subalgebras of Commutative Residuated Lattices 47

(S1 ∪ S2)(0) = t, (S1 ∪ S2)(a) = s, (S1 ∪ S2)(b) = y and (S1 ∪ S2)(1) = z.
We have (S1 ∪ S2)(a ∗ b) = (S1 ∪ S2)(0) = t, min{(S1 ∪ S2)(a), (S1 ∪ S2)(b)} = y
and t < y. Hence S1 ∪ S2 is not a fuzzy convex subalgebra of L.

Notation: The set of all fuzzy convex subalgebras of L is denoted by FSubc(L).

Clearly FSubc(L) is a lattice, because if S1, S2 ∈ FSubc(L), then S1∨S2 (i.e, the
intersection of all fuzzy convex subalgebras containing S1 ∪ S2) is the least upper
bound of S1 and S2. Also S1∩S2 ∈ FSubc(L) is the greatest lower bound of S1 and
S2. Since we can replace the set {S1, S2} by an arbitrary family of fuzzy convex
subalgebras, the lattice (FSubc(L),∨,∩) is a complete lattice.

Lemma 3.16. Let S be a fuzzy convex subalgebra of L. Then
min{S(x ∧ e), S((y ∧ e) : (x ∧ e))} ≤ S(y ∧ e),

for all x, y ∈ L.

Proof. Let S(x ∧ e) = α and S((y ∧ e) : (x ∧ e)) = β. Since

(x ∧ e) ∗ ((y ∧ e) : (x ∧ e)) ≤ y ∧ e ≤ (y ∧ e) : (x ∧ e)

and S is a fuzzy subalgebra of L, we have
min(α, β) = min{S(x ∧ e), S((y ∧ e) : (x ∧ e))} ≤ S((x ∧ e) ∗ [(y ∧ e) : (x ∧ e)]).
Hence (x ∧ e) ∗ ((y ∧ e) : (x ∧ e)) ∈ Smin(α,β). Since S is a fuzzy convex subalgebra
of L, there exists γ between min(α, β) and β such that y ∧ e ∈ Sγ , i.e., S(y ∧ e) ≥
γ ≥ min(α, β) = min{S(x ∧ e), S((y ∧ e) : (x ∧ e))}. �

Theorem 3.17. Let S be a fuzzy convex subalgebra of L. For any x, y, z ∈ L, the
following properties hold:
(1) if x ≤ y, then S(x ∧ e) ≤ S(y ∧ e),
(2) if S((y ∧ e) : (x ∧ e)) = S(e), then S(x ∧ e) ≤ S(y ∧ e),
(3) S((y : x) ∧ e) ≤ S([(y ∗ z) : (x ∗ z)] ∧ e),
(5) S((y : x) ∧ e) ≤ S([(z : x) : (z : y)] ∧ e),
(6) S((y : x) ∧ e) ≤ S([(y : z) : (x : z)] ∧ e),
(7) S((y : x) ∧ e) ≤ S([(y ∧ z) : (x ∧ z)] ∧ e),
(8) S((y : x) ∧ e) ≤ S([(y ∨ z) : (x ∨ z)] ∧ e),
(9) S((y : x) ∧ e) ≤ S([y : (x ∨ y)] ∧ e).

Proof. (1) Since x ≤ y, we have x∧e ≤ y∧e ≤ e. But S is a fuzzy convex subalgebra
of L, hence there exists γ between S(x ∧ e) and S(e) such that y ∧ e ∈ Sγ , i.e.,
S(x ∧ e) ≤ S(y ∧ e).
(2) It is clear by Lemma 3.14.
(3) By Theorem 2.4 part (8) and (10)

((y : x) ∧ e) ∗ ((z : y) ∧ e) ≤ [((y : x) ∧ e) ∗ (z : y)] ∧ [((y : x) ∧ e) ∗ e]
≤ [(y : x) ∗ (z : y)] ∧ (z : y) ∧ e
≤ (z : x) ∧ e.

Hence by part (1) and Definition 3.6 part (3), we get that
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min{S((y : x) ∧ e), S((z : y) ∧ e)} ≤ S(((y : x) ∧ e) ∗ ((z : y) ∧ e))
≤ S((z : x) ∧ e).

(4) Since (y : x) ∧ e ≤ [(y ∗ z) : (x ∗ z)] ∧ e by Theorem 2.4 part (3), we have

S((y : x) ∧ e) ≤ S([(y ∗ z) : (x ∗ z)] ∧ e),

by part (1).
(5) We have ((y : x) ∧ e) ∗ (z : y) ≤ ((y : x) ∗ (z : y)) ∧ (z : y) ≤ (z : x). So
(y : x) ∧ e ≤ ((z : x) : (z : y)) ∧ e. Hence

S((y : x) ∧ e) ≤ S([(z : x) : (z : y)] ∧ e),

by part(1).
(6) The proof is similar to the part(5).
(7) Since (y ∧ z) ∗ ((x : y) ∧ e) ≤ [y ∗ ((x : y) ∧ e)] ∧ [z ∗ ((x : y) ∧ e)] ≤ x ∧ z, then
((x : y) ∧ e) ≤ (x ∧ z) : (y ∧ z). So we have((x : y) ∧ e) ≤ ((x ∧ z) : (y ∧ z)) ∧ e. By
part(1), we conclude that S((y : x) ∧ e) ≤ S([(y ∧ z) : x ∧ z] ∧ e).
(8) We have (y ∨ z) ∗ ((x : y) ∧ e) = [y ∗ ((x : y) ∧ e)] ∨ [z ∗ ((x : y) ∧ e)] ≤ x ∨ z
by Theorem 2.4 part (7). Then ((x : y) ∧ e) ≤ ((x ∨ z) : (y ∨ z)) ∧ e. Hence
S((y : x) ∧ e) ≤ S([(y ∨ z) : (x ∨ z)] ∧ e), by part(1).
(9) Use Theorem 2.4 part(2) and (4), then x ∗ ((y : x)∧ e) ≤ x ∗ (y : x) ≤ y and
y ∗ ((y : x) ∧ e) ≤ y ∗ e ≤ y.
Hence

x ≤ y : ((x : y) ∧ e) and y ≤ y : ((x : y) ∧ e).

Therefore y ∨ x ≤ y : ((y : x) ∧ e). So (y : x) ∧ e ≤ y : (y ∨ x). Hence

S((y : x) ∧ e) ≤ S([y : (x ∨ y)] ∧ e).

by part (1). �

Definition 3.18. Let S be a fuzzy convex subalgebra of L. Fuzzy relation θS on
L which is defined by

θS(x, y) = min{S((y : x) ∧ e), S((x : y) ∧ e)}
is called the fuzzy relation induced by S.

Theorem 3.19. Let S be a fuzzy convex subalgebra of L. Then θS is a fuzzy
congruence relation on L.

Proof. The proof follows from Theorem 3.17. �

Theorem 3.20. Let S be a fuzzy convex subalgebra of L and θS be a fuzzy con-
gruence relation induced by S and t ∈ Imθ. Then (θS)t is the congruence on L
induced by St, i.e., (θS)t = θSt

, where
θSt

= {(x, y) : (y : x) ∧ e ∈ St, (x : y) ∧ e ∈ St}.

Proof. Let (x, y) ∈ (θS)t. Therefore θS(x, y) ≥ t. So we have

min{S((x : y) ∧ e), S((y : x) ∧ e)} ≥ t.
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Thus (x : y) ∧ e ∈ St and (y : x) ∧ e ∈ St. Hence (x, y) ∈ θSt . Thus (θS)t ⊆ θSt .
By reversing the above arguments we get, θSt ⊆ (θS)t. Hence(θS)t = θSt . �

Definition 3.21. Let θ be a fuzzy congruence relation on L. Then the fuzzy subset
Sθ which is defined by

Sθ(x) = θ(x, e)
is called the fuzzy subset induced by θ.

Theorem 3.22. Let θ be a fuzzy congruence relation on L. Then Sθ is a fuzzy
convex subalgebra of L.

Proof. For all x, y ∈ L

Sθ(y : x) = θ(e, y : x) = θ(e : e, y : x)
≥ min{θ(e, x), θ(e, y)} = min{Sθ(x), Sθ(y)}.

The proof of the other conditions of Definition 3.6 is similar. Hence Sθ is a fuzzy
subalgebra of L.
Let a ∈α Sθ, b ∈β Sθ and a ≤ c ≤ b. Then Sθ(a) = θ(e, a) ≥ α and Sθ(b) =
θ(e, b) ≥ β.
If β ≥ α, then

θ(a, c) = θ(a ∧ b ∧ c, b ∧ c) ≥ min{θ(a ∧ b, b), θ(c, c)}
≥ min{θ(a, b), θ(b, b)}
≥ min{θ(a, e), θ(e, b)} = min{α, β}.

Hence

θ(e, c) ≥ min{θ(e, a), θ(a, c)} ≥ α.

If α ≥ β, then

θ(b, c) = θ(a ∨ b ∨ c, a ∨ c) ≥ min{θ(a ∨ b, a), θ(c, c)}
≥ min{θ(b, a), θ(a, a)}
≥ min{θ(a, e), θ(e, b)} = min{α, β}.

Hence

θ(e, c) ≥ min{θ(e, b), θ(b, c)} ≥ β.

Therefore Sθ(c) = θ(e, c) ≥ min{α, β} = γ, where γ is between α and β. Thus Sθ

is a fuzzy convex subalgebra of L. �

Theorem 3.23. Let θ be a fuzzy congruence relation on L and let Sθ be a fuzzy
convex subalgebra induced by θ. Let t ∈ Imθ.Then(Sθ)t is the convex subalgebra
induced by θt, i.e., (Sθ)t = Sθt

where Sθt
= {a ∈ L : (a, e) ∈ θt}.

Proof. Let a ∈ (Sθ)t. Then Sθ(a) ≥ t and we have θ(e, a) ≥ t. Hence a ∈ Sθt and
(Sθ)t ⊆ Sθt

. By reversing the above arguments, we get Sθt
⊆ (Sθ)t. �

Theorem 3.24. Let S be a fuzzy convex subalgebra of L. Then SθS
= S.

Proof. Let x ∈ L. Since S is a fuzzy subalgebra, we have
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SθS
(x) = θS(e, x) = min{S((x : e) ∧ e), S((e : x) ∧ e)}

= min{S(e ∧ x), S((e : x) ∧ e)} ≥ S(x)

by Definition 3.6.
Conversely, we will show that

S(x) ≥ min{S((e : x) ∧ e), S(x ∧ e)}.

Suppose that x ∈ L. Put h = (e : x) ∧ (x ∧ e). Clearly h ≤ x ≤ e : h. Let
S(h) = α and S(e : h) = β. Then α, β ≥ min{S(x ∧ e), S((e : x) ∧ e)}. Since
S is a fuzzy convex subalgebra of L, there exists a γ between α and β such that
S(x) ≥ γ ≥ min{α, β} ≥ min{S(x ∧ e), S((e : x) ∧ e)}. Hence S(x) ≥ SθS

(x). �

Lemma 3.25. Let θ be a fuzzy congruence relation on L. Then
θ(x ∨ y, y) ≥ Sθ((y : x) ∧ e),

for all x, y ∈ L.

Proof. We have

θ(x ∨ y, y) = θ(x ∨ y, y ∨ (x ∗ ((y : x) ∧ e)))
≥ min{θ(y, y), θ(x, x ∗ ((y : x) ∧ e))}
≥ min{θ(x, x), θ(e, (y : x) ∧ e)}
≥ Sθ((y : x) ∧ e).

�

Theorem 3.26. Let θ be a fuzzy congruence relation on L. Then θSθ
= θ.

Proof. Let x, y ∈ L. Then

θSθ
(x, y) = min{Sθ((y : x) ∧ e), Sθ((x : y) ∧ e)}

= min{θ(e, (y : x) ∧ e), θ(e, (x : y) ∧ e)}
= min{θ(e ∧ (x : x), (y : x) ∧ e), θ(e ∧ (y : y), (x : y) ∧ e)}
≥ min{θ(e, e), θ(y, y), θ(x, x), θ(x, y)} = θ(x, y).

Conversely, we have

θ(x, y) ≥ min{θ(x, x ∨ y), θ(x ∨ y, y)}
≥ min{Sθ((y : x) ∧ e), Sθ((x : y) ∧ e)}
= θSθ

(x, y)

�

Theorem 3.27. (Correspondence theorem) There is a bijection between the set of
all fuzzy convex subalgebras of L and the set of all fuzzy congruence relations on L.

Proof. Define the function ψ as follows:

ψ : FCon(L) → FSubc(L)
θ 7→ Sθ

Then by Theorem 3.24 and 3.26, ψ is a bijection. �
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Definition 3.28. Let θ be a fuzzy congruence relation on L and x ∈ L. Define the
fuzzy set [θ]x by [θ]x(y) = θ(x, y). The fuzzy set [θ]x is called a fuzzy congruence
class of x by θ in L.

Theorem 3.29. If S is a fuzzy convex subalgebra of L, then
(1) [θS ]x = [θS ]y if and only if S((y : x) ∧ e) = S((x : y) ∧ e) = S(e),
(2) [θS ]x = [θS ]e if and only if S(x) = S(e).

Proof. (1) If [θS ]x = [θS ]y, then [θS ]x(x) = [θS ]y(x). So we have

S((x : x) ∧ e) = S(e) = min{S((y : x) ∧ e), S((x : y) ∧ e)}.

It follows that S((y : x) ∧ e) = S((x : y) ∧ e) = S(e).
Conversely, suppose thatS((y : x) ∧ e) = S((x : y) ∧ e) = S(e). By Theorem 3.6

part (3) and Theorem 2.4 part (9) and (10), we can show that

min{S((y : x) ∧ e), S((z : y) ∧ e)} ≤ S((z : x) ∧ e),
min{S((x : y) ∧ e), S((z : x) ∧ e)} ≤ S((z : y) ∧ e).

By using assumption, we have

S((z : x) ∧ e) ≤ S((z : y) ∧ e) and S((z : y) ∧ e) ≤ S((z : x) ∧ e).

Therefore S((z : x)∧e) = S((z : y)∧e). Similarly, we can show that S((x : z)∧e) =
S((y : z) ∧ e). Thus [θS ]x(z) = [θS ]y(z) for all z ∈ L. Hence[θS ]x = [θS ]y.
(2) It follows from part (1) and Theorem 2.4 part(1). �

Theorem 3.30. Let S be a fuzzy convex subalgebra of L. Define
x ≡S y if and only if [θS ]x = [θS ]y.

Then ≡S is a congruence relation on L.

Proof. The proof follows from Theorem 3.17. �

Definition 3.31. Let S be a fuzzy convex subalgebra of L, θS be the fuzzy con-
gruence relation induced by S. The set of all fuzzy congruence class is denoted by
L
θS

. On this set, we define
[θS ]x ∨ [θS ]y = [θS ]x∨y , [θS ]x ∧ [θS ]y = [θS ]x∧y

[θS ]x ∗ [θS ]y = [θS ]x∗y , [θS ]y : [θS ]x = [θS ]y:x,

for all x, y ∈ L. Then L
θS

is called the fuzzy quotient algebra respect to the fuzzy
convex subalgebra S.

Theorem 3.32. Let S be a fuzzy convex subalgebra of L. Then L
θS

= ( L
θS
,∧,∨, ∗, :

, [θS ]e) is a commutative residuated lattice.

Proof. By Theorem 3.28, we have [θS ]x = [θS ]y and [θS ]z = [θS ]w if and only if
x ≡S y and z ≡S w. Since ≡S is the congruence relation on L by Theorem 3.28, all
the above operations are well defined. It is easy to show that ( L

θS
,∧,∨) is a lattice,

∗ is commutative, associative and has [θS ]e as an identity. The operation ∨ defines
a relation ≤ on L

θS
by

[θS ]x ≤ [θS ]y if and only if [θS ]x∨y = [θS ]y for all x, y ∈ L.
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This relation is a partial order on L
θS

. Using Theorem 3.27, we see that

[θS ]x ≤ [θS ]y if and only if (y : x) ∧ e ∈ SS(e) for all x, y ∈ L (1).

Now, we will show that [θS ]z ≤ [θS ]y : [θS ]x if and only if [θS ]z ∗ [θS ]x ≤ [θS ]y for
all x, y, z ∈ L. We have
[θS ]z ≤ [θS ]y : [θS ]x ⇐⇒ [θS ]z ≤ [θS ]y:x by Definition 3.31

⇐⇒ ((y : x) : z) ∧ e ∈ SS(e) by (1)

⇐⇒ (y : (z ∗ x)) ∧ e ∈ SS(e) by Theorem 2.4(5)

⇐⇒ [θS ]z∗x ≤ [θS ]y by (1)

⇐⇒ [θS ]z ∗ [θS ]x ≤ [θS ]y by Definition 3.21.
This completes the proof. �

Theorem 3.33. Let S be a fuzzy convex subalgebra of L and L
θS

be the corresponding
quotient algebra. Then the map h : L → L

θS
defined by h(x) = [θS ]x for all x ∈ L

is a surjective homomorphism and ker(h) = SS(e), where ker(h) = {x ∈ L : h(x) =
[θS ]e}. Moreover, L

θS
is isomorphic to the commutative residuated lattice L

≡S
.

Proof. It follows from Definition 3.31 and Theorem 3.32, that h is surjective homo-
morphism. Now, we show that ker(h) = SS(e).
x ∈ ker(h) if and only if [θS ]x = h(x) = [θS ]e if and only if S(x) = S(e) (By
Theorem 3.27 part (2)) if and only if x ∈ SS(e).
By part (1) and (2), L

θS
is isomorphic to the commutative residuated lattice L

≡S
. �

4. Fuzzy Convex Subalgebras of ICRL

In this section, we consider the class of integral commutative residuated lattice.
Suppose that L is an integral commutative residuated lattice.

Theorem 4.1. Let S be a fuzzy convex subalgebra of L. For any x, y, z ∈ L, the
following hold:
(1) if x ≤ y , then S(x) ≤ S(y),
(2) if S(y : x) = S(1), then S(x) ≤ S(y),
(3) S(x ∗ y) = min{S(x), S(y)},
(4) S(x ∧ y) = min{S(x), S(y)}.

Proof. (1) If x ≤ y, then S(x) = S(x ∧ 1) ≤ S(y ∧ 1) = S(y) by Theorem 3.17
part(1).
(2) It is clear by Theorem 3.17 part(2).
(3) Since S is a fuzzy subalgebra of L, we have S(x∗ y) ≥ min{S(x), S(y)}. On the
other hand, we have x∗y ≤ x, y by Theorem 2.8 part(2). Hence S(x∗y) ≤ S(x), S(y)
by part (1). Thus S(x ∗ y) ≤ min{S(x), S(y)}.
(4) The proof is similar to the part (3). �
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Definition 4.2. Let f be a fuzzy set of L. f is called a fuzzy filter of L iff
(fF1) f(1) ≥ f(x),
(fF2) f(y) ≥ min{f(x), f(y : x)},
for all x, y ∈ L.

Theorem 4.3. A fuzzy set f of L is a fuzzy filter iff
(fF1)́ if x ≤ y, then f(x) ≤ f(y),
(fF2)́ min{f(x), f(y)} ≤ f(x ∗ y),
for all x, y ∈ L.

Proof. See ([14]). �

Example 4.4. Let L = {0, a, d, 1} with 0 < a, d < 1 and elements a, d are incom-
parable. We define

∗ 0 a d 1
0 0 0 0 0
a 0 a 0 a
d 0 0 d d
1 0 a d 1

: 0 a d 1
0 1 1 1 1
a d 1 d 1
d a a 1 1
1 0 a d 1

and so L is an integral commutative residuated lattice. Define fuzzy set f1 in L
by f1(0) = f1(a) = x, f1(d) = y and f1(1) = z where 0 ≤ x ≤ y ≤ z ≤ 1. Also,
define fuzzy set f2 in L by f2(0) = f2(d) = t, f2(a) = s and f2(1) = w where
0 ≤ t ≤ s ≤ w ≤ 1. It is easy to show thatf1 and f2 are fuzzy filters of L.

Theorem 4.5. Let S be a fuzzy set of L. S is a fuzzy convex subalgebra of L iff S
is a fuzzy filter of L.

Proof. Let S be a fuzzy convex subalgebra of L. Then
(1) if x ≤ y, then S(x) ≤ S(y),
(2) S(x ∗ y) = min{S(x), S(y)},
by Theorem 5.1 part(1)and (3). Hence S is a fuzzy filter of L by Theorem 5.3.

Conversely, let S be a fuzzy filter of L. First, we show that S is a fuzzy subalgebra
of L.
(1) S(1) ≥ S(x), by (fF1),
(2) S(y : x) ≥ S(y) ≥ min{S(x), S(y)}, by Theorem 2.8 part(4) and (fF1)́,
(3) S(x ∗ y) ≥ min{S(x), S(y)}, by (fF 2́),
(4) S(x∧ y) ≥ S(x ∗ (y : x)) ≥ min{S(x), S(y)} by Theorem 2.8 part(4) and(fF1)́,
(5) S(x ∨ y) ≥ min{S(x), S(y)}, by (fF1)́.
for all x, y ∈ L. Now, we show that S is a fuzzy convex subalgebra of L. Suppose
that a ∈ Sα, b ∈ Sβ and a ≤ c ≤ b. Then
min{α, β} ≤ min{S(a), S(b)} ≤ S(b ∗ (a : b)) ≤ S(b ∗ (c : b)) ≤ S(c).

Define γ = min{α, β}. Hence there exists a γ between α and β such that c ∈ Sγ . �
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