A NEW PERSPECTIVE TO THE MAZUR-ULAM PROBLEM IN 2-FUZZY 2-NORMED LINEAR SPACES

C. ALACA

ABSTRACT. In this paper, we introduce the concepts of 2-isometry, collinearity, 2-Lipschitz mapping in 2-fuzzy 2-normed linear spaces. Also, we give a new generalization of the Mazur-Ulam theorem when X is a 2-fuzzy 2-normed linear space or $\Im(X)$ is a fuzzy 2-normed linear space, that is, the Mazur-Ulam theorem holds, when the 2-isometry mapped to a 2-fuzzy 2-normed linear space is affine.

1. Introduction

The theory of fuzzy sets was introduced by Zadeh [25]. A satisfactory theory of 2-norms and n-norms on a linear space has been introduced and developed by Gähler in [9, 10]. Different authors introduced various definitions of fuzzy norms on a linear space. For reference, one may see [8, 11, 13, 14, 21, 23]. Following Cheng and Mordeson [3], Bag and Samanta [1] introduced a concept of fuzzy norm on a linear space.

Recently, Somasundaram and Beaula [20] introduced a concept of 2-fuzzy 2-normed linear space or fuzzy 2-normed linear space of the set of all fuzzy sets of a set. The authors gave the notion of α -2-norm on a linear space corresponding to the 2-fuzzy 2-norm by using some ideas of [1] and also gave some fundamental properties of this space.

In 1932, Mazur and Ulam [15] proved the following theorem.

Mazur-Ulam Theorem. Every isometry of a real normed linear space onto a real normed linear space is a linear mapping up to translation.

Baker [2] showed an isometry from a real normed linear space into a strictly convex real normed linear space is affine. Also, Jian [12] investigated the generalizations of the Mazur–Ulam theorem in F^* -spaces. Rassias and Wagner [19] described all volume preserving mappings from a real finite dimensional vector space into itself and Väisälä [22] gave a short and simple proof of the Mazur–Ulam theorem. Chu [6] proved that the Mazur–Ulam theorem holds when X is a linear 2-normed space. Chu et al. [7] generalized the Mazur–Ulam theorem when X is a linear n-normed space, that is, the Mazur–Ulam theorem holds, when the n-isometry mapped to a linear n-normed space is affine. In addition, Moslehian and Sadeghi [16] investigated the Mazur-Ulam theorem in non-archimedean spaces. Chu et al. [7] also

Received: June 2009; Revised: September 2009; Accepted: October 2009

Key words and phrases: α -2-Norm, 2-Fuzzy 2-Normed linear spaces, 2-Isometry, 2-Lipschitz mapping.

obtained extensions of Rassias and Šemrl's theorem [18]. Cho et al. [5] investigated the Mazur–Ulam theorem on probabilistic 2-normed spaces. The Mazur–Ulam theorem has been extensively studied by many authors (see [17, 19, 24]).

In the present paper, we introduce the concepts of 2-isometry, collinearity, 2-Lipschitz mapping in 2-fuzzy 2-normed linear spaces. Also, we give a new generalization of the Mazur-Ulam theorem when X is a 2-fuzzy 2-normed linear space or $\Im(X)$ is a fuzzy 2-normed linear space, that is, the Mazur-Ulam theorem holds, when the 2-isometry mapped to a 2-fuzzy 2-normed linear space is affine.

2. On 2-Fuzzy 2-Normed Linear Spaces

In this section at first we give a concept of linear 2-normed space and later a concept of 2-fuzzy 2-normed linear space and it's fundamental properties by using some ideas of [20]. For more details we refer the readers to [1, 4, 20].

Definition 2.1. [4] Let X be a real vector space of dimension greater than 1 and let $\|\bullet, \bullet\|$ be a real valued function on $X \times X$ satisfying the following four properties:

- (1) ||x, y|| = 0 if and only if x and y are linearly dependent,
- (2) ||x,y|| = ||y,x||,
- (3) $||x, \alpha y|| = |\alpha| ||x, y||$ for any $\alpha \in \mathbb{R}$,
- $(4) ||x, y + z|| \le ||x, y|| + ||x, z||,$
- $\|\bullet, \bullet\|$ is called a 2-norm on X and the pair $(X, \|\bullet, \bullet\|)$ is called a linear 2-normed space.

Definition 2.2. [1] Let X be a linear space over S (field of real or complex numbers). A fuzzy subset N of $X \times \mathbb{R}$ (\mathbb{R} , the set of real numbers) is called a fuzzy norm on X if and only if:

- (N1) For all $t \in \mathbb{R}$ with $t \leq 0$, N(x, t) = 0,
- (N2) For all $t \in \mathbb{R}$ with t > 0, N(x, t) = 1 if and only if x = 0,
- (N3) For all $t \in \mathbb{R}$ with t > 0, $N(\lambda x, t) = N(x, \frac{t}{|\lambda|})$, if $\lambda \neq 0$, $\lambda \in S$,
- (N4) For all $s, t \in \mathbb{R}$, $x, y \in X$, $N(x + y, s + t) \ge \min\{N(x, s), N(y, t)\}$,
- (N5) $N(x,\cdot)$ is a non-decreasing function of $t \in \mathbb{R}$ and $\lim_{t \to \infty} N(x,t) = 1$.

Then (X, N) is called a fuzzy normed linear space or in short f-NLS.

Theorem 2.3. [1] Let (X, N) be a f-NLS. Assume the condition that

(N6) N(x,t) > 0 for all t > 0 implies x = 0.

Define $\|x\|_{\alpha} = \inf\{t : N(x,t) \geq \alpha\}$, $\alpha \in (0,1)$. Then $\{\|\bullet\|_{\alpha} : \alpha \in (0,1)\}$ is an ascending family of norms on X. We call these norms as α -norms on X corresponding to the fuzzy norm on X.

Definition 2.4. Let X be any non-empty set and $\Im(X)$ be the set of all fuzzy sets on X. For $U, V \in \Im(X)$ and $\lambda \in S$ the field of real numbers, define

$$U+V=\{(x+y,\nu\wedge\mu):(x,\nu)\in U,(y,\mu)\in V\}$$

and $\lambda U = \{(\lambda x, \nu) : (x, \nu) \in U\}.$

Definition 2.5. A fuzzy linear space $\hat{X} = X \times (0,1]$ over the number field S where the addition and scalar multiplication operation on X are defined by $(x, \nu) + (y, \mu) =$ $(x+y,\nu\wedge\mu),\,\lambda(x,\nu)=(\lambda x,\nu)$ is a fuzzy normed space if to every $(x,\nu)\in\widehat{X}$ there is associated a non-negative real number, $\|(x,\nu)\|$, called the fuzzy norm of (x,ν) , in such away that

- (i) $||(x,\nu)|| = 0$ iff x = 0 the zero element of $X, \nu \in (0,1]$,
- (ii) $\|\lambda(x,\nu)\| = |\lambda| \|(x,\nu)\|$ for all $(x,\nu) \in \widehat{X}$ and all $\lambda \in S$,
- (iii) $||(x,\nu) + (y,\mu)|| \le ||(x,\nu \wedge \mu)|| + ||(y,\nu \wedge \mu)||$ for all $(x,\nu), (y,\mu) \in \widehat{X}$,
- (iv) $||(x, \vee_t \nu_t)|| = \wedge_t ||(x, \nu_t)||$ for all $\nu_t \in (0, 1]$.

Definition 2.6. [20] Let X be a non-empty set and $\Im(X)$ be the set of all fuzzy sets in X. If $f \in \Im(X)$ then $f = \{(x, \mu) : x \in X \text{ and } \mu \in (0, 1]\}$. Clearly f is a bounded function, since $|f(x)| \leq 1$. Let S be the space of real numbers, then $\Im(X)$ is a linear space over the field S where the addition and scalar multiplication are defined by

$$f+g=\{(x,\mu)+(y,\eta)\}=\{(x+y,\mu\wedge\eta):(x,\mu)\in f \text{ and } (y,\eta)\in g\}$$

$$\lambda f=\{(\lambda x,\mu):(x,\mu)\in f\}$$
 $\lambda\in S.$

and

$$\lambda f = \{(\lambda x, \mu) : (x, \mu) \in f\}$$

where $\lambda \in S$.

The linear space $\Im(X)$ is said to be normed linear space if, for every $f \in \Im(X)$, there exists an associated non-negative real number ||f|| (called the norm of f) that satisfies

(i) ||f|| = 0 if and only if f = 0. For

(i)
$$||f|| = 0$$
 if and only if $f = 0$. For
$$||f|| = 0$$

$$\iff \{||(x, \mu)|| : (x, \mu) \in f\} = 0$$

$$\iff x = 0, \ \mu \in (0, 1] \iff f = 0.$$
(ii) $||\lambda f|| = |\lambda| \ ||f||, \ \lambda \in S$. For
$$||\lambda f|| = \{||\lambda(x, \mu)|| : (x, \mu) \in f, \ \lambda \in S\}$$

$$= \{|\lambda| \ ||(x, \mu)|| : (x, \mu) \in f\} = |\lambda| \ ||f||.$$
(iii) $||f + a|| \le ||f|| + ||a||$ for every $f, a \in \Im(X)$. For

$$\begin{aligned} \|\lambda f\| &= \|\{\|\lambda(x,\mu)\| : (x,\mu) \in f, \ \lambda \in S\} \\ &= \|\{\lambda\|\|(x,\mu)\| : (x,\mu) \in f\} = |\lambda| \|f\|. \end{aligned}$$

(iii) $||f+g|| \le ||f|| + ||g||$ for every $f, g \in \Im(X)$. For

$$||f + g|| = \{||(x, \mu) + (y, \eta)|| : x, y \in X, \ \mu, \eta \in (0, 1]\}$$

$$= \{||(x + y), (\mu \wedge \eta)|| : x, y \in X, \ \mu, \eta \in (0, 1]\}$$

$$= \{||(x, \mu \wedge \eta)|| + ||(y, \mu \wedge \eta)|| : (x, \mu) \in f, \ (y, \eta) \in g\}$$

$$= ||f|| + ||g||$$

Then $(\Im(X), \|\bullet\|)$ is a normed linear space.

Definition 2.7. [20] A 2-fuzzy set on X is a fuzzy set on $\Im(X)$.

Definition 2.8. [20] Let $\Im(X)$ be a linear space over the real field S. A fuzzy subset N of $\Im(X) \times \Im(X) \times \mathbb{R}$ (\mathbb{R} , set of real numbers) is called a 2-fuzzy 2-norm on X (or fuzzy 2-norm on $\Im(X)$) if and only if,

- (2-N1) for all $t \in \mathbb{R}$ with $t \leq 0$, $N(f_1, f_2, t) = 0$,
- (2-N2) for all $t \in \mathbb{R}$ with t > 0, $N(f_1, f_2, t) = 1$ if and only if f_1 and f_2 are linearly dependent,
- (2-N3) $N(f_1, f_2, t)$ is invariant under any permutation of f_1, f_2 ,
- (2-N4) for all $t \in \mathbb{R}$ with t > 0, $N(f_1, \lambda f_2, t) = N(f_1, f_2, \frac{t}{|\lambda|})$, if $\lambda \neq 0$, $\lambda \in S$,
- (2-N5) for all $s, t \in \mathbb{R}$,

$$N(f_1, f_2 + f_3, s + t) \ge \min\{N(f_1, f_2, s), N(f_1, f_3, t)\},\$$

- (2-N6) $N(f_1, f_2, \cdot) : (0, \infty) \to [0, 1]$ is continuous,
- (2-N7) $\lim_{t\to\infty} N(f_1, f_2, t) = 1.$

Then $(\Im(X), N)$ is a fuzzy 2-normed linear space or (X, N) is a 2-fuzzy 2-normed linear space.

Remark 2.9. In a 2-fuzzy 2-normed linear space (X, N), $N(f_1, f_2, \cdot)$ is a nondecreasing function of \mathbb{R} for all $f_1, f_2 \in \Im(X)$.

Theorem 2.10. [20] Let $(\Im(X), N)$ be a fuzzy 2-normed linear space. Assume that

(2-N8) $N(f_1, f_2, t) > 0$ for all t > 0 implies that f_1 and f_2 are linearly dependent. Define $||f_1, f_2||_{\alpha} = \inf\{t : N(f_1, f_2, t) \ge \alpha, \alpha \in (0, 1)\}.$

Then $\{\|\bullet,\bullet\|_{\alpha}:\alpha\in(0,1)\}$ is an ascending family of 2-norms on $\Im(X)$. These 2-norms are called α -2-norms on $\Im(X)$ corresponding to the 2-fuzzy 2-norm on X.

3. On the Mazur-Ulam Problem

In this section, we give a new generalization of the Mazur-Ulam theorem when X is a 2-fuzzy 2-normed linear space or $\Im(X)$ is a fuzzy 2-normed linear space. Hereafter we use the notion of fuzzy 2-normed linear space on $\Im(X)$ instead of 2-fuzzy 2-normed linear space on X.

Lemma 3.1. For all $f, h \in \Im(X), \alpha \in (0,1)$ and $\lambda \in \mathbb{R}$. Then $\|f, h\|_{\alpha} = \|f, h + \lambda f\|_{\alpha}.$

$$\|f,h\|_{\alpha} = \|f,h+\lambda f\|_{\alpha}$$

Proof. The proof of Lemma is clear from [4, Theorem 2.1.6.].

As an immediate consequence of Lemma 3.1, we have the following.

Remark 3.2. For all $f, g, h \in \Im(X), \alpha \in (0, 1)$,

$$||f - h, f - g||_{\alpha} = ||f - h, g - h||_{\alpha}$$

Lemma 3.3. For $g, h \in \Im(X)$, if g and h are linearly dependent with the same direction, that is, $h = \lambda g$ for some $\lambda > 0$, then

$$||f, g + h||_{\alpha} = ||f, g||_{\alpha} + ||f, h||_{\alpha}$$

for all $f \in \Im(X)$, $\alpha \in (0,1)$.

Proof. For all $f \in \Im(X)$, $\|f,g+h\|_{\alpha} = \|f,g+\lambda g\|_{\alpha} = \|f,(1+\lambda)g\|_{\alpha} = (1+\beta)$ $\lambda)\left\|f,g\right\|_{\alpha}=\left\|f,g\right\|_{\alpha}+\lambda\left\|f,g\right\|_{\alpha}=\left\|f,g\right\|_{\alpha}+\left\|f,h\right\|_{\alpha}.$

Definition 3.4. Let $\Im(X)$ and $\Im(Y)$ be fuzzy 2-normed linear spaces and Ψ : $\Im(X) \to \Im(Y)$ a mapping. We call Ψ a 2-isometry if

$$\|f - h, g - h\|_{\alpha} = \|\Psi(f) - \Psi(h), \Psi(g) - \Psi(h)\|_{\beta}$$

for all $f, g, h \in \Im(X)$ and $\alpha, \beta \in (0, 1)$.

For a map Ψ , consider the following condition which is called the Area One Preserving Property (AOPP).

(AOPP) Let
$$f, g, h \in \Im(X)$$
 with $||f - h, g - h||_{\alpha} = 1$.

Then $\|\Psi(f) - \Psi(h), \Psi(g) - \Psi(h)\|_{\beta} = 1$.

Definition 3.5. The elements f, g and h are said to be collinear if and only if g - h = r(f - h) for some real number r.

Now we define the concept of 2-Lipschitz mapping.

Definition 3.6. We call Ψ a 2-Lipschitz mapping if there is a $\kappa \geq 0$ such that

$$\left\|\Psi\left(f\right)-\Psi\left(h\right),\Psi\left(g\right)-\Psi\left(h\right)\right\|_{\beta}\leq\kappa\left\|f-h,g-h\right\|_{\alpha}$$

for all $f, g, h \in \Im(X)$ and $\alpha, \beta \in (0,1)$. The constant κ is called the 2-Lipschitz constant.

Lemma 3.7. Assume that if f, g and h are collinear, then $\Psi(f)$, $\Psi(g)$ and $\Psi(h)$ are collinear, and that Ψ satisfies (AOPP). Then Ψ preserves the area k for each $k \in \mathbb{N}$.

Proof. Suppose that there exist $f, g \in \Im(X)$ with $f \neq g$ such that $\Psi(f) = \Psi(g)$. Since dim $\Im(X) \geq 2$, there is $h' \in \Im(X)$ such that g - f and h' - f are linearly independent. Since $||h'-f,g-f||_{\alpha} \neq 0$, we can set

$$h = f + \frac{1}{\|h' - f, g - f\|_{\alpha}} (h' - f).$$

Then we have

$$h=f+\frac{1}{\|h'-f,g-f\|_\alpha}(h'-f).$$
 nave
$$\|h-f,g-f\|_\alpha=\left\|\frac{1}{\|h'-f,g-f\|_\alpha}(h'-f),g-f\right\|_\alpha=1.$$

Since Ψ preserves the unit distance, $\|\Psi\left(h\right)-\Psi\left(f\right),\Psi\left(g\right)-\Psi\left(f\right)\|_{\beta}\,=\,1.$ But it follows from $\Psi(f) = \Psi(g)$ that

$$\left\|\Psi\left(h\right) - \Psi\left(f\right), \Psi\left(g\right) - \Psi\left(f\right)\right\|_{\beta} = 0,$$

which is a contradiction. Thus Ψ is injective.

Let f, g and h be elements of $\Im(X)$ and $k \in \mathbb{N}$ and $\|h - f, g - f\|_{\alpha} = k$. We put

$$f_i = f + \frac{i}{k}(g - f), \quad i = 0, 1, ..., k.$$

Thus

$$\begin{aligned} & \|h - f, f_{i+1} - f_i\|_{\alpha} \\ &= \left\| h - f, f + \frac{i+1}{k}(g - f) - \left(f + \frac{i}{k}(g - f) \right) \right\|_{\alpha} \\ &= \left\| h - f, \frac{1}{k}(g - f) \right\|_{\alpha} = \frac{1}{k} \|h - f, g - f\|_{\alpha} = \frac{k}{k} = 1 \end{aligned}$$

for all i = 0, 1, ..., k. Since Ψ satisfies (AOPP),

$$\|\Psi(h) - \Psi(f), \Psi(f_{i+1}) - \Psi(f_i)\|_{\beta} = 1$$

for all i=0,1,...,k. Since $f_0,\ f_1$ and $f_2,$ are collinear, $\Psi\left(f_0\right),\Psi\left(f_1\right)$ and $\Psi\left(f_2\right)$ are also collinear. Thus there is a real number r_0 such that $\Psi(f_2) - \Psi(f_1) =$ $r_0 \left(\Psi \left(f_1 \right) - \Psi \left(f_0 \right) \right)$. Since

$$\begin{aligned} & \left\| \Psi \left(h \right) - \Psi \left(f \right), \Psi \left(f_{1} \right) - \Psi \left(f_{0} \right) \right\|_{\beta} = \left\| \Psi \left(h \right) - \Psi \left(f \right), \Psi \left(f_{2} \right) - \Psi \left(f_{1} \right) \right\|_{\beta} \\ & = & \left\| \left(\Psi \left(h \right) - \Psi \left(f \right) \right), r_{0} \left(\Psi \left(f_{1} \right) - \Psi \left(f_{0} \right) \right) \right\|_{\beta} = \left| r_{0} \right| \left\| \Psi \left(h \right) - \Psi \left(f \right), \Psi \left(f_{1} \right) - \Psi \left(f_{0} \right) \right\|_{\beta}, \end{aligned}$$

we have $r_0 = 1$ or -1. If $r_0 = -1$, $\Psi(f_2) - \Psi(f_1) = -\Psi(f_1) + \Psi(f_0)$, that is, $\Psi(f_2) = \Psi(f_0)$. Since Ψ is injective, $f_2 = f_0$, which is a contradiction. Thus $r_0 = 1$. Then we have $\Psi(f_2) - \Psi(f_1) = \Psi(f_1) - \Psi(f_0)$. Similarly, one can obtain that $\Psi(f_{i+1}) - \Psi(f_i) = \Psi(f_i) - \Psi(f_{i-1})$ for all i = 0, 1, ..., k - 1. Thus $\Psi(f_{i+1}) - \Psi(f_i) = \Psi(f_1) - \Psi(f_0)$ for all i = 0, 1, ..., k-1. Hence

$$\Psi(g) - \Psi(f) = \Psi(f_k) - \Psi(f_0)
= \Psi(f_k) - \Psi(f_{k-1}) + \Psi(f_{k-1}) - \Psi(f_0) + \dots + \Psi(f_1) - \Psi(f_0)
= k (\Psi(f_1) - \Psi(f_0)).$$

Hence we obtain

ce we obtain
$$\begin{split} \left\|\Psi\left(h\right) - \Psi\left(f\right), \Psi\left(g\right) - \Psi\left(f\right)\right\|_{\beta} &= \left\|\Psi\left(h\right) - \Psi\left(f\right), k\left(\Psi\left(f_{1}\right) - \Psi\left(f_{0}\right)\right)\right\|_{\beta} \\ &= k \left\|\Psi\left(h\right) - \Psi\left(f\right), \Psi\left(f_{1}\right) - \Psi\left(f_{0}\right)\right\|_{\beta} = k. \end{split}$$

This completes the proof.

Theorem 3.8. Let Ψ be a 2-Lipschitz mapping with the 2-Lipschitz constant $\kappa \leq 1$. Assume that if f, g and h are collinear, then $\Psi(f)$, $\Psi(g)$ and $\Psi(h)$ are collinear, and that Ψ satisfies (AOPP). Then Ψ is a 2-isometry.

Proof. From Lemma 3.7, Ψ preserves distances k for all $k \in \mathbb{N}$. For $f, g, h \in \Im(X)$, there are two cases depending on whether $||h - f, g - f||_{\alpha} = 0$ or not.

In the first case $||h-f,g-f||_{\alpha}=0, h-f$ and g-f are linearly dependent. So f, g and h are collinear. Thus $\Psi\left(f\right)$, $\Psi\left(g\right)$ and $\Psi\left(h\right)$ are collinear, that is, $\Psi\left(h\right)-\Psi\left(f\right)$ and $\Psi(g) - \Psi(f)$ are linearly dependent. Hence $\|\Psi(h) - \Psi(f), \Psi(g) - \Psi(f)\|_{\beta} =$ 0.

In the case $||h-f,g-f||_{\alpha} > 0$, there exists an $n_0 \in \mathbb{N}$ such that $n_0 > ||h-f,g-f||_{\alpha}$. Assume that

$$\left\|\Psi\left(h\right)-\Psi\left(f\right),\Psi\left(g\right)-\Psi\left(f\right)\right\|_{\beta}<\left\|h-f,g-f\right\|_{\alpha}.$$

We can set

$$w = f + \frac{n_0}{\|h - f, g - f\|_{\alpha}} (g - f).$$

Then we get

$$||h - f, w - f||_{\alpha} = \left\| h - f, f + \frac{n_0}{\|h - f, g - f\|_{\alpha}} (g - f) - f \right\|_{\alpha}$$

$$= \frac{n_0}{\|h - f, g - f\|_{\alpha}} ||h - f, g - h||_{\alpha} = n_0.$$

Thus.

$$\left\|\Psi\left(h\right) - \Psi\left(f\right), \Psi\left(w\right) - \Psi\left(f\right)\right\|_{\beta} = n_0.$$

By the definition of w,

$$w-g=\left(rac{n_0}{\left\|h-f,g-f
ight\|_{lpha}}-1
ight)\left(g-f
ight).$$

Since

$$\frac{n_0}{\|h - f, g - f\|_{\alpha}} > 1,$$

 $h-f_1$ and f_1-f_0 have the same direction. From Lemma 3.3,

$$\left\|h-f,w-f\right\|_{\alpha}=\left\|h-f,w-g\right\|_{\alpha}+\left\|h-f,g-f\right\|_{\alpha}.$$

Thus we have

$$\begin{split} & \left\| \Psi \left(h \right) - \Psi \left(f \right), \Psi \left(w \right) - \Psi \left(g \right) \right\|_{\beta} \\ & \leq & \left\| h - f, w - g \right\|_{\alpha} \\ & = & n_0 - \left\| h - f, g - f \right\|_{\alpha}. \end{split}$$

By the assumption,

$$\begin{array}{lll} n_{0} & = & \left\| \Psi \left(h \right) - \Psi \left(f \right), \Psi \left(w \right) - \Psi \left(f \right) \right\|_{\beta} \\ & \leq & \left\| \Psi \left(h \right) - \Psi \left(f \right), \Psi \left(w \right) - \Psi \left(g \right) \right\|_{\beta} + \left\| \Psi \left(h \right) - \Psi \left(f \right), \Psi \left(g \right) - \Psi \left(f \right) \right\|_{\beta} \\ & < & n_{0} - \left\| h - f, g - f \right\|_{\alpha} + \left\| h - f, g - f \right\|_{\alpha} = n_{0}, \end{array}$$

which is a contradiction. Hence Ψ is a 2-isometry. This completes the proof.

Lemma 3.9. Let f, g be elements of $\Im(X)$. Then $v = \frac{f+g}{2}$ is the unique element of $\Im(X)$ satisfying

$$\left\|f-h,f-v\right\|_{\alpha}=\left\|g-v,g-h\right\|_{\alpha}=\frac{1}{2}\left\|f-h,g-h\right\|_{\alpha}$$

for some $h \in \Im(X)$ with $\|f - h, g - h\|_{\alpha} \neq 0$ and v, f, g are collinear.

Proof. Let $||f-h,g-h||_{\alpha} \neq 0$ and $v=\frac{f+g}{2}$. Then $v,\,f,\,g$ are 2-collinear. From Lemma 3.1, v satisfies

$$||f - h, f - v||_{\alpha} = ||g - v, g - h||_{\alpha} = \frac{1}{2} ||f - h, g - h||_{\alpha}$$

for all $h \in \Im(X)$ with $||f - h, g - h||_{\alpha} \neq 0$.

Now we prove the uniqueness.

Let u be an element of $\Im(X)$ satisfying the above properties. That is,

$$\left\|f-h,f-u\right\|_{\alpha}=\left\|g-u,g-h\right\|_{\alpha}=\frac{1}{2}\left\|f-h,g-h\right\|_{\alpha}$$

for some $h \in \Im(X)$ with $||f - h, g - h||_{\alpha} \neq 0$ and u, f, g are collinear. Since u, f, g are collinear, there exists a real number t such that u = tf + (1 - t)g. From Lemma 3.1, we get

$$\begin{split} &\frac{1}{2} \left\| f - h, g - h \right\|_{\alpha} = \left\| f - h, f - u \right\|_{\alpha} \\ &= & \left\| f - h, f - (tf + (1 - t)g) \right\|_{\alpha} \\ &= & \left| 1 - t \right| \left\| f - h, f - g \right\|_{\alpha} \\ &= & \left| 1 - t \right| \left\| f - h, g - h \right\|_{\alpha} \end{split}$$

and

$$\begin{split} &\frac{1}{2} \left\| f - h, g - h \right\|_{\alpha} = \left\| g - u, g - h \right\|_{\alpha} \\ &= & \left\| g - (tf + (1 - t)g), g - h \right\|_{\alpha} \\ &= & \left\| -tf + tg, g - h \right\|_{\alpha} \\ &= & \left| t \right| \left\| f - g, g - h \right\|_{\alpha} \\ &= & \left| t \right| \left\| f - h, g - h \right\|_{\alpha}. \end{split}$$

Since $||f - h, g - h||_{\alpha} \neq 0$, thus we have $\frac{1}{2} = |1 - t| = |t|$. Therefore, we get $t = \frac{1}{2}$ and hence v = u. This completes the proof.

Theorem 3.10. Assume that $\Psi(f)$, $\Psi(g)$ and $\Psi(h)$ are collinear when f, g and h are collinear. If Ψ is a 2-isometry, then Ψ is affine.

Proof. Let Ψ be a 2-isometry and $\Phi(f) = \Psi(f) - \Psi(0)$. Then Φ is a 2-isometry and $\Phi(0) = 0$. Thus we may assume that $\Psi(0) = 0$. Hence it suffices to show that Ψ is linear.

Let $f, g \in \Im(X)$ with $f \neq g$. Since $\dim \Im(X) > 1$, there exist an element $h \in \Im(X)$ such that

$$\|f - h, g - h\|_{\alpha} \neq 0.$$

Since Ψ is a 2-isometry, we have

$$\begin{split} & \left\| \Psi(f) - \Psi(h), \Psi(f) - \Psi\left(\frac{f+g}{2}\right) \right\|_{\beta} \\ & = \left\| f - h, f - \frac{f+g}{2} \right\|_{\alpha} \\ & = \left\| f - h, \frac{f-g}{2} \right\|_{\alpha} \\ & = \left\| \frac{1}{2} \left\| f - h, f - g \right\|_{\alpha} \\ & = \frac{1}{2} \left\| f - h, g - h \right\|_{\alpha} = \frac{1}{2} \left\| \Psi(f) - \Psi(h), \Psi(g) - \Psi(h) \right\|_{\beta} \end{split}$$

from Remark 3.2. Similarly, we can obtain

$$\left\|\Psi(g)-\Psi\left(\frac{f+g}{2}\right),\Psi(g)-\Psi(h)\right\|_{\beta}=\frac{1}{2}\left\|\Psi(f)-\Psi(h),\Psi(g)-\Psi(h)\right\|_{\beta}.$$

Since $\frac{f+g}{2}$, f and g are collinear, $\Psi\left(\frac{f+g}{2}\right)$, $\Psi(f)$ and $\Psi(g)$ are also collinear. By Lemma 3.9 we have

$$\Psi\left(\frac{f+g}{2}\right) = \frac{\Psi(f) + \Psi(g)}{2}$$

for all $f, g \in \Im(X)$, $\alpha, \beta \in (0,1)$. Since $\Psi(0) = 0$, we can easily show that Ψ is additive. It follows that Ψ is \mathbb{Q} -linear.

Let $r \in \mathbb{R}^+$ with $r \neq 1$ and $f \in \Im(X)$. Since 0, f and rf are collinear, $\Psi(0)$, $\Psi(f)$ and $\Psi(rf)$ are also collinear. Since $\Psi(0) = 0$, there exists a real number k such that $\Psi(rf) = k\Psi(f)$. Since $\dim \Im(X) > 1$, there exist an element g of $\Im(X)$ such that $\|f,g\|_{\alpha} \neq 0$. Then we get

$$\begin{split} r \left\| f, g \right\|_{\alpha} &= \left\| rf, g \right\|_{\alpha} = \left\| rf - 0, g - 0 \right\|_{\alpha} \\ &= \left\| \Psi(rf) - \Psi(0), \Psi(g) - \Psi(0) \right\|_{\beta} \\ &= \left\| \Psi(rf), \Psi(g) \right\|_{\beta} = \left\| k\Psi(f), \Psi(g) \right\|_{\beta} \\ &= \left| k \right| \left\| \Psi(f), \Psi(g) \right\|_{\beta} = k \left\| \Psi(f) - \Psi(0), \Psi(g) - \Psi(0) \right\|_{\beta} \\ &= \left| k \right| \left\| f - 0, g - 0 \right\|_{\alpha} = \left| k \right| \left\| f, g \right\|_{\alpha}. \end{split}$$

Since $\|f,g\|_{\alpha} \neq 0$, |k| = r. Then $\Psi(rf) = r\Psi(f)$ or $\Psi(rf) = -r\Psi(f)$. Firstly, assume that k = -r, that is, $\Psi(rf) = -r\Psi(f)$. Then there exist positive rational numbers q_1 , q_2 such that $0 < q_1 < r < q_2$. Since $\dim \Im(X) > 1$, there exist an element $h \in \Im(X)$ such that $\|rf - q_2f, h - q_2f\|_{\alpha} \neq 0$. Then we have

$$\begin{aligned} &(q_2+r) \| \Psi(f), \Psi(h) - \Psi(q_2f) \|_{\beta} \\ &= \| r \Psi(f) + q_2 \Psi(f), \Psi(h) - \Psi(q_2f) \|_{\beta} \\ &= \| -\Psi(rf) + \Psi(q_2f), \Psi(h) - \Psi(q_2f) \|_{\beta} \\ &= \| \Psi(rf) - \Psi(q_2f), \Psi(h) - \Psi(q_2f) \|_{\beta} \\ &= \| rf - q_2f, h - q_2f \|_{\alpha} \\ &= | r - q_2| \| f, h - q_2f \|_{\alpha} \\ &= | q_2 - r| \| f, h - q_2f \|_{\alpha} \\ &\leq | q_2 - q_1) \| f, h - q_2f \|_{\alpha} \\ &= \| q_1f - q_2f, h - q_2f \|_{\alpha} \\ &= \| \Psi(q_1f) - \Psi(q_2f), \Psi(h) - \Psi(q_2f) \|_{\beta} \\ &= \| q_1 - q_2 \| \Psi(f), \Psi(h) - \Psi(q_2f) \|_{\beta} \\ &= | q_2 - q_1) \| \Psi(f), \Psi(h) - \Psi(q_2f) \|_{\beta} \\ &= | q_2 - q_1) \| \Psi(f), \Psi(h) - \Psi(q_2f) \|_{\beta} . \end{aligned}$$

Since $||rf - q_2f, h - q_2f||_{\alpha} \neq 0$,

$$\|\Psi(rf) - \Psi(q_2f), \Psi(h) - \Psi(q_2f)\|_{\beta} \neq 0.$$

Thus we have $r+q_2 \leq q_2-q_1$, which is a contradiction. Hence k=r, that is, $\Psi(rf)=r\Psi(f)$ for all positive real number r. Thus for every real number r, $\Psi(rf)=r\Psi(f)$. This completes the proof.

We get the following corollary from Theorem 3.8 and Theorem 3.10.

Corollary 3.11. Let Ψ be a 2-Lipschitz mapping with the 2-Lipschitz constant $\kappa \leq 1$. Suppose that $\Psi(f)$, $\Psi(g)$ and $\Psi(h)$ are collinear when f, g and h are collinear. If Ψ satisfies (AOPP), then Ψ is an affine 2-isometry.

Acknowledgements. The author would like to express his sincere thanks to the referees for their valuable suggestions and comments.

References

- [1] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11(3) (2003), 687-705.
- [2] J. A. Baker, Isometries in normed spaces, Amer. Math. Monthly., 78 (1971), 655-658.
- [3] S. C. Cheng and J. N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86(5) (1994), 429-436.
- [4] Y. J. Cho, P. C. S. Lin, S. S. Kim and A. Misiak, Theory of 2-inner product spaces, Nova Science Publ., New York, 2001.
- [5] Y. J. Cho, F. Rahbarnia, R. Saadati and G. Sadeghi, Isometries in probabilistic 2-normed spaces, Journal of the Chungcheong Mathematical Society, 22 (2009), 623-634.
- [6] H. Y. Chu, On the Mazur-Ulam problem in linear 2-normed spaces, J. Math. Anal. Appl., 327 (2007), 1041-1045.
- [7] H. Y. Chu, S. K. Choi and D. S. Kang, Mappings of conservative distances in linear n-normed spaces, Nonlinear Analysis, 70 (2009), 1168-1174.
- [8] C. Felbin, Finite-dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48(2) (1992), 239-248.
- [9] S. Gähler, Lineare 2-normierte Räume, Math. Nachr., 28 (1964), 1-43.
- [10] S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume. I, Math. Nachr., 40 (1969), 165-189.
- [11] S. B. Hosseini, D. O'Regan and R. Saadati, Some results on intuitionistic fuzzy spaces, Iranian Journal of Fuzzy Systems, 4(1) (2007), 53-64.
- [12] W. Jian, On the generations of the Mazur-Ulam isometric theorem, J. Math. Anal. Appl., 263 (2001), 510-521.
- [13] A. K. Katsaras, Fuzzy topological vector spaces. II, Fuzzy Sets and Systems, 12(2) (1984), 143-154.
- [14] S. V. Krishna and K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems, 63(2) (1994), 207-217.
- [15] S. Mazur and S. Ulam, Sur les transformationes isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris, 194 (1932), 946-948.
- [16] M. S. Moslehian and G. Sadeghi, A Mazur-Ulam theorem in non-archimedean normed spaces, Nonlinear Analysis, 69 (2008), 3405-3408.
- [17] T. M. Rassias, On the A.D. Aleksandrov problem of conservative distances and the Mazur– Ulam theorem, Nonlinear Anal. TMA, 47 (2001), 2597-2608.
- [18] T. M. Rassias and P. Šemrl, On the Mazur-Ulam problem and the Aleksandrov problem for unit distance preserving mappings, Proc. Amer. Math. Soc., 118 (1993), 919-925.
- [19] T. M. Rassias and P. Wagner, Volume preserving mappings in the spirit of the Mazur-Ulam theorem, Aequationes Math., 66 (2003), 85-89.

- [20] R. M. Somasundaram and T. Beaula, Some aspects of 2-fuzzy 2-normed linear spaces, Bull. Malays. Math. Sci. Soc., 32(2) (2009), 211-221.
- [21] S. M. Vaezpour and F. Karimi, T-best approximation in fuzzy normed spaces, Iranian Journal of Fuzzy Systems, 5(2) (2008), 93-99.
- [22] J. Väisälä, A proof of the Mazur-Ulam theorem, Amer. Math. Monthly, 110 (2003), 633-635.
- [23] S. Vijayabalaji and N. Thillaigovindan, Best approximation sets in α-n normed space corresponding to intuitionistic fuzzy n-normed linear space, Iranian Journal of Fuzzy Systems, 5(3) (2008), 57-69.
- [24] S. Xiang, Mappings of conservative distances and the Mazur-Ulam theorem, J. Math. Anal. Appl., 254 (2001), 262-274.
- [25] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.

CIHANGIR ALACA, DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ARTS, SINOP UNIVERSITY, 57000 SINOP, TURKEY

