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A NEW PERSPECTIVE TO THE MAZUR-ULAM PROBLEM IN
2-FUZZY 2-NORMED LINEAR SPACES

C. ALACA

ABSTRACT. In this paper, we introduce the concepts of 2-isometry, collinearity,
2-Lipschitz mapping in 2-fuzzy 2-normed linear spaces. Also, we give a new
generalization of the Mazur-Ulam theorem when X is a 2-fuzzy 2-normed linear
space or (X) is a fuzzy 2-normed linear space, that is, the Mazur-Ulam
theorem holds, when the 2-isometry mapped to a 2-fuzzy 2-normed linear
space is affine.

1. Introduction

The theory of fuzzy sets was introduced by Zadeh [25]. A satisfactory theory
of 2-norms and n-norms on a linear space has been introduced and developed by
Gahler in [9, 10]. Different authors introduced various definitions of fuzzy norms on
a linear space. For reference, one may see [8; 11, 13, 14, 21, 23]. Following Cheng
and Mordeson [3], Bag and Samanta{1] introduced a concept of fuzzy norm on a
linear space.

Recently, Somasundaram and Beaula:[20] introduced a concept of 2-fuzzy 2-
normed linear space or fuzzy 2-normed linear space of the set of all fuzzy sets of
a set. The authors gave the notion of a-2-norm on a linear space corresponding
to the 2-fuzzy 2-norm by using some ideas of [1] and also gave some fundamental
properties of this space.

In 1932, Mazur and.Ulam [15] proved the following theorem.

Mazur-Ulam Theorem. Fvery isometry of a real normed linear space onto a
real normed linear space is a linear mapping up to translation.

Baker [2] showed an isometry from a real normed linear space into a strictly con-
vex real normed linear space is affine. Also, Jian [12] investigated the generalizations
of the Mazur-Ulam theorem in F*-spaces. Rassias and Wagner [19] described all
volume preserving mappings from a real finite dimensional vector space into itself
and Vaisalad [22] gave a short and simple proof of the Mazur-Ulam theorem. Chu
[6] proved that the Mazur—Ulam theorem holds when X is a linear 2-normed space.
Chu et al. [7] generalized the Mazur—Ulam theorem when X is a linear n-normed
space, that is, the Mazur—Ulam theorem holds, when the n-isometry mapped to
a linear n-normed space is affine. In addition, Moslehian and Sadeghi [16] inves-
tigated the Mazur-Ulam theorem in non-archimedean spaces. Chu et al. [7] also
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obtained extensions of Rassias and Semrl’s theorem [18]. Cho et al. [5] investigated
the Mazur—Ulam theorem on probabilistic 2-normed spaces. The Mazur—Ulam the-
orem has been extensively studied by many authors (see [17, 19, 24]).

In the present paper, we introduce the concepts of 2-isometry, collinearity, 2-
Lipschitz mapping in 2-fuzzy 2-normed linear spaces. Also, we give a new gener-
alization of the Mazur-Ulam theorem when X is a 2-fuzzy 2-normed linear space
or §(X) is a fuzzy 2-normed linear space, that is, the Mazur-Ulam theorem holds,
when the 2-isometry mapped to a 2-fuzzy 2-normed linear space is affine.

2. On 2-Fuzzy 2-Normed Linear Spaces

In this section at first we give a concept of linear 2-normed space and later a
concept of 2-fuzzy 2-normed linear space and it’s fundamental properties by using
some ideas of [20]. For more details we refer the readers to [1, 4, 20].

Definition 2.1. [4] Let X be a real vector space of dimension greater than 1 and
let ||, o|| be a real valued function on X x X satisfying the following four properties:

(1) ||z,y]| = 0 if and only if = and y are linearly dependent,
(2) llz,yll = lly, zl],
(3) llz, ayll = |a| ||z, y|| for any o € R,
(@) llzy + 211 < llz, yll + Iz, 21l
||e, ®|| is called a 2-norm on X and the pair. (X, ||e, o|) is called a linear 2-normed
space.

Definition 2.2. [1] Let X be a linear space over S (field of real or complex num-
bers). A fuzzy subset N of X xR (R, the set of real numbers) is called a fuzzy
norm on X if and only if :

(N1) For all t € R with ¢t <0, N(z,t) =0,

(N2) For all t € R with.t >0, N(z,t) =1 if and only if z =0,

(N3) For all t € R with t >0, N(\z,t) = N(=z, IM) iftA#0,A€S,

(N4) For all s,teR, zyy € X, N(z+y,s +t) > min{N(z,s), N(y,t)},

(N5) N(z,")is/a non-decreasing function of ¢t € R and thm N(z,t) = 1.

—00

Then (X, N)'is called a fuzzy normed linear space or in short fNLS.

Theorem 2.3. [1] Let (X,N) be a f-NLS. Assume the condition that

(N6) N(z,t) > 0 for all ¢ > 0 implies z = 0.

Define ||z, = inf {t : N(z,t) > a}, a € (0,1). Then {|[e||, : a € (0,1)} is an as-
cending family of norms on X. We call these norms as a-norms on X corresponding
to the fuzzy norm on X.

Definition 2.4. Let X be any non-empty set and 3(X) be the set of all fuzzy sets
on X. For U,V € §(X) and X € S the field of real numbers, define

UtV =A@+yvAp:(z,v) el (y,p eV}
and AU = {(Az,v) : (z,v) € U}
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Definition 2.5. A fuzzy linear space X = X x (0, 1] over the number field S where
the addition and scalar multiplication operation on X are defined by (z,v)+(y, u) =

~

(z+y,vAp), Mz,v) = (A\z,v) is a fuzzy normed space if to every (z,v) € X there
is associated a non-negative real number, ||(z,v)||, called the fuzzy norm of (z,v),
in such away that

(i) ||(z,v)|| =0 iff = 0 the zero element of X, v € (0, 1],

(i) ||Mz,v)|| = |\l |[(z,v)]| for all (z,v) € X and all A\ € S,
(i) [1(z,v) + (1)l < 1w, A )l + (1, v A )] for all (2, ), (y, ) € X,
(iv) [[(z, Vere)[| = A¢ (2, v)]| for all v, € (0,1].

Definition 2.6. [20] Let X be a non-empty set and I(X) be the set of all fuzzy
sets in X. If f € (X) then f = {(z,p) : 2 € X and p €(0,1]}. Clearly f is a
bounded function, since |f(z)| < 1. Let S be the space of real numbers, then (X))
is a linear space over the field S where the addition and scalar multiplication are
defined by
f+g=A@p)+ @} ={(E+y,pAn:(z,p) € fand (y,n) € g}
and
Af ={(\, p) : (z,p) € [}

where A € S.

The linear space (X)) is said to be normed linear space if, for every f € $(X),

there exists an associated non-negative real number || f|| (called the norm of f )
that satisfies

(i) |If]l =0 if and only if f = 0. For
A7 = 0
= @ wl : (@,peft=0
< z=0,p€(0,]]< f=0.
(i) IAfIl = IA[IfIA € S. For
IAFIL. =0 {lIX(z, )]« (2, 1) € f, A € S}
LAz, Il = (2, ) € F3 = IAIFI]-
(ii) 1f #gll < [flh+ gl for every £, g € S(X). For
Ilf +gll {Il@, ) + (sl -z, y € X, p,m € (0,1]}
= {ll@+y),(wAnll:z,y € X, p,n e (0,1]}
= {ll@wAnll+ Iy, w Al : (z,p) € f, (y,n) € g}
171+ llgll -
Then (3(X), ||e]|) is a normed linear space.

Definition 2.7. [20] A 2-fuzzy set on X is a fuzzy set on I(X).

Definition 2.8. [20] Let 3(X) be a linear space over the real field S. A fuzzy
subset N of I(X) x $(X) x R (R, set of real numbers) is called a 2-fuzzy 2-norm
on X (or fuzzy 2-norm on (X)) if and only if,
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(Q—Nl) for all t € R with ¢ <0, N(fl,fg,t) =0,
(2-N2) for all t € R with ¢ > 0, N(f1, f2,t) = 1 if and only if f; and f> are linearly
dependent,
(2-N3) N(f1, f2,t) is invariant under any permutation of fi, fo,
(2-N4) for all t € R with ¢t > 0, N(f1, Af2,t) = N(f1, fo, ﬁ), ifA#0, A€ S,
(2-N5) for all s,t € R,
N(f17f2 + f3,8 +t) 2 min{N(flaf275)7N(f17f37t)}7
(2-N6) N(f1, f2,) : (0,00) — [0,1] is continuous,
(2-N7) lim N(fi, fo,t) = 1.
t— o0
Then ($(X), N) is a fuzzy 2-normed linear space or (X, N) is a 2-fuzzy 2-normed
linear space.

Remark 2.9. In a 2-fuzzy 2-normed linear space (X, N), N(f1, f2,-) is a non-
decreasing function of R for all f;, fo € S(X).

Theorem 2.10. [20] Let (I(X), N) be a fuzzy 2<normed linear space. Assume that

(2-N8) N(f1, f2,t) > 0 for all ¢ > 0 implies that fi and f> are linearly dependent.

Define ||f1’f2||a = 1nf{t : N(fl,f2,t) Z o, o € (0, ].)}
Then {|[e, o], : a € (0,1)} is an ascending family of 2-norms on I(X). These
2-norms are called a—2-norms on §(X) corresponding to the 2-fuzzy 2-norm on X.

3. On the Mazur-Ulam Problem

In this section, we give a new generalization of the Mazur-Ulam theorem when
X is a 2-fuzzy 2-normed linear space or §(X) is a fuzzy 2-normed linear space.
Hereafter we use the notion of fuzzy 2-normed linear space on (X)) instead of
2-fuzzy 2-normed linear space on X

Lemma 3.1. For all.f, h € S$(X), a € (0,1) and X\ € R. Then

Proof. The proof of Lemma is clear from [4, Theorem 2.1.6.]. d

As an immediate consequence of Lemma 3.1, we have the following,.
Remark 3.2. For all f, g, h € S(X), a € (0,1),
Wf = b f=gllo =IIf =h,g—Rll, -

Lemma 3.3. For g, h € S(X), if g and h are linearly dependent with the same
direction, that is, h = Ag for some A > 0, then

1f, 9+ hll, = 1f59lla + [1F5 Al
for all f € 3(X), a € (0,1).

Proof. For all f € S(X), [If,g+hll, = Ilf,9+Xll, = IIf,(1+Ngll, = (1 +
M glle = 115591l + AMIFglle = 1155 9llo +11F5 Rl - =
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Definition 3.4. Let $(X) and S(Y) be fuzzy 2-normed linear spaces and ¥ :
$(X) — S(Y) a mapping. We call ¥ a 2-isometry if

If = h,g=hll, =¥ (f) =¥ (h),¥(g) — ¥ (h)ll
for all f, g, h € ¥(X) and «, 8 € (0,1).

For a map ¥, consider the following condition which is called the Area One
Preserving Property (AOPP).

(AOPP) Let f, g, h € I(X) with ||f —h,g—h|, = 1.
Then [|¥ (f) =¥ (h), ¥ (9) — ¥ (h)]|5 = 1.

Definition 3.5. The elements f, g and h are said to be collinear if and only if
g —h=r(f — h) for some real number r.

Now we define the concept of 2-Lipschitz mapping.
Definition 3.6. We call ¥ a 2-Lipschitz mapping if there is a £ > 0 such that
1 (f) =¥ (h),¥(g) =¥ (W)l <klf =h,g—hll,

for all f, g, h € $(X) and a, 8 € (0,1). The constant « is called the 2-Lipschitz
constant.

Lemma 3.7. Assume that if f, g and h are collinear, then ¥ (f), ¥ (g) and ¥ (h)
are collinear, and that U satisfies (AOPP): Then ¥ preserves the area k for each
keN.

Proof. Suppose that there exist'f, g € $(X) with f # g such that ¥ (f) = ¥ (g).
Since dim$(X) > 2, there is b’ € F(X) such that ¢ — f and b’ — f are linearly
independent. Since’||h’ — fyg.— fl|, # 0, we can set

1 '’
"SIt D
Then we have
1 . _ _
||h—f,g—f||a—Hm(h fg fa L.

Since W preserves the unit distance, || (h) — ¥ (f),¥(g9) — ¥ (f)|l; = 1. But it
follows from ¥ (f) = ¥ (g) that

W (h) =9 (f), ¥ (9) =¥ (Nlz =0,

which is a contradiction. Thus ¥ is injective.
Let f, g and h be elements of ¥(X) and k € Nand ||h — f,g9 — fl|, = k. We put

fl:f+%(g_f)7 ZZO,].,,k
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Thus

Wh = f, fira = fill
-7+ 52 a0 (14 36-0)

[e%

=1

|

1 1
H fiplg=1) ) =191l
forall i =0,1,...,k. Since ¥ satisfies (AOPP),

19 () =¥ (f), ¥ (fir1) =T (fi)lls =1
for all i = 0,1,...,k. Since foy, f1 and f», are collinear, ¥ (fy), U (f1) and ¥ (f2)
are also collinear. Thus there is a real number rg such'that ¥.(fs) — ¥ (f;) =
To (‘I’ (fl) 4 (f())) Since
1% (h) =W (f), ¥ (f1) =¥ (fo)lls = 1% () =2 (F), ¥f2) = ¥ (f1)llg
= [[(W(h) =¥ (f)),ro (¥ (f1) =¥ (fo))llg =drol 1 (h) — W (f), ¥ (f1) — ¥ (fo)lls
we have rg = 1 or —1. If rg = =1, U (fo) =W (fr) = =T (f1) + ¥ (fo), that is,
U (f2) = ¥ (fo). Since ¥ is injective, fo = fo, which/is a contradiction. Thus
ro = 1. Then we have ¥ (f2) — U (fy) = ¥ (f1)="¥ (fo). Similarly, one can
obtain that ¥ (fi-i—l) - v (fz) =v (fz) - v (fi—l) for all ¢« = 0,1, ,k‘ — 1. Thus
)\ (fi+1) -V (fz) =V (fl) 4 (f()) for all 2 = 0, 1, ,k — 1. Hence
V(g —¥(f) = ¥(fi)—¥(fo)

= U (fi) =¥ (fi—1) T¥(fr—1) =¥ (fo) + ... + U (f1) — ¥ (fo)

= k(¥ (fi) =¥ (fo))-
Hence we obtain

W (h) — W f) g) =¥ (Hllg =1 (h) =¥ (f), k(¥ (f1) =¥ (fo))lls
= kW)= ¥(f), ¥ (f1) —¥(fo)ls =k

This completes the proof. O

Theorem 3.8. Let U be a 2-Lipschitz mapping with the 2-Lipschitz constant k < 1.
Assume that if f, goand h are collinear, then U (f), ¥ (g) and ¥ (h) are collinear,
and that¥ satisfies (AOPP). Then VU is a 2-isometry.

Proof. From Lemma, 3.7, ¥ preserves distances k for all kK € N. For f, g, h € $(X),
there are two cases depending on whether ||h — f,g — fl|, = 0 or not.

In the first case ||h — f,g — f||, =0, h—f and g— f are linearly dependent. So f,
g and h are collinear. Thus ¥ (f), ¥ (g) and ¥ (h) are collinear, that is, ¥ (h)—U (f)
and ¥ (g) — ¥ (f) are linearly dependent. Hence ||V (k) — ¥ (f), ¥ (g9) — ¥ (f)ll; =
0.

In the case [|h — f, g — fl|, > 0, there exists an no € Nsuch that ng > [|h — f, 9 — f||,-
Assume that

10 (h) =¥ (f), ¥ (9) =¥ (Nlls <llh=fr9= flly-
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We can set n
0
w=ft (g ).
ST INARL
Then we get
o
h—fiw-fll,=\\rh-ff+7—FF(@—f)—
Ih—fow— 7 “ S e e IR
No
= _ h—f,g—ha:n
g7l | lo =m0
Thus,

W (h) =¥ (f), ¥ (w) =¥ (f)llz = no.
By the definition of w,

(N
w=g <M—fﬂ—fh 1>@ D

no

— >1,
Ih—f.9—flla
h — f1 and f; — fo have the same direction. From Lemma 3.3,

Ilh = f,w = fllo = Ih = fyw —gll, +lib’=f,9 = fll, -

Since

Thus we have
| (h) — @ (f)3 ¥ (w) — ¥ (9)ll5

< b= fiw=gll,
= no=llh—f,9-fl,-
By the assumption,
o = |1 (h)— W (f), B(w)=T (f),

< W (h) =¥ (f),Ww) =T (g)lls + ¥ (h) =T (f),¥(g) =¥ (Sl

AN

no — |h— frg— fll, +1lh = f,9— fll, = no,

which is a contradiction.. Hence ¥ is a 2-isometry. This completes the proof.

115

O

_ f+g :
Lemma 3.9. Let f, g be elements of I(X). Then v = 152 is the unique element

of S(X) satisfying

1
||f - haf _U“a = ||g_'U,g_ hHa = 5 ||f - hag_ hHa
for somesh.€ I(X) with ||f —h,g —hl||, #0 and v, f, g are collinear.

Proof. Let ||f —h,g—h||, #0 and v = %. Then v, f, g are 2-collinear. From

Lemma 3.1, v satisfies

1
||f—h,f—'U||a = ||g—v,g—h||a = §||f_hag_h||a

for all h € (X) with ||f — h,g — h||, #0.
Now we prove the uniqueness.
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Let u be an element of (X)) satisfying the above properties. That is,

1
1f =h, f=ull, = llg —u,9 = hll, = 5 If = h,g = hll,

for some h € I(X) with ||f — h,g — h||, # 0 and u, f, g are collinear. Since u, f, g
are collinear, there exists a real number ¢ such that u = ¢tf + (1 —¢)g. From Lemma
3.1, we get

1

S If =hg=hlly = f =h f~ull,
= f=hf=@f+Q0=-9)l,
|1_t|||f_h7f_g||a
= [1—=t||lf —h,g—hl,

and

1
S If =hg=nhll, = llg —wyg — hll,
= llg—@f+ (1 -1t)g),9—hlg
= ||_tf+tgag_h||a
= [t|If — 9,9 —All,
= [tIIlf —h.g—hil,-

Since ||f — h,g — hl|, # 0, thus we have %= |L— t| = |t|. Therefore, we get t = %
and hence v = u. This completes the proof. O
h

Theorem 3.10. Assume that U(f), U(g) and ¥(h) are collinear when f, g and
are collinear. If ¥ is a 2-isometry, then ¥ is affine.

Proof. Let ¥ be a 2-isometry and ®(f) = ¥U(f) — ¥(0). Then & is a 2-isometry
and ®(0) = 0. Thus we.may assume that ¥(0) = 0. Hence it suffices to show that
¥ is linear.

Let f, g € S(X) with f # g. Since dimS$(X) > 1, there exist an element
h € $(X) such that

If = h,g—hll, #0.
Since ¥ is a/2-isometry, we have

U(f) —U(h),¥(f) — ¥ (%) HB

f+g

= |r-ns-13

[e3

_ f-9
= e

¢

1
- §||f_h7f_g||a

= Sl b= bl = 3 () — (h), W(g) — TR,
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from Remark 3.2. Similarly, we can obtain

w0 v (552) v - v =510 - w00, %) - w00,

B
Since %, f and g are collinear, ¥ (%) , U(f) and ¥(g) are also collinear. By

Lemma 3.9 we have
g (f+9) _ ¥+ ¥
2 2
for all f, g € I(X), a, 8 € (0,1). Since ¥(0) =0, we can easily show that U is
additive. It follows that ¥ is Q-linear.

Let r € RT with r # 1 and f € $(X). Since 0, f and rf are collinear, ¥(0),
U(f) and ¥(rf) are also collinear. Since ¥(0) = 0, there exists.a real number k
such that U(rf) = k¥(f). Since dimS(X) > 1, there exist an element g of I(X)
such that ||f, g||, # 0. Then we get

THfagHa = ||rfag||a = ||Tf—0,g—0||a
1% (rf) —¥(0),¥(g) — ¥(0)ll5
12 (rf), T(9)lls = ILE(FP(9)ll5
[k E(f), ®(9)llg= kIT(f) =2(0), ¥(g) — ¥(0)|5

= |k|||f_oag_0||a:|k|||fvg||a

Since [|f,gll, # 0, |k| = r. Then ¥(rf) = r¥(f) or ¥(rf) = —r¥(f). Firstly,
assume that k = —r, that is, U(rf) = —r¥(f). Then there exist positive rational
numbers ¢, g2 such that 0 < ¢; < r <.gs. Since dimS(X) > 1, there exist an
element h € (X)) such that ||[rf =g2f,h — g2 f||, #0. Then we have

(g2 + o) (12 (f), ¥(h) — ¥(q2f)ll5
= _[Ir®(f) + ¢2%(f), ¥ (h) — ¥(g2/)ll5
= [[=U(rf) + ¥(g2f), U(h) — T(g= /)|l

1Y (rf) — ¥(a2f), ¥(h) — ¥(af)lls
=lrf —af h— Q2f||a
Ir = alllf,h—afll,
gz =l llf,h = a1,
((I2 - (I1) ||f7 h — Q2f||a
= ||Q1f —q2f,h— (I2f||a
1¥(q1f) — ¥(g2f), ¥(h) — ¥(a2/)ll5
NP (f) — ¥ (f), ¥(h) — ¥(g2£)ll5
lgr — | [[2(f), ¥(h) — ‘I’((hf)“g

= (@ —q)[[¥(f),¥(h) - ‘I’(Q2f)||/3 :
Since [|rf —a2f,h — a2l # 0,
N2 f) = (a2f), ¥(h) — ¥(g/)llg - # 0.

IN
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Thus we have r + g2 < g2 — ¢1, which is a contradiction. Hence k = r, that
is, (rf) = r¥(f) for all positive real number r. Thus for every real number r,
U(rf) = r¥(f). This completes the proof. O

We get the following corollary from Theorem 3.8 and Theorem 3.10.

Corollary 3.11. Let ¥ be a 2-Lipschitz mapping with the 2-Lipschitz constant
k < 1. Suppose that ¥(f), ¥(g) and ¥(h) are collinear when f, g and h are
collinear. If ¥ satisfies (AOPP), then U is an affine 2-isometry.
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