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ACTIONS, NORMS, SUBACTIONS AND KERNELS OF
(FUZZY) NORMS

J. S. HAN, H. S. KIM AND J. NEGGERS

ABSTRACT. In this paper, we introduce the notion of an action Yx as a gen-
eralization of the notion of a module, and the notion of a norm A: Yx — F,
where F is a field and A (zy) A (v') = A (y) A (zy’) as well-as-the notion of
fuzzy norm, where A: Yx — [0,1] C R, with R the set_of all real numbers.
A great many standard mappings on algebraic systems can be modeled on
norms as shown in the examples and it is seen that Ker A= {y| A (y) = 0}
has many useful properties. Some are explored, especially in the discussion of
fuzzy norms as they relate to the complements of subactions Nx of Yx.

1. Introduction

Norms and valuations in a great variety of settings have been investigated for a
length of time and the literature on this subject is accordingly enormous. Thus,
for example, the “classical” theory of morms and valuations has been discussed in
a number of papers and texts, including O. T. O’Meara [5] and the well-known
volumes by O. Zariski and P. Samuel [7]._Other than the usual areas, the idea of
norms and pseudo-norms has beenintroduced for highly non-associative systems
such as BC K-algebras where J. G. Raftery and T. Sturm [6] introduced the notion
of pseudo-norm in BC K -algebras, the idea of a corresponding pseudo-metric and
then that of pseudo-normed BC K -algebras. R. A. Borzooei and Y. B. Jun [3] intro-
duced the intuitionisitic fuzzification of (strong, weak, s-weak) hyper BC K-ideals,
and they established characterizations of an intuitionisitic fuzzy hyper BC K-ideal.
Recently, M. Bakhshi, M. M. Zahedi and R. A. Borzooei [2] defined the notions of
fuzzy positive hyper BC'K-ideals of several types, and obtained some relationships
among fuzzy(strong, weak, reflexive) hyper BCK-ideals. Fuzzy norms on linear
spaces have been discussed by A. K. Katsaras [4] with further developments by
others [1]. In order to collect all these quite varied notions under one heading we
introduce the most general notion one might ever need, i.e., that of an action (de-
fined-below) and of a type of mapping satisfying a simple identity involving scalar
and vector behavior with respect to these mappings. These “norms” include all
known types of norms as well as certain other important mappings, e.g., group
characters, not usually recognized as belonging to the same class as the more usual
norms. Restricting the range to [0, 1] as a subset of the field F', e.g., when F' = R,
the real numbers, yields the class of fuzzy norms of most interest in this paper. It
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will be clear from the following that a great deal more can be done along the lines
we have established in this paper. We certainly hope to demonstrate this in further
development of the theory of norms on actions as initiated here.

2. Preliminaries

Let X and Y be sets and let 8 : X XY — Y be any mapping. We shall denote
the image S(z,y) by zy and we shall write Yy instead of (X,Y,5: X xY — YY),
referring to Yx as an action.

The notion of action is very wide and, in general, somewhat wider than one may
want for more specific purposes; however it does allow a considerable body of varied
information to be gathered under one heading and so allow for more homogeneous
treatment.

The subjects of study in this paper are certain mappings from actions to fields.
We shall call these mappings norms. Thus a mapping A: Yx — F, where Yx is an
action and F' is a field, is a norm provided

A(zy) & (y) =4 (y) & (zy), VeeX Vyy eV (1)
In particular, if F' D [0, 1], then it is called a fuzzy norm on the action Y.

Example 2.1. Let Y be a Euclidean n-dimensional space E™ and X be the field
of real numbers R. By Yx we understand the vector space E™ over the real field
X. For (ay, -+ ,a,) € E™ we have the'standard Euclidean norm:

2

Ay, ap):=4laj +---a2

n

Then the standard FEuclidean norm is certainly a norm in our sense as well since,
for vectors y = (au, - -+ ,ap),y" =A(B1,:- -, Bn) and scalar x, we have A (zy) = |z| A
(y), whence it follows that

A (zy) & @) =l () & ) =4 W)zl & () =2 (y) 2 (ay).
Example 2.2. Let Y = Z™ — {(0,---,0)}, where Z is the set of all integers,
and X := Nj the set of all natural numbers. If we define A: Yx — [0,1] by

A (ap,-+,ap) :=1/y/ad +---a2, then it is easy to show that A is a fuzzy norm
on Yx.

Example 2.3. Let Y = X be any group and let C' be the field of complex numbers.
Yx denotes the action “group operation”. Assume that A: Yy — C'is anorm. Then
we have A (zy) A (¥') =4 (y) A (xy') Ve € X, Vy,y' €Y. If y =e, then

A (zy) A (e) =4 (y) A (z) =4 (z) A (y)
If A () =0, then A (22)0 =A (x)? and hence A (z) = 0 for any = € X, ie.,
A is the zero function. Assume that A (e) # 0. Define amap []: X — C by

(2] = 26, Then [ry] = 200 — AEwal) _ Awan) _ alz) sl
= Ala),

= A = alr = ale? = (e ae = #]l] and
A (z) = [z] A (e), where [ | : X — C is a homomorphism. Such a homomorphism
is generally called a character and, in this case, the norms are scalar multiples of
characters.
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Example 2.4. Let Y be any group and Z be the collection of all integers and
F be any field. By Yz we understand “the exponential action”, i.e., the action
defined by ny := y™. We have that (mn)y = y™" = y™™ = (y™)™ = my"™ = m(ny)
and (m +n)y = y™y™ = (my)(ny). Assume that A: Yz — F is a norm. Then
A (ny) A (e) =A (y) A (ne) =A (y) A (e) foranyn € Zandy € Y. If A (e) # 0,
then A (ny) =A (y). If we let n := 0, then A (y) =A (0y) =A (¥°) =A (e)
for any y € Y, i.e.,, A is a constant function. If A (e) = 0, since A is not a
zero function, there is an element y in Y such that A (y) # 0. If we define a
map (,(n) = AA(EZJ)) for any n € Z, then we have A (ny) = (a(n) A (y). Thus,
Ca(m)Ca(n) A (y) = Ca(m) & (ny) =4 (m(ny)) =4 (mn)y) = Ca(mn) A (y).
Since A (y) # 0, we obtain (x(m){a(n) = (s(mn). Hence {, : Z — F is a
multiplicative function. In particular, if the field F is the real field and if A satisfies
the condition A (yy') <A (y)+ A (y'), for any y € ¥V, then A ((m + n)y) =A
(my - ny) <A (my)+ & (ny). Thus Ca(m +n) A (y) < Calm) & (y) +Ca(n) & (y)-
If A (y) > 0, then (s(m + n) < (a(m) + (a(n). Furthermore,if A (y) > 0 then

0
Ca(y) > 0. Moreover, (2(0) = AA((Oyy)) = AA((yy)) = ig;g = 0. Hence we obtain a

mapping (, : Z — R satisfying the following conditions:
(II) ¢x(0) =0,
(IIT) ¢a(mn) = (a(m)Ca(n),
(IV) Ca(m +n) = (a(m) + (a(n).

Such a mapping is called a valuation!

Example 2.5. Let X := [0, 1] and Y := {g¢] ¢ is integrable and 0 < fol g(x)dz < 1}.

If we define A: Y — [0,1] by A (g) := fol g(z)dz, then it is easy to show that A is
a fuzzy norm.

Example 2.6. Let Y = X.= {(Z 2) |0 < ad — be < 1,a,b,¢,d are complex

numbers } and the group operation is matrix multiplication. Yx denotes the action
“group operation”. If we define A: Y — [0,1] by A (A) is the determinant of A,
ie., A (A) = det(A). Then it is easy to show that A is a fuzzy norm on Y.

3. Subactions and Kernels of (Fuzzy) Norms

Definition 3.1. Let Yx be an action. Zx is called a subaction of Yx, and denoted
by Zx < Yx,if

(i) zCv,

(i) fz e X,ze€ Z, thenzz € Z,ie., XZ C Z,

If {Z;x}iea is a family of subactions of Yx and if Zx = UjeaZ;x, then Zx
is a subaction of Yx. Similarly, if Zx = N;eaZix, then Zx is a subaction of Yy
provided we regard () as a subaction of Yx. Hence the collection of all subactions of
Yx forms a complete distributive lattice L(Yx). In fact, the set of all subactions of
Yx is a non-void poset under set inclusion in which any two elements have a meet
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(ZaNZpg)x and a join (Z,UZg)x. Every subset {Z;x }iea has a g.l.b. inf{Z; x }:en
given by Zx = NijeaZix, and a L.u.b. sup{Z;x }ica given by Zx = Ujea Zix-

Definition 3.2. Let Yx be an action and A C Y. Then the smallest subaction
[A] = n{Z|Z € L(Yx) and A C Z} of Yx containing A is called the subaction
generated by A. In particular, we denote [y] = [{y}] for any y € Y.

Proposition 3.3. If A is a subaction of Yx, then A = [A] = Uyecaly].

Proof. If A CY and y € A, then [y] C [A] and consequently A C Uyealy] C [4],
ie., A =[A] = Uyealy] O O

Definition 3.4. Let A: Yx — [0,1] be a fuzzy norm. Then the set Ker A= {y €
Y| A (y) =0} is called the kernel of A.

Proposition 3.5. Let A: Yx — [0,1] be a fuzzy norm.“Then Ker A is a subaction
Of YX .

Proof. Let y € Ker A and # € X. If A# 0, then there exists y' € Y such that
A (y') #0. Hence A (zy) A (y') =A (2y') A (y) = 0 Since A (y') # 0, we obtain
A (zy) =0, ie., zy € Ker A. If A= 0, then A(zy) = 0. In either case we have
zy € Ker A. d O

Theorem 3.6. Let A: Yx — F be a norm. Define a map ep : F — [0,1] by
0 4fz=0
er(r) < { g

1 otherwise
Then epo A: Yx — [0,1] is a fuzzymorm on Yx.

Proof. We claim that ey is multiplicative. For any z € X and y,y’ € Y, if A (y) or
A (y") is zero or both, then egp(A (Y) A (y')) = er(0) =0 =-er(a (y))er(a (¥')).
Assume that A (y)oA (¥")0#.0. Then ep(A (y) A (y'). Moreover, since A (y) #
0 #A ('), we have ep(A (y) A (y')) =1 =er(A (y))er(A (y')), proving that ep is
multiplicative,

We show that.epo A'is a fuzzy norm. Since er is multiplicative and A is a norm,
for any ¢ € X.and y,y' € Y we obtain

(erd A)(zy)(ero 8)(y") = er(a (zy))er(a (¥))
=er(a (zy) & (y')
=er(a (y) A (z")
=er(a (y))er(a (zy'))
= (ero A)(y)(ero b)(zy'),
proving that (epo A) is a fuzzy norm on Yx. O

Proposition 3.7. Let A: Yx — F be a norm. Then
(i) Ker A= Ker(epo A),
(ii) 1 —epo A takes value 1 on Ker A and value 0 on the complement of Ker A.
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Proof. (i). If y € Ker(epo A), then erp(A (y)) = 0 and hence A (y) = 0, ie.,
y € Ker A. If y € Ker A, then ep(A (y)) =0, i.e., y € Ker(epo A).
(ii). It is an immediate consequence of the fact that Ker A= Ker (epo A). O

Definition 3.8. A subaction Ny is called a fuzzy norm subaction of Yx if A: Yx —
[0, 1], the characteristic function of the complement of Nx, is a norm.

Thus, there is a bijection between the fuzzy norm subactions and such norms by
the correspondence

Nx ¢—1—xny =A
where g is the characterisitic function of S C Yx and 1 is the function which is 1
on all of Yx. Hence xny, = 1— A is a linear combination of norms.

Theorem 3.9. Let A;: Yx — [0, 1] be fuzzy norms (i = 142) andlet N(Yx) be the
set of all fuzzy norms on Yx. If we define

(81 ® 02)(y) =01 (y) D2.(y)

for anyy €Y, then (N(Yx);®) is a commutative monoid.

Proof. If A; is a fuzzy norm on Yx, then

(A1 © A2)(zy1) (A1 © B2)(y2) =41 (zy1) Ao (gh) D1 (y2) A2 (y2)
=41 (zy1) A1 (y2) B2 (zy1) A2 (y2)
=41 (my2) A1 (Y1) A2 (2y2) A2 (Y1)
= (810 A2)(zy2) (A1 © A2) (Y1),

proving that Ay ® A is a fuzzy norm on:¥x. This means that Ay ® Aye N(Yx).
Clearly, (A1 ® A2)® Az3=A; @(Ay ® A3z) and A1 ® As=As ® Ap. If we define a
map ly, : Yx — [0, 1], then it acts as an identity on Yx. a

Proposition 3.10. Let A: Yx — [0,1] be a fuzzy norm and a € [0,1]. Define
(a A)(y) :=a A (y) for anyy.€Y. Then

(i) a A is a fuzzy norm on Yx,
(ii) Ker(ara)/=Ker A, where o # 0,
(iii) Ker(A1 ® Az) =Ker A7 U Ker As.

Proof. Straightforward. O

Theorem 3.11.7Let {A;} be the family of characteristic fuzzy norms of comple-
ments of subactions (N;)x of Yx. If A:=inf; A;, then A is also a fuzzy norm on
Yx and Ker A= U;Ker A;.

Proof. If A:= inf; A;, then A (y) = inf;{A; (y)}. Since A; (y) € {0,1}, A (y) €
{0,1}. We show that A is a norm on Yx. Given y,y’ € Y,z € X, we consider
the case A (zy) A (y') = 1. It follows that inf; A; (zy) = 1 = inf; A; (y)
and hence A; (zy) = 1 =A; (y) Vi. Now, since A; (xy) = 1,Vi, 2y & (Ni)x
where A; is a characteristic fuzzy norm of complement of a subaction (NV;)x, i.e.,

Ai= Xyx—(N;)x- By definition of subaction (Ny)x, y & (Ni)x,Vi and hence Al
(y) = 1,Vi, i.e., A (y) = 1. Now, since A; is a fuzzy norm, we have A; (zy) A
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(y') =1=A; (zy") A; (y). Tt follows from A; (xy') = 1,Vi that A (zy’) = 1. Hence
A (zy) A (y') =1=24 (y) & (zy").

Assume A (zy) A (y') =0. If A (y') =0, then 0 = inf; A; (y) and hence there
exists ¢ such that A; (y) =0, i.e., y € (N;)x. Since (N;)x is a subaction of Y, we
obtain zy' € (N;)x. It implies A; (zy’) = 0, which proves that A (xzy') = inf; A;
(zy') = 0. Hence A (y) A (zy') = 0. If A (y') # 0, then A (zy) = 0. Hence
there exists 7 such that A; (zy) = 0. Thus A is a fuzzy norm on Yx. The proof of
Ker A= U;Ker A; is easy, and we omit the proof. a

Theorem 3.12. Let {A;} be a chain of characteristic fuzzy norms of complements
of subactions (N;)x of Yx., i.e., max{A;,A;} is A; or Aj. Then A:=sup; A; is a
characteristic fuzzy norm on Yx and Ker A= N;Ker A;.

Proof. We may assume that A (zy) A (y') =4A; (zy) A; (y') for some i and j. Let
us assume that A;<A; without loss of generality. Case (I) A (zy) A (y') = 1. Then
Ai (zy) = 1,45 (y') =1 for some 4, j. Since A; <A, we have A (zy) 45 (y') = L.
Since Aj is a fuzzy norm, Aj (zy) A; (y') =1 =4; (y)4; (zy') and hence A (y) A
(zy") = sup; A; (y)sup; A; (zy') = 1. Case (II)-A (xy) A (y') = 0. We consider
two cases: (IT-) A (y") = 0 and (II-ii) A (y') #0. If A (y') = 0, then A; (y') =0, Vi.
Since A; is a norm, we have A; (y) A; (xy') =A; (zy) A; (v') = 0. We claim that
A; (xy') = 0,Vi. Assume that A; (zy') #0 for some j. Then zy’ ¢ (N;)x for some
(Nj)x < Yx and hence y' € (N;) x, a contradiction. If A (y') # 0, then A (zy) = 0.
This means that A; (zy) = 0,Vj and hence A; (y) 4&; (zy') =4; (zy) 45 (y') =0
for any j. We consider two cases: (II-ii-a) A; (y) # 0 and (IL-i-b) A; (y) = 0. If we
consider the case (II-ii-a), thenaj.(zy’) = 0. We claim that A; (zy') = 0 for any
j. Assume that Ay (zy') # 0/for.some k # j. Since A; (zy') =0 < 1 =4, (zy')
and {A;} is a chain, we obtain A;<Aj. It follows that 0 #A; (y) <Ak () =0, a
contradiction. Hence A (zy')'= 0 and A (y) A (zy') = 0=A (y') A (vy), proving
that A is a fuzzy norm on ¥x. If we consider the case (II-ii-b), then we have two
cases A; (zy') = 0,Vjor Ay (y) # 0 for some k. For the former case, we have
A (y) A (zy')o= 0; proving that A is a fuzzy norm on Yx. For the latter case, it
belongs to the case (II-a); completing that A is a fuzzy norm on Yx.
Since A; is‘a characteristic fuzzy norm, we have

zeKerA<=A(z)=0
< (sup 4;)(z) =0

<~z € Ker A;, Vi
< z € N;Ker Ay,

proving that Ker A= N;Ker A;. O



Actions, Norms, Subactions and Kernels of (Fuzzy) Norms 147

REFERENCES

[1] T. Bag and S. K. Samata, A comparative study of fuzzy norms on a linear space, Fuzzy Sets
and Systems, 159 (2008), 670-684.

[2] M. Bakhshi, M. M. Zahedi and R. A. Borzooei, Fuzzy (positive, weak) implicative hyer BCK -
ideals, Iranian Journal of Fuzzy Systems, to appear.

[3] R. A.Borzooei and Y. B. Jun, Intuitionisitic fuzzy hyper BC K -ideals of hyper BC K -algebras,
Iranian Journal of Fuzzy Systems, 1 (2004), 65-78.

[4] A. K. Katsaras, Fuzzy topological vector space 11, Fuzzy Sets and Systems, 12 (1984), 143-154.

[5] O. T. O’meara, Introduction to quadratic forms, Springer-Verlag, Berlin, 1963.

[6] J. R. Raftery and T. Sturm, On completions of pseudo-normed BCK -algebras and pseudo-
metric universal algebras, Math. Japonica, 33 (1988), 919-929.

[7] O. Zariski and P. Samuel, Commutative algebra, D. Van Nostrand, Toronto, I, IT (1958).

JEONG SOON HAN, DEPARTMENT OF APPLIED MATHEMATICS, HANYANG UNIVERSITY, AHNSAN,
426-791, KOREA
E-mail address: han@hanyang.ac.kr

HEE S1K KiM*, DEPARTMENT OF MATHEMATICS, HANYANG UNIVERSITY,SEOUL, 133-791, Ko-
REA
E-mail address: heekim@hanyang.ac.kr

J. NEGGERS, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, TUSCALOOSA, AL
35487-0350, U. S. A
E-mail address: jneggers@as.ua.edu

*CORRESPONDING AUTHOR



