Iranian Journal of Fuzzy Systems Vol. 7, No. 3, (2010) pp. 1-13 1

SOLVING BEST PATH PROBLEM ON MULTIMODAL
TRANSPORTATION NETWORKS WITH FUZZY COSTS

A. GOLNARKAR, A. A. ALESHEIKH AND M. R. MALEK

ABSTRACT. Numerous algorithms have been proposed to solve the shortest-
path problem; many of them consider a single-mode network and crisp costs.
Other attempts have addressed the problem of fuzzy costs in asingle-mode net-
work, the so-called fuzzy shortest-path problem (FSPP). /The main contribu-
tion of the present work is to solve the optimum path problem in a multimodal
transportation network, in which the costs of the arcs are fuzzy values. Met-
ropolitan transportation systems are multimodal in'that they usually contain
multiple modes, such as bus, metro, and monorail:-"The proposed algorithm is
based on the path algebra and dioid of k-shortest fuzzy paths. The approach
considers the number of mode changes, the correct<order of the modes used,
and the modeling of two-way paths. An advantage of the, method is that there
is no restriction on the number and variety of the services to be considered. To
track the algorithm step by step, it is @pplied to a pseudo-multimodal network.

1. Introduection

In graph theory, the shortest-path problem is the problem of finding a path be-
tween two nodes such that the summation of the costs of its constituent arcs is min-
imal. An example is identifying the shortest way from one location to another on a
street map; in this case, the nodes represent locations, the arcs represent segments
of streets, and the length.is the considered cost. As metropolitan transportation
services expand, passengers are confronted with an increasing number of considera-
tions in addition to.the shortest distance of an urban trip, such as aesthetic quality
of the scenery; travel time, and preference for using a particular mode of transporta-
tion. Introducing these parameters, especially into a multimodal network, makes
the current shortest-path algorithms, such as those of Dijkstra, Bellman-Ford, and
A* 9, 10, 25]; insufficient to guide travelers properly.

Various extensions have been proposed to overcome such deficiencies [2, 4, 16,
19, 21]. Generally, multimodal transportation is defined as the transportation of a
particular entity by different transportation services. For example, in an urban area,
passengers might combine various transportation modes. Beilli et al. described a
multimodal travel system (MTS) that focuses on network object modeling and
the multimodal shortest-path algorithm [2]. They proposed a tool for detecting
the facility of using the different travel modes offered by a given transportation
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network. Keshtiarast et al. studied the viable paths, providing passengers with a
guidance system along a multimodal journey [16]. Their algorithm was based on a
generalization of the label-correction method. Miller et al. developed an innovative
multimodal network design in which the likelihood of GIS database consistency is
maximized [19].

Transportation networks often include fuzzy information along their arcs, such
as transportation time and aesthetic quality of the scenery. Since these values are
inexact, they are well-presented by fuzzy sets [11, 23]. A fuzzy shortest path is,
by definition, one that has the minimum overall fuzzy cost. Since the word “min-
imum” has different meanings in fuzzy theory, the problem can be solved from
different points of view [1, 7, 8, 14, 15, 17, 20, 22, 24]. Okada and Soper developed
an algorithm based on the multiple-labeling method and applied it to a multicri-
teria shortest-path problem [24]. They introduced an order relation between fuzzy
numbers based on a fuzzy min operator and then defined a non-dominated path
or Pareto optimal path from the specified node to every other node. Okada solved
the FSPP by means of possibility theory, introducing the concept of the degree of
possibility that an arc is located along the shortest path [23]. A recently published
paper by Hernandes et al. addressed the drawbacks of previous algorithms, such
as finding the fuzzy shortest path without the corresponding path(s) and the need
to model the negative weights [14]. Their proposed algorithm is similar to the
Bellman-Ford algorithm in the case of crisp. numbers. Boulmakoul proposed a new
algebra that can be regarded as the environment in which FSPP can be modeled [3].
He generalized Gauss-Seidel’s shortest-path algorithm to discrete fuzzy numbers.

The contribution of this study is to generalize FSPP to multimodal networks.
The solution is investigated with-the aid of dioids and path algebra. A network
containing various modes, in which costs are fuzzy numbers, is examined and best
paths with respect to the desiredcost are presented. The proposed approach divides
the multimodal transportation network into sub-graphs. Best paths are then ob-
tained on the basis‘of the k=shortest fuzzy paths algorithm. Multimodal challenges
are also considered by the algorithm.

2. Dioid and Fuzzy Shortest Path

The term/“dioid” is most often used in the context of an algebra in which path
analysis can be developed. Dioid structures are applied to model optimization
problems [6, 12].-The FSPP is an analysis that can be developed by a fuzzy dioid.
A dioid is denoted by (Q, ®, ®, ¢, e) where  is the base set, ® and ® are the dioid’s
sum-and multiplication operators and € and e are the neutral elements of & and
®, respectively. A dioid is a special kind of semi-ring structure [13]. The pre-
defined dioid (RU {400}, min, +, +00,0) represents the shortest-path problem in a
single-mode graph with crisp costs. The FSPP can also be seen as an optimization
problem. In the following, the elements of the dioid are defined and then the
extended k-shortest fuzzy paths algorithm is presented.

Definition 2.1. Fuzzy-valued Graph: The structure G(V, E, ®) is a fuzzy-valued
graph where:
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V, as the nodes set, is a finite countable set, e.g. {vi,va,..., v}

®, as the weighting function, images the elements of V' x V to fuzzy sets

E, as the set of arcs, is a subset of V' x V' such that function ® maps its members
to the fuzzy sets with non-empty support set (©) [3, 5].

Figure 1 shows a fuzzy-valued graph.

F1GURE 1. An Example of a Fuzzy-valued Graph

The parameters of the fuzzy valued/graph are:

V={1,2,3,4,5,6},0 ={1,2,3}

E={(1,2)(1,3)(2,4)(2,5)(3,4)(3,6)(4,2)(4,5)(4,6)(5,4)(5,6) }

The set of arcs are mapped to'the fuzzy weights like ®(1,2) = {.1/1,.2/2,.3/3}.

Let V}, be the set of all fuzzy sets of natural numbers whose support cardinality
is less than or equal to k:

Vi, ={4 € [0,1]"|0(4)| < k} (1)
The operator I (A)is defined as a sorting operator, where A is a crisp subset

of natural numbers. The operator returns only k-smallest elements of A. Also, let
us define the operator [A];, where A is a fuzzy set, as follows:

[Alx = M (O(A))NA (2)
where N is thefuzzy intersection operator according to any arbitrary t-norm.
The membership function for each v € Vj, is:

Hay = g, o0 (©) X 1i(v) 3)
where:
1 ifveA
La(v) =A{ 0 e{se. (4)

According to these definitions, the binary operators of the dioid of k-shortest
fuzzy paths can be given for A € V}, and B € V}, as follows:
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Ao B = [A0B),,

Yo € Vi = 1igp() = braos, () = 1 eins) (V) X Liss(v) 5)
= 1ch o(AUB) (v) x maz(pz(v), piv))
A® B =[AF B,
Yo € Vi = 1igs () = Bizs, (V) = 111, ecizs) (V) X tizs () ©)
= IHk o(Ah) (V) X Mazy=g4y(Min(pz(v), uzv)))

where U and F are the fuzzy union and the fuzzy sum operators, respectively.
To complete the dioid, its neutral elements are defined as:

e=10 (7)

e={1/0} (8)
Algorithm 2.1. Solution of the FSPP: Let G(V,E,®) be the intended fuzzy-
valued graph. In the following algorithm, 7 (i) denotes the fuzzy cost from the
origin to node i. I'(7) returns all the nodes connected to the outgoing arcs from i.
The inverse of T'(i) brings the nodes connected to the incoming arcs to i. Other
parameters were already defined.

a) w(l)=e o .
-0 pmen Ja,
B) at stept

fori=1...n do

(1) = SSer ) [7(G) 9, 1) @ €]
m(i) = E?erfl(i) [7(7) ®.2(7, )]

X) repeat [ until stabilization of (i)

The algorithm initializes the values in step . In step 3, the costs of all predeces-
sors of ¢ (7(j))rare multiplied by the cost from j to i (®(j,7)). The least cost is then
selected by the operator @& above the sigma. @ functions as a selector operator.
Step [ is repeated for all nodes until the convergence of results is achieved. The js
selected by the operator & determine the shortest paths to i [3].

3. Solution of the Fuzzy Multimodal Transportation Network (FMTN)

Let ' G(V, E,®) be the intended FMTN, where V is a countable finite set of
all nodes of every mode, ® is the fuzzy weighting function, and E is a subset of
V2 according to Definition 2.1. Here, G is composed of various networks (M?,i =
1,2, ...;m) each of which represents one of the metropolitan transportation services.

G=MUM?..UM™ 9)

V=V'UV2.UV™ = {v,0s,...,v} (10)
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E=E'UE*..UE™UE" (11)
where m and n are the number of modes and nodes, respectively. In the notation,
symbols such as x* imply that y is an element related to mode A,
The origin and destination nodes (vo & vp), the stations and parking lots, and
the boundary nodes of each mode through which a mode is connected to the others
form the set of the model’s nodes.

Vi={vllp=1,2,...,ny:i} (12)

There are two kinds of arcs in Equation 11; Traverse arcs (E?) are those connect-
ing the nodes of the same mode. Transfer arcs (ET) are those.connecting adjacent
heterogeneous modes. Walking from a bus to a metro station, for example, is rep-
resented by a transfer arc in the model. The ordered pairs representing the arcs
make the definition of two-way paths possible.

E' = {(vy,v;) € Elp # q},
ET = {(vi,v)) € Eli # j}.

P’ 7q

Yp,q €41;2,...,n} (13)

Definition 3.1. Connected Fuzzy-valued Graph: Let G(V, E, ®) be a fuzzy-valued
graph. @ is said to be connected if, for ‘any arbitrary pair of nodes such as v® and
v?, there is at least one string of nodes (¢*)such that:

Q(C) £ (14)
where:
® . .
C=2@ o) e (WY o0 ' v)ede ) (15)
(i=2,...,b—1)

Definition 3.2. Sub-graph (SG): The connected fuzzy-valued graphs that form a
mode (M?) are the'sub-graphs of that mode. The number of sub-graphs and the x*"
sub-graph of mode M* are, respectively, denoted by nsg’ and SG', (Vs , Esgi, ®)-

Definition 3.3. Incoming Boundary Nodes (IN.BNs): The set of nodes connected
to the incoming arcs of a sub-graph and the origin node from which at least one
arc enters the sub-graph are incoming boundary nodes.

Definition 3.4. Outgoing Boundary Nodes (OUT.BNs): The set of nodes con-
nected to the outgoing arcs of a sub-graph and the destination node to which at
least one arc leaves the sub-graph are outgoing boundary nodes.

According to Definition 3.2, G can be uniquely divided into sub-graphs. The
least number of sub-graphs occurs when each mode is completely a connected fuzzy-
valued graph, i.e.:

nsgt +nsg®> + ... +nsg™ > m (16)
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Each sub-graph is a single-mode connected fuzzy-valued graph. Thus, for each
sub-graph, k-shortest fuzzy paths from all members of IN.BNs to all OUT.BNs are
computed by Algorithm 2.1. As a result, there is one arc for each member of the
Cartesian product IN.BNsx OUT.BN s in a sub-graph schema (SGS), which is the
reduced form of the sub-graph whose set of nodes (VSGS;) comprises the boundary
nodes of the sub-graph. The results of the k-shortest fuzzy paths algorithm give
the SGS’s arcs (E°%S=) and their related costs.

ESCS: = {(v,,v,)|v, € (IN.BN$)sgi ,v, € (OUT.BNs)sa:,p#q}  (17)

Figure 2 shows a SGS and its related sub-graph, for which the reduced arcs,
boundary nodes, and transfer arcs are schematically presented.

~ DR N 3 _-¥
So .- L 4 % -
- / _ >
- .
5G SGS
IN.BNs ® OUTBNs -~ - Transferarc — » Traverse arc =P SGS arc

FIGURE 2:-Reduction of Sub-Graphs

One of the particular concerns regarding multimodal networks is the number
of mode changes. The problem is to develop the algorithm such that users are
not subjected to an excess'mumber of mode changes for a slight decrease in the
cost. Generally, more than three or four changes frustrate passengers. Sub-graph
level is defined as'the minimum number of used transfer arcs from the origin to
the sub-graph. All sub-graphs that contain the origin node are at zero level, the
connected sub=graphs to the outgoing arcs of zero levels are at the first level, etc.
One of the possibleisolutions to prevent an excess number of changes is to associate
heavy costs with the transfer arcs. The problem can be treated dynamically by
increasing the costs of all transfer arcs once a transfer arc is used, since passengers
become increasingly frustrated with each mode change. Also, due to the algorithm’s
multiple results, passengers can select a path with fewer, or the fewest, changes.

All' SGSs connected by the transfer arcs is referred to as the reduced G, which
can be solved through Algorithm 2.1. In this step, the viability of paths or the
correct order of modes used is also considered [18]. For example, a passenger who
begins the trip by his/her private car and then changes to the metro will not be able
to use his/her private car again. This problem is solved by temporary disablement
of the corresponding arcs. In this step, the fuzzy k-best fuzzy paths and their
corresponding fuzzy costs are obtained as the final product of the algorithm. The
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user can select a unique path among these paths according to his/her preferred
modes, and the number of mode changes in each path.

3.1. Computational Complexity Analysis. Let r and s denote the number of
nodes and arcs of a sub-graph, respectively. Algorithm 2.1 uses O(r) operations
for the first loop (a). There are r — 1 iterations in loop 8 with s(®,®) operations.
Thus, there are O(r x s) operations at this step. Operation @ needs k comparisons,
and operation ® uses k x log(k) operations for a sorting algorithm [3]. Algorithm
2.1 is a one-to-many type i.e. each time it computes shortest paths from one origin
node to all nodes. So we apply Algorithm 2.1 once for each member of IN.BNs
of all sub-graphs and once for the reduced G. Hence, the total complexity of our

approach is estimated as 1+ S2m, S"%% |(IN.BNs)gg: | times that of Algorithm
2.1.

4. Implementation

In order to clearly track each step of the algorithm, a pseudo-network is consid-
ered. The network contains four modes; bus, metro, taxi, and private car. Walking
arcs serve as the transfer mode. The model is configured as:

V = {v1,v2,03, ..., v23}

1 _
V — {’1)1,'UQ,'U3,U4,US,7)6,'1)18,1)19,1)20,’()21,1)22,1)23} = BUS
V2 = {vy,v2,v3,v6, 07, V8, Vo, V11, V12 h—> Private car

3 _
Ve = {’l}g,’l}g,’l}lo,’l}ll,vl2} = Metro

. .
V* = {v13,v14, V15, V16, V17 f 1= Taxi

To summarize, the arcs are specified in their related sub-graphs. Here, it is
assumed that_ the sub-graph recognition process has been accomplished.

Esqr = {(0iyv2)y(v1, v3), (v2,v4), (v2,05), (vs, v4), (v3,6), (v4, V2), (v4, v5)
s (va,v6), (v, v4), (v5,06)}

Es(;é = {(vis, v19), (vis,v22), (v19,v20), (V20,V21), (V21, V23), (a2, v23) }
Esga=d(v1,v2), (v1,v3), (v1,v6), (v2, v6), (v3, v7), (v7,06) }

Bggz = {(vs,v9), (vs,v12), (v9,v11), (vi1,v12), (V12,v8) }

ESG§ = {(vs,v9), (vg,v10), (ve,v8), (vo, v10), (v, v11), (V10,V11), (V10, V12)

,(U11,U9),(U11,U12)}
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ESG;* = {(v13, v14), (v13,v17), (v14,v13), (V14,v15), (V15, V16), (V15, V17), (Vi6, VI7)
,(U17,U13)}
ET = {(’U%,U%), (’U%,’U%), (’Uévvil)a (’Uiﬁ,’l)é), (1)61,1)%1), (’Ugvvil)a (1)114,’1)%), (’U%,’U%l)

) (Ugavg)a ('Ug,'Ug), (’Ug,’l}%), (Ugavg)a (’U?27’U%8)7 (’U%%’U%S)’ (U%67U%8)7 (U%!)’UAI;?)}

A closer look at the elements of ET indicates the concordance of the model with
the real world. For example, arcs such as (v3,v2) and their corresponding costs
represent the cost spent on the mode change for the case in which the stations are
located in the same place, such as walking from a metro to a bus station that is
located in the same place. One-way and two-way arcs with different costs in each
direction are other samples of concordances. The function ® images the arcs to the
fuzzy costs. To summarize, only the weights of the sub-graph SG% and the transfer
arcs are listed below:

SG1

D(vy,v0) = {.1/1,.2/2,.3/3} D (vy,v3) ={.2/1,.2/2,.4/3}
D(va,v4) = {.3/1,.2/2,.2/3} D(va,v5) = {.3/1,.6/2,.4/3}
D (vg,vq4) = {.3/1,.1/2,.1/3} D (vg,v6) ={.4/1,.3/2,.3/3}
D(vg,v9) = {.4/1,.4/2,.2/3} D (vg,v5) = {.7/15.1/2,.3/3}

D (vyg,v6) = {.1/1,.1/2,.2/3} D (vgywy) = {.4/1,.4/2,.4/3}

D (vs,v6) = {.5/1,.5/2,.4/3}

ET

P(v3,v3) = {.3/3,.1/4,.5/5} B(w3,vy) = {.4/3,.2/4,.6/5}
®(vi,viy) ={.1/5,.3/6,.4/7} ®(vi,,ve) ={.1/5,.3/6,.4/7}
®(vi,v3,) =1{.5/5,.3/6,.6/1} ®(vZ,viy) ={.1/5,.3/6,.4/7}
@(vﬁ,v%) ={.1/5,.3/6, 4/7} @(v%,v?l) ={5/5,.3/6,.6/7}
P(vg,v5) = {.5/3,.2/4,.6/5} D(vg,v3) = {.5/3,.2/4, .6/5}
P(vg,v3) = {.4/6,.5/7,.6/8} ®(vg,v3) = {.4/6,.5/7,.6/8}
B(viy,vi5) = {4/8,°5/9,.5/10} (v, vi5) = {.5/5,.4/6,.7/7}
D(vig, vig) = {A4/65.2/7.3/8}  ®(viy,viy) = {.3/6,.5/7,.5/8}

Figure 3 shows the network. Each mode is determined by its color, with some
modes composed of two sub-graphs. It should be noted that the lengths of the arcs
are independent-of the associated costs.

Based on the definitions, the sets of incoming and outgoing boundary nodes are
listed in Table 1.

Algorithm 2.1 is then applied to provide the reduced sub-graphs. The results
of the algorithm are the shortest paths from IN.BNs to OUT.BNs of each sub-
graph. Table 2 shows the derived shortest paths from IN.BNs to OUT.BNs, after
the convergence. Note that the paths in each cell are arranged according to the
number of arcs. To summarize, only the results in sub-graph SG} (except vz — vg)
are listed.
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Bus —p Private Car —p Metro —p Taxi = Walk QNode

FIGURE 3. A Pseudo Multimodal Network

Sub-Graph Incoming Boundary Nodes Outgoing Boundary Nodes

SGh {vo,v2,vs} {v2,v6}
SG5 {vig} {vp,vi9}
SG? {vo,v2,vs} {v2,v6}
SG% {vg} {1)12}
SG:{’ {1)9,1111} {Us,vg,vn}
SGt {vagv17} {v14,v16}

TABLE 1. Boundary Nodes

The output of the algorithm covers all possible paths that are listed under the
title of “All Corresponding Paths” in Table 2. The algorithm may result in several
paths having similar costs from an origin to a destination. Some of them like
v — v4/— vy repeat their destinations. From a fuzzy point of view such paths
are valid; however, in practice the paths are ignored due to the repetition. Hence
“Filter Paths” column of Table 2 indicates all logical choices that a passenger can
consider.

There are several noteworthy points about paths such as v — ws and their
related costs {1/0,.3/2,.3/3}; the term 1/0 represents the ordinary cost of the
path from vy to vy. Other terms of the fuzzy number (.3/2,.3/3) originate from
the path v — v4 — vy. In addition, there is no x/1-like term in the fuzzy cost,
since a cost of 1 is impossible along the two above-mentioned paths. Although this
fuzzy number is not absolutely zero ({1/0}), it plays exactly the same role as zero
in the aggregation of costs, due to the definition of the operator ®. The reduced
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Sub- IN. OUT. Cost All Corresponding Paths Filtered
Graph BNs BNs Paths
vy {.1/1,.2/2,.3/3} 12 12
v
© Twe  {2/2,.2/3,.4/4} 15356 15356
2
v2 {1/0,.3/2,.3/3} — 2 2—2
24
v2 5
SG1 V6 {.3/2,.5/3,.5/4} —5—=6 2556
2—=4—=2
3
342
v3 V2 {.3/2,.3/3,.3/4} —4—=52 3542
3— 4 5
342

TABLE 2. Shortest Fuzzy Paths in Sub-graphs

G is shown in Figure 4. Each color presents a mode as in Figure 3 and each circle
belongs to a sub-graph.

FIGURE 4. The Reduced G

Algorithm 2.1 is applied to the reduced G. The results are shown in Table 3.
The full paths are obtained by insertion of the internal shortest paths from Table
2 into the highlighted paths in Table 3:

2 3 3

v v, = v

o) 2 11 12 1 1 1

< 2_>2_>2>—>U6—>< 4_>4_>4>—>U18_>U22_”’D
Vo — U3 U7 Vig — V15 — V1
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Origin v}, Fuzzy Cost Final Paths
Vo e vH = V6
vy {.1/1,.2/2,.3/3} vH — vy
2 2 3
L (4/14, 4/15,.4/16 vo T ve = Ui - v = ol
U3 { / ) / ) / } 1)(23 N Ug N U%l N Ug’ vg U3
Vg {.2/2,.2/3,.2/4} vH — v
2 2 4 4
Lo {1/14, 4/15,.5/16 VO T VI T Ie )
v18 { / ) / ) / } Ug N Ué N U%l N 1)%2 U1ig
2 2 4 4
Vo —» Vg — U — v
vl {.1/15,.2/16,.3/17} ( vg N UE N U%i N U%,j ) — vig = vlp
2 2 4 4
() — Vg — V14 — Vie
vh  {.1/16,.2/17,.3/18} ( v 02 s o, ) = vig = vp
vd e vH o
Vo 3 P) 2
(25 {3/1,2/2,1/3} Vo — U3
2 2 3
2 [4/14,.4/15,.4/16 Y @Y\ — v =03
va  {4/14,.4/15,.4/16} Y T o S vs 77 Us
03 {5/1,.7/2,.4/3} vy — Vs
va  {.4/10,.5/11, 5/12} vp —g — Vi — vy — V5
vi, {.3/12,.4/13,.4/14} Uh — U — U — U5 — vg — Uiy *
2 2 3
3 Vo — Vg — V11 3
4/8,.4/9,.5/10 —
Vg { /7 /a / } (’U%—)U%%U%l%’vg) Vs
w3 {4/7,.5/8, 5/9} vp = vg = vl — V5
vh {.5/6,.5/7,.5/8} V) = vg = Vi
v}, {.5/7,.5/8, 5[0} vh = Vg > VY > VYo
vy {1/6,.3/7,4/8} vy — v = viy
vie  {.1/8,.2/9,.2/10} vh — vg = vis = vig

vy = Vg = vig = vig
2 2 3 3
Vo — Vg — Vi1 — VUi2

vy {1/215:2/22,.3/23} (

) — vig = vig = Vi,

TABLE 3. Best Paths of the Entire Network

It can be seensthat there are at least two mode changes in each obtained path.
The path marked by = is not a viable path due to the incorrect order of modes
used.

5. Conclusions and Future Work

Modern transportation services, such as those that include monorail, metro, and
high-speed trains, imply very high running costs and are economically justified
only under certain circumstances, such as efficiency of utility. The present study
was aimed at supporting decision-making with respect to inexact quantities like
“heavy” and “light” traffic, which are usually available and free. The fuzzy theory
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and related methods were applied in order to model these quantities. The proposed
algorithm is based on fuzzy path algebra and the dioid of k-shortest fuzzy paths.
Any type of fuzzy value can serve as algorithm input. The algorithm determines the
shortest paths according to both the defined cost and multimodal concerns, such
as the number of mode changes and the correct order of the modes used. There is
no restriction on the number of modes that can be modeled. Two-way paths, even
those with different costs in each direction, can be considered as well. Future work
will focus on the problem under multicriteria conditions. Use of higher-level fuzzy
numbers will provide users with more flexible guidance. Negative fuzzy costs can
be modeled through intuitionistic fuzzy sets. Also, the proposed approach can be
deployed in the context of client/server architecture, servicing users based on their
location (location-based services, LBS).
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