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NUMERICAL METHODS FOR FUZZY LINEAR PARTIAL
DIFFERENTIAL EQUATIONS UNDER NEW DEFINITION FOR
DERIVATIVE

T. ALLAHVIRANLOO AND M. AFSHAR KERMANI

ABSTRACT. In this paper difference methods to solve ”fuzzy partial differential
equations” (FPDE) such as fuzzy hyperbolic and fuzzy parabolic equations
are considered. The existence of the solution and stability of the method are
examined in detail. Finally examples are presented to show that the Hausdorff
distance between the exact solution and approximate solution tends to zero.

1. Introduction

The topic of numerical methods for solving fuzzy differential equations has been
rapidly growing in recent years. The concept of fuzzy derivative was first introduced
by S.L. Chang, L.A. Zadeh in [7]. It was followed up by D. Dubois, H. Prade in [§],
who defined any used the extension principle. Other methods have been discussed
by M. L Puri, D. A. ralescu in [14] and R. Goetschel, W. Voxman in [9]. The fuzzy
differential equations and fuzzy initial value problem were treated in a standard way
by O. Kaleva in [10] and [11], by S. Seikkala in [15], .... The numerical methods
for solving fuzzy differential equations were introduced by M. Ma, M. Friedman, A.
Kandel in [12] by the standard Euler method.

In [4], J. Buckley and T. Feuring proposed a procedure to examine solutions of
fuzzy partial differential equations. They checked to see if the Buckley-Feuring
solution exist or not. If the Buckley-Feuring solution fails to exist they check if the
Seikkala solution exists. Their proposed method only works for elementary partial
differential in their sense of elementary. They assumed solution of FPDE is not
defined series and so Bessel functions and Legendre function are not used in the
solution. In [1] T. Allahviranloo used a numerical method to solve FPDE, that was
based on the Seikala derivative.

In this paper we use a difference method for solving the fuzzy hyperbolic equations
and the fuzzy parabolic equations. The paper is organized as follows:

In section 2 we noted some basic definitions of fuzzy numbers and fuzzy derivative
which have been discussed by B. Bede, SG. Gal and which are used in the paper. In
section 3 we define two FPDEs, in particular, the fuzzy heat equation and the fuzzy
wave equation and also use difference methods for them. The necessary conditions
for stability of proposed method are discussed in section 4. The difference methods
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are illustrated by solving some examples in section 5 and conclusions are drown in
section 6.

2. Preliminaries

We begin this section by defining the notation that we will use in the paper.
We place a ~ sign over a letter to denote a fuzzy subset of the real numbers. We
write A(z), a number in [0,1], for the membership function of A evaluated at z.
An a—cut of A, written A[a], is defined as {z|A(z) > a}, for 0 < a < 1.

We represent an arbitrary fuzzy number by an ordered pair of functions (u(r), @(r)),
0 < r <1, which satisfies the following requirements:

(1) u(r) is a bounded left continuous non decreasing function over [0, 1].

(2) @(r) is a bounded left continuous non increasing function over [0, 1].

(3) u(r) <T(r), 0<r < 1.
A crisp number « is simply represented by u(r) =u(r) =«, 0<r <1.
Let F be the set of all upper semicontinuous normal convex fuzzy numbers with
bounded a—level sets. Since the a—cuts of fuzzy numbers are always closed and
bounded, we denote the intervals by N[a] = [N(«), N(a)], for all a. The Hausdorff
metric is defined on F' as

doo (1, ) = sup{dp (u[a],v[a]) : 0 <r <1}, uw,v € E.

where dg is the Hausdorff on classic sets.
Puri and Ralescu [13] introduced H-derivative that is based in the H-difference of
sets, as follows.

Definition 2.1. Let u,v € F". If there exists w € F" such that u = v + w, then
w is called the H-difference of v and v and it is denoted by u — v.

In [3] the authors introduce a more general definition of derivative for fuzzy map-
pings enlarging the class of differentiable fuzzy mappings by considering a lateral
type of H-derivatives.

Definition 2.2. Let F' : (a,b) — F"and ty € (a,b). We say that F is differentiable
at t() if:

(1) There exists an element F'(tg) € F" such that, for all A > 0 sufficiently near to
0, there are F(to + h) — F(to), F(to) — F(to — h) and

o Flto+h) = F(to) _ . Flto) = F(to—h)

= F' 1
h—ot h h—ot h F (tO) ( )

or
(2) There exists an element F'(tg) € F" such that, for all A < 0 sufficiently near to
0, there are F(to + h) — F(to), F(to) — F(to — h) and
lim Dot h) = Flto) _  Flto) = Flto=h) _ F'(to). (2)
h—o0~ h h—o~ h
Theorem 2.3. Let F: T — F be a function and denote [F(t)]* = [fa(t), g9a(t)],
for a € [0,1]. Then
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(i) If F is differentiable in the first form (1), then fo and g, are differentiable
functions and

[F'(0)] = [fa(t), 90 (B)]- (3)
(ii) If F is differentiable in the second form (2), then f, and g, are differentiable
functions and

[F'()]* = [g4(1), fo )] (4)

Proof. (6] O
Consider the FPDE

¢(Dy, DU (z,y) = F(z,y, K), (5)

subject to certain boundary conditions where the operator ¢(D,,D,) is a poly-
nomial, with constant coefficient, in D, and D,, where D,(D,) stands for the
partial differential with respect to z(y). The boundary conditions can be of the
form U(0,y) = Ci, U(z,0) = Cy, U(My,y) = Cs, ..., U(0,y) = Cy, U(0,y) =
§1(y;54), Where l~](m,0) = ]71(33;65), ﬁ(m,y,l?) is the fuzzy function with
K = (%1, e ,En), where k; is a triangular fuzzy number in J;, 1 < i < n. Let
I, =[0,M;], I, = [0, M]. The fuzzy function U maps Iy x I3 into fuzzy numbers.
Also let C' = (¢1,...,¢n) with ¢ being triangular fuzzy number in the interval
L;, 1 <i<m.Let

Kla] = H%i[a], Cla] = Ha[a].

Let ﬁ(a:, Y)a] = [U(z,y;),U(z,y; a)]. We assume that the U(z,y; @) and U (z, y; )
have partial continuous so that (D, Dy)U(z,y;a) and ¢(D,, D,)U(z,y; ) are
continuous for all (z,y) € I) X I, all a. Then, we have the following alternatives

for solving the problem (5).

Case 1: If we consider ¢(D,,D,)U(z,y) by using the derivative in the first
form (1), then we have

[cp(DI,Dy)U(a:,y)]a = [cp(DI,Dy)Q(a:,y, a)a go(Dz,Dy)U(m,y,a)]

and we have to solve the system of partial differential equations
#(Da, D,)U(x,y;0) = E(x,y;0) = min{ F(v,y, Wk € Klal},  (6)
¢(Da, D,)U(z,y; @) = F(x,y;0) = maz{F(z,y, k)|k € K[o]}, (7)

for all (z,y) € I x I and all « € [0,1]. We append equations (6) and
(7) any boundary conditions, for example, if they were U(0,y) = C; and

U(My,y) = C2, then we add
U0, y;0) =Cy (), U(My,y;a) = Ch(a) (8)
to equation (6) and

U(0,y;a) = Ci(e), U(My,y;0) = Cz(a) 9)
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to equation (7) where Cilo] = [C;(a),Ci(a)], i = 1,2. Let U(z,y;a) and
U(x,y;a) solves equations (6) and (7), add the boundary equations, re-
spectively.

Case 2: If we consider ¢(D,, D,)U(z,y)by using the derivative in the second
form (2), then we have

[p(Da, Dy)U(2,9)]* = [p(Dz, Dy)U (2, y, @), ¢(Dz, Dy)U(7,y, )]
and, we should solve the system of partial differential equations
©(Dy, Dy)U(z,y;0) = F(z,y;a) = maz{F(z,y,k)|k € IN([a]}, (10)
(D, D)0 (2,3 0) = E(w,y; 0) = min{F(z,y,K)|k € K[a]}, (1)
for all (z,y) € I x I and all a € [0,1]. We append equations (10) and

(11) any boundary conditions, for example, if they were U(0,y) = C, and
U(M,y) = Cs, then we add

Q(an)a) :Ql(a)a Q(Mlay;a) :QQ(a) (12)
to equation (10) and
U(an)a) :61(0), U(Mlay;a) 262(6“) (13)

to equation (11) where Cj[a] = [C;(a),Ci(a)], i = 1,2. Let U(z,y; )

and U (z,y; «) solves equations (10) and (11), add the boundary equations,
respectively.

3. A Fuzzy Partial Differential Equation

In this section we consider ¢(D, D, )U(z,y) by using the derivative in the first
form (1) or second form (2) also we solve two types of FPDE as numerically.
(1) Fuzzy Parabolic Equation
Consider the fuzzy heat equation which is illustrated below with the parabolic
equation:

(D — B2DyD)U(z,t) =0, 0<z<I, t>0, (14)

where

UO,t) =K1, Ul,t)=K,, t>0, U(x,0) = f(x), O<az<lI
We have four dziﬂerent cases:
(a) If both (%;2]) and (%) are differentiable in the first form (1) then by (6) and
(7) we have

(D))U(w,t; ) — (B2 Dy Da)U (w, 8 0) =0,

= <

(DU (z,t;0) — (B°DyD,)U(x,t;a) =0,

O<z<l, t>0, a€l0,1] (15)
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where
U0,t;0) = Ki(a), U(l,t;a) = K(a), t>0, acl0,1],
U(0,t;a) = Ki(a), U(l,t;a) = Ka(a), t>0, «a€]0,1],
U(z,0;a) = f(z;a),U(2,0;a) = f(r;0) 0<z<l, acl0,1].

(b) if both (gjg) and (@) are differentiable in the second form (2), then by (10)

and (11) we have

(D)U(z,t;a) — (82D D)U(z, ;) = 0,
(D)U(z,t;a) — (32D D)U(z, ;) = 0,
O<z<l, t>0, a€]0,1] (16)

The boundary conditions are the same as the first case.

(c) if (gjg) is differentiable in the first form (1) and (@) is differentiable in the

second form (2), then by (6), (7), (10) and (11) we have
(Dt)U(ZE,t,Oé) - (BQDmDm) (CU,t;Oé) = Q:

U
(Dy)U(x,t; ) — (B2DaDa)U(, t;0) =0,

O<z<l, t>0, a€l0,1] (17)
The boundary conditions are the same as the first case.

(d) if (%12]) is differentiable in the second form (2) and (%
first form (1) then by (6), (7), (10) and (11) we have

(D)U(z,t;a) — (82D D,)U(z,t;0) = 0,

) is differentiable in the

(DU (z,t;0) — (B°DyD,)U (z,t;a) =0,

O<z<l, t>0, a€l0,1] (18)
The boundary conditions are the same as the first case.
Assume U is a fuzzy function of the independent crisp variables z and ¢. Subdivide
the x-t plane into sets of equal rectangles of sides dx = h, t = k, by equally spaced
grid lines parallel to Oy, defined by z; = ih, i =0,1,2,... and equally spaced grid
lines parallel to O,, defined by y; = jk, 7 =0,1,2,....
Denote the value of U at the representative mesh point p(ih, jk) by

U, = Ul(ih, jk) = U; (19)

and also denote the parametric form of fuzzy number, U; ; as follow

Ui,j = (Hi,jaﬂz}j)- (20)
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If we consider (Dme)ﬁm' by using the derivative in the first form (1) then by
Taylor’s theorem and definition of standard difference

(DeD)Uij = (DeD2)Ui j, (Dy D) Uy ),

where

(Do D), ~ w{(i + 1)h, jk} — 2u{ih, jk} + u{(i — 1)h, jk}

h2
(DuDT, ~ T+ Db, ik} = 2u{ih, jk} +u{(i — Db, jk}
xr xr ,] — h2 .
By (19) and (20) we have
~ u. P20t 3 D~ — w; vi72ﬁi,]‘ Wi,
M ~ —itlj hz, + 1, , (Dsz)Uz,J ~ +1 = + 1 (21)

also if we consider, (Dme)ﬁm' by using the derivative in the second form (2) then
by Taylor’s theorem and definition of standard difference we yield equations as
follows

i—1,j

2u; i1, I Ligy,; 2 tu
2

(Dsz)ﬁi,j s ;lz » (DaDy)Usj 5 =~ (22)

with a leading error of order h%. Similarly if (DtDt)UN'i,j comes from the first form

(1),

S W Wt T A Ui —2u -
(D Dy)U; j ~ 2231 1112] ~ii=l (D Dy)Usy ~ =2 1,22‘1 ha (23)

and if consider the second form (2) we have,

s Ui,j+1 =20 ;+Ui -1 7 W g1 —2Wi i+ 5

(D:D)U; j ~ = , (DeD)Usj ~ 72 (24)

with a leading error of order k2. With this notation the forward - difference ap-
proximation for (D;)U at P is

(DU ~ =2 (DU j ~ =H = (25)

if we use the first form (1) and if we use the second form (2) is

(DU ~ I (D) o Bt (26)

with a leading error of o(k).
One finite-difference approximation to

(D)U — *(DoD,)U =0 = (0,0) (27)
is

(D)U — B2(DyD,)U =0 =e(a — 1),

(Dt)ﬁ - 62(Dme)ﬁ =0= 5(1 - a)


v

Numerical Methods for Fuzzy Linear Partial Differential Equations ... 39

Now there are two cases, the first one by using (21), (25) or (22), (26) and definition
of standard difference and 0 = (0,0) = (0, 0) following equations must be hold:

U jr1 — Wij _ —2u; ; +TWi-1,5) (28)
k h?

Uij41 — Ui _ B Wiy ; — 2Wij +u; g ;) (29)
k h2

where a € [0,1] and U = (u, @)
equations, z; = ih, (i =
written as

is the exact solution of the approximating difference
0,1,2,...) and t; = jk, (j =0,1,2,...). This can be

Wiy = TTio1y + (=2 5 + Mgy + Ui (30)

Wijpr =Ty + (=20 Uiy + iy 5 + U 5 (31)

where r = % and a € [0,1].

The second case by using (21), (26) or (22), (25) and definition of standard differ-
ence the following equations must be hold:

Uijr1 — U5 = 2u; ; +Ui-1,5) (32)
k a h2
Yijyr = Wiy _ B2y ; — 2 +u;_y ;) (33)
k h?
This can be written as
Uijpq = Ty g+ (1= 20T g + 1w (34)
Wi jr1 = M1, + (L= 2r)u; 5 + 11 (35)

Hence we can calculate the unknown pivotal values of u along the first time-row,
t = k, in terms of known boundary and initial values along ¢ = 0, then the unknown
pivotal values along the second time-row in terms of the calculated pivotal values
along the first, and so on.

(2) Fuzzy Hyperbolic Equation

Consider the fuzzy wave equation which is illustrated below with the hyperbolic
equation:

(DyDy — 82D, D) U(z,t) =0, 0<z <, t>0, (36)
where N
U@,t)=U(1,t) =0, t>0, U(z,0) = f(z), 0<z<I.
and B
aa—(t](a:,()) =g(x), 0<z<I.

All conditions are similar to heat equation. One finite-difference approximation to

(DtDt)ﬁ_B2(DxDm)ﬁ =0= (Qaﬁ) (37)
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is
(D:D)U — B*(DyD,)U =0 =e(a — 1),
(D;Dy)U — B*(DoD,)U =0 =¢(1 — a)
Now there are four cases that we can classify them to two cases, the first case by

(21), (23) or (22), (24) and definition of standard difference and 0 = (0,0) = (0, 0)
that the following equations must be hold:

o 2(77. A 7. .
W1 — 2Wij+ ;50 B(Wiv1y — 2w 5 +Wio1,5)

= 38

- Ea ) B (38)

Wi, j+1 — QHi,j tUjj1 B (Hi+1,j — 2 +ui71,j) (39)
k2 n h?

where U = (u, ) is the exact solution of the approximating difference equations,
xz; =1ih, (1=0,1,2,...)and t; =jk, (j=0,1,2,...). This can be written as
Wi iy = (20w 5 + N (Wigrj + Tim1j) — w5 1 + 20ij (40)
Wijer = (=200 + N (wipy j + 0 1) — Tijo1 + 2u, (41)
The second case by using (21), (24) or (22), (23) and definition of standard differ-
ence the following equations yield by similar calculations:
Ui jp1 = (—2X\° + 2)u;; + >‘2(Hi+1,j +upq ) Wiy (42)
Tijr1 = (=207 + 2 ;5 + N (Tisr,j + Tio1,j) = Ui (43)
where \ = BT’” and a € [0,1]. Hence we can calculate the unknown pivotal values
of u along the first time-row, ¢t = k, in terms of known boundary and initial values

along t = 0, then the unknown pivotal values along the second time-row in terms
of the calculated pivotal values along the first, and so on.

4. A Necessary Condition for Stability

Now we are going to consider the stability of the classical explicit equations
(30), (31). If the boundary values at ¢ = 0 and N, j > 0 are known, then 2(N — 1)
equations can be written in the following matrix

—2r 1 T

r 1 r [ owy ]

- U j

T 1 T
—2r r 1 UN_1

1 r 0 —2r Uy,

1 r . Uz, j
r 1 r . L ﬂNfl,j ]

i 1 —2r |

— m m m t
= (U 1 Yo jg 1y s N1 s BT b1, U241 - UN—1, 1) (44)
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i.e.
Yiri | =p| % | 4| @ (45)
Wit w; Co
where
A B
P—[ 4 A], (46)
0 1
A= (=2r)1, B=I+r
1
1 0

Lemma 4.1. The eigenvalues of a common tridiagonal matriz the eigenvalue of
the N x N matrix

c a
are
Ak = a + 2{Vbc} cos i k=1,2 N
N+1 ) ) )

where a, b and ¢ may be real or complex.

Theorem 4.2. Let matrixz P be of the follow form

A B
B A |-
Then the eigenvalues of P are union of eigenvalues of A + B and eigenvalues of
A-B.[2]
Now we prove the stability of this method in the following theorem.

Theorem 4.3. If r = 5 < L then the difference of equations (30) and (31) are
stable.

Proof. It is sufficient to show in (45) that p(P) < 1, thus by Theorem 4.2 it is
sufficient to find eigenvalues of
1-2r r
r 1—-2r r
A+B=

r 1-—2r T
T 1-2r
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and
—2r—1 -r
- —2r—1 -—r
A-B=
-r —2r—1 -r
-r —2r—-1
Let matrices (N — 1) x (N — 1), T and T" be as follows
2 -1 2 1
-1 2 -1 1 2 1
T= I =
-1 2 -1 1 2 1
-1 2 1 2
thus

A+B=1-rT,
A-B=—rT -1,
where I is the unit matrix of order 2(N — 1) and 7' a (N — 1) x (N — 1) matrix
whose eigenvalues A7 are given by

kmw
Ar =Ap =4cos® ——  k=1,2,... N1
T T CcoS 2(N+].) ) &y )
By using Lemma 4.1 the eigenvalues of A — B and A + B are obtained as follows:
km km
Aa_p=—4 I 1 A =1-4 |
A-B r CoS AN +1) , A+B r CoS AN +1)
Therefore the equations will be stable when
k
P(A—B):m]?x|—4rc0522(N711)—1|<1 k=1,2,...,.N—1
(A+B)—max|1—4rc0s2k7ﬂ-|<1 k=1,2 N-1
,0 - & 2(N+].) - 3 &yt
i.e. &
m
1< —-1-4rcos’ ——— <1 k=1,2,... N—1
< r COS 2(N+1)< 32, ., ,
kmw
~1<1—4rcos’ ———-<1 k=1,2,...,N—1.
< r COS 2(N+1)< 12, .,
km
Ash—)O,N—>ooandcos2m—>1hence
km
—1<+1l—4rcos® —— <1
< T COS 2(N+1)<
so we have |r| < 3. O

This is the necessary and sufficient condition for the difference equations to be
stable when the solution of the FPDE dose not increase as t increases.
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Corollary 4.4. If r = & < 1 than the difference equations (34) and (35) are
stable.

Proof. The stability can be deal with in a similar manner where

A B
P = [ B A ] ; (47)
0 1
1
B=(1-2rI, A=r
1
1 0 (48)
and
[1-—2r T T
r 1-2r r
A+B = ) ,
r 1-2r r
i r 1-2r |
[ 2r —1 r T
r 2r—1 r
A-B = .
r 2r—1 r (49)
i r 2r —1 |
thus
A+B=I-rT, A-B=rT -1
then the condition for stability will yield the same as last case. a

The stability of (40), (41) (wave equations) and (42), (43) can be deal with in
a similar manner. If the boundary values at i = 0 and M, j > 0 are known, then
2(M — 1) equations can be written in matrix as
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(U1 j15U2 jt1s s UM jb 15 U141, 02, 415 - OM—1j41)"
[ —2)2 2 A2 i
)\2 2 )\2 i yl,j T
V3,5
222 2 :
= —2X X 2 Unr—1,5
- 2 A2 0 —2)\2 V1,5
A2 2 A2 . Vg j
A2 2 A2 L Um—1,5 |
i A2 2 —2)\7 |
_ } _ V1,51 i [ ela—1) ]
-1 0 0 0 Uy i1
0 -1 0 0 Unr—1j-1 ela—1)
1o 0 -1 0 v | T | ei-a
V2 j—1
| 0 0 0 -1 | : (50)
L Um—1,j-1 L e(1—-a)
we have
Vi = PV = IViy,
where
A B
=5 4]
0 1
B=or+x |1t - " : A=—2\2T.
. L
1 0
Now let
Vi V; Vi
Wi, = J+1 , Wi = J d W. | = =1
Jj+1 V] J Vj—l an Jj—1 Vj_2
Then the iterative method yields as follow
Vis Vi }
= + FE ol
] =el 1
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where

o=[ T 7]

Now we prove the stability of this method in the following theorem.

Theorem 4.5. If \ = % < 1 then the difference equations (40) and (41) are stable.

Proof. Tt is sufficient to show that in (51) that p(Q) < 1, so we should find the
value of p such that it satisfies in the following equation
det (Q — ul) = 0.
It is easy to show that
det (Q —pl) =0
if and only if
det (W’ T —pP+1)=0

or
p? 41

det (P — =0

so the eigenvalues of Q are related to P as follow

2
)\P:u2+1:>\Q+l- (52)
[ AQ
On the other hands by Theorem 4.2 eigenvalues of P are the union of eigenvalues
of A+ B and A — B, so we have
2(1 — \?) A2
A2 2(1—A2%) A2

A2 2(1-A2) 2
A2 2(1 - \?%)
and
—2(A24+1)  —A?
X2 S22 41) -2
—A2 22 41) A2
-2 —2(\? +1)
Let matrices (M — 1) x (M —1), T and T as follows
2 -1 2 1
-1 2 -1 1 2 1
T = T =
1 2 -1 1 2 1
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thus

A+ B =21 - \°T, A—B=-\T"-2I,
where Iy(pr—1) is the unit matrix of order 2(M —1) and T , T" are (M —1) x (M —1)
matrices whose eigenvalues Arand A are given by

km
Ar=Ap =4cos’ ———~  k=1,2,...,M—1.
T T COos 2(M + 1) ) 4y ’
By using Lemma 4.1, the eigenvalues of A — B and A + B are obtained as follows:
Aa_p = —4)? cos? % -2, A+ =2-— 4\2 cos? % (53)
thus )
Ap = (42— 4)\2cos® — 54
= cos® 37Ty (54)
Now by (52) and (54) we have
2
pe+1 9 9 km
= (£2-4X ——).
R S ST+ 1))
Then
p? — (£2 — 4)\? cos® L)pH— 1=0
2(M +1)
by solving quadratic equation
km
— (£1 —9X2cos — 2 _q
A = (£1 —2)\cos 2(M+1)) 1
Thus
km Kr
= (£1 - 2X%cos® ————) £ /(1 —2X2cos? ———)% —
= S ST+ 1) \/( S S+ 1)
or
pw=1+02-1,
where L
I = (+1-2)\2cos> — ). 55
( S S+ 1)) (55)

A necessary condition for stability is
| <1.

Since A , k and M are real, I <1 by (55).
When I < —1orl>1, |u|l > 1, giving instability.
When
—-1<l<l, PP<l, p=I1l+i/iz2-1,

hence

=2+ -1)=V22-1<1,
showing that a necessary condition for stability is —1 <! < 1. By (55),

km

-1 1 -2\ cos? ————
< ( A” cos 200+ 1)

) < 1.
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The only useful inequality is

—1<(i1—2ch25@%%Ty
giving
A=—-<1.
g
Corollary 4.6. If A = % < 1 then the difference equations (42) and (43) are stable.

Proof. The stability can be deal with in a similar manner, where

0 1
p=| 4 Bl a-xelt , B=(2)\+2)]
B A . 1
1 0 (56)
and
[ 2(1—)\?) A2 i
A2 2(1—X2%) A2
A+B = ,
A2 2(1—=)\?) A2
i A2 2(1—-X?) |
[ 202 —1) A2 i
A2 2002 1) A2
A-B = . .
. : 57
A2 20 -1) A2 (57)
i A2 2002 —1) |
Thus
A+B=2I-)XT, A-B=X\T -2I.
Then the condition for stability will be yield as in the last case. a

5. Examples

Example 5.1. Consider the fuzzy parabolic equation
aU U
E(.’L’,t) — W(:L.,t) = 0, O<x< l, t> 0,

with the boundary conditions (7(~0,t) =U(l,t) =0, t >0, and U(z,0) = f(z) =
kcos(mx — m/2), 0 < x < 1. and k[a] = [k(a), k(a)] = [ — 1,1 —a].
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FIGURE 1.

The exact solution for

2
Lz, t;a) — T8 (2, t;0) = 0,

(@, ti0) = 5 (v 1;0) =0,

with 0 < z <, t> 0 are U(z,y:a) = k(a)e™™ tcos(mz — 7/2) and U(z,y;a) =
k(a)e~™ teos(na — 7/2). It is clear that the partial derivative of 2% and %ig exist
as the second form (2) of Definition 2.3. We use the equations (28) and (29) in to
approximate the exact solution with A = 0.1 and k£ = 0.00001, therefore, r = 0.001.
Figure 1 shows the exact and approximate solution at the point (0.1,0.000001) for

each a € (0, 1]. The Hausdorff distance between the solutions is 1.2e — 003.

Example 5.2. Consider the fuzzy hyperbolic problem
U (0, ) =420 (2,4) =0, 0 <z <1, t >0,

with the boundary and initial conditions
U,t) =U(l,t) =0, ¢t >0, U(z,0) = ksin(rz), 0 <z < 1,
and the initial conditions
W(r,0)=0,0<z<1,

where k[a] = [k(a), k(a)] = [0.75 + 0.25a, 1.25 — 0.25q].

The exact solutions are

U(z,t;a) = k(a)sin(rz)cos(2nt),

Ul(z,t;a) = k(a)sin(rz)cos(2mt),
for a € (0,1]. Tt is clear that the partial derivative of %2727 and %jg exist as in the
second form (2) of Definition 2.3. We use the equations (38) and (39) to approximate
the exact solution with A = 0.1 and k& = 0.001, therefore A = 0.02. Figure 2 shows
the exact and approximate solution at the point (0.1,0.001), for each o € (0,1].
The Hausdorff distance between the solutions is 7.6247e — 006.
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6. Conclusions

We presented different methods for solving fuzzy partial differential equations.
These numerical methods based on the definition of derivative that considered by
B. Bede, SG. Gal [3]. If all terms of FPDE are differentiable in the sense of the
first form (1) or the second form (2) of Definition 2.3 then the solutions of FPDE
could be concluded from the numerical values.We presented necessary conditions
for stability of this method.
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