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OPTIMIZATION OF LINEAR OBJECTIVE FUNCTION SUBJECT
TO FUZZY RELATION INEQUALITIES CONSTRAINTS WITH
MAX-PRODUCT COMPOSITION

E. SHIVANIAN AND E. KHORRAM

ABSTRACT. In this paper, we study the finitely many constraints of the fuzzy
relation inequality problem and optimize the linear objective function on the
region defined by the fuzzy max-product operator. Simplification operations
have been given to accelerate the resolution of the problem by removing the
components having no effect on the solution process. Also, an algorithm and
some numerical and applied examples are presented to abbreviate and illustrate
the steps of the problem resolution.

1. Introduction

Fuzzy relation equations (FRE), fuzzy relation inequalities (FRI) and their con-
nected problems have been investigated by many researchers in both theoretical
and applied areas [1, 5, 6, 7, 9, 12, 14, 19, 29, 32, 33, 34, 36, 37, 38, 40, 43, 45].
Sanchez [35] started a development of the theory and applications of FRE treated
as a formalized model for non-precise concepts. Generally, FRE and FRI have a
number of properties that make them suitable for formulating the uncertain infor-
mation upon which many applied concepts are usually based. The application of
(FRE) and (FRI) can be seen in many areas, for instance, fuzzy control, fuzzy de-
cision making, systems analysis, fuzzy modeling, fuzzy arithmetic, fuzzy symptom
diagnosis, and especially fuzzy medical diagnosis and so on (see [2, 3, 4, 8, 9, 10,
11, 25, 27, 28, 29, 30, 31, 39, 42]).

An interesting extensively investigated kind of such problems is the optimization
of the objective functions on the region whose sets of feasible solutions have been
defined as FRE or FRI constraints [4, 11, 15, 17, 19, 23, 24]. Fang and Li solved
the linear optimization problem with respect to the FRE constraints by considering
the max-min composition [11]. The max-min composition is commonly used when
a system requires conservative solutions in the sense that the goodness of one value
cannot compensate for the badness of another value [23]. Recent results in the
literature, however, show that the min operator is not always the best choice for the
intersection operation. Instead, the max-product composition has provided results
better than or equivalent to the max-min composition in some applications [2].
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The fundamental result for fuzzy relation equations with max-product composi-
tion goes back to Pedrycz [28]. A recent study in this regard can be found in Bourk
and Fisher [4]. They extended the study of an inverse solution of a system of fuzzy
relation equations with max-product composition. They provided theoretical re-
sults for determining the complete sets of solutions, as well as the conditions for the
existence of resolutions. Their results showed that such complete sets of solutions
can be characterized by one maximum solution and a number of minimal solutions.
Furthermore, the monograph by Di Nola, Sessa, Pedrycz and Sanchez [9] contains
a thorough discussion of this class of equations. A problem of optimization was
studied by Loetamonphong and Fang with max-product composition [23], which
was improved by Guu and Wu by shrinking the search region [17]. The linear ob-
jective optimization problem with FRI was investigated by Zhang et al. [44], where
the fuzzy operator is considered as the max-min composition. Also, Guo and Xia
presented an algorithm to accelerate the resolution of this problem [15].

A system of fuzzy relation equations, namlely A e x = b, has considered by
Perfilieva [32]. In this system ”” is max-* composition, and ”+” denotes a continues
t-norm, which in special case it can be considered as max -product composition,
and also in this paper solvability of this system is discussed by introducing fixed
point of the shrivel operator. A system of fuzzy relation equations A > z = b has
studied by Perfilieva [33], where ” > 7 denotes inf (min) composition. However, inf
(min)—composition is completely different from max-product composition. Also,
a kind of optimization problem as

minimum i
subject to
Axx>b

has considered by Hosseinyazi [20], where ” *” denotes max-min composition. The
objective function is ¢! * x which is mix-min composition, where z is a feasible
solution point of A x z > b. The feasible solution itself is obtained by max-min
composition.

Here, the constraints of our problem are more general than one in [32]; moreover,
a necessary and sufficient condition is presented for solvability of the constraints
(see corollarly 5). In this paper, we generalize the linear optimization problem of the
FRE with the max-product operator [23] by considering fuzzy relation inequalities
instead of the equations in the constraints. This problem can be formulated as
follows:

minimum c'x
subject to
Aeg >d'
Bezx < d?
zel0,1]" (1)

where A = (a;j)mxn, aij € [0,1], B = (bij)ixn, bij € [0,1] are fuzzy matrices,d' =
(d)mx1 € [0,1]™, d&® = (d2)1x1 € [0,1] are fuzzy vectors, ¢ = (¢j)nx1 € R? is the
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vector of cost coefficients, and © = (z;)nx1 € [0,1]" is an unknown vector and ” e”
denotes the fuzzy max-product operator as defined below and also the objective
function is ¢!z = ¢1.21 + ¢2.72 + ... + c,.T,, where the operations ”.” and ” 4 7
denote the ordinary multiplication and addition, respectively. Problem (1) can be
rewritten as the following problem in detail;
t

min c'x
s.t
aiex>d; i€l ={1,23,..m}
biex <di iel*={1,23,..1}
0<z; <1 jeJ={1,23,..,n} (2)

where a; and b; are the ith row of matrices A and B, respectively and the constraints
are expressed by the max-product operator definition as:

aiex =mazjesiaij-x;} >d} Viel
bi.Z‘:maZ‘je‘]{bij-Z‘j}Sd? ViEI2 (3)

However, it is tried to explain motivation behind using max- product composition
in the introduction and Example 3.

In section 2, the set of the feasible solutions of problem (2) and its properties are
studied. A necessary and a sufficient conditions are given to realize the feasibility of
problem (2). In section 3, some simplification operations are presented to accelerate
the resolution process. Also, in section 4 an algorithm is introduced to solve the
problem by using the results of the previous sections, and three numerical and
applied examples are given to illustrate the algorithm in this section. Finally, the
conclusion is stated in section 5.

2. The Characteristics of the Set of Feasible Solutions

We shall use the following notations during this paper
Viel':S(A,d);={ze€[0,1]":a; 02 >d}}
VieI?:S(B,d*); ={zx€[0,1]" :b;ex < d?}
SA,d") = () S(A4,d);={ze0,1]": Aoz >d'}
i€t
SB,d*) = () S(B,d*); ={z €[0,1]" : Bex < d’}
i€l?
S(A,B,d*,d*) = S(A,d")NS(B,d*) ={x €[0,1]": Aex >d" ,Bex <d’}

Z
<

Corollary 2.1. z € S(A,d"); for every i € I' if and only if there exists some
1
ji € J such that z;; > 4 similarly, © € S(B,d?); for every i € I? if and only if

Qij,

d2 .
wjgrfj,VJeJ.

Proof. This clearly results from relations (3). O
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Lemma 2.2. (a) S(A,d') # ¢ if and only if for every i € I' there ewists j; € J
such that a;;; > di. (b) If S(A,d') # ¢ then 1 = [1,1,...,1]},,, is the greatest
element in the set S(A,d").

Proof. (a) Suppose S(A,d') # ¢ and = € S(A,d"). Thus,z € S(A,d"); , Vi € I

and then by Corollary 2.1 for every i € I' we have z;, > d;

Qij
1
Therefore, since x € S(A,d"), x € [0,1]" and thus adf < 1, Vi € I', which implies
14
that there exists j; € J such that a;;, > d}. Conversely, suppose that there exists
some j; € J such that a;;, > d}, Vi € I'. Set 1 =[1,1,...,1]¢,,,, since z € [0,1]"

1xn»

and z;, =1 > % Vi € I', by Corollary 2.1 = € S(A,d');, Vi € I', and therefore

aij;’

z € S(A,d"). (b) Proof is attained from part (a) and Corollary 2.1. O

Lemma 2.3. (a) S(B,d?) # ¢. (b) The smallest element in set S(B,d?) is 0 =
[0,0, ..., 0] ...

Proof. Set z =0 = 10,0, ...,0]{ ,,. Since d? > 0 and b;; > 0(if b; = 0, then it is well
defined and is clear), g > 0. Therefore z; < %, Vi € I?,Vj € J, thus Corollary
1 implies that = € S(B,ldz) and so parts (a) and (b) are proved. O
Theorem 2.4. (Necessary condition) If S(A, B,d',d?) # ¢, then for everyi € I'
there exists j € J such that a;; > dj.

Proof. Suppose that S(A, B, d*,d*) # ¢. Since S(A, B,d',d*) = S(A,d")nS(B,d?),
S(A,d") # ¢, and so it is proved by using part (a) of Lemma 2.2. O

for some j; € J.

i

Definition 2.5. Set Z = (Z;)nx1 where
1, Vi : bij < d%,

Tj = { mini:1,27___7l{:—f2, by > d?}, otherwise.
Lemma 2.6. z, is the greatest element in the set S(B,d?).
Proof. See [23] page 348. O

Corollary 2.7. S(B,d?) = {z € [0,1]" : Bez < d*} = [0,Z], where, T and 0 are
defined as in Definition 2.5 and Lemma 2.3, respectively.

Proof. Since S(B,d?) # ¢ by Lemmas 2.3 and 2.6. 0 and z are the smallest and
the greatest elements, respectively, Let x € [0, Z], then z € [0,1]" and = < &, thus,
biex < bjex < d?,Vi € I?, which implies x € S(B, d?). Conversely, let z € S(B, d?)
by part (b) of Lemma 2.3, 0 < # and also z € S(B,d?);, Vi € I?. Then, Corollary

2

2.1 requires z; < ,%, Vi € I? and Vj € J. Hence, z; < Zj, Vj € J, which means
that = < #. Thus, z € [0, 7). O
Definition 2.8. Let J; = {j € J :a;; > d!}, Vi € I'. For every j € J; , we define
ly(j) = (iz(j)k)nxl such that
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Lemma 2.9. Consider a fized i € I'. (a) If dj # 0 then the vectors i,(;) are the
only minimal elements of S(A,d'); for every j € J;. (b) If d} = 0 then 0 is the
smallest element in S(A,d');.

Proof. (a) Suppose j € J; and i € I'. Since ia(j); = %, by Corollary 2.2. i,(;) €
S(A,d");, suppose by contradiction that z € S(A,d"); and = < i,(j). Hence we
must have z; < % and z =0 for k € J and k # j. Thus z; < a%, Vj € J, and
then by Corollary 2.1, x ¢ S(A,d"); which is a contradiction. (b) It is clear from
Corollary 2.1 and the fact that z; > 0, Vj € J. O
Corollary 2.10. If S(A,d'); # ¢, then S(A,d*); = {z € [0,1]" : a; 0z > d}} =
Ujesliai), 11, where i € I' and iy;) are as defined in Definition 2.8.

Proof. If S(A,d"); # ¢, then from Lemmas 2.2 and 2.9, vector 1 is the maximum

solution and the vectors i,;), Vj € J; are the minimal solutions in S(A, d");. Let
z € Ujeslizj), 1]- Then @ € [iy;),1] for some j € J; and therefore z € [0,1]"

% from Definition 2.8, hence x € S(A,d"); from Corollary 2.1.

and z; > iz(j)]- =

Conversely, let z € S(A,d");. Then there exits j/ € J such that z; > ad_i, from
Corollary 2.1. Since z € [0,1]", ad—j’ <1, and so jr € J;. Thus, iz < o < 1,
which implies 2 € ;¢ 7, lia(j) 1]- O
Definition 2.11. Let e = (e(1),e(2),...,e(m)) € J; X J2 X ... X Jp, such that
e(i) = j € J;. We define z(e) = (2(e);)nx1, where z(e); = mamig;{im(e(i))].} =
maxielf{%} if It # ¢ and z(e); = 0 if I} = ¢, where I7 = {i € It i e(i) =4}

Corollary 2.12. (a) If d} = 0 for some i € I', then we can remove the ith
row of the matriz A with no effect on the calculation of the vectors x(e) for each
e€Jr=JixJoX..XJy. (b) Ifj & J;, Vi € I', then we can remove the jth column

of the matriz A before calculating the vectors x(e), Ve € Jr, and set z(e); = 0 for
each e € Jy.

Proof. (a) It is proved by Definition 2.11 and part (b) of Lemma 2.9, because we
will get the minimal elements of S(A,d'). (b) It is proved by using Definition
2.11. d
Lemma 2.13. Suppose S(A,d") # ¢, then S(4,d") = Uy ,)lz(e), 1], where X (e) =
{z(e) : e € Jr}.

Proof. If S(A,d*) # ¢, then S(A,d'); # ¢, Vi € I'. Thus by Corollary 2.10 and
Definition 2.11, we have

S(Aadl) = ﬂ S(Aadl)l = ﬂ [ U [Zx(])ai]] = ﬂ [ U [Zx(e(z))ai]] =

i€t eIt jEJ; €It e(i)ET;
U [ iy, TN = | Imazien {ivenn 0= [ 2(e), 1= z(e), 1I.
e€Jr iel! e€Jr e€Jr X(e)

O
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By Lemma 2.13, it is obvious that S(4,d') = Ux,,)lz(e), 1] and Xo(e) = {z :
r € Sp(A,d') and = < T}, where Sp(A,d") are the sets of minimal solutions in
X (e) and S(A,d"), respectively.
Theorem 2.14. If S(A, B,d",d?) # ¢, then S(A, B,d',d*) = UXO(Q) [z(e), Z].
Proof. By using Corollary 2.7 and the result of Lemma 2.13, we have
S(4,B,d",d*) = S(4,d" ) (S(B,d*) ={ | [=(e), I}(0, 21 = | [=(e), 7]
Xo(e) Xo(e)
and the proof is complete. a
Corollary 2.15. (Necessary and sufficient condition) S(A, B,d*,d?) # ¢ if and
only if € S(A,d"). Equivalently, S(A, B,d*,d?) # ¢ if and only if there exists
e € Jr such that z(e) < T.
Proof. Suppose that S(A, B,d',d*) # ¢, then S(A, B,d',d*) = Uxoelz(e), 7]
by Theorem 2.14, thus # € S(4, B,d*,d?), and hence # € S(A4,d'). Conversely,
let Z € S(A,d*). We know that z € S(B,d?), thus z € S(A,d")NS(B,d?) =
S(A, B,d', d?). 0

3. Simplification Operations and the Resolution Algorithm

In order to prove the problem (2), we first convert it into the two sub-problems
below:

minitmum '
subject to
Aoz >d
Bezx < d?
z €01 (4a)
minimum cx
subject to
Aeg>d'
Bezx < d?
z €[0,1]" (4b)
where
Ge{f e m o={P 250

By Theorem 2.14, it is obvious that Z is the optimal solution of problem (4b). Also,
problem (4a) achieves its optimal points at some z(e) € Xg(e). If z(eg) optimizes

problem (4a), then we set z* = (27),x1 such that

ot = i‘j, ¢ < 0,
J z(eo), ¢; =0.

Now the following lemma in below, gives an optimal point of problem (2).
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Lemma 3.1. If z(eg) € Xo(e) optimizes problem (4a), then x* defined as above, is
an optimal solution of the problem (2). (It is possible to find many optimal solutions
for the problem (4a) and so for the problem (2), too.)

Proof. Assume that S(A4, B, d",d?) # ¢. Also, suppose that z(ep) and z are the op-
timal solutions of (4a) and (4b), respectively. Then, for any x satisfying inequalities
Aex>d and Bex < d? (z € S(A, B,d",d?)) we have

n n n

et — 7. + ;
E cjr; = E c; Tj+ E cjz(eo);
j=1 j=1 j=1
n

EC.CL'J

//\

Therefore, x* is an optimal solution of problem (2), and so the proof is completed.
O

For calculating «* it is sufficient to find Z and z(ep) from Lemma 3.1. While
Z is easily attained by Definition 2.5, z(eg) is usually hard to find X. Since Xy(e)
is attained by pairwise comparison between the members of set X(e), the finding
process of set Xo(e) is time-consuming if X(e) has many members. Therefore, a
simplification operation can accelerate the resolution of problem (4a) by removing
the vectors e € Jr such that z(e) is not optimal in (4a). One of such operations is
given by Corollary 2.12. Other operations are attained by the following theorems.

Theorem 3.2. The set of feasible solutions for problem (1), namely S(A B,d',d?),

is nonempty if and only if for every i € I' the set J; = {j € J; < Zj} s
nonempty, where T is defined by Definition 2.5.

Proof. Suppose S(A B,d', d?) # ¢. By Corollary 2.15, 7 € S(4, B,d*,d?) and so
we have 7 € S(A,d");, Vz € I'. Thus, by Corollary 2.1 for every i € I1 there exists
J € J such that z; > E’ which means that J; # ¢, Vi € I'. Conversely suppose

Ji # ¢, Vi € I'. Then there exists j € J such that 7; > E’ Vi € I'. Hence,
by Corollary 2.1 z € S(A,d");, Vi € I', which implies € S(A,d"). These facts
together with Lemma, 2.6 imply z € S(A, B,d", d?), and therefore S(A, B, d', d?) #
é. 0

Theorem 3.3. If S(4, B,d",d*) # ¢, then S(A,B,d",d*) = Ux,)lz(e), z] where
()—{$().6€J[—J1XJ2 XJm}

Proof. By Theorem 2.14, it is sufficient to show z(e) ¢ S(A,B,d',d?) if e ¢ J;.
Suppose e ¢ Jr. Thus, there exist i’ € I' and j' € Jy such that e(i’) = j' and

1
Ty < . Then ¢ € I}, and by Definition 2.11 we have z(e);r = matiere, {adT} >

;1
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1
ad_f(, > ;. Therefore, z(e) < Z is not correct, which by Theorem 2.14 implies that
z(e) ¢ S(A, B,d",d?). O

From the notation in Theorem 3.2, .J; C .J;, Vi € I'', which requires X (e) C X (e).
Also, by Theorem 3.3, So(A, B,d",d?) C X (e) where Sy(4, B,d",d?) is the set of
minimal elements of S(A4, B, d*,d?), thus Theorem 3.3 reduces the search region to
find set So(A, B, d",d?).

Definition 3.4. Let J; = {j € Ji:c; #0},VieI".

Theorem 3.5. Suppose x(eg) is the optimal solution of (4a) and J} # ¢ for some
i’ € I', then there exist x(e') such that €'(i'") € J};, and also x(e')is the optimal
solution of (4a).

Proof. Suppose J; # ¢ for some i’ € I' and eo(i') = j'. Define ¢’ € Jy such that
e'(i") = k € J; and €'(i) = eg(i) for every i € I'* and i # i'. From Definition 2.11
we have:

d! d!
z(eg)jr = MATc o {a.l_, P> MaTicres i#’{_a~l-r }=ua(e);
1] ]

Also, z(eo); = z(e'); for every j € J and j # j', k. Thus, by noting that cz =0 we
have

t t
ct x(eg) = c;?w(eo)jr + Z C;_Cﬂ(eo)j > C;;ZU(@I)]" + Z cjw(e')j =ct x(e)
J€J, j#5' JEJ, j#5'

Therefore, x(e') is the optimal solution of (4a), and so the proof is completed. O

Corollary 3.6. If J # ¢ for some i € I', then we can remove the ith row of
matriz A without any effect on finding the optimal solution of problem (4a).

Proof. The proof results from Theorem 3.5 and noting that c;L = 0 for every j €
Jr. O

Definition 3.7. Let ji,j2 € J, ¢j; 2 0 and ¢j, > 0. j» is said to be dominate j; if
and only if B
(a) j1 € J; implies jo € J;, Vi € I

. . 7 d} d}
(b) for each i € I', such that j; € J;, we have Cj1(ﬁ) > Cjz(ﬁ)-
Theorem 3.8. Suppose x(eg) is the optimal solution of (4a) and jo dominates j1
for j1,j2 € J, then there exists x(e') such that I]‘flr = ¢, and also x(e') is the optimal
solution of (4a).

Proof. Define €' = (€'(%))mx1 such that

e ={ o0 TEL

. RS
J2, eI},
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It is obvious that [;1, = ¢ and then z(e');, = 0. Also, z(eg); = z(e'); for every
1
j € J and j # j1,j2- By Definition 3.2, z(e');, = i Now, if ig ¢ I;lo, then

igjo

dt
:L‘(eo)jZ = x(el)jz = %
Qigj2
So we have
C+t$(€0) = c;x(eo)jl—l- Z C;_Cﬂ(eo)j > c;?w(e')jr-i— Z cjw(e')j = c+ta:(e')
JEJ, jF#n JEJ, j#i
The proof is complete in this case. Otherwise, suppose ig € I;lo We show

' z(eo) > ¢t z(e'). By Definition 2.11, let z(eo)jp = 4 Then we have

Qijo

c;;ﬁv(eo)j2 > 0 from part (a) of Corollary 2.12 and Definition 3.7. Therefore, since

t
¢t a(eq) = cfw(en)jy + chaleo)y + Y fa(en);
J#1,d2
and )
ctz(e) = c;;a:(e')j2 + Z cjw(e')j
J#J1,d2
il

it is sufficient to show cjla:(eo)jl > C;.’If(el)]é. Let z(eg);, = ad from Definition

2.11. Since jo dominates j; we have

dlf
et (=) > *_‘(

1

1
c iy
! >
! Qi jy 72 Qigj2

)

. + + ! . . el . . .1 .
which means cj z(eo);, > cj,z(e');, if ip = i’. Otherwise, suppose ig # i’. Since

io € I} and j» dominates ji,
() 3 o ()
Also, by Definition 2.11, we have
d} d},

— 2 —_
z(eo)jy = MmaZerso ——— = —=
L @iy Qi j

This implies
d}, di .
> L Vi€ 13810
@it j, @iy

Therefore ) ) )
c.+( dis S ot dj, + dy,

; >c
=z =
! @it jy ! Qi o

72 Qg ja
3 x(e')j,. Hence, ¢ z(eg) > ¢t z(e') and the proof is
complete. a

which requires ctx(eo)jl >ch

Corollary 3.9. If jo dominates j1 for some ji,j> € J, then we can remove the
J1th column of matriz A without any effect on finding the optimal solution x(eg) in

(4a).
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Proof. 1t is the result of Theorem 3.8. O

4. An Algorithm for Finding an Optimal Solution and Some Examples
Definition 4.1. Consider the problem (1). We call A = (@) mxn and B = (b;)ixn
1

o« g . . . . _ d;
the characteristic matrices of matrix A and matrix B, respectively, where a;; = —%

aij

for each i € I' and j € J, also b;; = % for each i € I* and j € J (set 3 = 0 and,
E—oofor0<k<1).

Algorithm:
Given problem (1),
1- Find matrices A and B by Definition 4.1.
2- If there exists i € I' such that a;; > 1, Vj € J, then stop. Problem 2 is infeasible
(see Theorem 2.4).
3- Calculate Z from B by Definition 2.5, if the constraints in problem (1) are just
in the form Aez > d', set T = 1.
4- If the constraints in problem (1) are just in the form B e z < d?, set z(eg) = 0
and go to step 13.
5- If there exists i € I'* such that d} = 0, then remove the ith row of matrix A (see
part (a) of Corollary 2.12).
6- If a;; = Tj, then set a;; =0, Vi e I' and VjedJ.
7- If there exists i € I' such that a;; = 0, Vi € I', then stop. Problem (2) is
infeasible (see Theorems 3.2 and 3.3)
8- If there exists j' € J such that a@;;; = 0, Vi € I', then remove the j'th column of
matrix A (see part (b) of Corollary 2.12) and set z(eg);» = 0.
9- For each i € I', if j7 # ¢ then remove the ith row of matrix A (see Corollary
3.6).
10- Remove each column j € J from A such that ¢; < 0 and set z(eg); = 0.
11- If j, dominates j;, then remove column j; from A, Vj;, 5> € J (see Corollary
3.9) and set z(eg);, = 0.
12- Let JP*¥ = {j € J; : a;; # 0} and JPeW = Jpew x Jpew x .. x JeW. Find the
vectors z(e), Ve € Jr¥, by Definition 2.11 from A, and z(eq) by pairwise compar-
ison between the vectors z(e).
13- Find z* from Lemma 3.1.

Guu and Wu [17] considered the optimization problem as follows:

minitmum yc
subject to
yeB=f

If x = y*, A= B! and b = f?, then the problem is converted to the special case of
our problem as follows:
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minimum c'x

subject to
Aex =0 (4)

Firstly, presented algorithm in the present paper is provided for solving problem
(1) and then in the special case it can be used to solve (4), too, because Aoz =b
is equivalent to Aex < b and A e x > b. Therefore we can compare the presented
algorithm with the algorithm in [17]. The algorithm of Guu and Wu is based on
Rule (1) in their paper. By Rule (1), they removed some columns of matrix A in
(4), then they reduced problem (4) and converted it to a simpler one. In section
3, we modified Rule (1) in order to solve the problem (1) and stated Theorem 3.1,
which is the same as Rule (1) that is used to solve the problem (4). Now our
algorithm1 is used to solve Example 4.2 that was presented by Guu and Wu ( [17],
p-353). We will observe that results obtained by the two methods are the same.

Example 4.2.
mintmumZ = 0z + 3z + 223 + 3x4 + dx5 + 226 + 7 + 228 + dT9 + 619

subjectto
T
06 05 0.1 01 03 08 04 0.6 0.2 0.1 xy 0.48
02 06 09 06 08 04 05 03 05 0.3 x3 0.56
05 09 04 02 08 01 04 04 0.7 06 X4 0.72
0.3 0.5 0.7 05 08 0.1 0.8 03 04 0.6 ol %5 | Z 0.56
0.7 0.8 0.5 04 08 02 04 0.1 09 06 Zg 0.64
05 09 0.7 01 05 08 07 0.2 09 04 x7 0.72
0.2 03 04 07 05 08 03 05 07 04 xg 0.42
0.8 0.8 0.7 05 08 03 04 0.7 02 0.8 X9 0.64
T10

0<z;<1,j=1,2,3,4,5,6,78,9,10

Matrices A and B are equal in this problem, which means the constraints are
Aex >band Aex <b Matrix A and vector Z are as follows:

0.8 096 438 4.8 1.6 0.6 1.2 0.8 24 4.8
2.8 0933 0.622 0933 0.7 14 1.12 1.866 1.12 1.866
144 0.8 1.8 3.6 09 7.2 1.8 1.8 1.028 1.2
1.866 1.12 0.8 112 0.7 5.6 0.7 1866 14 0.933
0914 0.8 1.28 1.6 08 3.2 1.6 6.4 0711 1.066
144 0.8 1.028 72 144 09 1.028 3.6 0.8 1.8
2.1 14 1.05 0.6 0.84 0525 14 084 0.6 1.05
0.8 0.8 0914 128 0.8 2133 16 0914 3.2 0.8

z=(0.8 0.8 0622 06 0.7 0525 0.7 0.8 0.6 0.8)

Also, this example does not satisfy in steps 2 and 4. By step 5, A is converted to
the following;:

N
I
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0.8 0 0 0 0 0 0 08 0 O
0 0 0622 0 0.7 0 o 0 0 0
0 0.8 0 0 0 0 o 0 0 0
= 0 0 0 0 0.7 0 07 0 0 O
0 0.8 0 0 0 0 o 0 0 O
0 0.8 0 0 0 0 o 0 0 O
0 0 0 06 0 0525 0 0 06 O
0.8 0.8 0 0 0 0 0o 0 0 08

The matrix above does not satisfy steps 6-9, but in the obtained matrix, according
to the stepl0, the first column dominates the eighth and tenth columns, and the
sixth column dominates the fourth and ninth columns. Therefore, by removing
columns 4, 8 9 and 10, the matrix is converted into the following matrix and we
set z(ep)s = z(ep)s = x(ep)9 = x(ep)10 = 0.

08 0 0 0 0 0
0 0 0.622 0.7 0 0
0 0.8 0 0 0 0
A= 0 0 0 0.7 0 0.7
0 0.8 0 0 0 0
0 0.8 0 0 0 0
0 0 0 0 0525 0
0.8 0.8 0 0 0 0

In the new matrix, we have JPew = {1}, Jpew = {3,5}, Jpew = {2}, Jpew = {5, 7},
Jrew = {2}, Jg°v = {2}, J»*" = {6} and J§° = {1,2}. Now, by considering
the stepll, the minimal solutions are z(e;) = (0.8,0.8,0.622,0,0,0.525,0.7,0,0,0)
and z(ez) = (0.8,0.8,0,0,0.7,0.525,0,0,0,0). By comparison pairwise, since z(e;)
optimizes the problem with the objective function ¢t z = c'z, z(e;) = z(eo), and
then #* = (0.8,0.8,0.622,0,0,0.525,0.7,0,0,0) by step12.

The obtained result is the same as that of Guu and Wu [17]. In special case of
FREs with max- product composition.

Example 4.3. Consider the problem below:

mintmumZ = 2z, — T + T3 — 3T4

subjectto

0.5 0.8 0.35 0.25 T 0.4
0.9 092 1 086| |a2] [09
02 1 045 0.8 zs | Z | 0.8
055 06 08 0.64 T4 0.65
06 05 0.1 0.1 il 0.48
02 06 06 05]|e xz < | 0.56
0.5 09 0.8 04 m3 0.72

4

0<z;<1,j=1,2,3,4
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Matrices A, B and vector Z are as follows:

0.8 05 114 1.6
1097 09 1.04
4 0.8 177 1 ’
1.18 1.08 0.81 1.01

z=(08 08 09 1)

By considering step 5, matrix A is converted to the following:

08 05 0 O
T 0 0 09 O
A= 0 08 0 1
0 0 081 0

0.8 096 48 4.8
B=128 093 093 1.12
144 08 09 18

A=

According to the step 8, since Jf = {2} and J; = {2,4}, we can remove the first
and the third rows, then we have:

- 0 0 09 O
A= (0 0 081 0)
By step 9, we remove the second and the fourth columns, and we set z(eg)2 =
z(ep)s = 0 by the step 10 then:
- 0 09
A= (0 0.81)

By steps 11, 12 and 13, z(eg) and z* are calculated as follows:
l’(@o) = (07 Oa 097 0)
z* = (0,0.8,0.9,1)

Example 4.4. ( Application) Consider a city with eight educational zones (1-8) as
shown in Figure 1. A schoolmaster decides to cover the six zones 1-6 by enhancing
the educational quality and diminishing educational shortcoming of his school (A).
He considers the four criteria below to convince the parents to select school A (we
call them positive criteria).

(1) The quality of cultural activities.

(2) The quality of the athletic-recreational facilities (such as playground, pool, etc.).
(3) The educational quality of school A.

(4) The quality of cleanliness of school A.

Also he considers two shortcomings that cause the parents not to select school A
(we call them negative criteria).

(5) Shortage of enough laboratories in school A.

(6) Shortage of enough space in school A.

We evaluate the quality of the athletic-recreational facilities of school A versus the
schools in zones 1-6, separately. The example has been illustrated in Figure 2,
where school A has been compared with all schools in zones 1-6, concerning the
athletic-recreational facilities. Based on the four positive criteria, the methods of
the evaluation of schools evaluation are shown in Figures 2, 3, 4, 5.  Also, based
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aP

FIGURE 1. Educational Zones and the Situation of School A

schonl A =chool

FIGURE 2. Evaluation of School A from the Viewpoint of the
Quality of Cultural Activities

F1cUre 3. Evaluation of School A from the Viewpoint of the
Quality of Athletic Facilities

F1GURE 4. Evaluation of School A from the Viewpoint of
Educational Quality
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Best Schocl WWorst
schonl £ schaol

FI1GURE 5. Evaluation of School A from the Viewpoint of
the Quality of Cleanliness

Worst Schonl Be=t
school A =chool

F1GURE 6. Evaluation of School A from the Viewpoint of
Having Enough Laboratories

Worst  School Best
schoal A school

F1GURE 7. Evaluation of School A from the Viewpoint of
Having Enough Space

on the two negative criteria, the methods of the evaluation of schools are shown in
Figures 6 and 7.

Also, the schoolmaster has some plans for each potentially poor positive crite-
rion:
(i) If the cultural activities are poor, then he increases the cultural programs.
(2) If the quality of the athletic-recreational facilities is poor, he contracts athletic-
recreational places to enhance this quality. Considering that school A has no ap-
propriate spaces for building the athletic-recreational places.
(3) If the level of the educational quality of school A is poor, he employs experi-
enced teachers.
(4) If the quality level of cleanliness is poor, he employs more workmen to clean
school A.
By considering positive criteria 1-4, we can categorize the parents’ expectations in
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four classes: (1) the problem of the cultural activities of students, (2) the athletic-
recreational activities of the students, (3) the educational problems of the students,
and (4) the cleanliness problem of school A.

Now, suppose that a;; denotes the required quality level of the positive criteria
(1 =1,2,3,4) from the viewpoint of the students’ parents in zone j. The matrix
for the six zones in Figure 1 and the four positive criteria is as follows:

1 02 05 08 04 0.2
04 02 02 08 05 05
05 08 04 06 03 0.2
03 04 05 08 08 0.6

A=

In addition, the schoolmaster has some plans for diminishing each negative crite-
rion:
(5) he decides to equip the laboratories in order to compensate for the shortage of
enough laboratories in school A.
(6) he decides to change the school building (A) in order to generating some spaces.
Also, by considering the negative criteria 5-6, we can categorize the parents’ other
expectation in two classes: (1) the problem of equipping laboratories, (2) the prob-
lem lack of enough space in school A.
Now, suppose that b;; denotes the deficiency level of the negative criteria (i = 5,6)
from the viewpoint of the students’ parents in zone j. The matrix for the six zones
in Figure 1 and the two negative criteria is as follows:

B <—0.3 -02 —-04 -05 -04 —0.3)

-05 -06 -0.3 -03 —-0.5 —-04

The schoolmaster estimates that if he expends cost «; (z; has been normalized in
[0, 1]) to overcome the expectation of kind (i=1, 2, 3, 4, 5, 6) by doing activity (f:i,
2,3, 4,5, 6), then he will obtain the quality level a;; - z; from the viewpoint of the
parents in zone (j) for criterion (i=1, 2, 3, 4) and level b;; - z; from the viewpoint
of the parents in zone (j) for criterion (i=>5, 6). Also, the schoolmaster estimates
levels b;, for i=1, 2, 3, 4, such that if he make quality levels b;, i=1, 2, 3, 4, for
criterion (i) to meet the expectations of at least the parents of the students’ of one
of the zones, then he will overcome the difficulties in the expectations of kind (%)
by doing activity (i). Vector b is as follows:

b= (04 05 03 0.6)
Also, he estimates d;, for i=5, 6, such that for compensating for the shortages of

(i=5, 6) by doing activities (i=5, 6) he must fulfill level d;, i=5, 6, for criterion (i)
at least for the parent of the students’ of one of the zones. Vector d is as follows:

d=(-03 -0.6)"
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The schoolmaster wants to spend a minimum cost, too. Therefore, we can formulate
the problem as follows:

mintmumZ = x1 + T2 + x3 + x4 + 5 + T

subjectto
T
1 02 05 08 04 0.2 To 0.4
Aoy — 04 0.2 02 08 0.5 0.5 N EZ S 0.5
05 08 04 06 03 0.2 x4 | 7103
03 04 05 08 0.8 0.6 5 0.6
Ze
Ty
T2
Bom:(-o.s -02 -04 -05 -04 —0.3)0 T3 :<—0.3>:d
-0.5 -06 -0.3 -03 —-05 -04 Ty —-0.6
Ts
Te

The above notation, ”e” is the max-product composition and, ”o” is defined by

bi o & = minjes{bij - ©;}, but we can change the second part of the constraints as
follows:

T
T2

03 02 04 05 04 03 NEZE 0.3
05 06 03 03 05 04 x4 |~ \0.6

Ts
Te

Also, the above constraint is equivalent to two systems

T
T2

03 02 04 05 04 03 o3| < 0.3
05 06 03 03 05 04 za | T

Ts
Te

and
T2

03 02 04 05 04 0.3 o | 73 0.3
05 06 03 03 05 04 T4 0.6

Ts

\Y%
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Finally, by combining the constraints we come to

minimumZ = x1 + Ty + T3 + T4 + T5 + Tg

subjectto
1 02 05 0.8 04 02 T1 0.4
04 02 0.2 08 05 0.5 Ta 0.5
05 08 04 06 03 0.2 ol %3] > 0.3
03 04 05 0.8 0.8 0.6 s | 7 1 0.6
03 02 04 05 04 0.3 T5 0.3
05 06 03 03 05 04 Tg 0.6
T
T2
<o.3 0.2 04 05 04 0.3>. T3 <(0.3>
0.5 06 03 03 05 04 zq | T \0.6
Ts
Te

According to the presented algorithm, the solution of the above problem is z =
(0.4 0375 0 0 0 1) and the value of the objective function is 1.775.

Example 4.5. Consider the problem

minimumZ = 1 — Ty + T3

subjectto
04 06 03 Ty 0.6
0.8 027 09| e |xzx] > |0.36
0.3 09 04 x3 0.18

0 < l’j < ]-7.7 = 17273
Matrix A and vector Z from the steps 1 and 3 respectively, are as follows:

067 1 2
A=1045 133 04|, z=(1 1 1)
0.6 02 045

By considering step 6, matrix A is converted to the following:

- (067 1 0
A=(045 0 04
0.6 02 045

According to step 9, since J;* = {2} and J; = {2}, we can remove the first and the
third rows, then we have:

A=(045 0 04)

By step 10, we remove the second column, and set z(eg)2 = 0, then:

A= (045 0.4)
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The first column of the above matrix is removed by step 11, and only the second
column (in original matrix third column) remains.

A=(04)
By steps 12 and 13, z(ep) and z* are calculated as follows:
z(eg) = (0,0,0.4), z*=(0,1,04)
and finally, the minimum value of the objective function is given by Z* = —0.6.
Example 4.6. Consider the problem

minimumZ = 1 — Ty + T3

subjectto
04 06 03 Ty 0.6
0.8 027 09)e|xzy] < [0.36
0.3 09 04 x3 0.18

0 < l’j < ]-7.7 = 17273
Matrix A and vector Z from steps 1 and 3 respectively, are as follows:

_fo6T 1 2
B=[045 133 04|, z=(045 02 04)
0.6 02 045

By considering step 4, x(eg) = 0 = (0,0,0), and by step 13 the optimal solution is
as follows:
z* =(0,0.2,0)

and finally, the minimum value of the objective function is given by Z* = —0.2.

5. Conclusion

In this paper, we studied the linear optimization problem with fuzzy relational
inequalities constraints defined by the max-product operator. Since the difficulty of
this problem is finding the minimal solutions optimizing the same problem with the
objective function c+t, we presented an algorithm together with some simplification
operations to accelerate the problem resolution. At last, we gave some examples to
illustrate the proposed algorithm.

Acknowledgements. The author would be very grateful to the anonymous refer-
ees for their comments and suggestions which have been very helpful in improving
this paper.
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