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FUZZY BASIS OF FUZZY HYPERVECTOR SPACES

R. AMERI AND O. R. DEHGHAN

Abstract. The aim of this paper is the study of fuzzy basis and dimension

of fuzzy hypervector spaces. In this regard, first the notions of fuzzy linear

independence and fuzzy basis are introduced and then some related results are
obtained. In particular, it is shown that for a large class of fuzzy hypervector

space the fuzzy basis exist. Finally, dimension of a fuzzy hypervector space is

defined and the basic properties of that are investigated.

1. Introduction

The notion of a hypergroup was introduced by F. Marty in 1934 [17]. Since
then many researchers have worked on hyperalgebraic structures and developed
this theory (for more see [8], [9], [24]). In 1990, M. Scafati Tallini introduced the
notion of hypervector spaces ([22], [23]) and studied basic properties of them.

The concept of a fuzzy subset of a nonempty set was introduced by Zadeh in
1965 [25] as a function from a nonempty set X into the unit real interval I = [0, 1].
Rosenfeld [21] applied this to the theory of groups and then many researchers
developed it in all the fields of algebra. The concepts of a fuzzy field and a fuzzy
linear space over a fuzzy field were introduced and discussed by Nanda [19]. In 1977,
Katsaras and Liu [15] formulated and studied the notion of fuzzy vector subspaces
over the field of real or complex numbers.

Recently, fuzzy set theory has been well developed in the context of hyperalge-
braic structure theory. (for example see [1], [2], [3], [6], [7], [10], [11], [12], [13]). In
[1] the first author introduced and studied the notion of fuzzy hypervector space
over valued fields. In this paper we follow [1] and [5] and study more properties
of fuzzy hypervector spaces. In this regards we study the algebraic properties of
fuzzy hypervector spaces. We define the concept of fuzzy basis and show that a
very wide class of fuzzy hypervector spaces possess it. We define fuzzy dimension
for all fuzzy hypervector spaces as a non-negative real number or infinity. Finally
we investigate the properties of the introduced concepts.

2. Preliminaries
In this section we present some definitions and simple properties of hypervector

spaces and fuzzy subsets and fuzzy hypervector spaces, that we shall use in later.
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A map ◦ : H ×H −→ P∗(H) is called a hyperoperation or join operation, where
P∗(H) is the set of all non-empty subsets of H. The join operation is extended to
subsets of H in natural way, so that A ◦B is given by

A ◦B =
⋃
{a ◦ b : a ∈ A and b ∈ B }.

The notations a◦A and A◦a are used for {a}◦A and A◦{a} respectively. Generally,
the singleton {a} is identified by its element a.

Definition 2.1. [22] Let K be a field and (V,+) be an Abelian group. We define a
hypervector space over K to be the quadruple (V,+, ◦,K), where ”◦” is a mapping

◦ : K × V −→ P∗(V ),

such that for all a, b ∈ K and x, y ∈ V the following conditions hold:
(H1) a ◦ (x + y) ⊆ a ◦ x + a ◦ y,
(H2) (a + b) ◦ x ⊆ a ◦ x + b ◦ x,
(H3) a ◦ (b ◦ x) = (ab) ◦ x,
(H4) a ◦ (−x) = (−a) ◦ x = −(a ◦ x),
(H5) x ∈ 1 ◦ x.

Remark 2.2. (i) In the right hand side of the right distributive law (H1) the sum
is meant in the sense of Frobenius, that is we consider the set of all sums of an
element of a ◦ x with an element of a ◦ y. Similarly it is in the left distributive law
(H2).

(ii) We say that (V,+, ◦,K) is anti-left distributive if

∀a, b ∈ K, ∀x ∈ V, (a + b) ◦ x ⊇ a ◦ x + b ◦ x,

and strongly left distributive, if

∀a, b ∈ K, ∀x ∈ V, (a + b) ◦ x = a ◦ x + b ◦ x,

In a similar way we define the anti-right distributive and strongly right distribu-
tive hypervector spaces, respectively. The hypervector space (V,+, ◦,K) is called
strongly distributive if it is both strongly left and strongly right distributive.

(iii) The left hand side of the associative law (H3) means the set-theoretical union
of all the sets a ◦ y, where y runs over the set b ◦ x, i.e.

a ◦ (b ◦ x) =
⋃

y∈b◦x

a ◦ y.

(iv) Let ΩV = 0 ◦ 0, where 0 is the zero of (V,+). In [22] it is shown that if V is
either strongly right or strongly left distributive, then ΩV is a subgroup of (V,+).

Example 2.3. In (R2,+) we define the product times a scalar in R by setting:

∀a ∈ R,∀x ∈ R2 : a ◦ x =
{

ox if x 6= 0,
{0} if x = 0,

where ox is the line through the point x and 0 = (0, 0). Then (R2,+, ◦, R) is a
strongly left distributive hypervector space.
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In the sequel of this note, unless otherwise specified, we assume that V is a
hypervector space over the field K.

Definition 2.4. [1] A nonempty subset W of V is a subhypervector space if W is
itself a hypervector space with the hyperoperation on V , i.e. W 6= ∅,

∀x, y ∈ W =⇒ x− y ∈ W,
∀a ∈ K, ∀x ∈ W =⇒ a ◦ x ⊆ W.

In this case we write W 6 V .

Proposition 2.5. [1] The intersection of a family of subhypervector spaces is a
subhypervector space.

Definition 2.6. [1] If S is a nonempty subset of V , then the linear span of S is
the smallest subhypervector space of V containing S, i.e.

L(S) = 〈S〉 =
⋂

S⊆W6V

W.

Lemma 2.7. [3] If S is a nonempty subset of V , then

L(S) =

{
t ∈

n∑
i=1

ai ◦ si, ai ∈ K, si ∈ S , n ∈ N

}
.

Definition 2.8. [1] A subset S of V is called linearly independent if for every
vectors v1, v2, . . . , vn in S, and c1, . . . , cn ∈ K, 0 ∈ c1 ◦ v1 + · · · + cn ◦ vn, implies
that c1 = c2 = · · · = cn = 0. A subset S of V is called linearly dependent if it is
not linearly independent.

Definition 2.9. [1] A basis for V is a linearly independent subset β of V such that
linearly spans V, i,e, L(β) = V . We say that V is finite dimensional if it has a finite
basis.

Remark 2.10. Note that some hypervector spaces V (some set W of vectors) may
not have any collection of linearly independent vectors. Such hypervector space
(set) is called independentless. Clearly if V is independentless, then V has not any
basis and for such hypervector spaces dimension is not defined. In this case we
say that V is dimensionless. The hypervector space (R2,+, ◦, R) in Example 2.3 is
an nontrivial example of an independentless hypervector space, since 0 belongs to
every line through the 0.

Definition 2.11. [5] A hypervector space V over K is said to be K-invertible or
shortly invertible if and only if u ∈ a ◦ v implies that v ∈ a−1 ◦ u, for u, v ∈ V,
a ∈ K \ {0} .

Theorem 2.12. [4] Let V be strongly left distributive and v1, v2, ..., vn be linearly
independent in V . Then every element in their linear span belongs to a unique sum
in the form c1 ◦ v1 + c2 ◦ v2 + ... + cn ◦ vn, with ci ∈ K.
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Theorem 2.13. [4] Let V be invertible. Then for every v1, ..., vn in V , either
v1, ..., vn are linearly independent or for some 1 ≤ j ≤ n, vj is in a linear combi-
nation of the others.

Theorem 2.14. [4] Let V be strongly left distributive and invertible. If V has a
finite basis with n elements, then every linearly independent subset of V has no
more than n elements.

Definition 2.15. [1] Let V and W be hypervector spaces over K. A mapping
T : V −→ W is called

(i) weak linear transformation iff

T (x + y) = T (x) + T (y) and T (a ◦ x) ∩ a ◦ T (x) 6= ∅,

(ii) (inclusion) linear transformation iff

T (x + y) = T (x) + T (y) and T (a ◦ x) ⊆ a ◦ T (x),

(iii) good transformation iff

T (x + y) = T (x) + T (y) and T (a ◦ x) = a ◦ T (x).

Definition 2.16. [18] (i) For a fuzzy subset µ of X, µ ∈ FS(X), the level subset
µt is defined by

µt = {x ∈ X : µ(x) ≥ t} , t ∈ [0, 1] .
(ii) The image of µ is denoted by Im(µ) and is defined by

Im(µ) = µ(X) = {µ(x) : x ∈ X} .

(iii) If µ ∈ FS(X) and A ⊆ X, then by µ(A) and µ̄(A) we mean

µ(A) =
∧
a∈A

µ(a) and µ̄(A) =
∨
a∈A

µ(a).

(iv) (Extension principle) Let f : X −→ Y be a mapping, µ ∈ FS(X) and ν ∈
FS(Y ). Then we define f(µ) ∈ FS(Y ) and f−1(ν) ∈ FS(X) respectively as follows:

f(µ)(y) =

{ ∨
x∈f−1(y)

µ(x) if f−1(y) 6= ∅,

0 otherwise,

and
f−1(ν)(x) = ν(f(x)), ∀x ∈ X.

3. Fuzzy Hypervector Spaces

Definition 3.1. [20] Let K be a field and ν ∈ FS(K). Suppose the following
conditions hold:

(i) ν(a + b) ≥ ν(a) ∧ ν(b), ∀a, b ∈ K,
(ii) ν(−a) ≥ ν(a), ∀a ∈ K,
(iii) ν(ab) ≥ ν(a) ∧ ν(b), ∀a, b ∈ K,
(iv) ν(a−1) ≥ ν(a), ∀a ∈ K\ {0} ,
(v) ν(1) = ν(0) = 1.

Then we call ν a fuzzy field in K and denote it by νK .
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Obviously, Definition 3.1 is a generalization of the classical field notion.

Definition 3.2. [1] Let µ be a fuzzy subset of V and ν be a fuzzy field of K. Then
the pair Ṽ = (V, µ) is said to be a fuzzy hypervector space of V over fuzzy field νK ,
if for all x, y ∈ V and all a ∈ K, the following conditions are satisfied:

(i) µ(x + y) ≥ µ(x) ∧ µ(y),
(ii) µ(−x) ≥ µ(x),
(iii)

∧
y∈a◦x

µ(y) ≥ ν(a) ∧ µ(x), (µ(a ◦ x) ≥ ν(a) ∧ µ(x)),

(iv) ν(1) ≥ µ(0).
If we consider ν = χK , the characteristic function of K, then Ṽ = (V, µ) is called a
fuzzy subhyperspace of V .

Proposition 3.3. [1] Let W be a proper subhypervector space of V . Then the fuzzy
subset µ of V is defined by

µ(x) =
{

1 if x ∈ W,
t otherwise,

where t ∈ [0, 1), is a fuzzy subhyperspace of V .

Example 3.4. In Example 2.3, set W = {(b, 0) : b ∈ R} . Then (W,+, ◦, R) is a
subhypervector space of V = (R2,+, ◦, R), such that ∀a, b ∈ R,

a ◦ (b, 0) =
{

W if b 6= 0,
{0} if b = 0.

Choose numbers t1, t2 ∈ [0, 1], such that t1 > t2. Define fuzzy subset µ by

µ(x) =
{

t1 if x ∈ W,
t2 otherwise,

Then Ṽ = (V, µ) is a fuzzy subhyperspace of V .

Definition 3.5. [1] Let {µi}i∈I be a nonempty collection of fuzzy subhyperspaces
of V . Then the fuzzy subset

⋂
i∈I

µi of V is defined by the following:(⋂
i∈I

µi

)
(x) =

∧
i∈I

µi(x).

Proposition 3.6. [1] The intersection of a family of fuzzy subhyperspaces is a fuzzy
subhyperspace.

Proposition 3.7. [1] Let V be strongly left distributive, νK be a fuzzy field and
µ ∈ FS(V ). Then µ is a fuzzy hypervector space over νK iff∧

z∈a◦x+b◦y

µ(z) ≥ (ν(a) ∧ µ(x)) ∧ (ν(b) ∧ µ(y)) ,

and ν(1) ≥ µ(x), for all a, b ∈ K and x, y ∈ V.
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Corollary 3.8. If V is strongly left distributive and µ ∈ FS(V ). Then Ṽ = (V, µ)
is a fuzzy subhyperspace iff

µ(a ◦ x + b ◦ y) ≥ µ(x) ∧ µ(y).

Proof. It follows from Proposition 3.7, by setting νK = χK , the characteristic
function of K. �

Proposition 3.9. [1] Let µ ∈ FS(V ) and ν ∈ FS(K). Then µ is a fuzzy hyper-
vector space over νK if and only if µα is a hypervector space over the field να, for
all α ∈ Im(ν) and ν(1) ≥ µ(0). µα is called a level subhyperspace of V .

Definition 3.10. If Ṽ = (V, µ) is a fuzzy hypervector space then we define

Tα
µ = µ−1(α) and Hα

µ = µ−1((α, 1]).

Lemma 3.11. Let Ṽ = (V, µ) be a fuzzy subhyperspace of V . Then
(i) For any subset A ⊆ V, µ(1 ◦A) ≤ µ(A),
(ii) For any subset A ⊆ V, µ(a ◦A) ≥ µ(A), ∀a ∈ K,
(iii) For any subset A ⊆ V, µ(1 ◦A) = µ(A),
(iv) ∀a ∈ K\{0}, µ(a ◦ x) = µ(x),
(v) If x, y ∈ V and µ(x) > µ(y), then µ(x + y) = µ(y),
(vi) If x, y ∈ V and µ(x) 6= µ(y), then µ(x + y) = µ(x) ∧ µ(y),
(vii) µ(0) = µ̄(V ).

Proof. (i) and (ii) are clear, because for any subset A ⊆ V, A ⊆ 1 ◦ A and by
Definition 3.2

µ(a ◦A) = µ

(⋃
t∈A

a ◦ t

)
=

∧
r∈

⋃
t∈A

a◦t

µ(r)

≥
∧
t∈A

µ(t)

= µ(A).

(iii) It follows from (i) and (ii).
(iv) From (ii) we have µ(a ◦ x) ≥ µ(x). On the other hand x ∈ 1 ◦ x, so

µ(x) ≥
∧

t∈1◦x
µ(t)

=
∧

t∈a−1◦(a◦x)

µ(t)

= µ(a−1 ◦ (a ◦ x))

≥ µ(a ◦ x). by (ii)

Thus µ(a ◦ x) = µ(x).
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(v) Since µ(x) > µ(y), so µ(x + y) ≥ µ(x) ∧ µ(y) > µ(y). Also

µ(y) = µ(x + y − x) ≥ µ(x + y) ∧ µ(x),

thus µ(y) ≥ µ(x + y), because µ(x) > µ(y). Consequently µ(x + y) = µ(y).
(vi) Apply (v).
(vii) For all x ∈ V, µ(0) = µ(x− x) ≥ µ(x) ∧ µ(−x) ≥ µ(x) ∧ µ(x) = µ(x). Thus

µ(0) = µ̄(V ). �

4. Fuzzy Linear Independence

Definition 4.1. Let Ṽ = (V, µ) be a fuzzy subhyperspace of V . We say that a
finite set of vectors {x1, x2, . . . , xn} is fuzzy linearly independent in Ṽ if and only
if {x1, x2, . . . , xn} is linearly independent in V and for all a1, a2, . . . , an ∈ K,∧

ti∈ai◦xi

µ(t1 + t2 + · · ·+ tn) =
∧

ti∈ai◦xi

(µ(t1), µ(t2), . . . , µ(tn)) .

In other words:

µ

(
n∑

i=1

ai ◦ xi

)
=

∧
t∈

n∑
i=1

ai◦xi

µ(t) =
∧

ti∈ai◦xi

µ(ti) =
n∧

i=1

µ (ai ◦ xi) .

A set of vectors is fuzzy linearly independent in Ṽ if all finite subsets of it are fuzzy
linearly independent in Ṽ .

Lemma 4.2. Let V be invertible and strongly left distributive hypervector space.
Let Ṽ = (V, µ) be a fuzzy subhyperspace of V, and let S = {x1, . . . , xn} ⊆ V has

distinct µ-values and x ∈
n∑

i=1

ai ◦ xi, ai ∈ K\{0}. Then µ(x) = µ (S) .

Proof. Let µ (S) = µ(x1) and let x ∈
n∑

i=1

ai ◦ xi. Then by Corollary 3.8

µ(x) ≥ µ

(
n∑

i=1

ai ◦ xi

)

≥
n∧

i=1

µ(xi)

= µ (S) .

On the other hand, x ∈
n∑

i=1

ai ◦ xi, so x = t1 + · · · + tn, such that ti ∈ ai ◦

xi, i = 1, . . . , n. Thus

x1 ∈ a−1
1 ◦ t1

⊆ a−1
1 ◦ (x− t2 − · · · − tn)

⊆ a−1
1 ◦ x− a−1

1 ◦ t2 − · · · − a−1
1 ◦ tn

⊆ a−1
1 ◦ x− a−1

1 ◦ (a2 ◦ x2)− · · · − a−1
1 ◦ (an ◦ xn),
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therefore

µ(x1) ≥ µ
(
a−1
1 ◦ x− (a−1

1 a2) ◦ x2 − · · · − (a−1
1 an) ◦ xn

)
≥ µ(x) ∧ µ(x2) ∧ · · · ∧ µ(xn).

Thus µ(x1) ≥ µ(x), since µ(x1) =
n∧

i=1

µ(xi). Consequently, µ(x) = µ(x1) = µ (S) .

�

Proposition 4.3. Let V be an invertible hypervector space and let singletons of V
be linearly independent. Let Ṽ = (V, µ) be a fuzzy subhyperspace of V . Then any
set of vectors {x1, x2, . . . , xn} ⊆ V \{0} which has distinct µ-values is linearly and
fuzzy linearly independent.

Proof. We prove the proposition by induction on n. In case n = 1, clearly the state-
ment is true. Now suppose that the proposition is true for n. Let {x1, x2, . . . , xn, xn+1}
be a set of vectors in V \{0} with distinct µ-values. By inductive hypothesis we
have: {x1, x2, . . . , xn} is fuzzy linearly independent. If {x1, x2, . . . , xn, xn+1} is not
linearly independent, then by Theorem 2.13,

xn+1 ∈ a1 ◦ x1 + a2 ◦ x2 + · · ·+ an ◦ xn.

Thus by Lemma 4.2, µ(xn+1) ∈ {µ (xi)}n
i=1 and this contradicts the fact that

{x1, x2, . . . , xn, xn+1}

has distinct µ-values. Therefore {x1, x2, . . . , xn, xn+1} is linearly independent. Fi-
nally Lemmas 3.11 and 4.2, clearly show that {x1, x2, . . . , xn, xn+1} is fuzzy linearly

independent, since µ

(
n∑

i=1

ai ◦ xi

)
=

n∧
i=1

µ(xi) =
n∧

i=1

µ (ai ◦ xi) . �

Corollary 4.4. Let V be a strongly left distributive and invertible hypervector space
such that dim V = n, and let singletons of V be linearly independent. If Ṽ = (V, µ)
is a fuzzy subhyperspace of V then |Im(µ)| ≤ n + 1, where |Im(µ)| denotes the
cardinality of Im(µ).

Proof. Let β = {x1, x2, . . . , xn} be a basis for V . Then {µ(x1), . . . , µ(xn), µ(0)} ⊆
Im(µ). Suppose that |Im(µ)| ≥ n + 2. Then by Proposition 4.3, V has a linearly
independent subset with n + 1 elements, which contradict with Theorem 2.14. �

5. Fuzzy Basis
Definition 5.1. A fuzzy basis for a fuzzy subhyperspace Ṽ = (V, µ) is a fuzzy
linearly independent basis for V.

Example 5.2. Consider classical vector space (R3,+, ., R) with standard basis
{i, j, k}. Define the mapping{

◦ : R× R3 −→ P∗(R3)
a ◦ (x0, y0, z0) = L,
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where L is the line with the parametric equations:

L :

 x = ax0

y = ay0

z = t

It is easy to verify that V = (R3,+, ◦, R) is a strongly left distributive hyper-
vector space with basis {i, j}. Define fuzzy subset µ on V by µ ((0, 0, 0)) = 1,
µ (R× {0} × {0} \(0, 0, 0)) = 1

3 , µ
(
R3\R× {0} × {0}

)
= 1

5 . Then it is routine to
see that µ is a fuzzy subhyperspace with fuzzy basis {i, j}.

The next theorem shows that the class of fuzzy subhyperspaces with fuzzy basis
is as enough as rich.

Theorem 5.3. Let V be invertible and strongly left distributive hypervector space
with basis β = {vα}α∈I and let µ0 ∈ (0, 1] be constant and {µα}α∈I ⊆ (0, 1] be
any set of constants such that µ0 ≥ µα for all α ∈ I. Now construct a function
µ : V −→ [0, 1] in the following way: By Theorem 2.12 any x 6= 0, x ∈ V is

contained in a unique combination
n∑

i=1

ai ◦ vαi
, with ai 6= 0. Define

µ(x) =
n∧

i=1

µ(vαi) =
n∧

i=1

µαi ,

and µ(0) = µ0. Then Ṽ = (V, µ) is a fuzzy subhyperspace with fuzzy basis β.

Proof. Let x, y ∈ V \{0}. Then by Theorem 2.12 x and y can be uniquely written
in the following way:

x ∈
∑

i∈C∪Dx

ai ◦ vαi
and y ∈

∑
i∈C∪Dy

bi ◦ vαi
,

such that C ∩Dx = ∅, C ∩Dy = ∅, Dx∩Dy = ∅, C ∪Dx and C ∪Dy are finite and
non-empty and for all i ∈ C ∪Dx, ai ∈K\{0} and for all i ∈ C ∪Dy, bi ∈K\{0}.
Suppose a, b 6= 0, a, b ∈ K and a ◦ x + b ◦ y 6= {0}. Let Z = {i ∈ C : aai + bbi = 0}
and N = C\Z. At this stage suppose that C,Dx, Dy, Z and N are all non-empty.
In case some of these sets are empty the proof of the theorem is almost identical.
Now let w ∈ a ◦ x + b ◦ y, then

w ∈ a ◦

( ∑
i∈C∪Dx

ai ◦ vαi

)
+ b ◦

 ∑
i∈C∪Dy

bi ◦ vαi


=

∑
i∈C∪Dx

(aai) ◦ vαi
+

∑
i∈C∪Dy

(bbi) ◦ vαi

=
∑
i∈C

(aai+bbi) ◦ vαi +
∑

i∈Dx

(aai) ◦ vαi+
∑
i∈Dy

(bbi) ◦ vαi

=
∑
i∈N

(aai+bbi) ◦ vαi
+
∑

i∈Dx

(aai) ◦ vαi
+
∑
i∈Dy

(bbi) ◦ vαi
,
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so

µ(w) ≥ µ

∑
i∈N

(aai+bbi) ◦ vαi
+
∑

i∈Dx

(aai) ◦ vαi
+
∑
i∈Dy

(bbi) ◦ vαi

 .

All coefficients in the above linear combination are non-zero and thus by definition
of µ we have:

µ(w) ≥

(∧
i∈N

µ(vαi
)

)
∧

( ∧
i∈Dx

µ(vαi
)

)
∧

 ∧
i∈Dy

µ(vαi
)


=

(∧
i∈N

µ
αi

)
∧

( ∧
i∈Dx

µ
αi

)
∧

 ∧
i∈Dy

µ
αi


=

∧
i∈N∪Dx∪Dy

µ
αi

≥
∧

i∈C∪Dx∪Dy

µαi

=

( ∧
i∈C∪Dx

µαi

)
∧

 ∧
i∈C∪Dy

µαi

 .

Therefore if a, b 6= 0 and a ◦ x + b ◦ y 6= {0}, then∧
w∈a◦x+b◦y

µ(w) ≥ µ(x) ∧ µ(y).

Thus by Theorem 3.7 µ is a fuzzy subhyperspace of V. In the case where a◦x+b◦y =
{0}, since µ(0) = µ0 ≥ µ̄(β), we must have µ(a ◦ x + b ◦ y) = µ(0) ≥ µ(x) ∧ µ(y).
In the case where a or b is zero, without loss of generality we may say a = 0, then

µ(0 ◦ x + b ◦ y) =
∧

r∈0◦x, s∈b◦y

µ(r + s)

≥

( ∧
r∈0◦x

µ(r)

)
∧

 ∧
s∈b◦y

µ(s)


≥ µ(x) ∧ µ(y).

�

Remark 5.4. Fuzzy subhyperspace in Example 3.4 is a fuzzy subhyperspace with
out fuzzy basis.

In the following we give a simple condition under which a fuzzy subhyperspace
has a fuzzy basis.

Definition 5.5. [16] A set B is said to be upper well ordered if for all non-empty
subsets C ⊆ B, supC ∈ C.

Let us investigate the upper well order subsets of [0, 1].
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Definition 5.6. [16] A subset B ⊆ [0, 1] is said to have an increasing monotonic
limit x ∈ [0, 1] if and only if x is a limit of a monotonically increasing sequence in
B.

Proposition 5.7. [16] A set B ⊆ [0, 1] is without any increasing monotonic limits
if and only if it is upper well ordered.

Proposition 5.8. [16] All upper well ordered subsets of [0, 1] are countable.

Remark 5.9. We can construct B ⊆ [0, 1] upper well ordered with an infinite
number of decreasing limit points. For example consider

B =
{

1
n

+
1
m

: n, m ∈ {2, 3, 4, . . .}
}

.

This concludes a study of upper well ordered subsets of [0, 1].

Lemma 5.10. If Ṽ = (V, µ) is a fuzzy subhyperspace such that µ(V ) is upper well
ordered, and W is a proper subhypervector space of V , then there exists v ∈ V \W
such that

∀w ∈ W, µ(v + w) = µ(v) ∧ µ(w).

Proof. Since µ(V ) is upper well ordered we can find v ∈ V \W such that µ(V ) =
µ̄[µ(V \W )]. Let w ∈ W. If µ(w) 6= µ(v), then by Lemma 3.11, µ(v + w) =
µ(v) ∧ µ(w). If µ(w) = µ(v), then by Definition 3.2, µ(v + w) ≥ µ(v) ∧ µ(w). Since
v + w ∈ V \W and µ(V ) = µ̄[µ(V \W )], we must have µ(v + w) ≤ µ(v) = µ(w) and
thus µ(v + w) = µ(v) ∧ µ(w). �

Lemma 5.11. If Ṽ = (V, µ) is a fuzzy subhyperspace such that µ(V ) is upper
well ordered, and if β́ is a fuzzy basis for W̃ = (W,µ |W ), where W is a proper

subhypervector space of V , then there exists v ∈ V \W such that
∗
β = β́ ∪ {v} is a

fuzzy basis for Ũ =
(

U =
〈
∗
β

〉
, µ |U

)
, where

〈
∗
β

〉
is the hypervector space spanned

by
∗
β.

Proof. Let v ∈ V \W such that µ(V ) = µ̄[µ(V \W )], then clearly by Lemma 5.10,

v is fuzzy linearly independent from β́. Let
∗
β = β́ ∪ {v}. Clearly

∗
β is a fuzzy basis

for Ũ =
(

U =
〈
∗
β

〉
, µ |U

)
. �

Theorem 5.12. All fuzzy subhyperspaces Ṽ = (V, µ) for which µ(V ) is upper well
ordered have a fuzzy basis.

Proof. Let Ṽ = (V, µ) be any fuzzy subhyperspace for which µ(V ) is upper well
ordered. Let Γ = {β ⊆ V : β is fuzzy linear independent} . Partial order Γ by set
inclusion. Let Λ be a totally ordered subset of Γ and let β̄ =

⋃
β∈Λ

β. Then β̄ is an

upper bound for Λ. Suppose x1, x2, . . . , xn ∈ β̄. Then there exist βα(1), . . . , βα(n) ∈
Λ such that xi ∈ βα(i). Since Λ is totally ordered, one of the sets, say βα(k), is a
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superset of the others. Hence x1, x2, . . . , xn ∈ βα(k). Since βα(k) is fuzzy linearly
independent, x1, x2, . . . , xn are fuzzy linearly independent. Thus β̄ is upper bound

of Λ in Γ. By Zorn’s Lemma there exists a maximal element
∗
β in Γ. Suppose〈

∗
β

〉
= W is a proper subhypervector space of V, then by Lemma 5.11, there exists

v ∈ V \W such that
∗
β∪{v} = β̂ is a fuzzy basis for Ũ = (U, µ |U ) . This contradicts

the fact that
∗
β is a maximal element in Γ. Thus we must have

〈
∗
β

〉
= V and β̂ is

a fuzzy basis for V. �

Corollary 5.13. If V is finite dimensional, then Ṽ = (V, µ) has a fuzzy basis.

Proof. Since V is finite dimensional, µ(V ) is finite and upper well ordered. Thus
by Theorem 5.12, Ṽ has a fuzzy basis. �

Definition 5.14. Let Ṽ1 = (V, µ1) and Ṽ2 = (V, µ2) be two fuzzy subhyperspaces
of V . Define the intersection of Ṽ1 and Ṽ2 to be

Ṽ1 ∩ Ṽ2 = (V, µ1 ∧ µ2).

Define the sum of Ṽ1 and Ṽ2 to be

Ṽ1 + Ṽ2 = (V, µ1 + µ2),

where µ1 + µ2 is

(µ1 + µ2)(x) =
∨

x=x1+x2
x1,x2∈V

(µ1(x1) ∧ µ2(x2))

=
∨

x1∈V

(µ1(x1) ∧ µ2(x− x1)) .

Proposition 5.15. Let V be invertible and strongly left distributive and let Ṽ1 =
(V, µ1) and Ṽ2 = (V, µ2) be two fuzzy subhyperspaces of V . Then the following hold:

(i) Ṽ1 ∩ Ṽ2 is a fuzzy subhyperspace of V,

(ii) Ṽ1 + Ṽ2 is a fuzzy subhyperspace of V,

(iii) If µ1(V ) and µ2(V ) are upper well ordered, then Ṽ1 ∩ Ṽ2 and Ṽ1 + Ṽ2 have
fuzzy basis.

Proof. (i) Apply 3.6.
(ii) Suppose (µ1 + µ2)(x + y) < (µ1 + µ2)(x)∧ (µ1 + µ2)(y). Then there exist x1

and x2, such that for all x3 we have:

(1) µ1(x3) ∧ µ2(x + y − x3) < [µ1(x1) ∧ µ2(x− x1)] ∧ [µ1(x2) ∧ µ2(y − x2)] .

But
[µ1(x1) ∧ µ2(x− x1)] ∧ [µ1(x2) ∧ µ2(y − x2)] =

= µ1(x1) ∧ µ1(x2) ∧ µ2(x− x1) ∧ µ2(y − x2)
≤ µ1(x1 + x2) ∧ µ2(x + y − x1 − x2).
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Therefore there exists x3 = x1 + x2 for which (1) is false. Thus we have a contra-
diction and

(µ1 + µ2)(x + y) ≥ (µ1 + µ2)(x) ∧ (µ1 + µ2)(y).

Also

(µ1 + µ2)(−x) =
∨

−x=x1+x2

(µ1(x1) ∧ µ2(x2))

=
∨

x=−x1−x2

(µ1(x1) ∧ µ2(x2))

=
∨

x=−x1−x2

(µ1(−x1) ∧ µ2(−x2))

= (µ1 + µ2)(x).

Thus (µ1 + µ2)(−x) = (µ1 + µ2)(x). Now let x ∈ V, a ∈ K, a 6= 0 and t ∈ a ◦ x.
Then

(µ1 + µ2)(t) =
∨

t=x1+x2

(µ1(x1) ∧ µ2(x2)) .

V is invertible, so from r = x1 + x2 ∈ a ◦ x it follows that:

x ∈ a−1 ◦ t

= a−1 ◦ (x1 + x2)
⊆ a−1 ◦ x1 + a−1 ◦ x2.

Therefore

(µ1 + µ2)(t) =
∨

x∈a−1◦(x1+x2)

(µ1(x1) ∧ µ2(x2))

=
∨

x=t+s, t∈a−1◦x1, s∈a−1◦x2

(µ1(x1) ∧ µ2(x2))

=
∨

x=t+s, x1∈a◦t, x2∈a◦s
(µ1(x1) ∧ µ2(x2))

≥
∨

x=t+s

(
µ1(a ◦ t) ∧ µ2(a ◦ s)

)
≥

∨
x=t+s

(µ1(t) ∧ µ2(s))

= (µ1 + µ2)(x).

So if a 6= 0, then (
µ1 + µ2

)
(a ◦ x) =

∧
t∈a◦x

(µ1 + µ2)(t)

≥ (µ1 + µ2)(x).
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If a = 0, then(
µ1 + µ2

)
(0 ◦ x) =

(
µ1 + µ2

)
((a− a) ◦ x)

=
(
µ1 + µ2

)
(a ◦ x− a ◦ x)

=
∧

t∈a◦x, s∈−a◦x
(µ1 + µ2)(t + s)

≥

( ∧
t∈a◦x

(µ1 + µ2)(t)

)
∧

( ∧
s∈−a◦x

(µ1 + µ2)(s)

)
≥

((
µ1 + µ2

)
(a ◦ x)

)
∧
((

µ1 + µ2

)
(−a ◦ x)

)
≥ (µ1 + µ2)(x) ∧ (µ1 + µ2)(x)
= (µ1 + µ2)(x).

Consequently Ṽ1 + Ṽ2 is a fuzzy subhyperspace of V.
(iii) Clearly (µ1 ∩ µ2) (V ) ⊆ µ1(V )∪ µ2(V ) and (µ1 + µ2) (V ) ⊆ µ1(V )∪ µ2(V ).

Since µ1(V ) and µ2(V ) are upper well ordered, µ1(V ) ∪ µ2(V ) is upper well or-
dered and thus (µ1 ∩ µ2) (V ) and (µ1 + µ2) (V ) are upper well ordered. Hence by
Theorem 5.12, Ṽ1 ∩ Ṽ2 and Ṽ1 + Ṽ2 have a fuzzy basis. �

6. Dimension of Fuzzy Hypervector Spaces

Definition 6.1. We define the dimension of a fuzzy hypervector space Ṽ = (V, µ)
to be

dim Ṽ =
∨∑

v∈β

µ (v) : β is a basis for V

 .

Clearly dim is a function from the class of all fuzzy hypervector spaces to [0,∞]. A
fuzzy hypervector space Ṽ is finite dimensional if and only if dim Ṽ < ∞.

Proposition 6.2. Let V be invertible and let singletons of V be linearly inde-
pendent. Let Ṽ = (V, µ) be a finite dimensional fuzzy subhyperspace of V . Then
Ṽ = (V, µ) has a fuzzy basis.

Proof. We shall first show that µ(V ) is upper well ordered. Suppose µ(V ) ⊆ [0, 1]
has an increasing monotonic limit. Then there exists a sequence {xi}∞i=1 ⊆ V such
that {µ(xi)}∞i=1 is a strictly increasing sequence with limit α. we may suppose that
µ(x1) = α > 0. By Proposition 4.3, {xi}∞i=1 is linearly independent. Consider Hn as
the extension of the linearly independent set {xi}n

i=1 to basis for V. Then we have a
sequence of bases for V , such that

∑
x∈Hn

µ (x) > nα, which implies that dim Ṽ = ∞.

This is a contradiction. Therefore by Proposition 5.7, µ(V ) is upper well ordered.
Accordingly, by Theorem 5.12, Ṽ has a fuzzy basis. �

Proposition 6.3. Let Ṽ = (V, µ) be a fuzzy subhyperspace such that dim V = n <
∞. Then if β∗ is a fuzzy basis for V and β is any basis for V, then∑

v∈β

µ (v) ≤
∑
v∈β∗

µ (v) .
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Proof. Since V is finite dimensional, |µ (V \ {0})| = k ≤ dim V. Let µ (V \ {0}) =
{α1, α2, . . . , αk} , such that αi > αi+1. Since β∗ is a fuzzy basis for Ṽ , β∗ ∩ µαi is
a basis for hypervector space µαi , and β ∩ µαi is independent subset of µαi . Thus
|β ∩ µαi

| ≤ |β∗ ∩ µαi
| for all i ∈ {1, . . . , k} . Define recursively a set of injections

{f1, . . . , fk} as follows: Let f1 be any injection from β ∩ µα1 to β∗ ∩ µα1 . Such
f1 exists since |β ∩ µα1 | ≤ |β∗ ∩ µα1 | and µ(v) ≤ µ(f1(v)), for all v ∈ β ∩ µα1 .
Given fn−1 to be an injection from β ∩ µαn−1 to β∗ ∩ µαn−1 , such that µ(v) ≤
µ(fn−1(v)) for all v ∈ β ∩ µαn−1 . Let gn be any injection from β ∩ µ−1(αn) to
(β∗ ∩ µαn) \fn−1(β ∩ µαn−1). Such gn exists since

∣∣β ∩ µ−1(αn)
∣∣ = |β ∩ µαn

| −
∣∣β ∩ µαn−1

∣∣
≤ |β∗ ∩ µαn | −

∣∣β ∩ µαn−1

∣∣
= |β∗ ∩ µαn

| −
∣∣fn−1(β ∩ µαn−1)

∣∣
=

∣∣(β∗ ∩ µαn
) \fn−1(β ∩ µαn−1)

∣∣ .
Define  fn : β ∩ µαn

−→ β∗ ∩ µαn

fn(v) =
{

fn−1(v) v ∈ β ∩ µαn−1 ,
gn(v) otherwise.

Then fn is an injection and since gn(β ∩ µ−1(αn) ⊆ µαn
, n ∈ {2, . . . , k} , it follows

that µ(v) ≤ µ(fn(v)) for all v ∈ β ∩ µαn . Since µαk
= V and |β| = |β∗| , then fk is

a bijection between β and β∗. Now∑
v∈β∗

µ (v) =
∑
v∈β

µ (fk(v)) ≥
∑
v∈β

µ (v) .

�
Lemma 6.4. If Ṽ = (V, µ) is a finite dimensional fuzzy subhyperspace, then for
all α ∈ Im(µ)\ {0} , µα is finite dimensional subhypervector space of V .

Proof. If µα is infinite dimensional and β∗ is a fuzzy basis for Ṽ , then |β∗ ∩ µα| is
infinite, since β∗ ∩ µα is a basis for µα. Thus∑

v∈β∗

µ (v) ≥
∑

v∈β∗∩µα

µ (v) ≥
∑

v∈β∗∩µα

α = ∞.

Therefore dim Ṽ = ∞, which is a contradiction. Thus µα must be finite dimen-
sional. �

Theorem 6.5. If Ṽ = (V, µ) is finite dimensional, then

dim(Ṽ ) =
∑
v∈β∗

µ (v) ,

where β∗ is any fuzzy basis for Ṽ .
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Proof. It is sufficient to show that∑
v∈β

µ (v) ≤
∑
v∈β∗

µ (v) ,

where β is any basis for V. By Lemma 6.4, for all α > 0, µα is finite dimensional
and β∗∩µα is a fuzzy basis for Ṽα = (µα, µ |µα

). As β∩µα is an independent subset
of µα, Proposition 6.3, implies that∑

v∈β∩µα

µ (v) ≤
∑

v∈β∗∩µα

µ (v) .

This is true for all α > 0, and thus we must have∑
v∈β

µ (v) ≤
∑
v∈β∗

µ (v) .

�

Remark 6.6. De Luca and Termini [14] proposed the following definition of car-
dinality of a fuzzy set:

If Ã = (A,µA), where µA : A −→ [0, 1], is a fuzzy set, then card(Ã) =
∑

a∈A

µA (a) .

Let Ṽ = (V, µ) be any finite dimensional fuzzy hypervector space with fuzzy
basis β. Let β̃ = (β, µ |β ). In view of Theorem 6.5, we have dim(Ṽ ) = card(β̃), and
hence the dimension of a fuzzy hypervector space and the cardinality of it’s basis
are coincide. It is clearly in agreement with the definition of dimension in the crisp
case.
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