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A MODIFICATION ON RIDGE ESTIMATION FOR FUZZY

NONPARAMETRIC REGRESSION

R. FARNOOSH, J. GHASEMIAN AND O. SOLAYMANI FARD

Abstract. This paper deals with ridge estimation of fuzzy nonparametric
regression models using triangular fuzzy numbers. This estimation method

is obtained by implementing ridge regression learning algorithm in the La-
grangian dual space. The distance measure for fuzzy numbers that suggested
by Diamond is used and the local linear smoothing technique with the cross-
validation procedure for selecting the optimal value of the smoothing param-

eter is fuzzified to fit the presented model. Some simulation experiments are
then presented which indicate the performance of the proposed method.

1. Introduction

In a great deal of literature on fuzzy regression analysis, most of research has
focused on parametric forms of fuzzy regression, especially on the fuzzy linear re-
gression models. In many practical situations, it may be unrealistic to predeter-
mine a fuzzy parametric regression especially for a large dataset with a complicated
underlying variation trend. In this respect, some other approaches have been de-
veloped to deal with the fuzzy regression problems without predefining a specific
form of the underlying regression relationship. For example, Ishibuchi and Tanaka
[13, 14] have suggested several fuzzy nonparametric regression methods by using
the traditional back propagation networks. Cheng and Lee [1] have applied the
radial basis function networks to fuzzy regression analysis.

In recent years, statistical nonparametric smoothing techniques have achieved
significant development (see, for example, [6, 7, 8, 9]. These smoothing techniques
are especially useful to deal with the nonparametric regression problems.

In multivariate analysis, the least-squares method is generally adopted in fitting
a multiple linear regression model, but estimation of the least-squares is sometimes
far from being perfect. One of the important causes leading to the result is the
column vectors of the matrix of data which is considered independent is close to
linear correlation. Approximate linear relationship among independent variables is
called multicolinearity [16]. The multicolinearity among the independent variables
leads to increase error in estimating of regression coefficients. The often used crite-
rion to verify colinearity is simple correlation coefficient. When simple correlation
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coefficient between two independent variables is large, the colinearity is considered
[3, 16].

Ridge regression is one of the ways to overcome this problem, which was first
used in the context of least square regression in [12]. Some papers such as Drucker
et al. [4] and Saunders et al. [19] have used ridge regression in conjunction with a
high dimensional feature space. The idea of ridge regression learning algorithm has
also been used by Hong et al. [11] to fit some nonlinear fuzzy regression models.
Moreover, Hong and Hwang [10] have developed the support vector fuzzy regression
machines.

In this study, we focus on ridge regression. The local linear smoothing method,
that is a special case of the local polynomial smoothing technique, is fuzzified to
handle the fuzzy nonparametric regression with triangular fuzzy numbers based on
the distance measure proposed by Diamond [2]. A distance based cross-validation
procedure for selecting the optimal value of the smoothing parameter is also sug-
gested.

The structure of paper is as follows: section 2 explains basic concepts of trian-
gular fuzzy numbers and the local linear smoothing method. In section 3, fuzzy
ridge nonparametric regression model will be presented. In section 4, we discuss
the selection of kernel functions and the smoothing parameter. Finally, in the two
last sections, some numerical examples and comments are given.

2. Multiple Fuzzy Nonparametric Regression Model

A fuzzy nonparametric regression model with multiple crisp input and triangular
fuzzy output is considered in this section and, based on the local linear smoothing
approach, a fitting procedure is proposed for this model.

2.1. Basic Concepts. Let a = (ma − αa,ma,ma + βa) be a triangular fuzzy
number with its center, left and right spread being, respectively, ma, αa and βa.
The membership function of a is

µa(t) =


t−(ma−αa)

αa
if ma − αa ≤ t < mx

ma+βa−t
βa

if ma ≤ t < ma + βa

0 otherwise (1)

In this paper, we denote the space of all fuzzy triangular numbers by T (R), i.e.
T (R) = {a : a = (ma−αa,ma,ma+βa)}. Now, consider the following multivariate
fuzzy nonparametric regression model

Y = F (x){+}ε = (m(x)− α(x),m(x),m(x) + β(x)) {+}ε (2)

In this model, x = (x1, ..., xp) is a p−dimensional crisp independent variable (input)
whose domain is assumed to be D ⊆ Rp. Y ∈ T (R) is a triangular fuzzy dependent
variable (output). F (x), a mapping fromD to T (R), is an unknown fuzzy regression
function with its center, lower and upper limits being respectively m(x), l(x) =
m(x) − α(x) and r(x) = m(x) + β(x). Moreover ε is an error term. Instead of
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being solely regarded as a random error with mean zero, ε may also be considered
as a fuzzy error or a hybrid error containing both fuzzy and random components.
{+} is an operator whose definition depends on the fuzzy ranking method used.

2.2. Local Linear Smoothing Method. Let a = (la,ma, ra) and b = (lb,mb, rb),
ma, ra,mb, rb ≥ 0 be any two triangular numbers in T (R). Diamond [2] defined a
distance between a and b as

d(a, b)2 = (la − lb)
2 + (ma −mb)

2 + (ra − rb)
2. (3)

The distance (3) indeed measures the closeness between the membership functions
of two triangular fuzzy numbers (for more details see [2] and [21]). The closeness
between two fuzzy numbers can be measure as a new form that is named ”pos-
sibilistic approach”. Authors of [18, 17] have survey the linear regression based
on this approach. We henceforth base the distance (3) to extend the local linear
smoothing technique to fit the fuzzy nonparametric model (2). The main object
in fuzzy nonparametric regression is to estimate F (x) at any x ∈ D ⊆ Rp based
on (xi, Yi), i = 1, 2, ..., n. As pointed out by Kim and Bishu [15], the membership
function of an estimated fuzzy output should be as close to that of the corre-
sponding observed fuzzy number as possible. From this point of view, we shall
estimate m(x), l(x) and r(x) for each x ∈ D in the sense of best fit with respect
to some distances that can measure the closeness between the membership func-
tions of the estimated fuzzy output and the corresponding observed one. Suppose
that m(x), l(x) and r(x) have continuous partial derivatives with respect to each
component xi in the domain D of x. Then, for a given x0 = (x01, ..., x0p) ∈ D
and with Taylor’s expansion, m(x), l(x) and r(x) can be locally approximated in a
neighborhood of x0, respectively by the following linear functions:

l(x) ≈ l̃(x) = l(x0) + l(x1)(x0)(x1 − x01) + ...+ l(xp)(x0)(xp − x0p),

m(x) ≈ m̃(x) = m(x0) +m(x1)(x0)(x1 − x01) + ...+m(xp)(x0)(xp − x0p),

r((x)) ≈ r̃(x) = r(x0) + r(x1)(x0)(x1 − x01) + ...+ r(xp)(x0)(xp − x0p), (4)

where m(xj)(x0), l
(xj)(x0) and r(xj)(x0), j = 1, 2, ..., p are, respectively, the deriva-

tives of m(x), l(x) and r(x) with respect to xj at x0.
Let (xi, Yi) = (xi1, ..., xip, (lyi ,myi , ryi)T (R)), i = 1, 2, ..., n be a sample of the

observed crisp inputs and triangular fuzzy outputs of the model (2) with the un-
derlying fuzzy nonparametric regression function F (x) = (l(x),m(x), r(x)). Based
on Diamond’s distance (3) the following locally weighted least-squares is formu-
lated. That is, minimize∑n

i=1 d
2
(
(lyi ,myi , ryi)T (R), (l̃(xi), m̃(xi), r̃(xi))T (R)

)
Kh(||xi − x0||)

=
∑n

i=1(lyi
− l(x0)−

∑p
j=1 l

(xj)(x0)(xij − x0j))
2Kh(||xi − x0||)

+
∑n

i=1(myi −m(x0)−
∑p

j=1 m
(xj)(x0)(xij − x0j))

2Kh(||xi − x0||)

+
∑n

i=1(ryi − r(x0)−
∑p

j=1 r
(xj)(x0)(xij − x0j))

2Kh(||xi − x0||) (5)
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with respect to m(x0), l(x0), r(x0) and m(xj)(x0), l
(xj)(x0), r

(xj)(x0), j = 1, ..., p for
the given kernel Kh(.) and smoothing parameter h, where

Kh(||xi − x0||) =
K(||xi − x0||/h)

h
, i = 1, 2, ..., n,

are a sequence of weights at x0 whose role is to make the data that are close to
x0 contribute more in estimating the parameters at x0 than those that are far-
ther away with the adjustment of h. By solving this weighted least-squares prob-
lem, we can obtain not only the estimates of m(x0), l(x0) and r(x0) at x0, but
also those of their respective derivatives m(xj)(x0), l

(xj)(x0), r
(xj)(x0), j = 1, ..., p.

Since we mainly focus on estimating the underlying fuzzy nonparametric regres-
sion function F (x) = (l(x),m(x), r(x)) at x0, it is natural to take the solutions of

m(x0), l(x0) and r(x0) in equation (5), denoted, respectively by m̂(x0), l̂(x0) and
r̂(x0) as the estimates of the center, the lower and the upper spread of F (x) at x0.

That is, the estimate of F (x) at x0 is F̂ (x0) = (l̂(x0), m̂(x0), r̂(x0)) = (m̂(x0) −
α̂(x0), m̂(x0), m̂(x0)+β̂(x0)). It is observed that the equation (5) is a summation of
the three parts and each part includes separately a different group of the unknown
parameters, that is, (m(x0),m

(x1)(x0), ...,m
(xp)(x0)), (l(x0), l

(x1)(x0), ..., l
(xp)(x0))

or (r(x0), r
(x1)(x0), ..., r

(xp)(x0)). Therefore, taking the partial derivatives of the
objective function (5) with respect to these unknown parameters to be zero forms
three groups of linear equations which include separately these parameters. There-
fore, we can separately solve these three groups of linear equations to obtain the
estimates of these parameters. In fact, according to the principle of the weighted
least-squares and by utilizing matrix notations, we can immediately obtain(
l̂(x0), l̂

(x1)(x0), ..., l̂
(xp)(x0)

)T

=
(
XT(x0)W(x0;h)X(x0)

)−1

XT(x0)W(x0;h)Ly,(
m̂(x0), m̂

(x1)(x0), ..., m̂
(xp)(x0)

)T

=
(
XT(x0)W(x0;h)X(x0)

)−1

XT(x0)W(x0;h)My,(
r̂(x0), r̂

(x1)(x0), ..., r̂
(xp)(x0)

)T

=
(
XT(x0)W(x0;h)X(x0)

)−1

XT(x0)W(x0;h)Ry,

X(x0) =


1 x11 − x01 ... x1p − x0p

1 x21 − x01 ... x2p − x0p

...
...

1 xn1 − x01 ... xnp − x0p

 Ly =


ly1
ly2
...
lyn

 My =


my1

my2

...
myn

 Ry =


ry1
ry2
...
ryn


(6)

and

W(x0;h) = diag(Kh(||x1 − x0||)Kh(||x2 − x0||), ...,Kh(||xn − bfx0||)).

Thus, the estimated fuzzy regression function F̂ (x0) at x0 can be expressed by

F̂ (x0) = (l̂(x0), m̂(x0), r̂(x0))T (R) = (eT
1 H(x0;h)Ly, e

T
1 H(x0;h)My, e

T
1 H(x0;h)Ry),

(7)

where

H(x0;h) = (XT (x0)W(x0;h)X(x0))
−1XT (x0)W(x0;h)
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and e1 = (1, 0, ..., 0)T , a (p + 1)−dimensional vector with the first element being
unity and the others being zero.

3. Fuzzy Ridge Nonparametric Regression Model

In most cases, due to multicolinearity among independent variables, either the
matrix

XT (x0)W(x0;h)X(x0)

is a singular matrix or is very close to a singular matrix. In the least square method
the name of this matrix is the weighted coefficients matrix of normal equations. In
this paper, we use ridge regression to overcome this problem. Ridge regression gives
computational efficiency in finding solutions of fuzzy regression models particularly
for multivariable cases. In the following, we illustrate ridge regression procedures
for model (4), which is based on the algorithms in dual variables. We need to
slightly modify the formulation of ridge regression for crisp data.

Suppose that the observations consist of data pairs (xi, Yi), i = 1, 2, ..., n, where
xi is p−vector of real numbers and each Yi ∈ T (R). Suppose xij ≥ 0 be elements
of xi. Let A = (a1, ..., ap ) where ai = (mai , αai , βai), αai , βai ≥ 0, i = 1, ..., p and
let a0 = (ma0 , αa0 , βa0), αa0 , βa0 ≥ 0. Without loss of generality, each equation of
model (4) can be written in the following form:

G(x) = a0+ < A,x >= a0 + a1x1 + ....+ apxp, a0 ∈ T (R),A ∈ T (R)p,x ∈ Rp
(8)

where T (R)p is the set of p−vectors of triangular fuzzy numbers. We consider

mA = (ma0 ,ma1 , ...,map), αA = (αa0 , αa1 , ..., αap), βA = (βa0 , βa1 , ..., βap).

Then, by defining ||A||2 = ||mA||2 + ||mA −αA||2 + ||mA + βA||2, we arrive at the
following ridge regression learning procedure for this model (8) as follows:

Minimize λ||A||2 +
∑3

k=1

∑n
i=1 ξ

2
ki Kh(||xi − x0||)

Subject to

 myi− < mA,xi >= ξ1i,
(myi − αyi)− (< mA,xi > − < αA,xi >) = ξ2i,
(myi + βyi)− (< mA,xi > + < βA,xi >) = ξ3i. (9)

Hence, we can construct a Lagrange function as follows:

L = λ||A||2 +
3∑

k=1

n∑
i=1

ξ2kiKh(||xi − x0||) +

n∑
i=1

θ1i(myi− < mA,xi > −ξ1i)

+
n∑

i=1

θ2i(myi − αyi − (< mA,xi > − < αA,x >)ξ2i

+
n∑

i=1

θ3i(myi + βyi − (< mA,xi > − < βA,x >)ξ3i). (10)
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It follows from the saddle point condition that the partial derivatives of L with
respect to the primal variable (A, ξki, k = 1, 2, 3) have to vanish for optimality,

∂L

∂mA
= 2λ(3mA − αA + βA)−

n∑
i=1

θ1ixi −
n∑

i=1

θ2ixi −
n∑

i=1

θ3ixi = 0, (11)

∂L

∂αA
= 2λ(−mA + αA) +

n∑
i=1

θ2ixi = 0, (12)

∂L

∂βA
= 2λ(mA + βA)−

n∑
i=1

θ3ixi = 0, (13)

∂L

∂ξki
= 2ξkiKh(||xi − x0||) − θki = 0 , k = 1, 2, 3, i = 1, ..., n. (14)

Equations (3), (3) and (3) can be written as be follows:

mA =
1

2λ

n∑
i=1

θ1ixi, (15)

αA =
1

2λ

n∑
i=1

(θ1i − θ2i)xi, (16)

βA =
1

2λ

n∑
i=1

(θ3i − θ1i)xi. (17)

We should take αA = max{0, αA} and βA = max{0, βA} in order to compute
spreads. Here, 0 represents the corresponding zero vector. We use the same αA

and βA to avoid the abuse of notations. Substituting (11)-(14) into (10), we obtain
the following simplified L:

L = − 1

4λ

3∑
k=1

n∑
i,j=1

θkiθkj < xi,xj > −1

4

3∑
k=1

n∑
i=1

θ2ki
Kh(||xi − x0||)

+

n∑
i=1

myiθ1i +

n∑
i=1

(myi − αyi)θ2i +

n∑
i=1

(myi + βyi)θ3i. (18)

Now we denote Θ,M,W, W̃ and N respectively by

Θ = (θ11, ..., θ1n, θ21, ..., θ2n, θ31, ..., θ3n)
T ,

M = (my1 , ...,myn ,my1 − αy1 , ...,myn − αyn ,my1 + βy1 , ...,myn + βyn)
T ,

W = W (x0;h) = diag(Kh(||x1 − x0||),Kh(||x2 − x0||), ...,Kh(||xn − x0||)),

W̃ =

 W 0 0
0 W 0
0 0 W

 , N =

 WQ 0 0
0 WQ 0
0 0 WQ


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where Q is a n × n matrix of Qij =< xi,xj > and 0 is the n × n zero matrix.
Therefore, by differentiating L with respect to Θ, we have

Θ = 2λ(N + λI)−1W̃M (19)

Recalling the expression for model (8), (15), (16) and (17), we can obtain the
prediction of G(x) given the ridge regression procedure.

4. Selection of the Kernel Function and the Smoothing Parameter

When we use the above procedure to fit the fuzzy ridge nonparametric regression
model (2), the regularization parameter λ, the kernel K(.) and the smoothing
parameter h in the Kh(.) should be determined first. The role of the Kh(||xi −
x0||), i = 1, ..., n is to make the data that are close to the given point x0 contribute

more to the estimate F̂ (x) than those that are farther away. There are many types
of kernel functions. In this work, we use Gaussian kernel

K(x) =
1√
2π

exp(−x2

2
) (20)

and Epanechnikov’s kernel

K(x) =

{
3
4 (1− x2), if |x| ≤ 1
0 , o.w (21)

To estimate l̂(x), m̂(x) and r̂(x), by using the role of the smoothing parameter h in

theKh(.), we improve the degree of smoothness. Small hmakes m̂(x), l̂(x) and r̂(x)
too fluctuating and leads to over-fit and large h makes them too smooth and leads
to lack-of-fit. Therefore, the proper selection of the smoothing parameter value is
important in the local smoothing techniques. There have been a few approaches for
selecting the optimal value of the smoothing parameter such as the cross-validation,
generalized cross-validation, Bayesian and bootstrap methods (see [6, 8, 11], which
are all possible candidates for the above local linear smoothing method. In this
paper, a fuzzified cross-validation procedure is used to achieve this task because it
is easy in implementing in our setting and shows a satisfactory performance by the
simulations conducted in the following section. Based on Diamond’s distance (3),
the fuzzified cross-validation procedure can be described as follows. Let

F̂(i)(xi;h) = (l̂(i)(xi;h), m̂(i)(xi;h), r̂(i)(xi;h))T (R)

be the predicted fuzzy ridge nonparametric regression function at input xi computed
by equation (7) with the smoothing parameter h in which the observation ith is
eliminated in the process of implementing the fitting procedure. Here h is written
in the expression of F̂(i)(xi;h) in order to show that the predicted function at xi is

related to the smoothing parameter h. Compute F̂(i)(xi;h)for each xi, i = 1, ..., n
and let

CV (h) = 1
n

∑n
i=1 d

2(Yi, F̂i(xi;h))

= 1
n

∑n
i=1((lyi − l̂(i)(xi;h))

2 + (myi − m̂i(xi;h))
2 + (ryi − r̂i(xi;h))

2). (22)
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However, because of the error term in model (2), CV (h) cannot efficiently reflect
the closeness between the underlying fuzzy nonparametric regression function F (x)
and its estimate. With this consideration, we further define a quantity for measuring
the bias between the underlying fuzzy regression function and its estimate, which
is

BIAS(h) = 1
n

∑n
i=1 d

2(F (x), F̂ (x;h))

= 1
n

∑n
i=1((l(x)− l̂(x;h))2 + (m(x)− m̂(x;h))2 + (r(x)− r̂(x;h))2). (23)

Since F (x) is certainly unknown then BIAS(h) is not computable in practical
applications. This quantity makes sense for examining the performance of the
different methods by simulation. Both CV (h) and BIAS(h) will be reported in
our simulations to numerically evaluate the performance of the proposed method.
Choose h0 as the optimal value such that

CV (h0) = min
h>0

CV (h) and BIAS(h0) = min
h>0

BIAS(h).

In practice, we may compute for a series of values of h to obtain h0. The optimal
value of h closely depends on the degree of smoothness of the regression function.
A smoother regression function generally corresponds to a larger value of h while a
more fluctuating regression function tends to select a smaller value of h. We note
that the selected optimal value of h by the CV (h) and BIAS(h) closely depends
on the degrees of smoothness of the center, the lower and the upper limit functions.

5. Simulation Experiments

In this section, the proposed method for three datasets is used to compare the
results with the local linear smoothing (LLS) and the kernel smoothing (KS) meth-
ods. Gaussian (20) and Epanechnikov’s kernels (21) are respectively performed
to generate the weight sequence for all three methods and then these methods are
compared by CV (h) and BIAS(h). Now the following examples from the literature
[20] will be considered and the results of which are to be obtained.

Example 5.1. Consider the below function

g1(x) =
1

5
x2 + 2 exp(

x

10
)

and equidistantly take xi = 0.1i(i = 1, 2, ..., 100) on interval [0.1,10]. Let{
yi = g1(xi) + rand[−0.5, 0.5],
σi =

1
4g1(xi) + rand[−0.25, 0.25],

i = 1, 2, ..., 100,

where rand [a1, a2] denotes a random number independently drawn from the uni-
form distribution on interval [a1, a2] for each i. The observed fuzzy outputs are
assumed to be symmetric triangular fuzzy numbers and they can be expressed with
our notations as

yi = (lyi ,myi , ryi)T (R) = (yi − σi, yi, yi + σi)T (R), i = 1, 2, ..., 100.
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CV (h) and BIAS(h) are used to numerically evaluate the performance of each
method and the related results are summarized in Table 1. In order to make a
graphical comparison, we showed in Figure 1 the center line, the lower and the upper
limit lines of the real regression function and the corresponding lines estimated by
the proposed method only with Gaussian kernel.

Method Kernel Smoothing Parameter Ridge Parameter CV BIAS
The proposed method Gauss 0.19 0.001 0.0039 0.0041

0.51 0.001 0.6247 0.6261
0.19 0.01 0.04 0.0435
0.51 0.01 0.33 0.3351
0.19 0.03 0.59 0.6271
0.51 0.03 0.0071 0.0124

(the best value) 0.28 0.01 2.4720e-5 5.7625e-6

Epanechnikov 1.2 0.001 0.7936 0.7946
0.4 0.001 0.0015 0.0016
1.2 0.01 0.4372 0.4466
0.4 0.01 0.066 0.0656
1.2 0.03 0.023 0.0317
0.4 0.03 0.74 0.7804

LLS Gauss 0.51 - 0.2544 0.0317
Epanechnikov 1.2 - 0.2607 0.0328

KS Gauss 0.19 - 0.2212 0.0628
Epanechnikov 0.4 - 0.2302 0.0606

Table 1. The Simulation Results Obtained by Different Methods

Figure 1. The Center Line, Lower and the Upper Limit Lines of
the Real Function and Those Estimated by the Proposed Method

with Gaussian kernel with Smoothing Parameter h0 = 0.28 and Ridge
Parameterλ = 0.01
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Example 5.2. Consider the below function

g2(x) = 10 + 5 sin(0.25π(1− x2))

and the same values of xi(i = 1, 2, ..., 100) as those in example 1. Let{
yi = g2(xi) + rand[−0.5, 0.5],
σi =

1
3g2(xi) + rand[−0.25, 0.25],

i = 1, 2, ..., 100,

The observed fuzzy outputs are

yi = (lyi ,myi , ryi)T (R) = (yi − σi, yi, yi + σi)T (R), i = 1, 2, ..., 100.

Table 2 shows the result for this dataset. Also the center line, the lower and
the upper limit lines of the real regression function and the corresponding lines
estimated by the proposed method only with Gaussian kernel are illustrated in
Figure 2.

Method Kernel Smoothing Parameter Ridge Parameter CV BIAS
The proposed method Gauss 0.15 0.001 0.0031 0.0032

0.21 0.001 0.0318 0.0321
0.15 0.01 0.0162 0.0178
0.21 0.01 2.8874e-4 3.2981e-4
0.15 0.03 0.2692 0.2944
0.21 0.03 0.1758 0.1982

(the best value) 0.14 0.003 2.2701e-5 4.3991e-5

Epanechnikov 0.34 0.001 0.0047 0.0048
0.52 0.001 0.0597 0.0601
0.34 0.01 0.013 0.0148
0.52 0.01 0.0012 0.0016
0.34 0.03 0.2556 0.2808
0.52 0.03 0.1407 0.1598

LLS Gauss 0.21 - 0.2252 0.0520
Epanechnikov 0.52 - 0.2544 0.0552

KS Gauss 0.15 - 0.2080 0.0821
Epanechnikov 0.34 - 0.2337 0.0848

Table 2. The Simulation Results Obtained by Different Methods

Example 5.3. Consider the below function m(x1, x2) = 5,
l(x1, x2) =

4
625 (25− (5− x1)

2)(25− (5− x2)
2),

r(x1, x2) = 10− l(x1, x2).

The domain of x = (x1, x2) isD = [0, 10]×[0, 10] and the values of both x1 and x2

are equidistantly taken from 0 to 10 with increment 0.5. All possible combinations
of the values of x1 and x2, which form the lattice points of size n = 441, are taken
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Figure 2. The Center Line, Lower and Upper Limit Lines of the
Real Function and Those Estimated by the Proposed Method with

Gaussian Kernel with Smoothing Parameter h0 = 0.14 and
Ridge Parameter λ = 0.003

as the crisp inputs of the independent variables x1 and x2. These lattice points are
ordered in such a way that their Cartesian coordinates can be expressed as

(xi1 , xi2) = (0.5mod(i− 1, 21), 0.5int(i− 1, 21)), i = 1, 2, ..., n,

where mod(a, b) and int(a, b) are respectively, the remainder and the integer part
of a divided by b. Let{

yi = m(xi1 , xi2) + εi,
σi = m(xi1 , xi2)− l(xi1 , xi2) + ηi, i = 1, 2, ..., n,

where ε1, ε2, ..., εn and η1, η2, ..., ηn, the observation errors of the centers and
spreads of the observed fuzzy outputs, are independently drawn from the normal
distributions N(0, 0.52) and N(0, 0.252), respectively.

The observed fuzzy outputs are assumed to be symmetric triangular fuzzy num-
bers generated by

Yi = (lyi ,myi , ryi)T (R) = (yi − σi, yi, yi + σi)T (R), i = 1, 2, ..., n.

With the dataset (xi1 , xi2 , Yi), i = 1, 2, .., n, the extended procedure was used to
obtain the estimate of the fuzzy regression function F (x1, x2). Table 3 shows the
result for this dataset. The estimated fuzzy ridge nonparametric regression function
was depicted in Figure 3(b). We observe from Figure 3 that the ridge method still
produces a quite satisfactory estimate of the underlying fuzzy regression function
in the case of two-dimensional input.
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Method Kernel Smoothing Parameter Ridge Parameter CV BIAS

The proposed method Gauss 0.70 0.001 0.0292 0.0012

0.55 0.001 0.0063 0.0013

LLS Gauss 0.70 - 0.736 0.0654

KS Gauss 0.55 - 0.7007 0.1037

Table 3. The Simulation Results Obtained by Different Methods

(a) (b)

Figure 3. (a): The Center Line, Lower and Upper Limit Lines of
the Real Function; (b): The Estimation by the Proposed Method
with Gaussian Kernel with Smoothing Parameter h0 = 0.55 and

Ridge Parameter λ = 0.001 (b)

6. Conclusions

In this study, we dealt with estimating ridge fuzzy nonparametric regression
model with modeling the data with multivariate crisp input and triangular fuzzy
output. The ridge estimation of fuzzy nonparametric regression models with the
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cross-validation procedure for selecting the optimal values of the smoothing and
ridge parameter was proposed. Some simulation experiments were conducted to as-
sess the performance of the proposed method. By comparing the results with those
obtained by the LLS and KS methods, we found that the proposed method performs
quite well in reducing the boundary effect and producing a satisfactory estimate of
the underlying regression function. One of the advantages of this method is that
we do not need to consider the underlying structure for the fuzzy nonparametric
regression model used in this paper.

Moreover, we see that, for the three methods, the influence of the kernel is not sig-
nificant because of the similar values of CV (h) and BIAS(h) for two kernels, which
coincides with the empirical finding in the statistical nonparametric regression (see,
for example [6]). The proposed method not only gives quite smooth estimates of
the center line, the lower and the upper limit lines of the real regression function
but also reduce the boundary effect significantly.

In future work, we intend to devise algorithms for estimating fuzzy nonpara-
metric regression model with multiple fuzzy inputs, fuzzy output and the Gaussian
fuzzy numbers. We observe from Tables 1, 2 and 3 that, in each case, the values
of CV (h) and BIAS(h) in the proposed method are always smaller than that in
the LLS and KS methods, which indicates that the proposed method tends to pro-
duce such estimates of the center, the lower and the upper limits of the fuzzy ridge
nonparametric regression that are more close to their respective observations and
gives less biased estimates of the center, the lower and the upper limits of the real
function.

Acknowledgements. The authors would like to thank the editor and referees for
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erably.
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