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GLOBAL ROBUST STABILITY CRITERIA FOR T-S FUZZY
SYSTEMS WITH DISTRIBUTED DELAYS AND TIME
DELAY IN THE LEAKAGE TERM

S. LAKSHMANAN, R. RAKKIYAPPAN AND P. BALASUBRAMANIAM

ABSTRACT. The paper is concerned with robust stability criteria for Takagi-
Sugeno (T-S) fuzzy systems with distributed delays and time delay in the
leakage term. By exploiting a model transformation, the system is‘converted
to one of the neutral delay system. Global robust stability result is proposed
by a new Lyapunov-Krasovskii functional which takes into account the range
of delay and by making use of some inequality techniques. Based on the
interval time-varying delays, new stability criteria are obtained in terms of
linear matrix inequalities (LMIs). Finally, three numerical examples and their
simulations are given to show the effectiveness and advantages of our results.

1. Introduction

In the last two decades, the fuzzy model has been extensively studied because T-
S fuzzy model can provide an effective representation of complex nonlinear systems,
see for example [28, 29, 4, 2] and references therein. The phenomena of time delays
often occur in many dynamic systems such as chemical processes, metallurgical
processes, biological systems, and mechanics. Furthermore, the existence of time-
delays is usually a source of instability and deteriorated performance. Recently
stability criteria for T-S fuzzy system has been widely investigated by many authors,
see for example [30, 32, 21, 8, 3, 18, 33, 10, 15, 16, 17, 23]. Additionally, in many
practical cases, the delay may typically exist in an interval 0 < hy < 7(t) < hg, that
is, the range of delay varies in an interval for which the lower bound is not restricted
to 0, see for example [20, 11, 35, 24]. Recently the problem of an aggregated
fuzzy reliability index for slope stability analysis is investigated in [19]. In [27],
potential energy based stability analysis of fuzzy linguistic systems is discussed
and. the authors in [5] deal with exact and approximate solutions of fuzzy Ir linear
systems: new algorithms using a least squares model and the abs approach.

In practice, uncertainty in mathematical modelling is unavoidable because it is
very difficult to obtain an exact mathematical model due to environmental noise,
uncertain or slowly varying parameters, etc. Therefore, considerable amounts of
efforts have been done to the robust stability for uncertain systems, see for example
[12, 34, 9, 22, 31].
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Initially Gopalsamy [7] has investigated the bidirectional associative memory
(BAM) neural networks with constant delays in the leakage term. Li et al [14]
have been investigated the stability of nonlinear systems. Li et al [13] have been
discussed existence, uniqueness and stability analysis of recurrent neural networks
with time delay in the leakage term under impulsive perturbations. Such time delay
in leakage term has also great impact on dynamical behavior of systems. To the
best of authors knowledge, so far, no result on the robust stability criteria for T-S
fuzzy systems with time delay in the leakage and distributed delays is available in
the existing literature. This motivates our research work.

Motivated by the above discussion, the global robust stability criteria for T-
S fuzzy systems with distributed delays and time delay in the leakage term is
consider in this paper. By constructing a new Lyapunov-Krasovskii functional
and employing some analysis techniques, sufficient conditions are derived from the
considered T-S fuzzy systems in terms of LMI, which can be easily calculated by
MATLAB LMI control toolbox. Numerical examples are given to illustrate the
effectiveness of the proposed method.

Notations: Throughout this paper, R” and R"*™ will denote, respectively,
the n-dimensional Euclidean space and the set of all n-x n real matrices. The
superscript T denotes the transposition and the notation X/ > Y (respectively,
X >Y), where X and Y are symmetric matrices, means that X — Y is positive
semi-definite (respectively, positive definite). I, is the n x n identity matrix. |- |
is the Euclidean norm in R™. The notation* always denotes the symmetric block
in one symmetric matrix. Sometimes, the arguments of a function or a matrix will
be omitted in the analysis when no confusion can arise.

2. Preliminaries

Consider a T-S fuzzy system with a time-varying delay, which is represented by
a T-S fuzzy model composed of a set of fuzzy implications, and each implication is
expressed by a linear system model. The ith rule of this T-S fuzzy model is of the
following form
Rule i: If ©1(¢) is/pi1 and ... ©,(¢) is p;y then
t

i) = (A FAAa(t — o) + (B + AB;i(t)z(t — (1)) + (C; + AC’i(t))/t " (s)ds
it

z(t) = _9@), tel=7".0, i=1,...,r, 7" =maz{o, ha,7}. (1)
where p;;,1 =1,2,...,7,7 =1,...,p is the fuzzy set; z(t) € R™ is the state vector;
A;,B; and C; are constant real matrices with appropriate dimensions; r is the

number of IF-Then rules; ©1(t), ©2(t), ...,
©)(t) are the premise variables. The time-varying delays 7(t) satisfy

0<hy <7(t) <hg, 7(t) <p,

where hi, he and p are constants and 7(t) represent the distributed delay of systems
with 0 < n(t) < 7. o > 0 is the leakage delay. We shall consider model (1)
with the initial condition z(t) = ¢(t), t € [-7*,0], and the norm is defined by

6]l = maz{sup-<s<oll$(s)ll, sup—r-<s<olld(s)|}-
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Next we address the uncertainty, suppose that matrices A;, B; and C; have
parameter perturbations AA;(t), A;B(t) and AC;(t), which are of the form

[Adit) ABi(t) AC/H)] = HiF(®)[By Bz Esl (2)

where E1;, E2; and E3; are known constant matrices. and F;(t) is unknown matrix
function satisfying

Fr)Ft) <. (3)
By fuzzy blending, the overall fuzzy model is inferred as follows:

T wi(0())[(Ai + AA;()a(t — o) + (Bi + AB;()a(t — () + (Cs + ACi (1) [}, () =(s)ds]
i=1 wi(0(1))

@(t)

= Y pi0@)[(Ai + AA; )2t — ) + (Bs + ABi()a(t — 7(+) + (Cs + ACk(®)) /f o @ (s)ds]
: (it

i=1

z(t) = d(t), te [*T*, 0], i=1,..., . (4)

Equation (4) can be written as

¢
z(t) = AWzt — o)+ Bi(t)x(t —7(t)) + Ci(t) / z(s)ds
t—n(t)
I(t) = ¢(t)7 te [_7*70]7 =5 S, (5)
where 6 = [01,02,...,0p]; wi : RP — [0,1],¢ = 1,...,r is the membership func-

tion of the system with respect to therplant rule %;p;(0(t)) = %; Ai(t) =
Sy pi(0)) (Ai+AA(1)), Bi(t) =307 4 pi(0(t))(Bi+AB;(t)) and Ci(t) = Y7, pi(6(2)
(C; + AC;(t)). It is obvious that the fuzzy weighting functions p;(0(t)) satisfy
pi(0(t)) > 0, >20_, pi((t))“= 1.  to obtain the main results of this paper, the

following lemmas will be essential.
Lemma 2.1. [34]) For any vectors z,y € R"™, matrices A,P € R"*™ and F(t) €
R™X™ with P> 0, FT(t)F(t) < I and scalar € > 0, the following inequalities hold

() 22Ty LzTPta+yTPy

(i) HE()N+ NTFT(#)DT < e 'DDT + ¢NTN

(iii) IfP~'—eTHHT >0, then

(A+HFt)N)TP(A+ HF(t)N) < AT(P~' — e 'HHT)"'A+ eNTN.

Lemma 2.2. [1] (Schur Complement) Given constant matrices Qq, Qo and Qs with
appropriate dimensions, where QT = Qy and QL = Qs > 0, then

O+ 070105 <0
if and only if

& Q‘Z: <0 or 8 <0
* —QQ ’


www.SID.ir

130 S. Lakshmanan, R. Rakkiyappan and P. Balasubramaniam

Lemma 2.3. (Jensen’s inequality) For any constant matriz M > 0, any scalars
a and b with a < b and a vector function x(t) : [a,b] — R™ such that integrals
concerned are well defined, then the following inequality holds

b

[/Cbbx(«S)der[/:x(s)ds] < (b—a)[/ z(s)T Mz(s)ds|.

3. Main Results

In this section, we derive a new delay-dependent stability analysis of delayed T-S
system (5). Using a simple transformation, model (5) has an equivalent form as
follows:

t

Ila(t) + A0 / v(s)ds] = A(Da(t) + Bi(t)e(t - (1)) + Ci(t) / w(s)ds.  (6)

dt t—o t=m(t)
Now we state and prove the following theorem without uncertainties.
Theorem 3.1. For given scalars ho > hy1 > 0, o, 7 and u, the equilibrium point of
system (5) or (6) is globally asymptotically stable if thereexist symmetric matrices
P>0,Q >0,101=1,2,3,4, Z, >0, k=1,2,3,4,5, R >0, Rp, >0, S >0, for
any matrices N1, No, N3, M1, My and M3 such that the following LMI is feasible

P LN JAmRE r)M YU

(1]

V2
o= | * -~ 0 0 | <o,
* * —Rs 0
* * * -U (7)

=i (= ;
where Z* = (2]} )10x 10 with
Bl = PA+A]P+0%Z1 — Zo +HQ1 +Q2 + Q3 + Qu + 7175 + haZy + (h1 — h2)Z5 + haNy

+hoNT 4 (hg — h1)My + (ho —h) MY, Ei, = PB; 4+ Zs + ha NI + (hg — hy)MJ,

» . _4 e o . .
533 = :}4 =0, :15 = hoN3 + (h2 — h1)Mj3 , :;5 = A; PA;, :}7 = PC;
» . i i T
Els = —Nu Eg==N1=»M, Ej g=-M, Epp=-Z3—2Z3-23 —(1—p)Qs,
i =i i i T i i i
Ep3 = Egy =23, Ep5 =0, Ejg=DB; PA;, Ey; =0, Epg = —Na, E5g = —Na — Mo,
510 = —Mz, Ejg=-23-Q1, Sy = =8310=0, Eiy=-7Z3-Qa,
—i i =i —i =i
B = =E410=0, Eg5 = —Q4, Es56 =E57 =0,858 = —N3,E59 = —N3 — M3
=L = M3, Zi,=-2, =i =ATpPc;, EBiy=35i,=8L,,=0, =i =-5
E5,10 3, Eee 1, Eer i PCi,  Egg = Eg9 = Eg,10 o Err ,
=i — =t =t =0 =1 :7LZ4 [ ) =0 =t — 1 (Z4+Z4)
78 79 7,10 » Eg hy o4 E8o 8,10 v Ego (ha — hD)
i - 1 2 2 h3 h3 — hi
510 = 0, Ejg10=- Zs, U=hyZy+ (hy —h1)"Z3+ —Ri1+ Ra,
(h2 — h1) 2
N = NI Nfoon]oooo00”, M=[MI MFfoomI oooo0o0”.

Proof. Consider the Lyapunov-Krasovskii functional
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V(t) = Vi(t) + Va(t) + Va(t) + Va(t),

Viit) = [z(¢t) +A/ (s)ds]T Plx(t) +A/ z(s)ds],
t t
= l’T S xr(s)as IT S x(s)as
Bo = [ et [ 2T 00

t t

+ ( )Qs3x(s)ds + mT(s)Q4m(s)ds

— t—o

Va(t) = / / z s)Zlfc(s)dsd9+h2/h /+9 8)Zax(s)dsdf
2
—hy
+(h2 — h1) / / 8)Z3x(s)dsdf +/ / 8)Zax(s)dsdl
t+60 ho Jt46

+ /7 /+0 8)Zsx(s)dsdl + 17/ /+€ T(s)Sm(s)dsdG

0 0 ,t —hy 0 pt
/ / / @7 (s)Ryd(s)dsdAdf + / / / 27T (s) Rai(s)dsdAd0.
—hg J O t+A —ho 6 t+A

Calculating the derivative of V(¢) along the solution of (5) or (6), we have

V(t) = Vi(t) + Va(t) + Va(t) + Va(t),

131

9)

where
Vit = 2[e)+ A / «(8yas] " P[ATR() + Bia(t — (1) + C; / z(s)ds},
) < 2T@)Qra)= 2T (t=h1)Qra(t — h1) + 2L (£)Qaz(t) — 2T (t — ha)Qaz(t — ha)
+2T (H)Qzx(t) = (@ — waT (t — 7(£)Qsa(t — 7(1) + 27 () Qax(t) — 2T (t — 0)Qua(t — o),
. "t t
Va(t) = a2l (t)Zym(t) — a/ 2T (s)Z12(s)ds + h3eT (£) Zaa(t) — h2/ T (s)Zoi(s)ds
t—o t—ho
+(ha = h1)2aT (t)Z3i(t) — (ho — hy) /:;’” 3T (s)Zgw(s)ds + z L (t)(ho Zs + (ha — h1)Z5)x(t)
—h2
_ /lt acT(s)Z4ac(s)ds - /At " T (s)er(s)ds +'F]2xT(t)Sx(t) - 77/t xT(s)Sx(s)ds,
t—ho t—ho n(t)
t t
< 2T () Z1a(t) — o-/t—a oT(s)Z1w(s)ds + h2aT (1) Zai(t) — ho /t#(t) &7 (s)Zai(s)ds

T(t)
i = h)%T 02580 = (= h) [7 74T (0 Zg(0)as

t—h
~(hz =) [ a7 () Zsi(o)ds +2T (O haZa 4 (ha = ha)Z)a(t)
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't rt—T(t "t—h
- a:T(s)Z4ac(s)ds - / ® xT(s)(Z4 + Zs)x(s)ds — / ! xT(s)st(s)ds
t=7(t) t—hg t—7(t)

t t
+”7]2zT(t)Sz(t) — {/tfn(t) I(S)dS:ITS[./t—n(t) z(s)ds],

. 0 t
) = ST - [0 /t;eiT<s>Rlz'<s>dsde+ S8 = 1T (ORza(1)
—n2

—h t
7/ ' / T (s)Rod(s)dsdo.
—ho Jt+o

From Lemma 2.3, we have

¢ t
_g/t—g T (s)Z1a(s)ds < _[/zig z(S)ds]Tzl [/t70 :E(s)ds] (10)

ha /:_Tm T () Zai()ds < —[e(t) — 2(t — ()] Za [0 — =t — 7(e))] )

—hg

=) [T ST zaras < = [oe = o) - ot — na)| s [a(t — mlo) - a(t — n2)] (12)

~(hg — ha) /t:'(; iT()Zsi(s)ds < = [a(t — h)ma(bmr()]” Zs[zt — h1) = a(t - 7(2)] (13)

[ T @meeas < e [ [T ] a] [T )
— T S (s S T x(s S xT(s S|,
t—7(t) 4 - ho LJt—7(t) 4 t—7(t) (14)
t—7(t) T 1 t—r(t) T t—7(t)
_ ./1th 2T (s)(Z4 + Z5)a(s)ds < — e— [./tih2 a()ds]) (24 + 25)[/17’12 a(s)ds], (15)
t—h 1 t—h t—h
,/ T () Zso(s)ds < 77[/ ! z(s)ds]Tzs[/ " a(s)ds].
t—r(t) h2 —h1 tJt—7(t) t—7(t)

(16)

Further, we_can see that the following equations are true for any matrices Ny, Na,
N3, My, M5, and Mg with appropriate dimensions

= zT el (t—7 2Tt -0 z(t) — ' z(s)ds — tiT(t)azs s
0 (ST O 2T (= )N 40T =N [haat) — [ ateas— [ ateya
0 t
,/_hrz ‘/H.e x(s)dsdG], (17)
t—7(t)
0 = 2[acT(t)M1+xT(t—T(t))M2+J:T(t—U)M3][(h2—hl)x(t)—/ . z(s)ds

t—hy —hy t
— ds — t(s)dsd0|.
/tﬂ—(t) z(s)ds . /t+9 z(s)ds ] (18)
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From Lemma 2.3, we have the following inequalities
2T 0 o 11 —1 T 0 to.r .
- ¢T ()N (s)dsdd < —h5¢" ())NR] "N™ ((t) + & (s)Ry2(s)dsd0,
J—hg Jt+0 2 —ho Jt46

T —h1 gt 1 .5 2, T —1,,T —h1 gt p .
- o< ~(n2— IR , 0.
2 (t)M/ihz /t+ez(s)dsd <S03 = ndeT WMRT M §<t)+-/—h2 /ng (s)Rai(s)dsd

Substituting (10)-(18) into (9), we have

V(E) <D p0@)CT (O <0,

(19)
where
i i, Lo 1o 1o 2 —1,,T T, 2 2 h3 h3 — h3
I = =4 CRENRUINT o (g = ROMR MY 4 X7 (522 + (ha — h1)®Zs #ZF R+ St Ra) Y
t
Ty = [IT@) 2Tt —r@) 2Tt —hy) 2Tt —hy) 2T (t=0) / =T (s)ds
t—o
t t t— t t—h
/ IET(S)dS / 1T(s)ds / 7 )wT(s)ds / ! zT(s)ds],
t—n(t) t—T7(t) t—ho t—7(t)
and T° = [0 B; 0 0 A; 0 C; 0 0 0.

Considering the first term on the right hand of (8), one can easily obtain that
t t t
|| z(t) + A; z(s)ds ||? < ! [z(t) + 4, x(s)ds}TP[a:(t) + A z(s)ds]
t—o )\min(P) t—o t—o
O L)

t>0,

which implies that

[ Vo(t) [ Vv (0)
o) <1 4c [ ageds 1% O < na ECIES: o 120
where || A; [|=v/ Z?=1 ZZ:l azzlk'
From the well-known Gronwall inequality, one obtains
V() jasle
x(t) [|< ———eT,
120 1< ) 5 o)

Note that

vo) = b +a [0 s Pe0) +a; [0 ¢<s)ds]+/°h 6T ()Q16(s)ds
/. . Jon,

+ [0 6T @eseas+ [0 6T©@soeds + [0 6T (0)Quo(s)ds
J—hy J—7(0) J—o

0 0 0 (VI .
+a‘/ /9 6T (5)Z1¢(s)dsdo + ho /} /@ T () Zod(s)dsdo
Joo. Jhy
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—h 0 . . 0 0
+(ha —h1>/} 1/9 ¢>T(s)23¢>(s)dsde+/} /9 87 (5)Za(s)dsdo
—h2 —h2

—hy [0 o [0 0 o
+/ /0 ) (s)Z5¢(s)dsd6+n/7ﬁ/9 ¢ (s)S¢(s)dsdo

—hg

+/j)h2 /90 /)\0 $7 (s)R1d(s)dsdrdd + /:h’;l /90 /;) 3T () Rad(s)dsdAdo.

{2Amac(P)(A + o || A; 1)) + R1Amaz(Q1) + h2Amaz (Q2) + h2Amaz (Q3) + 0 Amax (Q4)

IN

+03>\mam(zl) + hgkmam(ZQ) + (h2 - hl)gAm,aw(ZS) + hgkmam(z4) + (h2 - h1)2Am,ax(25)

7% Amaz (S) + h3Amax (R1) + (h2 — h1)*Amax (R2)} || 6 |2+ < oco.

(21)

From (20) and (21), it can be deduced that the trivial solution of system (5) is
locally stable. Then the solution z(t) = x(¢,0,¢) of system (5) is bounded on
[0,00). Considering (5), we know that (t) is bounded-on [0;00), which leads to
the uniform continuity of the solution z(t) on [0, 00)./From (19), we note that the
following inequality holds:

Amm(ni)/o 7 (s)x(s)ds < V(t) +/0 ¢T(s)T¢(s)ds < V(0) < oo, t > 0,

By Barbalat’s lemma, (see Gopalsamy [6]) it holds that || z(¢) ||— 0 as t — oc.
This completes the proof. O

Now consider the following time delay system without leakage delay and dis-
tributed delay described by

B(t) = —A(t) + Biz(t — 7(t))
a(t) = o) te[-he,0] (22)

where A; = >0 pi(0(t)A; and B; = Y., p;(6(t))B;. The corresponding
result of the above system (22) is summarized in the following Corollary.

Corollary 3.2. For given scalars ho > hy > 0, and p, the equilibrium point of
system (22) s globally asymptotically stable if there exist symmetric matrices P > 0,
Q> 00=123, 7, >0, k=2345 R >0, Ry > 0, for any matrices
Ny, No, My and Ms such that the following LMI is feasible

Q' LhN \/LhE-rD)M YU

V2
* _R]_ 0 0 < 07
* * —Ry 0
* * * U (23)

where QF = (4, )7x7 with
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Qy = PA4+ATP—Zo+ Q1+ Q2+ Q3 +haZs+ (h1 — h2)Zs + ha N1 + haNT

+(hg —h1))My + (ha — h))MT, Qiy = PB;+ Za + haNd + (hgy — hy)MT,

fs = Q=0 Qz=-N, Qg=-N1—-M, Qj;=-M,
b = —Zo—Z3—7Z3 —(1-p)Qs, Qb3 =0y =273, Qhs=—Na, Qhg = —No — M,
br o= —Ma, Q3=-Z3-Qi, Qy=..=0Q5 =0, Qiy=-73-Qs,
) ) ) 1 ) ) . 1
i o= .=Ql.=0, Q.=-—2, Q,=5_.=0, Qs=-—— (Z4+Z4),
45 a7 55 hy 4 56 5,7 66 (ha — h1)( 4 4)
. ) 1 h2 h2 h2
QL. = Q=7 =h3z —h)2Zs+ 22 L Zs
67 0, 77 (ha —h1) 2> U=h5Z3 + (ha —h1)“Z3 + 5 4+ 5 5,
N = [N Nfoooo0”, M=MMIooo0007, Y =[AL B 00000.
Proof. Consider the Lyapunov-Krasovskii functional
V() = VA(t) + Valt) + Va(t) + Valt)s (24)
where

Vi(t) = ' (t)Pz(t),

t t t
Valt) = / Qs+ [ aTo)Qus)ds+ [ aT(5)Qua(s)ds

t—hg t—7(t)
Vg(t) = hs / / ZQ.CE )dsd@ + (hg — h1 / / Z3£E )dsd0
ho Jt40 t+0
/ / 8) Zaa( s)dsd0+/ / $)Zsxz(s)dsdo
hg Jt40 t+0

Va(t) = / / / s)R1d(s)dsd\db + / / / s)Rai(s)dsdAdb.

ha 42 A

O

Proof. The remaining part of the proof is immediately follows from Theorem 3.1.
O

4. Robust Stability Analysis

In this section, the problem of delay-dependent robust stability analysis for model
(5) or (6) will be investigated in the following Theorem 4.1.

Theorem 4.1. For given scalars ha > h1 > 0, o, 71 and p, the equilibrium point of
system (5) or (6) is globally robustly asymptotically stable if there exist symmetric
matrices P > 0, Q; > 0,1 = 1,2,3,4, Z,, > 0, k = 1,2,3,4,5, Ry > 0, Ry > 0,
S > 0, for any matrices N1, No, N3, M, My, M3 and positive scalar €; such that the
following LMI is feasible
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rit PH; ©TP 0 07 0P 0 037 0TU 0 6]
* —e; I 0 0 0 0 0 0 0 0 0
« x —P PH; 0 0 0 0 0 0 0
* * * —e; 1 0 0 0 0 0 0 0
* * * * —e; 1 0 0 0 0 0 0
\I;i — * * * * * —P PH; 0 0 0 0 <0
* * * * * * —e; I 0 0 0 0 ’
* * * * * * * —e; 1 0 0 0
* * * * * * * * -U UH; 0
* * * * * * * * * —e; 1 0
* * * * * * * * * * —e; 1
) ’ (25)
where
=i 1 Lip2 _ p2
) 2 LN (/W3- h)M
g ’
- * _Rl 0 )
* * — Ry
=i (=i ;
and =* = (Hlk)loxlo with
g, = PA+ATP+0%°Z1 —Z>+ Q1+ Q2+ Q3+ Qa+7°S +haZy + (h1 — ha)Zs

=1 T
+haN1 + ha N + (ha — k) My + (ha — h1)M{ + ¢; EL;E1;, 853 = PB; + Z5 + ho N,

=1 1 =X T T 1 =1
+(hy —h)ME, Ei, =Z! =0, Zi=hoNT +(ha —h1)M], Eils=0, EZi =P

=1 =1 =1 =1 T T
:ig = —Ny, 5;9:*N1*M1; :471’10:*1\/[17 Sop =—Z2—Z3 — Z3z — (1 — pn)Q3 + €, E5; Ea;,
=1 =1 =1 =1 1 Pt A — =i
E23 = Egq4 =23, Ep5 =0, Eg=0, By =0, S35 = —Nz, Ey9 = —Nz — Ma,
= =i &t _ &l _ o
Z2,10 = —Ms, Ezz3=-23—-Q1, :34—...—_3,10—0, ZEq4 = —Z3 — Qa2,
= =x3 =x3 St AT - X _
S5 = =E410=0,  Es5 = —Qa, Egg=E57 =0, E53 = —N3, E59 = —N3 — M3,
= - M. =1 - _Zz = =0 2t _ ot gt =0 = = —S+ -ETE'
E510 = —Ms, Egg=—21, Egr =0, Egg =Egg =Z6,10 =0, E77 = eilig; B3,
i - mi_—2i oLlg &b -l oaio_zi o _g & _ L (Zi+ 7y
E78 = E79=52710=0, Zgg=—"7%4, Egg =EF5,10=0, Egg=— )
' ha ’ (h2 — h1)
& _ o & L
9,10 = > Z10,10
(h2 — h1)

Proof. Replacing A;, B; and C; respectively by A; + H; F;(t)E1;, B; + H; F;(t) E2; and
Ci+ HiFi(t) B3
n (19), the corresponding formula of (19) can be written as

vt < gT(t){éi+2[o 0000 A;(t) 00 0 0TP[A;(t) By(t) 0 0 0 0 Ci(t) 0 0 0]

+[0 Bi(t) 0 0 A;(t) 0 Ci(t) 0 0 0]TU[0 Bi(t) 0 0 A;(t) 0 Ci(t) 0 0 o}c(t)<0,

Using Lemma 2.1 (i), we have
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V() < CT(t)[&ﬂ+[[o 0000 A; 000 0]+H;F;(1)[0 0000 Ei; 00 0 0]]T
xP[[o 0000 A; 000 0+H;F;(t)[0 0000 Ei; 000 0]}4-[[/11 B; 00
00 C; 00 0 +H;F(t)E1; E2; 0000 Eg; 00 o]rP[[Ai B; 000 0 G
4 H;F;(t)[E1; Eo; 0 0 0 0 Eg; 0 0 0]} + [[0 B; 00 A; 0 C; 00 0]
S H;F;(t)[0 Eo; 0 0 Eq; 0 Eg; 0 0 o]rU[[o B; 00 A; 0 C; 0 0 0]

+HHF;(1)[0 Ez; 0 0 Ey; 0 Eg; 0 0 0]]¢() <0,

where

& =o'+ Ir3NRTINT + L(h3 —hDMRy ' MT and @7 # =7 (1K) = ((1,1), (1,2),(1.6), (1,7), (2,6), (6.7))
i, = PAW+AT WP +0%Z) — Zo+ Q1+ Q2+ Qs + Qa + 71°S + ha Zg + (h1 = h2)Z3
T T % T T
+hoN1 + hao Ny + (hg — h1)My + (hg — h1)M{ , ®15 = PB; + Z2 + haNy + (ho — h1)M, ,
®ly = 0, @, =PCi(t) ®bg=0, di, =0.

According to Lemma 2.1 ((ii) and (iii)), we have

vy < T+t paPE)T ol (P - m )T o] + 6176

+0ill' (Pt — 7 HHET)TrOL + ¢, 04T6L oiT wTt e tHET) el + qégT@g]g(w <o,

(26)
where
© = 00000 A 000000, © =[00000 E; 000 0 0 0,
©, = [A; B, 0000 C; 00000], 6=[E; Ey 0000 Eg 0000 0],
© = [0 B;.00 A0 C; 00000, ©5=[0 Ey 00 E;; 0 Eg; 00 0 0 0],
P = [P00000O0O00O0O0O0T.
By Schur complement, we have
V() <D p00))CT (1T <0, (27)
i=1
W' is defined in (25). One may easily obtain that
C i ¢ (s S 2 71 €T i 't (s S T €T i ¢ (s S
le@ A [ 2@ 1P < o4 40 [T (il Pl + Acw) [ a(e)ds)

vy _ V()

— < ——, t>0
Amin(P) ~ Amin(P)

which implies that

't \% t V(o
e 1<) 1 atas |+ 7005 < am [1 e a0 e,
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where || A;(t) [|= /D=y Dopey @5y, From the well-known Gronwall inequality,

one obtains

_VO) il

12 1< /5 Ty 9

Note that

0 0 o
Vo = WOHAiw)/ ¢<s>ds]TP[¢<o>+Ai<o>/ ¢(S)ds]+/ ¢ (5)Q1(s)ds
-7 —o —hq
0 T 0 T (-
+/7h2 ® (S)Q2¢(s)ds+/77(o>)¢ (S)Q3¢(S)ds+/,a¢ ()Quad(s)ds
0 [0 o 0. ]
G/fa/e 37 (s)Z16(s)dsdf + ho /%2/9 &7 (s)Z2d(s)dsdo
no =) [ [T () zsd(srasao + [1 [* T ()2 dsdf
o —n) [ [T8T @ zsbrasa0 [ [T 0T (9 Z10()ds

—hy [0 o /0 0 o
H ] et @zssasiovn [ [7 6T 56()asdb

+/:]h2 /90 /)\O d3T(s)R14'>(s)dsd/\d6+/:’:;l /00 /:) 3T () Rad(s)dsdAdd

{22 maz(P)(1 + o || Ai(t) 1)) + k1A maa (Q1) + h2Amaz (Q2) + h2Amaz (Q3) + 0 Amaxz (Q4)

IN

+03 Amax (Z1) + h3Amaz (Z2) + (b2 — h1)®Amac (Z3) + h3Amax (Z4) + (h2 — h1)®Amaz (Z5)

7% Amaz (S) + h3Amax (R1) + (h2 — h1)* Xmaw(R2)} || 6 12+ < oco.

(29)

From (28) and (29), it can be deduced that the trivial solution of system (5) is
locally stable. Then the solution «(t) = z(¢,0,¢) of system (5) is bounded on
[0,00). Considering (5), we know: that @(t) is bounded on [0, 00), which leads to
the uniform continuity of the solution z(t) on [0,00). From (27), we note that the
following inequality holds:

)\min(\Ili)/O z(s)z(s)ds < V(t) +/0 ¢T(s)Wi¢(s)ds < V(0) < oo, t > 0.

By Barbalat’s lemma, (see Gopalsamy [6]), it follow that || z(¢) |[— 0 as t — 0.
This completes the proof. O

Remark 4.2. Yoneyama [33], studied robust stability and stabilizing controller
design of fuzzy systems with discrete and distributed delays. However, this paper
dealt with the robust stability criteria for T-S fuzzy systems with distributed delays
and time delay in the leakage term. To the best of our knowledge, robust stability
criteria for T-S fuzzy systems time delay in the leakage term approach have not been
fully discussed in the literature. We attained this goal successfully and derived new
sufficient conditions for the considered fuzzy system with time delay in the leakage
term.
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Remark 4.3. Now, we will discuss the robust stability for the following uncertain
fuzzy system

i(t) = Ai(t)z(t — o)+ Bi(t)z(t — 7(t))

x(t)

#(t), te[—h,0] h=maz{o,ha}. (30)

Using a simple transformation, model (30) has an equivalent form as follows:
d t
A LORNC) /t_a #(s)ds| = Au()a(t) + Bit)a(t — (1)), (31)

For system (30) or (31), we have the following result.

Corollary 4.4.  For given scalars ho > hy > 0, 0 and p, the equilibrium point of
system (30) or (31) is globally robustly asymptotically stable if there exist symmetric
matrices P >0, Q; > 0,1 =1,2,3,4, Zx, >0, k=1,2,3,4,5, Ry > 0, Ry > 0, for
any matrices N1, No, N3, My, Ms, M3 and positive scalar €; such that the following
LMI is feasible

S5

PH; TiTP o TiTriTP o TiTTiTU o T
w —e; I 0 0 0 0 0 0 0 0 0
« « —P PH; 0 0 0 0 0 0 0
o «  —e;l 0 0 0 0 0 0 0
P * * eI 0 0 0 0 0 0
. M * N —-P PH; 0 0 0 0 <0,
. * * * w«  —e; I 0 0 0 0
o « * * * «  —e;I 0 0 0
o « * * x * * ~U UH; 0
Y 8\ (32)
. * N . * * * w  —el
where
i 1 1,2 2
v AP SshaN (/5 (h3 - hDM
AL = * —R; 0 ,
* * —Ro
* * *
and A* = (A}})gxg with
Ay = PA{HATP 16221 — 23+ Q1+ Q2+ Q3+ Qq+ 725 + haZy + (h1 — h2) 75

4hoNy+ hoN{ + (hg — h1)My + (hg — h1)M{ + ¢;E{; By, Aty = PB; + Zg + hoNT

- | ) ) - - |
+(hg —h1)My , Ajg=Ajy =0, Aj5=hyNg + (hg —h1)Mg, Ajg=0,

) ) ) ) . -
Aj; = =N1, Ajg=-Nip - My, Ajg=-My, Ajpy=-23— 2323 — (1~ nQ3+¢;By;Ea;,
Aby =  Aby =23, Abg =0, Abg=0, Ab; = —Ny, Abg = —Ny — My,
Ahg =  —Mgy, Ahg=-Z3—-Qp, Ajy=...=A5=0, Al =—2Z3— Qa,
Al = =Alg =0, Al =-Q Alg =0, Al = —N3, Alg = —N3 — M

45 = - =049 =0, Ags=-Qq, Ajg =0, Agy = —N3, Asg = —Nj3 35

7 K k2 K k2 T k2 K2
Asg = —Mz, Agg = —Z1, Agr =Aes =Aeo =0, A7y = - —Z4, A7z =A79 =0,

2

Ad _ 1 AL A 1

38 = —————— (24 + Z4), 89 =0, 99 = ———Z5.

T (hg — 1) (hg — hy)
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" = [©0o0000A; 00000, TP=[00000 E; 0000 0]
' = [A; B, 00O0O0OO0O0OOGOO O, Th=[Ey; Ey 0000000 0 0
' = [0B; 00A 000000, Tt=[0Ey 00 E; 00000 0
P = [Poo0o0oo0o0o0o0o0o0 0T

Remark 4.5. Now, we will discuss the robust stability for the following uncertain
fuzzy system

z(t) = Ai(t)x(t) + Bi(t)x(t — 7(t))

z(t) = ¢(t), te[—ho,0]. (33)

For system (33), we have the following result.

Corollary 4.6. For given scalars ho > hy > 0, and p; the equilibrium point of
system (33) is globally asymptotically stable if there exist symmetric matrices P > 0,
Q > 0,1l =1,2,3, Z, >0, k =2,3,4,5, Ry > 0, Ry > 0, for any matrices
N1, No, My, Ms and positive scalar €; such that the following LMI is feasible

O LheN L /3(h3 -2 M PH, TTUu 0 i
* —Ry 0 0 0 0 0
* * —Ro 0 0 0 0
* * * —e; 1 0 0 0 <0,
* * * * -U UH 0
* * * * * —e; 1 0
| * * * * * 0 —el | (34)

where O = Qi+ diag{ ¢ ELE;, ¢,ELEs;, 0, 0, 0,0, 0}, P=[P000000]7, I'}
[A; B; 0000 0];
'Y = [Ey; B2 000 00] and Q% N, M are define in Corollary 3.2.

Remark 4.7. Now, we will discuss the robust stability for the following uncertain
system

() = A@)z(t—o)+ Bzt —7(t)) + C(t) / x(s)ds

t—n(t)

x(t) = o), tel[-77,0].

Using a simple transformation, model (1) has an equivalent described by
t t
% [a(0) + A1) /t - #(s)ds] = A(a(t) + B(t)e(t — (1) + C(1) /t s(s)ds. ()

—n(t)

For system (35) or (36), we have the following result.


www.SID.ir

Global Robust Stability Criteria for T-S Fuzzy Systems with Distributed Delays and Time ...

141

Corollary 4.8. For given scalars ha > h1 > 0, o, 7 and u, the equilibrium point of
system (35) or (36) is globally robustly asymptotically stable if there exist symmetric
matrices P > 0, Q; > 0,1 =1,2,3,4, Z, >0, k =1,2,3,4,5, Ry > 0, Ry > 0,
S >0, for any matrices N1, No, N3, My, Mo, M3 and positive scalar € such that the

following LMI is feasible

[0 PHOTP 0 0T ©IP 0 00U 0 677
* —el 0 0 0 0 0 0 0 0 0
* x —P PH 0 0 0 0 0 0 0
* ok x —el O 0 0 0 0 0 0
* ok * * —el O 0 0 0 0 0
V=14« « « « s« —-PpPH 0 0 o0 o |<O0.
* % * * * * —el O 0 0 0
* ok * * * * * —el O 0 0
* ok * * * * * * —-U UH 0
* % * * * * * * * —el O
L x * * * * * * * * —el (37)
where
= L 1p2 _ p2
) = LhoN \/L(h3—h3)M
=14 —R 0 :
* * —Ry
and Z = (Zix)10x10 with
1 = PA+ATP+6%Z1 — Z34+ Q1+ Q2+ Q34 Qi b7 8+ haZy + (h1 — h2)Zs
T T T & T
+haNy + haNy + (ha — h1)M1 + (he — hy)M] + €E] E1, E12 = PB + Z3 + haNy
+(he —h1)My, ZHi3 =81, =0, =15 =haNJ + (ha —h1)M5, Zi5=0, E17=PC;
18 = -Ni, E19=-Ni - My, B110=-Mi, EZoo=-Z5— 73— Z; — (1 —p)Qs + cEj Ea,
a3 = é2»4—Z3, S5 =0, B36=0, ZHp7 =0, S35 = —Na, Sa9 = —Na — Mp,
Z210 = —M, E33=-Z3—-Q1, Hza=...=Z310=0, E44=-Z3— Qa,
Z45 = =Z4,10=0, S5 = —Q4, Z56 =257 =0, =53 = —N3, Z59 = —N3 — M3,
Z5,10 = —Ms, Z¢6 =21, Ze7r =0, Egs =60 =Eg,10 =0, 377:*S+6E3TE3,
E7s8 = E79 =E7,10=0, Egg=—-—2Z24, Egg=8E =0, Eg9g=—-——"""(2Z4 4),
ha 8,10 (h2 — h1)
E9,10 = ,  E10,10 = — 5,
(hg —h1) "
© = [00000AO000O0O00O0, ©, =[0 0000 E, 00000 0 0],
© = [ABO0OO0OO0OOCOO0O0GO 0O, ©y=[E; E; 0000 E3 000 0 0],
© = [0 BO0ODOAOCO0O0O000O0, 6&3=[0 EF 00 E, 0 E3 00 0 0 0],
P = [Poooooooooo 07

Remark 4.9. Recently few authors have discussed the triple integral terms added
in the Lyapunov-Krasovkii functional, see for example [26, 25]. The free weighting
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matrix method has also been applied to reduce less conservative stability condi-
tions. In [18], the authors used the few free weighting matrices and found some
conservative stability results than the published papers in the literature. However,
there still exists room for further improvement than the results discussed in [18].
Motivating this reason, we introduce some triple integral terms for interval time-
varying delays in the Lyapunov-Krasovkii functional. This plays an important role
in the further reduction of conservatism and we find an upper bound better than
the result reported in [18].

5. Numerical Examples

In this section, we will give three examples showing the effectiveness of estab-
lished theoretical results.

Example 5.1. Consider the system (5) with the following matrices

-1.5 0 —-1.2 0 0.2 0.5 03 0
A= { 0 71.5]’ AQ—[ 0 71.3]’ Bl—[o 0.1]’ Bz—[o 0.2}’
0.5 0.8 -0.4 0.6 020
Go= {0.3 0.9]’ CQ—[ 0.2 70.8]’ Hl—H?‘[ 0 02]’
01 0 02 0
Eyjn = E21=E3 = [ 0o 01 ] , Ei2 = Egz = E3zp = [ 0 02 } .

Using Matlab LMI toolbox and Theorem 4.1, we obtain the following results
listed in Table 1. Table 1 describes allowable upper bounds hy for different Ay, pu,
o and fixed 7 = 0.3.

W 0 0.5 0.7 1.5
h1 =0,0 =0.1 0.4021 0.3381 0.3269 0.3269
h1 =0,0 =0.2 0.3171 0.2470 0.2470 0.2470
h1 =0,0 =0.3 0.0840 0.0440 0.0440 0.0440
h1 =0,0 = 0.4 infeasible infeasible infeasible infeasible
h1 =0.4,0 =0.1 0.4127 0.4099 0.4099 0.4099
h1 =0.4,0 = 0.2 infeasible infeasible infeasible infeasible

TABLE 1. Maximum Allowable Upper Bounds of hy for Different
w, hi and Fixed 7 = 0.3 and 0 = 0.1

The above results show that system (5) or (6) is globally robustly asymptotically
stable.
Remark 5.2. Example 5.1, system (5) or (6) is globally asymptotically stable
when ¢ = 0.1, it is shown in Figure 1 and Figure 2. However, using Matlab LMI
toolbox, if we take the leakage delay as o > 0.4 the LMI (25) is not feasible from
Table 1, in that case system (5) or (6) becomes unstable it is shown in Figure 3
and Figure 4.

Example 5.3. [18] Consider system (22) with the following matrices

A = [—2.1 0.1 } AQZ[—l.Q 0 } Blz[—l.l 0.1 }

-0.2  —0.9 -0.2 -1.1 —-08 0.9
-09 0
B = [—1.1 —1.2}
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Using Matlab LMI toolbox and Corollary 3.2, maximum allowable upper bound
hs that guarantees the global asymptotic stability of the system (22) and listed
in Table 2. Table 2 yields less conservative results than the results discussed in
8, 3, 18].

" 0 0.1 0.5 Unkown

[8] 1.25 N B - -
[3] 3.15 - - -
[18] 3.30 2.65 1.50 0.79

Corollary 3.2 3.4040 2.7374 1.5385  0.8600

TABLE 2. Maximum Allowable Upper Bounds of hs and h; =0

Example 5.4. [18] Consider system (33) with the following matrices

_ [ -2 1 [ -2 o [ -1 o 716 0
A= [0.5 71]’ A2*[0 71]’ B17[71 71]’ Bz*[ 0 ~1]’
_ [16 o0 _[o01 o _[16 o _To1ilo
Pu = [ 0 0405]’E21*[ 0 0.3}'E12*[ 0 70.05}*’522*[ 0 0.3]
0.03 0
Hy = Hz = { 0o —0.03 ]

Using Matlab LMI toolbox and Corollary 4.6; maximum allowable upper bound
hs that guarantees the global asymptotic stability of the system (33) and listed in
Table 3. Table 3 yields less conservative results than the papers [18, 15, 16, 17].

o 0 0.01 0.1 0.5 Unknown
[15] 0.950 0.944 0.892 0.637 -

[16] 1.158 (1.155 1.113 0.929 0.443
[17] 1.168 ' 1.163 1.122 0.934 0.499
[18] 1.353  1.348 <1.303 1.147 1.081

Corollary «<1.404 = 1.368 1.314 1.165 1.099

TABLE 3. Maximum Allowable Upper Bounds of hy and A1 =0

amplitude
]
)
T
L

time t

FIGURE 1. State Trajectories of Example 1 with
c=0landi=1
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>x1
1.5+ -
% 0.5 - B
Cos) i
—a1
FIGURE 2. State Trajectories of Example 1 with
c=0.1andi=2
a X 10
2L %

ampliude

—10}| B

—1z2 4

—14a

time t

FI1GURE 3. State Trajectories of Example 1 with
c=04andi=1

ampitude

—100
o

10 20 30 a0 50
time t

FIGURE 4. State Trajectories of Example 1 with
oc=04andi=2

6. Conclusion

The problem of robust criteria for T-S fuzzy systems with distributed delays and
time delay in the leakage term has been addressed in this paper. Based on a model
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transformation, new Lyapunov-Krasovskii functional, some inequality techniques,
new stability criteria are obtained in terms of linear matrix inequalities (LMIs). To
the best of author’s knowledge, there is almost no result on T-S fuzzy systems with
distributed delays and time delay in the leakage term of the existing literature. The
effectiveness and less conservatism of the proposed results have been demonstrated
by numerical examples.
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