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L−ORDERED FUZZIFYING CONVERGENCE SPACES

W. WU AND J. FANG

Abstract. Based on a complete Heyting algebra, we modify the definition of

lattice-valued fuzzifying convergence space using fuzzy inclusion order and con-

struct in this way a Cartesian-closed category, called the category of L−ordered
fuzzifying convergence spaces, in which the category of L−fuzzifying topolog-

ical spaces can be embedded. In addition, two new categories are introduced,
which are called the category of principal L−ordered fuzzifying convergence

spaces and that of topological L−ordered fuzzifying convergence spaces, and

it is shown that they are isomorphic to the category of L−fuzzifying neighbor-
hood spaces and that of L−fuzzifying topological spaces respectively.

1. Introduction

Convergence structures are more general than topological structures. If a conver-
gence structure additionally satisfies proper conditions, it is equivalent to a topologi-
cal structure. Lowen [12] constructed convergence systems using prefilters, through
which Min [13] proposed fuzzy limit structures. Xu [14] proved that topological
L−fuzzifying convergence structures and L−fuzzifying topologies [17] are equiva-
lent, where classical filters play a crucial role. By stratified L−filters [7], Jäger [8]
introduced stratified L−fuzzy convergence spaces in the many-valued case. The
category of these spaces was developed to a significant extent in the recent years
[1,2,4,5,9-11,14,15].

In 2009, Yao [16] defined L−fuzzifying convergence spaces, and showed the cat-
egory of L−fuzzifying topological spaces [17] could be embedded in the category
of L−fuzzifying convergence spaces as a reflective subcategory and the latter is
Cartesian-closed. L−fuzzifying convergence spaces were based on L−filters of or-
dinary subsets.

This paper can be seen as a further step towards [16]. It proposes a new lattice-
valued fuzzifying convergence structure, called L−ordered fuzzifying convergence
structure, which is compatible with the fuzzy inclusion order of L−filters of ordi-
nary subsets. The category of L−fuzzifying topological spaces [17] can be embed-
ded in the resulting category. As a matter of fact, it is easier for a bigger category
to be Cartesian-closed, and it makes sense to establish a smaller Cartesian-closed
category. Note that the category of L−ordered fuzzifying convergence spaces is
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“smaller” than that of L−fuzzifying convergence spaces [16], and it is Cartesian-
closed. In addition, two new categories are introduced, which are called the cate-
gory of principal L−ordered fuzzifying convergence spaces and that of topological
L−ordered fuzzifying convergence spaces, and it is shown that they are isomor-
phic to the category of L−fuzzifying neighborhood spaces and that of L−fuzzifying
topological spaces respectively.

2. Preliminaries

Let (L,∨,∧) be a complete lattice. If the finite meets are distributive over
arbitrary joins, i.e. for all a, bi ∈ L, (i ∈ J)

a ∧ (
∨
i∈J

bi) =
∨
i∈J

(a ∧ bi),

L is called a complete Heyting algebra. For L, we define an implication operator
→: L× L→ L as follows:

∀a, b ∈ L, a→ b =
∨
{c ∈ L|a ∧ c ≤ b}.

Then it is the right adjoint for ∧, i.e.,

∀a, b, c ∈ L, a ∧ c ≤ b⇔ c ≤ a→ b.

Theorem 2.1. [7] Let L be a complete Heyting algebra. For all a, b, c, d, ai, bi ∈
L, (i ∈ J), the following holds:

(H1) a ≤ (b→ c)⇔ a ∧ b ≤ c, and a ≤ b⇔ (a→ b) = 1,

(H2) a→ (
∧
i∈J bi) =

∧
i∈J(a→ bi), (

∨
i∈J bi)→ a =

∧
i∈J(bi → a),

(H3) (b→ c) ≤ (a→ b)→ (a→ c), (a→ c) ∧ (b→ d) ≤ (a ∧ b)→ (c ∧ d),

(H4) a→ b ≥ b, a ≤ (a→ b)→ b,

(H5) a ∧ b = a ∧ (a→ b), therefore, b = 1→ b,

(H6) a→ (b→ c) = (a ∧ b)→ c,

(H7)
∧
i∈J (ai → bi) ≤ (

∧
i∈J ai)→ (

∧
i∈J bi).

In what follows, we consider X a nonempty set and L a complete Heyting algebra
unless otherwise stated.

For a given set X, LX denotes the set of all L−subsets on X. Define a binary
mapping S(−,−) : LX ×LX → L by S(U, V ) =

∧
x∈X(U(x)→ V (x)) for each pair

(U, V ) ∈ LX × LX .

Definition 2.2. [6] A map F : 2X → L is called an L−filter of ordinary subsets
of X if it satisfies ∀x ∈ X,A,B ∈ 2X ,

(F1) F (∅) = 0,F (X) = 1,

(F2) A ⊆ B ⇒ F (A) ≤ F (B),

(F3) F (A ∩B) ≥ F (A) ∧F (B).
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The family of all L−filters of ordinary subsets on X will be denoted by FL(X).
An order on FL(X) is defined as follows: ∀F ,G ∈ FL(X),F ≤ G ⇔ ∀ U ∈
2X ,F (U) ≤ G (U).

For every x ∈ X, [x] ∈ FL(X) is defined by ∀A ∈ 2X ,

[x](A) =

{
1, x ∈ A,
0, otherwise.

Let F be a filter of ordinary subsets on X and f : X → Y be a mapping. Then
the mapping f⇒(F ) : 2Y → L, where ∀B ∈ 2Y , f⇒(F )(B) = F (f←(B)), is an
L−filter of ordinary subsets on Y and is called the image of F under f .

For every F ∈ FL(X), G ∈ FL(Y ), F × G ∈ FL(X × Y ) is defined as
follows: ∀C ∈ 2X×Y , (F × G )(C) =

∨
A×B⊆C F (A) ∧ G (B).

Definition 2.3. [18] An L−fuzzifying neighborhood structure on a set X is a
family of functions N = {Nx : 2X → L | x ∈ X} with the following conditions: For
all x ∈ X, U, V ∈ 2X ,

(LN1) Nx(X) = 1,

(LN2) Nx(U) > 0 implies x ∈ U,
(LN3) Nx(U ∩ V ) = Nx(U) ∧Nx(V ).

The pair (X,N) is called an L−fuzzifying neighborhood space, and it will be
called topological if it satisfies moreover: For all x ∈ X, U ∈ 2X ,

(LN4) Nx(U) =
∨
x∈V⊆U

∧
y∈V Ny(V ).

A continuous function between L−fuzzifying neighborhood spaces (X,N1) and
(Y,N2) is a map f : X → Y such that for all x ∈ X, U ∈ 2Y , N1

x(f←(U)) ≥
N2
f(x)(U).

Let L−NGH denote the category of L−fuzzifying neighborhood spaces with
continuous maps, and L−TNGH the full subcategory of L−NGH consisting of
topological L−fuzzifying neighborhood spaces.

Definition 2.4. [17] An L−fuzzifying topology on X is a function τ : 2X → L
which satisfies

(FO1) τ(∅) = τ(X) = 1,

(FO2) τ(A ∩B) ≥ τ(A) ∧ τ(B),

(FO3) τ(
⋃
j∈J Aj) ≥

∧
j∈J τ(Aj).

For an L−fuzzifying topology τ on X, the pair (X, τ) is called an L−fuzzifying
topological space. A map f : X → Y is called continuous with respect to the given
L−fuzzifying topological spaces (X, τ1) and (Y, τ2) iff ∀B ∈ 2Y , τ1(f←(B)) ≥
τ2(B). The category of L−fuzzifying topological spaces with continuous maps as
morphisms will be denoted by L−FYS.

It was proved in [20] that for any completely distributive lattice L, topologi-
cal L−fuzzifying neighborhood systems and L−fuzzifying topologies are concep-
tually equivalent with transferring process Nx(U) =

∨
x∈V⊆U τ(V ) and τ(U) =∧

x∈U Nx(U).
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Theorem 2.5. [19] Let ϕ : (X, τ1) → (Y, τ2) be a mapping. If L is a completely
distributive lattice, then ϕ is continuous iff Nτ1

x (ϕ←(U)) ≥ Nτ2
ϕ(x)(U),∀x ∈ X,U ∈

2Y .

3. L−ordered Fuzzifying Convergence Structure

In [16], the author developed lattice-valued convergence structure lim : FL(X)→
LX as follows:

Definition 3.1. [16] A mapping lim : FL(X)→ LX , subject to the conditions

(LY1) ∀x ∈ X, lim[x](x) = 1,

(LY2) ∀F ,G ∈ FL(X), F ≤ G ⇒ ∀x ∈ X, lim F (x) ≤ lim G (x),

is called an L−fuzzifying convergence structure on X, and (X, lim) an L−fuzzifying
convergence space.

The set of all L−fuzzifying convergence structures on X is denoted by limly(X).
An order on limly(X) can be defined by lim1 ≤ lim2 iff for all F ∈ FL(X), x ∈
X, lim2 F (x) ≤ lim1 F (x).

In Definition 3.1, the L−filters in the axiom (LY2) are in nature L−sets on
2X . We use the method in [3] and define an L−partial order SF (−,−) on FL(X)
as follows: SF (−,−) : FL(X)×FL(X)→ L

∀F ,G ∈ FL(X), SF (F ,G ) =
∧

U∈2X
(F (U)→ G (U)).

In this case, we can redefine the axiom (LY2) in Definition 3.1, proposing the
following new lattice-valued convergence structure.

Definition 3.2. An L−fuzzifying convergence structure lim : FL(X) → LX , sat-
isfying the following condition:

(OLY2) ∀F ,G ∈ FL(X), SF (F ,G ) ≤ S(lim F , lim G ),

is called an L−ordered fuzzifying convergence structure, and the pair (X, lim) an
L−ordered fuzzifying convergence space.

A function ϕ : (X, limX)→ (Y, limY ), (X, limX), (Y, limY ) L−ordered fuzzifying

convergence spaces, is called continuous iff for all F ∈ FL(X), x ∈ X, limX F (x) ≤
limY ϕ⇒(F )(ϕ(x)).

We do not go into details here, but only remark that (OLY2) implies (LY2).
The next example shows there exists an L−fuzzifying convergence structure lim

which is not an L−ordered fuzzifying convergence structure.

Example 3.3. Let X = {x, y}, L = {0, α, 1} be a chain. Define a map lim :
FL(X)→ LX , ∀F ∈ FL(X), z ∈ X,

lim F (z) =

{
1, F ≥ [z],
0, otherwise.

It is obvious that lim is an L−fuzzifying convergence structure. Define a mapping
F ∗ : 2X → L as follows: ∀A ∈ 2X ,
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F ∗(A) =


1, A = X,
α, A = {x},
0, A = {y} or A = ∅.

It can be verified that F ∗ is an L−filter of ordinary subsets on X. Then

SF ([x],F ∗) =
∧

A∈2X
([x](A)→ F ∗(A))

= ([x](∅)→ F ∗(∅))
∧

([x]({x})→ F ∗({x}))∧
([x]({y})→ F ∗({y}))

∧
([x](X)→ F ∗(X))

= 1 ∧ α ∧ 1 ∧ 1

= α

And

S(lim[x], lim F ∗) =
∧
z∈X

(
lim[x](z)→ lim F ∗(z)

)
=

(
lim[x](x)→ lim F ∗(x)

)∧(
lim[x](y)→ lim F ∗(y)

)
= (1→ 0) ∧ (0→ 0)

= 0

We can see that SF ([x],F ∗) � S(lim[x], lim F ∗), hence lim is not an L−ordered
fuzzifying convergence structure.

Example 3.4. Let (X, τ) ∈ L−FYS and define a mapping limτ : FL(X) → LX ,
∀F ∈ FL(X), x ∈ X, limτ F (x) = SF (Nx

τ ,F ). Here, the L−fuzzifying neighbor-
hood system Nx

τ of x ∈ X is defined by Nx
τ (A) =

∨
x∈B⊆A τ(B). Then limτ is an

L−ordered fuzzifying convergence structure.

From Example 3.4, we see that an L− fuzzifying topology can induce an L−ordered
fuzzifying convergence structure. The following theorem shows that the induced
L−ordered fuzzifying convergence structure from the L−fuzzifying topology can
determine the induced L−fuzzifying neighborhood structure from the L−fuzzifying
topology. This idea has been presented in [8].

Theorem 3.5. Let (X, τ) ∈ L−FYS. Then the following holds:

Nx
τ (U) =

∧
F∈FL(X)

(limτ F (x)→ F (U)),∀x ∈ X,U ∈ 2X .

Let L−FYCS [16] denote the category of L−fuzzifying convergence spaces with
continuous maps and L−OFYC the full subcategory of L−FYCS formed by
all L−ordered fuzzifying convergence spaces.

The set of all L−ordered fuzzifying convergence structures on X is denoted
by limloy(X). An order on limloy(X) can be defined by lim1 ≤ lim2 iff for all
F ∈ FL(X), x ∈ X, lim2 F (x) ≤ lim1 F (x). For limloy(X) here, we immediately
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obtain that there are a maximum element and a minimum element in (limloy(X),≤),
denoted by limsm and limm respectively: ∀F ∈ FL(X), x ∈ X, limsm F = 1X ;
limm F (x) = SF ([x],F ). The supremum element of a family of L−ordered fuzzi-
fying convergence structures (limj)j∈J ⊆ limloy(X) is defined by (sup

j∈J
limj)F (x) =∧

j∈J
limj F (x),∀F ∈ FL(X), x ∈ X. Obviously, sup

j∈J
limj ∈ limloy(X). Therefore,

the following proposition holds.

Proposition 3.6. (limloy(X),≤) is a complete lattice.

We will next address the result that the category of L−ordered fuzzifying con-
vergence spaces is a topological category. To this end, we note the following propo-
sition.

Proposition 3.7. The category L−OFYC is a full reflective subcategory in the
category L−FYCS.

Proof. Let (X, lim) ∈ L−FYCS and Elim = { lim | (X, lim) ∈ L−OFYC , lim ≤
lim}. Note that Elim is not empty because it always contains limsm. Then with
Proposition 3.6, we can construct an L−ordered fuzzifying convergence structure
lim∗ : FL(X) → LX as follows: For all F ∈ FL(X), x ∈ X, lim∗F (x) =∧

lim∈Elim
lim F (x). From this, we have

(1) idX : (X, lim)→ (X, lim∗) is trivially continuous;

(2) For an L−ordered fuzzifying convergence space (Y, limY ), if f : (X, lim) →
(Y, limY ) is a continuous mapping, then f : (X, lim∗)→ (Y, limY ) is also continuous.
We leave the above check to the reader.

From the above facts, we immediately obtain that L−OFYC is a full reflective
subcategory in L−FYCS. �

In [16] Yao proved that the category L−FYCS is topological. By Proposition
3.7, we have the following main result.

Theorem 3.8. The category of L−ordered fuzzifying convergence spaces L−OFYC
is topological.

4. The Relations Between Categories of L−FYS and L−OFYC

This section is motivated by reference [8]. In this section, we will resolve the
embedding of L−FYS into L−OFYC. By Example 3.4 and Theorem 3.5, we see
that L−ordered convergence structures can be induced from L−fuzzifying topolo-
gies. Moreover, they are unique. In order to show that L−FYS can be embedded
in the category of L−OFYC, the following theorem is necessary.

Theorem 4.1. Let L be a completely distributive lattice. Then the map f :
(X, τ1) → (Y, τ2) between two L−fuzzifying topological spaces is continuous iff
f : (X, limτ1)→ (Y, limτ2) is continuous.
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Proof. Suppose that f : (X, τ1) → (Y, τ2) is continuous, by Theorem 2.5, we have
for all F ∈ FL(X), x ∈ X,

limτ2 ϕ
⇒(F )(ϕ(x)) =

∧
V ∈2Y

(Nϕ(x)
τ2 (V )→ ϕ⇒(F )(V ))

≥
∧

V ∈2Y
(Nx

τ1(ϕ←(V ))→ F (ϕ←(V )))

≥
∧

U∈2X
(Nx

τ1(U)→ F (U))

= limτ1 F (x).

Hence, f : (X, limτ1)→ (Y, limτ2) is continuous.
Conversely, if f : (X, limτ1)→ (Y, limτ2) is continuous, by Theorem 3.5, we have

∀x ∈ X,U ∈ 2Y ,

Nx
τ1(ϕ←(U)) =

∧
F∈FL(X)

(limτ1 F (x)→ F (ϕ←(U)))

≥
∧

F∈FL(X)

(limτ2(ϕ⇒(F ))(ϕ(x))→ (ϕ⇒(F ))(U))

≥
∧

G∈FL(Y )

(limτ2 G (ϕ(x))→ G (U))

= Nϕ(x)
τ2 (U).

Therefore, by Theorem 2.5, f : (X, τ1)→ (Y, τ2) is continuous. �

As a consequence of the above theorems, we have the following result.

Theorem 4.2. Let L be a completely distributive lattice. L−FYS can be embedded
in the category of L−OFYC.

In Theorem 3.8 we know that L−OFYC is topological. So, in order to show that
it is Cartesian-closed, the following results are necessary. Similar to the definition
of product spaces in L−FYCS, it can be shown that there are also product spaces
in L−OFYC. We refer the reader to [16]. Here, we only present the main results.
Note that for two L−ordered fuzzifying convergence spaces (X, limX), (Y, limY ), let
[X → Y ] denote the set of all continuous maps from (X, limX) to (Y, limY ).

Lemma 4.3. [16] Let g : X → Y and G ∈ FL(X), then g⇒(G ) ≤ ev⇒([g] × G ),
where ev : [X → Y ]×X → Y is the evaluation map.

Theorem 4.4. Let (X, limX), (Y, limY ) be L−ordered fuzzifying convergence spaces,
then lim[X→Y ] : FL([X → Y ]) → L[X→Y ], ∀F ∈ FL([X → Y ]), ∀f ∈ [X →
Y ], lim[X→Y ] F (f) =

∧
(G ,x)∈FL(X)×X(limX G (x) → limY ev

⇒(F × G )(f(x))) is

an L−ordered fuzzifying convergence structure on [X → Y ].
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Proof. For (LY1), ∀g ∈ [X → Y ],

lim[X→Y ][g](g) =
∧

(G ,x)∈FL(X)×X

limX G (x)→ limY (ev⇒([g]× G ))(g(x))

≥
∧

(G ,x)∈FL(X)×X

limX G (x)→ limY (g⇒(G ))(g(x))

= 1.

For (OLY2), ∀F ,G ∈ FL([X → Y ]),

S(lim[X→Y ] F , lim[X→Y ] G )

=
∧

g∈[X→Y ]

(( ∧
(E ,x)∈FL(X)×X

limX E (x)→ limY (ev⇒(F × E ))(g(x))
)

→
( ∧

(H ,x)∈FL(X)×X

limX H (x)→ limY (ev⇒(G ×H ))(g(x))
))

≥
∧

g∈[X→Y ]

∧
(H ,x)∈FL(X)×X

((
limX H (x)→ limY (ev⇒(F ×H ))(g(x))

)
→
(

limX H (x)→ limY (ev⇒(G ×H ))(g(x))
))

≥
∧

H ∈FL(X)

S(limY (ev⇒(F ×H )), limY (ev⇒(G ×H )))

≥
∧

H ∈FL(X)

SF (ev⇒(F ×H ), ev⇒(G ×H )).

∀H ∈ FL(X),

SF (ev⇒(F ×H ), ev⇒(G ×H ))

=
∧
U∈2Y

(
(F ×H )(ev←(U))→ (G ×H )(ev←(U))

)
=

∧
U∈2Y

(( ∨
A×B⊆ev←(U)

F (A) ∧H (B)
)
→
( ∨
C×D⊆ev←(U)

G (C) ∧H (D)
))

≥
∧
U∈2Y

∧
A×B⊆ev←(U)

(
(F (A) ∧H (B))→ (G (A) ∧H (B))

)
≥

∧
U∈2Y

∧
A×B⊆ev←(U)

(
F (A)→ G (A)

)
≥

∧
C∈2[X→Y ]

(F (C)→ G (C))

= SF (F ,G ).

Therefore, the above completes the proof. In other words, lim[X→Y ] is an L−ordered
fuzzifying convergence structure on [X → Y ]. �
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Remark 4.5. The evaluation map ev : [X → Y ] × X → Y mentioned above is
continuous. Let f : X × Y → Z be a map, ∀x ∈ X, define a map fx : Y →
Z, ∀y ∈ Y, fx(y) = f(x, y), f∗ : X → ZY ,∀x ∈ X, f∗(x) = fx, and ϕ : Z(X→Y ) →
(ZY )X ,∀f ∈ Z(X→Y ), ϕ(f) = f∗. Then it can be proved that

(1) If f : (X, limX) × (Y, limY ) → (Z, limZ) is continuous, then for each x ∈
X, fx : (Y, limY )→ (Z, limZ) is continuous.

(2) For all F ∈ FL(X), G ∈ FL(Y ), ev⇒(ϕ(f)⇒(F )× G ) = f⇒(F × G ).

(3) If f : X × Y → Z is continuous, then ϕ(f) : X → [Y → Z] is continuous.
(We refer to [16] for a detail proof of the above results.)

We collect our findings in the following theorem.

Theorem 4.6. L−OFYC is a Cartesian-closed category.

5. The Relations Between L−fuzzifying Neighborhood Spaces and
Principle L−ordered Fuzzifying Convergence Spaces

In this section, we define a subcategory of the category of L−ordered fuzzifying
convergence spaces: the category of principle L−ordered fuzzifying convergence
spaces and show that the new category and that of L−fuzzifying neighborhood
spaces are isomorphic. Furthermore, each fibre on a fixed set of the category of
L−fuzzifying neighborhood spaces and that of the category of principal L−ordered
fuzzifying convergence spaces are isomorphic. At the end of the section, we propose
that the category of principle L−ordered fuzzifying convergence spaces is a reflective
subcategory of L−OFYC and it is a topological category. Again, this section is
mostly motivated by reference [8].

Proposition 5.1. Let (X, lim) ∈ L−OFYC. The structure {Nx
lim : 2X → L}x∈X

defined by: For x ∈ X, ∀U ∈ 2X , Nx
lim(U) =

∧
F∈FL(X)(lim F (x) → F (U))

is an L−fuzzifying neighborhood structure. We call it the induced L−fuzzifying
neighborhood structure of (X, lim).

Theorem 3.5 suggests for (X, lim) ∈ L−OFYC the following definition.

Definition 5.2. Let lim be an L−ordered fuzzifying convergence structure. If in
addition the following condition (LYP) holds,

(LY P ) ∀F ∈ FL(X), x ∈ X, lim F (x) = SF (Nx
lim,F ),

then lim is called a principal L−ordered fuzzifying convergence structure, and the
pair (X, lim) is called a principle L−ordered fuzzifying convergence space.

The full subcategory of L−OFYC consisting of all principle L−ordered fuzzify-
ing convergence spaces is denoted by L−POFYC.

If an L−ordered fuzzifying convergence spaces satisfies (LYP), then a nice char-
acterization of principle L−ordered convergence spaces in terms of L−fuzzifying
neighborhood spaces is possible. We first need three theorems for preparation.
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Theorem 5.3. Let (X,N) be an L−fuzzifying neighborhood space. Then there
exists a principle L−ordered fuzzifying convergence structure lim on X satisfying
∀x ∈ X,Nx

lim = Nx.

Proof. For the L−fuzzifying neighborhood space (X,N), define limN : FL(X) →
LX

∀F ∈ FL(X), x ∈ X, limN F (x) =
∧

A∈2X
(Nx(A)→ F (A)) = SF (Nx,F ).

It is then readily checked that for (X, limN ), the axiom (LY1), (OLY2), (LYP) hold.
The properties of the residual implication of Theorem 2.1 are used.

(LY1): ∀x ∈ X, limN [x](x) =
∧

A∈2X
(Nx(A)→ [x](A)) = 1.

(OLY2): In fact,

S(limN F , limN G ) =
∧
x∈X

(SF (Nx,F )→ SF (Nx,G ))

=
∧
x∈X

(
∧

A∈2X
(Nx(A)→ F (A))→

∧
B∈2X

(Nx(B)→ G (B)))

=
∧
x∈X

∧
B∈2X

(
∧

A∈2X
(Nx(A)→ F (A))→ (Nx(B)→ G (B)))

≥
∧
x∈X

∧
B∈2X

((Nx(B)→ F (B))→ (Nx(B)→ G (B)))

≥
∧
x∈X

∧
B∈2X

((F (B)→ G (B))

= SF (F ,G ).

(LYP): For all F ∈ FL(X), we prove limN F (x) = SF (Nx
limN

,F ). By the
definition of limN , limN F (x) = SF (Nx,F ). It remains to verify that Nx

limN
= Nx.

On one hand, for all A ∈ 2X ,

Nx
limN

(A) =
∧

F∈FL(X)

(limN F (x)→ F (A))

≤ limN N
x(x)→ Nx(A)

= Nx(A).

On the other hand,

Nx
limN

(A) =
∧

F∈FL(X)

(limN F (x)→ F (A))

=
∧

F∈FL(X)

( ∧
B∈2X

(
Nx(B)→ F (B)

)
→ F (A)

)
≥

∧
F∈FL(X)

(Nx(A)→ F (A)→ F (A))

≥ Nx(A).
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From this, the result follows by a standard argument. �

In view of the above theorem, if N is an L−fuzzifying neighborhood structure,
then there exists a principle L−ordered fuzzifying convergence structure limN on X.
Moreover, NlimN

is also an L−fuzzifying neighborhood structure and NlimN
= N.

Conversely, we have the following theorem.

Theorem 5.4. If lim is a principle L−ordered fuzzifying convergence structure on
X, then limNlim

= lim .
Proof. For all F ∈ FL(X), x ∈ X, by (LYP), we have,

limNlim
F (x) =

∧
A∈2X

(
Nx

lim(A)→ F (A)
)

= SF (Nx
lim,F ) = lim F (x). �

With respect to Theorem 5.3 and Theorem 5.4, we have a one-one correspondence
between the objects of L−NGH and L−POFYC. The following theorem is about
the relation between morphisms of them.

Theorem 5.5. Let (X, limX),(Y, limY ) be principle L−ordered fuzzifying conver-
gence spaces, (X,N1),(Y,N2) be L−fuzzifying neighborhood spaces, then we have

(1) If f : (X, limX)→ (Y, limY ) is continuous, then f : (X,NlimX )→ (Y,NlimY )
is also continuous;

(2) If f : (X,N1) → (Y,N2) is continuous, then f : (X, limX
N1

) → (Y, limY
N2

) is
also continuous.

Proof. (1) By the fact that f : (X, limX) → (Y, limY ) is continuous, we have
∀x ∈ X, U ∈ 2Y ,

Nx
limX (f←(U)) =

∧
F∈FL(X)

(
limX F (x)→ F (f←(U))

)
≥

∧
F∈FL(X)

(
limY f⇒(F )(f(x))→ f⇒(F )(U)

)
≥

∧
G∈FL(Y )

(
limY G (f(x))→ G (U)

)
= N

f(x)

limY (U),

as desired.

(2) Conversely, by the fact that f : (X,N1) → (Y,N2) is continuous, we have
∀F ∈ FL(X), x ∈ X,

limY
N2
f⇒(F )(f(x)) =

∧
B∈2Y

(
N
f(x)
2 (B)→ f⇒(F )(B)

)
≥

∧
B∈2Y

(
Nx

1 (f←(B))→ F (f←(B))
)

≥
∧

A∈2X

(
Nx

1 (A)→ F (A)
)

= limX
N1

F (x),
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as desired. �

By Theorems 5.3, 5.4 and 5.5, we actually have proved the following comprehen-
sive theorem.

Theorem 5.6. L−NGH is isomorphic to L−POFYC.

Let X be a set. A fibre on X of the category of L−fuzzifying neighborhood
spaces is denoted by PrFNL(X). An order “ ≤ ” on PrFNL(X) can be defined
by

N1 ≤ N2 ⇔ ∀x ∈ X,A ∈ 2X , N1
x(A) ≤ N2

x(A).

A fibre on X of the category of principle L−ordered fuzzifying convergence spaces
is denoted by PFYCL(X). An order “ ≤ ” on PFYCL(X) can be defined as
follows:

lim1 ≤ lim2 ⇔ ∀F ∈ FL(X), x ∈ X, lim2 F (x) ≤ lim1 F (x).

Then we have the following result.

Theorem 5.7. (PFYCL(X),≤) and (PrFNL(X),≤) are isomorphic.

Proof. Define a mapping: h : PFYCL(X)→ PrFNL(X), ∀ lim ∈ PFYCL(X), h(lim) =
Nlim, and a mapping: k : PrFNL(X) → PFYCL(X), ∀ N ∈ PrFNL(X), k(N) =

limN . It has been verified in Theorems 5.3 and 5.4 that h ◦k = idPrFNL(X), k ◦h =

idPFYCL(X). So h and k are both bijective. Furthermore, k = h−1.

(1) For all lim1, lim2 ∈ PFYCL(X), if lim1 ≤ lim2, then for all x ∈ X,A ∈ 2X ,

Nx
lim1

(A) =
∧

F∈FL(X)

(
lim1 F (x)→ F (A)

)
≤

∧
F∈FL(X)

(
lim2 F (x)→ F (A)

)
= Nx

lim2
(A).

So, Nlim1 ≤ Nlim2 . i.e. h(lim1) ≤ h(lim2). Therefore, h is an order preserving map.

(2) For all N1, N2 ∈ PrFNL(X), if N1 ≤ N2, then for all F ∈ FL(X), x ∈ X,

limN1
F (x) =

∧
A∈2X

(
Nx

1 (A)→ F (A)
)

≥
∧

A∈2X

(
Nx

2 (A)→ F (A)
)

= limN2
F (x).

Hence, limN1 ≤ limN2 , i.e. h−1(N1) ≤ h−1(N2). So h−1 is also an order preserving
mapping.

From the above proof, we conclude that (PFYCL(X),≤) and (PrFNL(X),≤)
are isomorphic. �

At the end of this section, we propose the following results.
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Theorem 5.8. The category L−POFYC is a reflective subcategory of L−OFYC.

Proof. Let (X, lim) ∈ L−OFYC and Elim = { lim | (X, lim) ∈ L−POFYC , lim ≤
lim}. Note that Elim is not empty because it always contains limsm. Then we can

construct a principal L−ordered fuzzifying convergence structure lim∗ : FL(X)→
LX as follows: For all F ∈ FL(X), x ∈ X, lim∗F (x) =

∧
lim∈Elim

lim F (x). From

this, we have

(1) idX : (X, lim)→ (X, lim∗) is trivially continuous;

(2) For a principal L−ordered fuzzifying convergence space (Y, limY ), if f :

(X, lim) → (Y, limY ) is a continuous mapping, then f : (X, lim∗) → (Y, limY )
is also continuous.

From the above facts, we immediately obtain that L−POFYC is a full reflective
subcategory in L−OFYC. �

Corollary 5.9. The category L−POFYC is topological.

6. The Relations Between L−fuzzifying Topological Spaces and
Topological L−ordered Fuzzifying Convergence Spaces

In this section, we define another important subcategory of L−OFYC: the cate-
gory of topological L−ordered fuzzifying convergence spaces. We will find out that
the category mentioned above is isomorphic to L−FYS and to L−TNGH in case
of a completely distributive lattice L. Furthermore, each fibre on X of the category
of topological L−ordered fuzzifying convergence spaces is isomorphic to that of
L−fuzzifying topological spaces and that of topological L−fuzzifying neighborhood
spaces.

Definition 6.1. Let (X, lim) ∈ L−POFYC, if in addition the mapping lim :
FL(X)→ LX satisfies the following axiom:

(LY T ) ∀U ∈ 2X , Nx
lim(U) ≤

∨
x∈V⊆U

∧
y∈V

Ny
lim(V ),

then lim is called a topological L−ordered fuzzifying convergence structure, and
(X, lim) is a topological L−ordered fuzzifying convergence space. The full subcat-
egory of L−OFYC consisting of all topological L−ordered fuzzifying convergence
spaces is denoted by L−TOFYC.

If lim is a topological L−ordered fuzzifying convergence structure, then a nice
characterization of L−fuzzifying topologies is possible. We need two lemmas for
preparation.

Lemma 6.2. Let (X,N) be a topological L−fuzzifying neighborhood space, then
(X, limN ) is a topological L−ordered fuzzifying convergence space.

Proof. As for (X,N) is a topological L−fuzzifying neighborhood space, (X,N)
is an L−fuzzifying neighborhood space. By Theorem 5.3, we see N = NlimN

.
For N is a topological L−fuzzifying neighborhood structure, we know for all x ∈

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

160 W. Wu and J. Fang

X, ∀U ∈ 2X , Nx(U) ≤
∨
x∈V⊆U

∧
y∈V N

y(V ). Therefore, NlimN
satisfies (LY T ).

With Definition 6.1, the lemma holds. �

Lemma 6.3. Let (X, lim) ∈ L−TOFYC, then there exists an L−fuzzifying topol-
ogy τ on X such that limτ = lim .

Proof. Firstly, by Definition 6.1, (X, lim) ∈ L−TOFYC implies that Nlim satisfies
(N1)− (N4).

Secondly, let τ : 2X → L, ∀A ∈ 2X , τ(A) =
∧
x∈AN

x
lim(A). It can be easily

proved that τ is an L−fuzzifying topology on X. Moreover, Nτ = Nlim. In fact, for
all x ∈ X,A ∈ 2X , we have by the axiom (LYT),

Nx
τ (A) =

∨
x∈B⊆A

τ(B)

=
∨

x∈B⊆A

∧
y∈B

Ny
lim(B)

= Nx
lim(A). (LYT)

With this and (LYP), we obtain for all F ∈ FL(X), x ∈ X, limτ F (x) =
SF (Nx

τ ,F ) = SF (Nx
lim,F ) = lim F (x).

Therefore, limτ = lim holds. �

Lemmas 6.2, 6.3 together with the relations between topological L−fuzzifying
neighborhood spaces and L−fuzzifying topological spaces in case that L is a com-
pletely distributive lattice show the following result.

Theorem 6.4. If L is a completely distributive lattice, then L−FYS, L−TOFYC
and L−TNGH are isomorphic to each other.

We denote a fibre on X of the category of L−fuzzifying topological spaces by
FYL(X), and an order “ ≤ ” on it is defined as follows: ∀ τ1, τ2 ∈ FYL(X),

τ1 ≤ τ2 ⇔ ∀A ∈ 2X , τ1(A) ≤ τ2(A).

Denote a fibre on X of the category of topological L−fuzzifying neighborhood
spaces by FNL(X) and a fibre on X of the category of topological L−ordered
fuzzifying convergence spaces by TFYCL(X). In the same way as in the proof of
Theorem 5.7, we obtain the following theorem trivially, and leave the straightfor-
ward proof for the interested reader.

Theorem 6.5. (FNL(X),≤), (FYL(X),≤), (TFYCL(X),≤) are isomorphic.
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