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L—-ORDERED FUZZIFYING CONVERGENCE SPACES

W. WU AND J. FANG

ABSTRACT. Based on a complete Heyting algebra, we modify the definition of
lattice-valued fuzzifying convergence space using fuzzy inclusion order and con-
struct in this way a Cartesian-closed category, called the category of L—ordered
fuzzifying convergence spaces, in which the category of L—fuzzifying topolog-
ical spaces can be embedded. In addition, two new categories are introduced,
which are called the category of principal L—ordered fuzzifying convergence
spaces and that of topological L—ordered fuzzifying convergence spaces, and
it is shown that they are isomorphic to the category of L—fuzzifying neighbor-
hood spaces and that of L—fuzzifying topological spaces respectively.

1. Introduction

Convergence structures are more general than topological structures. If a conver-
gence structure additionally satisfies proper conditions, it is equivalent to a topologi-
cal structure. Lowen [12] constructed convergence systems using prefilters, through
which Min [13] proposed fuzzy limit structures. ' Xu [14] proved that topological
L—fuzzifying convergence structuresrand L—fuzzifying topologies [17] are equiva-
lent, where classical filters play a crucial role. By stratified L—filters [7], Jager [§]
introduced stratified L—fuzzy convergence spaces in the many-valued case. The
category of these spaces was developed to a significant extent in the recent years
[1,2,4,5,9-11,14,15].

In 2009, Yao [16] defined L—fuzzifying convergence spaces, and showed the cat-
egory of L—fuzzifying topological spaces [17] could be embedded in the category
of L—fuzzifying convergence spaces as a reflective subcategory and the latter is
Cartesian-closed. L—fuzzifying convergence spaces were based on L—filters of or-
dinary subsets.

This paper can be seen as a further step towards [16]. It proposes a new lattice-
valued fuzzifying convergence structure, called L—ordered fuzzifying convergence
structure, which is compatible with the fuzzy inclusion order of L—filters of ordi-
nary subsets. The category of L—fuzzifying topological spaces [17] can be embed-
ded in the resulting category. As a matter of fact, it is easier for a bigger category
to be Cartesian-closed, and it makes sense to establish a smaller Cartesian-closed
category. Note that the category of L—ordered fuzzifying convergence spaces is
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“smaller” than that of L—fuzzifying convergence spaces [16], and it is Cartesian-
closed. In addition, two new categories are introduced, which are called the cate-
gory of principal L—ordered fuzzifying convergence spaces and that of topological
L—ordered fuzzifying convergence spaces, and it is shown that they are isomor-
phic to the category of L—fuzzifying neighborhood spaces and that of L—fuzzifying
topological spaces respectively.

2. Preliminaries

Let (L,V,A) be a complete lattice. If the finite meets are distributive over
arbitrary joins, i.e. for all a,b; € L, (i € J)

A\ (\/ bl) = \/(a/\ bl),
icJ icd
L is called a complete Heyting algebra. For L, we define an implication operator
—: L x L — L as follows:
Va,be L,a — b:\/{ce Lla Ne < b}
Then it is the right adjoint for A, i.e.,
Va,b,c€ Loanc<b<sc<a—b.

Theorem 2.1. [7] Let L be a complete Heyting algebra. For all a,b,c,d,a;,b; €
L, (i € J), the following holds:

NHa<(b—oc)earb<canda<bs (a—b) =1
2) @ = (Asey i) = Ases(aet b Vies b) = a = Asey(bi = 0)
3)(b—=c)<(a—b) = (a=c)y(a—=c)Nb—d) <(aNb) = (cAd),
4)a—b>b, a<(a—b)=b,

5) a ANb=aA (a=Db), therefore, b=1—b,

6) a— (b—e)=(aAb) = ¢

)

7) Nies (@ = bi) < (Nieyai) = (Nies bi)-

In what follows, we consider X a nonempty set and L a complete Heyting algebra
unless otherwise stated.

For a given set X, L~ denotes the set of all L—subsets on X. Define a binary
mapping S(=;—) : LY x LX — L by S(U,V) = \,cx(U(x) = V(z)) for each pair
(U, V) e LX x LX.

(H
(
(
(
(
(
(

TTEmZEmIITX

Definition 2.2. [6] A map .7 : 2% — L is called an L—filter of ordinary subsets
of X if it satisfies Vo € X, A, B € 2¥,
(F1) #(0) = 0,.7(X) =1,
(F2) ACB= #(A) < #(B),
(F3) F(ANB) > F(A) N F(B).
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The family of all L—filters of ordinary subsets on X will be denoted by Z#,(X).
An order on % (X) is defined as follows: V¥, 9 € F(X),F < ¥ & VU €
22X, Z(U) <¥9(U).

For every z € X, [z] € #L(X) is defined by VA € 2,

1, z€A,
[z](4) = { 0, otherwise.

Let .# be a filter of ordinary subsets on X and f: X — Y be a mapping. Then
the mapping f= (%) : 2¥ — L, where VB € 2¥, f7(%)(B) = Z(f“(B)), is an
L—filter of ordinary subsets on Y and is called the image of .% under f.

For every % € Fp(X), 4 € F.(Y), & x99 € F(X xY) is defined as
follows: VC' € 2X*Y  (Z x 4)(C) =\ 4xpcc F(A) N4 (B).

Definition 2.3. [18] An L—fuzzifying neighborhood structure on a set X is a
family of functions N = {N, : 2% — L | 2 € X} with the following conditions: For
allz e X, U, V e 2%,

(LN1) N,(X) = 1.
(LN2) N,(U) > 0 implies z € U,
(LN3) N, (UNV) = N,(U) ANN,(V).

The pair (X, N) is called an L—fuzzifying neighborhood space, and it will be
called topological if it satisfies moreover: For all & € X, U € 2¥,

(LN4) No(U) = Vever Ayev Ny(V)-
A continuous function between L—fuzzifying neighborhood spaces (X, N!) and
(Y,N?)is amap f : X — Y suchthat for all z € X, U € 2¥, NLX(f=(U)) >

2
Nf(z)(U).

Let L—NGH denote the category of L—fuzzifying neighborhood spaces with

continuous maps, and L—TNGH the full subcategory of L—NGH consisting of
topological L—fuzzifying neighborhood spaces.

Definition 2.4. [17] An L—fuzzifying topology on X is a function 7 : 2%X — L
which satisfies

(FO1) 7(0) = 7(X).= 1,
(FO2) 7(ANB) >7(A) A7T(B),
(FO3) T(Uje.] Aj) 2 /\jeJT(Aj)'

For an L=fuzzifying topology 7 on X, the pair (X, 7) is called an L—fuzzifying
topological space. A map f: X — Y is called continuous with respect to the given
L—fuzzifying topological spaces (X,7;) and (Y,7) iff VB € 2V, 7 (f<(B)) >
To(B). The category of L—fuzzifying topological spaces with continuous maps as
morphisms will be denoted by L—FYS.

It was proved in [20] that for any completely distributive lattice L, topologi-
cal L—fuzzifying neighborhood systems and L—fuzzifying topologies are concep-
tually equivalent with transferring process N,(U) = V cycpy 7(V) and 7(U) =

/\zEU N»L(U)
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Theorem 2.5. [19] Let ¢ : (X, 71) — (Y, 72) be a mapping. If L is a completely
distributive lattice, then ¢ is continuous iff Nj* (¢ (U)) = N7, (U), Vo € X,U €
2V,

3. L—ordered Fuzzifying Convergence Structure

In [16], the author developed lattice-valued convergence structure lim : %1, (X) —
LX as follows:

Definition 3.1. [16] A mapping lim : Z1(X) — L, subject to the conditions
(LY1) Vz € X, lim[z](z) = 1,
(LY2) VF#,9 € #.(X), F <Y =Vz e X, limF(z) <lim¥Y(zx),

is called an L—fuzzifying convergence structure on X, and (X, lim)an L—fuzzifying
convergence space.

The set of all L—fuzzifying convergence structures on X is denoted by limg, (X).
An order on limy, (X) can be defined by lim; < lim, iff for all .7 € Z(X), z €
X, limy 7 (2) < lim; 7 ().

In Definition 3.1, the L—filters in the axiom (LYZ2) are in nature L—sets on
2X. We use the method in [3] and define an L—partial order Sg(—, —) on ZL(X)
as follows: Sp(—,—) : ZFr(X) x Fr(X) = L

VF, 9 € FL(X),Sp(F,9) =]\ (Z(U) > 94 (U)).
Ue2X

In this case, we can redefine the axiom (LY2) in Definition 3.1, proposing the
following new lattice-valued convergence structure.

Definition 3.2. An L—fuzzifying convergence structure lim : %y (X) — L%, sat-
isfying the following condition:

(OLY2) V7,9 € Pp(X), Sp(F,9) < S(lim .Z,lim¥),

is called an L—ordered fuzzifying convergence structure, and the pair (X, lim) an
L—ordered fuzzifying convergence space.

A function ¢t (X, limX) - (Y, 1imy), (X, lim™), (Y, 1lim"") L—ordered fuzzifying
convergence spaces, is called continuous iff for all ¥ € Z#(X), x € X, lim* .7 (z) <
lim” o= ()(p ()

We do not go into details here, but only remark that (OLY2) implies (LY2).

The next example shows there exists an L—fuzzifying convergence structure lim
which is not an L—ordered fuzzifying convergence structure.

Example 3.3. Let X = {z,y}, L = {0,a,1} be a chain. Define a map lim :
9L(X) — LX, VF € yL(X), ze X,

. 1, ZF >,
lim % (z) = { 0, otherwise.

It is obvious that lim is an L—fuzzifying convergence structure. Define a mapping
F*:2%X — L as follows: VA € 2%,


www.SID.ir

1, A=X,
4 A s
It can be verified that .#* is an L—filter of ordinary subsets on X. Then
Se(lal, 77) =\ ([&)(4) » F*(4))
= ([0 —» 7 @) \(2]({z}) = F*({})
Al{y}) = 7 () A([2)(X) = 77 (X))

= 1AaAlAl
And
S(lim[z],im #*) = /\ (lim[z](2) — lim Z*(z))
zeX

= (lim[z](z) — lim .#*(z)) /\ (lim[z](y) — lim F*(y))
= 1=0A(0-=0)
0

We can see that Sg([z], Z*) £ S(lim[z],lim .Z*), hence lim is not an L—ordered
fuzzifying convergence structure.

Example 3.4. Let (X,7) € L—FYS and define a mapping lim,: % (X) — L¥X,
VF € Zr(X), ¢ € X, lim, #(z) = Sp(NZ, #). Here, the L—fuzzifying neighbor-
hood system N7 of x € X is defined by N7 (A) = \/,cgc4 7(B). Then lim; is an
L—ordered fuzzifying convergence structure.

From Example 3.4, we see that an L— fuzzifying topology can induce an L—ordered
fuzzifying convergence structure. The following theorem shows that the induced
L—ordered fuzzifying convergence structure from the L—fuzzifying topology can
determine the induced L —fuzzifying neighborhood structure from the L—fuzzifying
topology. This idea has been presented in [8].

Theorem 3.5. Let (X,7) € L-FYS. Then the following holds:

N:U)= N\ (im, Z(x) = F(U)),Vz € X,U € 2%,
FeFrL(X)

Let L-FYCS [16] denote the category of L—fuzzifying convergence spaces with
continuous maps and L—OFYC the full subcategory of L—FYCS formed by
all L—ordered fuzzifying convergence spaces.

The set of all L—ordered fuzzifying convergence structures on X is denoted
by limjey (X). An order on lim;,, (X) can be defined by lim; < limy iff for all
F e Fr(X), v e X, limy F(z) < lim; Z(z). For lim;,, (X) here, we immediately
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obtain that there are a maximum element and a minimum element in (limy,, (X), <),

denoted by limg,, and lim,, respectively: V. € Fp(X), z € X, limy,, F = 1x;

lim,, #(z) = Sp([z], #). The supremum element of a family of L—ordered fuzzi-

fying convergence structures (lim;);ec s C lim,, (X) is defined by (suplim;).# (z) =
JjeJ

‘/\J lim; #(z),V.¥% € Z1(X), © € X. Obviously, 51615) lim; € limg,, (X). Therefore,
Jj€ J
the following proposition holds.

Proposition 3.6. (limy,,(X), <) is a complete lattice.

We will next address the result that the category of L—ordered fuzzifying con-
vergence spaces is a topological category. To this end, we note the following propo-
sition.

Proposition 3.7. The category L—OFYC 1is a full reflective subcategory in the
category L—-FYCS.
Proof. Let (X,lim) € L-FYCS and By = { lim | (Xjlim) € L—OFYC, lim <
lim}. Note that Er— is not empty because it always contains lim,,. Then with
Proposition 3.6, we can construct an L—ordered fuzzifying convergence structure
lim, : Z.(X) — L% as follows: For all # € Z.(X),.az € X, lim, %(z) =
/\limEEl.— lim .% (). From this, we have

(1) idx : (X,lim) — (X, lim,) is trivially continuous;

(2) For an L—ordered fuzzifying convergence space (V,lim"), if f : (X, lim) —
(Y,1im"") is a continuous mapping, then f : (X,lim,) — (¥;lim") is also continuous.
We leave the above check to the reader:

From the above facts, we immediately obtain that L—OFYC is a full reflective
subcategory in L—FYCS. O

In [16] Yao proved that the category L—FYCS is topological. By Proposition
3.7, we have the following main result.

Theorem 3.8. The category of L—ordered fuzzifying convergence spaces L—OFYC
is topological.

4. The Relations Between Categories of L—FYS and L-OFYC

This_section is motivated by reference [8]. In this section, we will resolve the
embedding of L—FYS into L-OFYC. By Example 3.4 and Theorem 3.5, we see
that L—ordered convergence structures can be induced from L—fuzzifying topolo-
gies. Moreover, they are unique. In order to show that L—FYS can be embedded
in the category of L—OFYC, the following theorem is necessary.

Theorem 4.1. Let L be a completely distributive lattice. Then the map f :
(X,71) — (Y,72) between two L—fuzzifying topological spaces is continuous iff
f (X limy,) — (Y, lim,,) is continuous.


www.SID.ir

L—ordered Fuzzifying Convergence Spaces 153

Proof. Suppose that f : (X,71) = (Y, 72) is continuous, by Theorem 2.5, we have
for all # € (X)), z € X,

lim, o= (F)((x))

N\ (VER (V) = o7 (F)(V))
veay

N\ (NE (= (V) = Z(p (V)
ve2Yy

> N\ WNLU) = Z#(U))

Ue2X

= lim, F(z).

v

Hence, f : (X,lim,,) — (Y,lim,,) is continuous.
Conversely, if f : (X,lim,, ) — (Y,lim,,) is continuous, by Theorem 3.5, we have
Vo e X,U e 2Y,

Nt () = N\ (img, F(2) - F(TO)))
FeFL(X)

> A\ (i (07 (F) (@) = (07 (F)))

FeFrL(X)

N (ime, @ (@) = 4 (U))
GeFL(Y)
= N£@(U).

Y

Therefore, by Theorem 2.5, f : (X{71) = (Y, 72) is continuous. O

As a consequence of the above theorems, we have the following result.

Theorem 4.2. Let L be a completely distributive lattice. L—FYS can be embedded
in the category of L-OFYC.

In Theorem 3:8 we know that L—OFYC is topological. So, in order to show that
it is Cartesian-closed,the following results are necessary. Similar to the definition
of product spaces in L—FYCS, it can be shown that there are also product spaces
in L-OFYC. We refer the reader to [16]. Here, we only present the main results.
Note that for two L—ordered fuzzifying convergence spaces (X, limy), (Y, limy ), let
[X — Y] denote the set of all continuous maps from (X,limx) to (Y, limy).

Lemma 4.3. [16] Let g : X =Y and 4 € Z1(X), then g7 (¥9) < ev™ ([g] x ¥),
where ev : [X = Y] x X =Y is the evaluation map.

Theorem 4.4. Let (X,limy), (Y,limy ) be L—ordered fuzzifying convergence spaces,
then limx_y] : FL([X — Y]) = LX2Y vF € F (X - Y]), Vf € [X —
Y], limix vy Z(f) = Ngpez, (x)xx (limx () = limy ev™ (F x &) (f(2))) is
an L—ordered fuzzifying convergence structure on [X — Y.
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Proof. For (LY1), Vg € [X — Y],
limxyilgl(9) = N limx & (x) = limy (ev™ ([g] x ¥))(g(2))
(Y,2)eFL(X)xX
> A limy & (z) — limy (g7 (¢))(g(x))

(9,2)eFL(X)xX
= 1

For (OLY2), V.7,9 € Z.,([X — Y)),

S(lim[Xﬁy] ﬁ, lim[Xﬁy] g)
A (( A limyx &(z) — limy (ev™ (F x g))(g(@))

geE[X =Y () eFL(X)xX

SN ) - iy (e (4 x AN (o(2))))

() eFrL(X)xX

A A ((timx (2) > Ty (0= (Fx 7)) (9(x)))

gEIX Y] (o, x)eFL(X)xX
= (limX H(z) — limy (ev™ (4 x jf)xg(x))))

/\ S(limy (ev™ (F x ), limy (ev™ (4 x H)))
HEeF(X)

N\ Sr(ev™(F x ), ev™ (4 x H)).
HETFL(X)

VA € F(X),
Sp(ev™(F x H),ev (G x H))
- A (2 x XS W)) = @ x ) (v (U)))

- /\(( VLo Fmaem) (9o nxD))

v

Y

Y

2Y AxBCev< (U) CxDCev*+ (U)
> /\ A ((F@nxB)— @) n#(B)
Y Ax BCev* (U)
> /\ A (F@)-9w)

Ue2Y AxBCev*+ (U)

> AN (F()=9(0)
Ce2lX—Y]

= Sp(7,9).

Therefore, the above completes the proof. In other words, lim|x_,yj is an L—ordered
fuzzifying convergence structure on [X — Y. O


www.SID.ir

L—ordered Fuzzifying Convergence Spaces 155

Remark 4.5. The evaluation map ev : [X — Y] x X — Y mentioned above is
continuous. Let f : X XY — Z be a map, Vx € X, define a map f, : ¥ —
2,9y €Y, fuly) = fle.y), [*: X = Z¥ Vo € X, f*(z) = fo, and o : Z52Y) o
(ZYVX Vf e ZX=Y) o(f) = f*. Then it can be proved that

(1) If f: (X, limx) x (Y,limy) — (Z,limy) is continuous, then for each x €
X, fz: (V,limy) — (Z,limy) is continuous.

(2) For all Z € Z1(X), 9 € ZL(Y), ev=(o(f)=(F) x 9) = f=(F x D).

(3)If f: X xY — Z is continuous, then ¢(f) : X — [Y — Z] is continuous.
(We refer to [16] for a detail proof of the above results.)

We collect our findings in the following theorem.

Theorem 4.6. L—OFYC is a Cartesian-closed category.

5. The Relations Between L—fuzzifying Neighborhood Spaces and
Principle L—ordered Fuzzifying Convergence Spaces

In this section, we define a subcategory of the category of L—ordered fuzzifying
convergence spaces: the category of principle: L—ordered fuzzifying convergence
spaces and show that the new category and that of L—fuzzifying neighborhood
spaces are isomorphic. Furthermore, each fibre on a fixed set of the category of
L—fuzzifying neighborhood spaces and that of the category of principal L—ordered
fuzzifying convergence spaces are isomorphic. At the end of the section, we propose
that the category of principle L—ordered fuzzifying convergence spaces is a reflective
subcategory of L—OFYC and it i$ a topological category. Again, this section is
mostly motivated by reference [8].

Proposition 5.1. Let(X,lim) € L-OFYC. The structure {N% : 2% — L},ex
defined by: For x € X, WU € 2X Ng (U) = Nzez, x)limF(z) — F(U))
is an L—fuzzifying neighborhood structure. We call it the induced L—fuzzifying
neighborhood structure of (X, lim).

Theorem 3.5 suggests for (X,lim) € L—OFYC the following definition.

Definition 5.2. Let lim be an L—ordered fuzzifying convergence structure. If in
addition the following condition (LYP) holds,

(LYP)VZ € Z1(X), = € X, lim Z(z) = Sp(NZ,, %),

then lim is called a principal L—ordered fuzzifying convergence structure, and the
pair (X, lim) is called a principle L—ordered fuzzifying convergence space.

The full subcategory of L—OFYC consisting of all principle L—ordered fuzzify-
ing convergence spaces is denoted by L-POFYC.

If an L—ordered fuzzifying convergence spaces satisfies (LYP), then a nice char-
acterization of principle L—ordered convergence spaces in terms of L—fuzzifying
neighborhood spaces is possible. We first need three theorems for preparation.
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Theorem 5.3. Let (X,N) be an L—fuzzifying neighborhood space. Then there
exists a principle L—ordered fuzzifying convergence structure lim on X satisfying
Ve e X,Nf = N*.

Proof. For the L—fuzzifying neighborhood space (X, N), define limy : Z1(X) —
LX

V. € Z(X), v € X, limy F(x) = /\ (N"(A) = F(A)) = Sp(N*, F).
Ae2X
It is then readily checked that for (X, limy), the axiom (LY1), (OLY2), (LYP) hold.

The properties of the residual implication of Theorem 2.1 are used.
(LY1): Vz € X, limy[z](x) = A (N*(4) — [z](4)) = 1.

(OLY2): In fact, =
S(limy Z,limy ) = J\ (Sp(N*,F) = Sp(N*,9))
rzeX
= ANCA (V" (4) = Z(4)= \ " (B)—¥9(B)))
z€X Ag2X Be2X

= A A (A (V(4) = F(A) =(N*(B) > %(B)))
r€X Be2X Ae2X

A N\ (N*(B)= FZ(B)) = (N*(B) » %(B)))

rzeX Be2X

> A A (ZB)%9B)

zeX Be2X
= Sr(Z:9).
(LYP): For all # € Z(X), we prove limy 7 (x) = Sp(Nf, . ,-#). By the
definition of limy, limy #(z) = Sg(N®, 7). It remains to verify that Nif | = N¥.
On one hand, for all A € 2%,

v

Niy (D= A\ (limy F(2) = F(4))
FeFL(X)
< limy N*(z) — N®(A)
N*(A).

On the other hand,

/\  (imy Z(2) - F(A))
FeFL(X)
- A ( A (N””(B) - 9(3)) - f(A))
FeFL(X) Be2X
N (N7(A) = F(4) = F(A))
FeFrL(X)
N*(A).

Y

v
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From this, the result follows by a standard argument. O

In view of the above theorem, if N is an L—fuzzifying neighborhood structure,
then there exists a principle L—ordered fuzzifying convergence structure limy on X.
Moreover, Nim, is also an L—fuzzifying neighborhood structure and Ny, = N.
Conversely, we have the following theorem.

Theorem 5.4. Iflim is a principle L—ordered fuzzifying convergence structure on
X, then limp,, = lim.
Proof. For all # € Z#(X),z € X, by (LYP), we have,

limy, Z(z)= A (N;;m(A) —>£Z(A)) = Sp(NE | Z) = lim F(z). O

lim?»
Ae2X

With respect to Theorem 5.3 and Theorem 5.4, we have a one-one correspondence
between the objects of L-INGH and L—POFYC. The following theorem is about
the relation between morphisms of them.

Theorem 5.5. Let (X, limX),(Y, limy) be principle L—ordered fuzzifying conver-
gence spaces, (X, N1),(Y, Na) be L—fuzzifying neighborhood spaces, then we have
(1) If f - (X, 1im™) = (Y, lim"") is continuous, then f : (X, Nyux ) — (Y, Ny )
is also continuous;
(2) If f:(X,N1) — (Y, Na) is continuous, then f : (X, limﬁl) — (Y, limxz) is
also continuous.

Proof. (1) By the fact that f : (X,lim™) — (¥,;lim") is continuous, we have
Vee X, U e2Y,
N (F7(U) A (i Z @) = 77 )))
FeFL(X)

A (i 522 (@) - )W)

FEFL(X)

A (1Y g(s@) - 9))
GeFrL(Y)
= NSO,

limY

Y

IV

as desired.
(2) Conversely, by the fact that f : (X, Ny) — (Y, N2) is continuous, we have
VF € Fp(X),z € X,

lim, f7(2) (@) = N\ (MYB) - 7 (2)B)

Be2Y

> A\ (Ni(B) - #(7(B))
Be2Y

> N\ (Vi) - # ()
Ae2X

= limﬁ1 F(z),


www.SID.ir

158 W. Wu and J. Fang

as desired. 0

By Theorems 5.3, 5.4 and 5.5, we actually have proved the following comprehen-
sive theorem.

Theorem 5.6. L-NGH s isomorphic to L-POFYC.

Let X be a set. A fibre on X of the category of L—fuzzifying neighborhood
spaces is denoted by PrFNyg,(X). An order “ <” on PrFNg,(X) can be defined
by

N'<N?* & Vee X,Ae2¥ NJ(A) < NZ(A).
A fibre on X of the category of principle L—ordered fuzzifying convergence spaces
is denoted by PFYCpL(X). An order “ < 7 on PFYCL(X) can be defined as
follows:
lim; <limy & V.7 € Z(X),z € X, limy .7 (2) < limy .7 ().
Then we have the following result.
Theorem 5.7. (PFYCL(X), <) and (PrFN(X), <) are isomorphic.

Proof. Define a mapping: h: PFYCL(X) — PrFNL(X), ¥.lim € PFYCL (X), h(lim) =
Niim, and a mapping: k : PrFNp(X) — PFYCL(X), V N € PrFNL(X), k(N) =
limy . It has been verified in Theorems 5.3 and 5.4 that hok = idprrpNy (x), ko h =
idprycy (x)- S0 h and k are both bijective. Furthermore, k& = hlL.

(1) For all lim,limy € PFYCy,(X), if lim; < limy, then for all z € X, A € 2%,

Ny (4) = A (lim Z(@) » 7 (1)
FeFr(X)
A (nngf(x) - y(A))
FEeTFL(X)
= Niim,(A).
S0, Mim; < Niim,. 1.e. h(limy) < h(lims). Therefore, h is an order preserving map.

(2) For all Ny, No € PrFNy,(X), if N7 < Na, then for all & € Z(X),z € X,
limy, Z(z) = [\ (N{(4) = .Z(4))
F(A) - F(A

Aeg2X (
A )

Aeg2X
= limy, Z#(z).

IN

v

Ny

Hence, limy, < limy,, i.e. h=1(N1) < h71(N2). So h1 is also an order preserving

mapping.
From the above proof, we conclude that (PFYCy,(X), <) and (PrFNy,(X), <)
are isomorphic. (I

At the end of this section, we propose the following results.
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Theorem 5.8. The category L—POFYC is a reflective subcategory of L—OFYC.
Proof. Let (X,lim) € L-OFYC and Er— = { lim | (X,lim) € L—POFYC, lim <

lim
lim}. Note that Fy— is not empty because it always contains lim,,. Then we can
construct a principal L—ordered fuzzifying convergence structure lim, : Z(X) —
LX as follows: For all # € Z1(X), v € X, lim, Z(z) = /\limEEE lim .% (). From
this, we have

(1) idx : (X,lim) — (X, lim,) is trivially continuous;

(2) For a principal L—ordered fuzzifying convergence space (Y, limy)7 if f:
(X,lim) — (Y, limY) is a continuous mapping, then f : (X,lim.) — (Y, lim"")
is also continuous.

From the above facts, we immediately obtain that L—POFYC isa full reflective
subcategory in L-OFYC. (]

Corollary 5.9. The category L—-POFYC is topological.

6. The Relations Between L—fuzzifying Topological Spaces and
Topological L—ordered Fuzzifying Convergence Spaces

In this section, we define another important/subcategory of L—OFYC: the cate-
gory of topological L—ordered fuzzifying convergence spaces. We will find out that
the category mentioned above is isomorphic toL—FYS and to L—TNGH in case
of a completely distributive lattice L. Furthermore, each fibre on X of the category
of topological L—ordered fuzzifying convergence spaces is isomorphic to that of
L—fuzzifying topological spaces and. that of topological L—fuzzifying neighborhood
spaces.

Definition 6.1. Let (X,lim) € L—-POFYC, if in addition the mapping lim :
F1(X) — L satisfies the following axiom:

LymywU e2®, Ng ()< /A ML),
zeVCU yeV

then lim is called a topological L—ordered fuzzifying convergence structure, and
(X,lim) is a topological L—ordered fuzzifying convergence space. The full subcat-
egory of L-OFYC consisting of all topological L—ordered fuzzifying convergence
spaces is denoted by L—-TOFYC.

If lim.is a topological L—ordered fuzzifying convergence structure, then a nice
characterization of L—fuzzifying topologies is possible. We need two lemmas for
preparation.

Lemma 6.2. Let (X,N) be a topological L—fuzzifying neighborhood space, then
(X, limy) is a topological L—ordered fuzzifying convergence space.

Proof. As for (X, N) is a topological L—fuzzifying neighborhood space, (X, N)
is an L—fuzzifying neighborhood space. By Theorem 5.3, we see N = Niim, -
For N is a topological L—fuzzifying neighborhood structure, we know for all z €
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X, VU € 2%, N*(U) < V,evcr Nyev NY(V). Therefore, Ny, satisfies (LYT).
With Definition 6.1, the lemma holds. U

Lemma 6.3. Let (X,lim) € L-TOFYC, then there exists an L—fuzzifying topol-
ogy T on X such that lim, = lim .

Proof. Firstly, by Definition 6.1, (X,lim) € L-TOFYC implies that Ny, satisfies
(N1) — (N4).

Secondly, let 7 : 2% — L, VA € 2% 7(A) = A,c4 N, (A). It can be easily
proved that 7 is an L—fuzzifying topology on X. Moreover, N, = Nyy,. In fact, for

all z € X, A € 2%, we have by the axiom (LYT),
N =\ (B

z€BCA
zeBCAyEB
— NEL(A) (LYT)
With this and (LYP), we obtain for all # € Zp(X), z € X, lim, Z(z) =
SF(N‘IL'E7 y) = SF(NITHNLQ) = hmy(x)
Therefore, lim, = lim holds. (I

Lemmas 6.2, 6.3 together with the relations between topological L—fuzzifying
neighborhood spaces and L—fuzzifying topological spaces in case that L is a com-
pletely distributive lattice show the following result.

Theorem 6.4. If L is a completely distributive lattice, then L—FYS, L-TOFYC
and L—TNGH are isomorphic to each other.

We denote a fibre on X of the category of L—fuzzifying topological spaces by
FYL(X), and an order “ <7 onit is defined as follows: V 71,72 € FYL(X),

T, < Ty & VA e 2X,T1(A) < TQ(A).

Denote a fibre on X of the category of topological L—fuzzifying neighborhood
spaces by FNy(X) and a fibre on X of the category of topological L—ordered
fuzzifying convergence spaces by TFYCy,(X). In the same way as in the proof of
Theorem 5.7, we obtain the following theorem trivially, and leave the straightfor-
ward proof for the interested reader.

Theorem 6.5. (FNL(X), <), (FYL(X),<), (TFYC(X), <) are isomorphic.
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