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NON-FRAGILE GUARANTEED COST CONTROL OF

T-S FUZZY TIME-VARYING DELAY SYSTEMS WITH

LOCAL BILINEAR MODELS

J. M. LI AND G. ZHANG

Abstract. This paper focuses on the non-fragile guaranteed cost control

problem for a class of T-S fuzzy time-varying delay systems with local bi-
linear models. The objective is to design a non-fragile guaranteed cost state
feedback controller via the parallel distributed compensation (PDC) approach

such that the closed-loop system is delay-dependent asymptotically stable and
the closed-loop performance is no more than a certain upper bound in the
presence of the additive controller gain perturbations. A sufficient condition
for the existence of such non-fragile guaranteed cost controllers is derived via

the linear matrix inequality (LMI) approach and the design problem of the
fuzzy controller is formulated in term of LMIs. The simulation examples show
that the proposed approach is effective.

1. Introduction

In recent years, T-S (Takagi- Sugeno) model-based fuzzy control has attracted
wide attention, essentially because the fuzzy model is an effective and flexible tool
for control of nonlinear systems [1, 5, 11, 22, 24, 27, 35, 37, 38]. The T-S fuzzy model
is employed to represent or approximate a nonlinear system, which is described by a
family of fuzzy IF-THEN rules that represent local linear input-output relations of
the system. The overall fuzzy model of the system is achieved by smoothly blending
these local linear models together through membership functions. Therefore, it has
a convenient dynamic structure so that some well-established linear systems theories
can be easily applied for theoretical analysis and design of the overall closed-loop
controlled system. The control design is carried out based on the fuzzy model via
the so-called parallel distributed compensation (PDC) scheme [1, 11, 27, 38]. The
idea is that for each local linear model, a linear feedback control is designed and
the resulting overall controller, which is nonlinear in general, is fuzzy blending of
each individual linear controller. Just because of this, T-S fuzzy model has been
paid considerable attention and is widely used to the control design of nonlinear
systems.
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In practical applications, time-delay often occur in many dynamic systems such
as biological systems, network systems, and so on. It is shown that the existence
of delays usually becomes the source of instability and deteriorating performance
of systems. In recent years, some authors have paid their attention to control of
nonlinear systems with time-delay by using T-S fuzzy models [1, 5, 11, 35, 38].
The existing results can be classified into two types: delay-independent results [38]
and delay-dependent results [1, 5, 11, 13, 27, 35]. The former is irrespective of the
delay size, whereas the latter usually contains the delay information. When some
information about the time-delay is known, for example, an upper bound of time-
delay, or upper bounds of both time-vary delay and its derivative are known, delay-
dependent results are more appropriated and generally performance better than
delay-independent conditions [1, 5, 6, 11, 27, 35]. It is worth pointing out that to
derive delay-dependent results, some model transformations were usually performed
to the original system, and thus, an inequality was inevitably employed to bound
the inner product between two vectors, which gave rise to possible conservatism. It
should be pointed out that all the aforementioned works did not take into account
the effect of the control input delays on the systems. The results therein are not
applicable to systems with input delay. Recently, some controller design approaches
have been presented for systems with input delay, see [4, 18, 32, 2, 3] for fuzzy T-S
systems and [33, 15, 8] for non-fuzzy systems and the references therein. All of
these results are required to know the exact delay values in the implementation.

On the other hand, imprecision in controller implementation caused by finite
word length in any digital systems or additional turning of parameters in the final
controller implementation is often unavoidable. In this case, the controllers are
very sensitive, or fragile, with respect to errors in the controllers’ coefficients [14].
Since the controller fragility is basically the performance deterioration of a feedback
control system due to inaccuracies in controller implementation, non-fragile control
problem has been important issues. Recently, the research of non-fragile control
has been paid a lot of attention and a series of productions have been obtained
[29, 30, 31, 34, 28, 33].

It is known that bilinear models can describe many physical systems and dy-
namical processes in engineering fields [9, 21]. There are two main advantages of
the bilinear system. One is that it provides a better approximation to a nonlinear
system than a linear one. Another one is that many real physical processes may
be appropriately modeled as bilinear systems when the linear models are inade-
quate. A good example of a bilinear system is the population of biological species
described by dθ

dt = θv, where v is the birth rate minus death rate, and θ denotes
the population. It is impossible to approximate the aforementioned equation by a
linear model [21].

Most of the existing results focus on the stability analysis and synthesis based
on T-S fuzzy model with linear local model. However, when a nonlinear system
has complex nonlinearities, the constructed T-S model will have to consist of a
number of fuzzy local models. This will lead to very heavy computational burden.
Considering the advantages of bilinear systems and T-S fuzzy control, the fuzzy
control based on the T-S fuzzy model with bilinear rule consequence was attracted
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the interest of researchers [19, 20, 25, 17]. The T-S fuzzy bilinear model may
be suitable for some classes of nonlinear plants [19]. The robust stabilization for
continuous-time fuzzy system with local bilinear model was studied in [19], and
then the result was extended to the fuzzy system with time-delay only in the state
[25]. The problem of robust stabilization for discrete-time fuzzy system with local
bilinear model was investigated in [20]. In [17], we extended the idea in [19] to
multiple input fuzzy bilinear systems with uncertainties, and proposed a robust H-
infinity control strategy. Very recently, a class of nonlinear systems is described by
T-S fuzzy models with nonlinear local models in [7], and a new fuzzy control scheme
with local nonlinear feedbacks is proposed, and the corresponding control synthesis
conditions are given in terms of solutions to a set of linear matrix inequalities
(LMIs). In contrast to the existing methods for fuzzy control synthesis, the new
proposed control design method is based on fewer fuzzy rules and less computational
burden. However, in [7], there is not considering the time-delay effects on the
system. The paper [25] is only considered the fuzzy system with the delay in the

state and the derivatives of time-delay, ḋ(t) < 1 is required. So far, the problem
of non-fragile guaranteed cost control for fuzzy system with local bilinear model
which has time-delay in both state and input has not been discussed.

Motivated by the above observation, in this paper, the problem of delay-dependent
non-fragile guaranteed cost control is studied for the fuzzy time-varying state and
input delay systems with local bilinear model. Based on the PDC scheme, new
delay-dependent stabilization conditions for the closed-loop fuzzy systems are de-
rived. No model transformation is involved in the derivation. The merit of the
proposed conditions lies in its reduced conservatism, which is achieved by circum-
venting the utilization of some bounding inequalities for the cross product between
two vectors as in [25]. The three main contributions of this paper are the
following: 1) a non-fragile guaranteed cost controller is presented for
the fuzzy system with time-varying delay in both state and input; 2)
some free weighting matrices are introduced in the derivation process,
which the constraint of the derivatives of time-delay, ḋ(t) < 1 is elimi-
nated; 3) the delay-dependent stability conditions for the fuzzy system
are described by LMIs. Finally, simulation examples are given to illustrate the
effectiveness of the obtained results.

The paper is organized as follows. Section 2 introduces the fuzzy delay system
with local bilinear model, and non-fragile control law for such system is designed
based on the parallel distributed compensation approach in section 3. Results of
non-fragile guaranteed cost control are given in section 4. Two simulation examples
are used to illustrate the effectiveness of the proposed method in section 5, which
is followed by conclusions in section 6.

Notation 1: Throughout this paper, a real symmetric matrix P > 0 (P ≥
0)denotes P being a positive definite (or positive semi-definite) matrix. In sym-
metric block matrices, we use an asterisk (∗) to represent a term that is induced
by symmetry and diag(· · · ) stands for a block-diagonal matrix. The notion

∑s
i,j=1
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means
∑s

i=1

∑s
j=1. Matrices, if the dimensions are not explicitly stated, are as-

sumed to have compatible dimensions for algebraic operations.

2. System Description and Assumptions

In this section, we introduce the T-S fuzzy time-delay system with local bilinear
model. The i-th rule of the fuzzy system is represented by the following form

Plant Rule i :
IF ϑ1(t) is Fi1 and ... and ϑv(t) is Fiv

THEN ẋ(t) = Aix(t) +Adix(t− d(t)) +Biu(t)
+Bdiu(t− d(t)) +Nix(t)u(t) +Ndix(t− d(t))u(t− d(t))
x(t) = φ(t), t ∈ [−τ, 0] i = 1, 2, ..., s (1)

where Fij is the fuzzy set, s is the number of fuzzy rules, x(t) ∈ Rn is the state
vector, and u(t) ∈ R is the control input, ϑ1(t), ϑ2(t), ..., ϑv(t) are the premise
variables. It is assumed that the premise variables do not depend on the input u(t).
Ai, Adi, Ni, Ndi ∈ Rn×n, Bi, Bdi ∈ Rn×1 denote the system coefficient matrices
with appropriate dimensions. d(t) is a time-varying differentiable function that
satisfies 0 ≤ d(t) ≤ τ , where τ is a real positive constant as the upper bound of the

time-varying delay. It is also assumed that ḋ(t) ≤ σ and σ is a known constant.
The initial condition φ(t) is a continuous function of t, t ∈ [−τ, 0].

Remark 2.1. The fuzzy system with time-varying delay in both state and input
will be investigated in this paper, which is different from the system in [25]. In
[25], only state time-varying delay is considered. And also, here, we assume that
the derivative of time-varying delay is less than or equal to a known constant that
may be greater than 1, this assumption is relaxed the assumption on time-varying
delay in [25].

By using singleton fuzzifier, product inferred, and weighted defuzzifier, the fuzzy
system can be expressed by the following globe model:

ẋ(t) =
∑s

i=1 hi(ϑ(t))[Aix(t) +Adix(t− d(t)) +Biu(t) +Bdiu(t− d(t))
+Nix(t)u(t) +Ndix(t− d(t))u(t− d(t))] (2)

where hi(ϑ(t)) = ωi(ϑ(t))/
∑s

i=1 ωi(ϑ(t)), ωi(ϑ(t)) =
∏v

j=1 µij(ϑ(t)), µij(ϑ(t)) is

the grade of membership of ϑi(t)in Fij . In this paper, it is assumed that ωi(ϑ(t)) ≥
0,

∑s
i=1 ωi(ϑ(t)) > 0for all t. Then, we have the following conditions hi(ϑ(t)) ≥ 0,∑s

i=1 hi(ϑ(t)) = 1 for all t.
In consequent, we use abbreviation hi, hdi, xd(t), ud(t) to replace hi(ϑ(t)),

hi(ϑ(t− d(t))), x(t− d(t)), u(t− d(t)) respectively, for convenience.
The objective of this paper is to design a state-feedback non-fragile guaranteed

cost control law for the fuzzy system (2).

3. Non-fragile Guaranteed Cost Controller Design

Extending the design concept in [25], we give the following non-fragile fuzzy con-
trol law in the presence of the additive controller gain perturbations:

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

Non-Fragile Guaranteed Cost Control of T-S Fuzzy Time-varying Delay System ... 47

IF ϑ1(t) is F i
1 and ... and ϑv(t) is F i

v

THEN u(t) = ρ(Ki+∆Ki(t))x(t)√
1+xT (Ki+∆Ki(t))T (Ki+∆Ki(t))x

= ρ sin θi = ρ cos θi(Ki +∆Ki(t))x(t) (3)

where ρ > 0 is a scalar to be assigned, and Ki ∈ R1×n is a local controller gain
to be determined. ∆Ki(t) represents the additive controller gain perturbations of
the form ∆Ki(t) = HiFi(t)Eki with Hi and Eki being known constant matrices,
and Fi(t) the uncertain parameter matrix satisfying FT

i (t)Fi(t) ≤ I. sin θi =
K̄ix(t)√

1+xT K̄T
i K̄ix

, cos θi = 1√
1+xT K̄T

i K̄ix
, θi ∈ [−0.5π, 0.5π] , i = 1, 2, ..., s, K̄i = Ki +

∆Ki(t) = Ki +HiFi(t)Eki.

The overall fuzzy control law can be represented by

u(t) =
∑s

i=1
hi

ρK̄ix(t)√
1 + xT K̄T

i K̄ix
=

∑s

i=1
hiρ sin θi =

∑s

i=1
hiρ cos θiK̄ix(t) (4)

When there exists an input delay d(t), we have that

ud(t) =
∑s

i=1
hdiρ sinϕi =

∑s

i=1
hdiρ cosϕiK̃ixd(t) (5)

where sinφi =
K̃ixd(t)√

1+xT
d K̃T

i K̃ixd

, cosφi =
1√

1+xT
d K̃T

i K̃ixd

, φi ∈ [−π
2 ,

π
2 ], i = 1, 2, ..., s,

K̃i = Ki +∆Ki(t− d(t)) = Ki +HiFi(t− d(t))Eki.

So, it is natural and necessary to make an assumption that the functions hi(ϑ(t))
are well defined for all t ∈ [−τ, 0], and satisfy the following properties

hi(ϑ(t− d(t))) ≥ 0, fori=1,2,. . . , s, and
∑s

i=1 hi(ϑ(t− d(t))) = 1.
By substituting (4-5) into (2), the closed-loop system can be given by

ẋ(t) =
∑s

i,j,l=1
hihjhdl(Λijx(t) + Λdilxd(t)) (6)

where Λij = Ai+ρ sin θjNi+ρ cos θjBiK̄j , Λdil = Adi+ρ sinϕlNdi+ρ cosϕlBdiK̃l.

Remark 3.1. In time-delay fuzzy model (2), we take the identical time-varying
delay in both state and input. In fact, the fuzzy non-fragile control law (4) is
readily extended to the case of the fuzzy system with different time-varying delays
in state and input. In this case, we say the input time-delay is g (t), where g(t) is
a time-varying differentiable function that satisfies 0 ≤ g(t) ≤ ϖ, where ϖ is a real
positive constant as an upper bound of the time-varying delay. It is also assumed
that ġ(t) ≤ υ and υ is a known constant. We can modify the time-delay control
term in (3) as follows

ug(t) =
ρ(Ki +∆Ki)xg(t)√

1 + xT
g (Ki +∆Ki)T (Ki +∆Ki)xg

= ρ sinφi = ρ cosφi(Ki+∆Ki)xg(t)

where sinφi =
(Ki+∆Ki)xg(t)√

1+xT
g (Ki+∆Ki)T (Ki+∆Ki)xg

, cosφi =
1√

1+xT
g (Ki+∆Ki)T (Ki+∆Ki)xg

,
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and ug(t), xg(t) stand for u(t-g(t)), x(t-g(t)), respectively.

Remark 3.2. In the paper, we only consider the presence of the additive controller
gain perturbations in the non-fragile control law. It can be easily extended to
multiplicative controller gain variations case via minor modification [29, 33].

Remark 3.3. In system model (1), for statement in brief and symbol simplicity,
we only consider the single input case. In [17], a robust H-infinity control strategy
for multiple inputs T-S fuzzy bilinear systems with uncertainties has proposed,
a sufficient condition in term of LMIs is derived to guarantee the robust global
stability of the overall fuzzy system. Similar to [17], the proposed approach in this
paper can be easily extended to the multiple input case.

Given positive-definite symmetric matrix S ∈ Rn×n and W > 0, we consider the
cost function

J =

∫ ∞

0

[xT (t)Sx(t) +Wu2(t)]dt (7)

Definition 3.4. Consider the system (2). If there exists a fuzzy non-fragile control
law (4) and a scalar J0 such that the closed-loop system is asymptotically stable
and the closed-loop value of the cost function (7) satisfies J ≤ J0, then J0 is said to
be a guaranteed cost and the control law u(t) is said to be a non-fragile guaranteed
cost control law for (2).

4. Analysis of Stability for the Closed-loop System

First, the following lemmas are presented which will be used in the paper.

Lemma 4.1. [5] Given any matrices M and N with appropriate dimensions such
that ε > 0, we have MTN +NTM ≤ εMTM + ε−1NTN.

Lemma 4.2. [7] Given constant matrices G,E and a symmetric constant matrix S
of appropriate dimensions. The inequality S +GFE + ETFTGT < 0 holds, where
F (t) satisfies FT (t)F (t) ≤ I if and only if, for some ε > 0, S+εGGT+ε−1ETE < 0.

The following theorem gives the sufficient conditions for the existence of the
non-fragile guaranteed cost controller for system (6) with additive controller gain
perturbations.

Theorem 4.3. Consider the system (6) associated with cost function (7). For
given controller gain factor ρ > 0, upper bound of the time-varying delay τ > 0 and
upper bound of its derivative σ > 0, if there exist matrices P > 0, Q > 0, R >
0, Ki, i = 1, 2, ..., s, X1, X2, X3, Y1, Y2, Y3 and scalar ε > 0 satisfying
the inequalities (8), the system (6) is asymptotically stable and the control law (4)

is a fuzzy non-fragile guaranteed cost control law for any 0 ≤ d(t) ≤ τ , and ḋ(t) ≤ σ.

Moreover, J ≤ J0 = xT (0)Px(0) +
∫ 0

−d(0)
xT (s)Qx(s)ds+

∫ 0

−τ

∫ 0

θ
ẋT (s)Rẋ(s)dsdθ.[

Tijl ∗
τXT −τR

]
< 0, i, j, l = 1, 2, ..., s (8)
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where

Tijl =

 T11,ij ∗ ∗
T21,i T22,il ∗
T31,i T32,i T33

 ,

T11,ij = Q+X1 +XT
1 + Y1Ai +AT

i Y
T
1 + S + 2ερ2Y1Y

T
1

+3ε−1NT
i Ni + 3ε−1(BiK̄j)

T (BiK̄j) + ρ2K̄T
i WK̄i,

T21,i = −XT
1 +X+

2 Y2Ai +AT
diY

T
1 , T31,i = P +X+

3 Y3A
−
i Y

T
1 ,

T22,il = (σ − 1)Q−X2 −XT
2 + Y2Adi +AT

diY
T
2 + 2ερ2Y2Y

T
2

+3ε−1NT
diNdi + 3ε−1(BdiK̃l)

T (BdiK̃l),
T32,i = −X+

3 Y3Adi − Y T
2 , T33 = −τR− Y3 − Y T

3 + 2ερ2Y3Y
T
3 . (9)

Proof. Take Lyapunov function candidate as

V (x(t), t) = xT (t)Px(t) +

∫ t

t−d(t)

xT (s)Qx(s)ds+

∫ 0

−τ

∫ t

t+θ

ẋT (s)Rẋ(s)dsdθ (10)

The time derivatives of V (x(t), t), along the trajectory of the system (6) is given
by

V̇ (x(t), t) = 2xT (t)Pẋ(t) + xT (t)Qx(t)− (1− ḋ(t))xT
d (t)Qxd(t)

+τ ẋT (t)Rẋ(t) −
∫ t

t−τ
ẋT (s)Rẋ(s)ds (11)

Define the free weighting matrices as X =
[
XT

1 XT
2 XT

3

]T
, Y =

[
Y T
1 Y T

2

Y T
3

]T
, where Xk ∈ Rn×n, Yk ∈ Rn×n, k = 1, 2, 3 will be determined in later.

Using the Leibniz-Newton formula and system equation (6), we have the follow-
ing identical equations

[xT (t)X1 + xT
d (t)X2 + ẋT (t)X3][x(t)− xd(t)−

∫ t

t−d(t)
ẋ(s)ds] ≡ 0∑s

i,j,l=1 hihjhdl[x
T (t)Y1 + xT

d (t)Y2 + ẋT (t)Y3]

×[Λijx(t) + Λdilxd(t)− ẋ(t)] ≡ 0 (12)

Then, substituting (12) into (11), yields

V̇ (x(t), t) = 2xT (t)P ẋ(t) + xT (t)Qx(t)− (1− ḋ(t))xT
d (t)Qxd(t)

+τ ẋT (t)Rẋ(t) −
∫ t

t−τ
ẋT (s)Rẋ(s)ds

+2ηT (t)X[x(t)− xd(t)−
∫ t

t−d(t)
ẋ(s)ds]

+2ηT (t)Y
∑s

i,j,l=1 hihjhdl[Λijx(t) + Λdilxd(t)− ẋ(t)]

≤ 2xT (t)P ẋ(t) + xT (t)Qx(t)− (1− σ)xT
d (t)Qxd(t) + τ ẋT (t)Rẋ(t)

−
∫ t

t−d(t)
ẋT (s)R(s)ẋ(s)ds+ 2ηT (t)X[x(t)− xd(t)−

∫ t

t−d(t)
ẋ(s)ds]

+2ηT (t)Y
∑s

i,j,l=1 hihjhdl[Λijx(t) + Λdilxd(t)− ẋ(t)] + xT (t)Sx(t)

+
∑s

i,j=1 hihjρ
2xT (t)K̄T

i cos θiWK̄j cos θjx(t)− [xT (t)Sx(t) +Wu2(t)] (13)

where η(t) =
[
xT (t), xT

d (t), ẋT (t)
]T

.
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Applying Lemma 4.1, we have the following inequalities

2xT (t)Y1Λijx(t) ≤ 2xT (t)Y1Aix(t) + ερ2xT (t)Y1Y
T
1 x(t)

+ε−1xT (t)(NT
i Ni + (K̄jBi)

T (BiK̄j))x(t),

2xT (t)Y1Λdilxd(t) ≤ 2xT (t)Y1Adixd(t) + ερ2xT (t)Y1Y
T
1 x(t)

+ε−1xT
d (t)(N

T
diNdi + (K̃lBdi)

T (BdiK̃l))xd(t),
2xT

d (t)Y2Λijx(t) ≤ 2xT
d (t)Y2Aix(t) + ερ2xT

d (t)Y2Y
T
2 xd(t)

+ε−1xT (t)(NT
i Ni + (K̄jBi)

T (BiK̄j))x(t),
2xT

d (t)Y2Λdilxd(t) ≤ 2xT
d (t)Y2Adixd(t) + ερ2xT

d (t)Y2Y
T
2 xd(t)

+ε−1xT
d (t)(N

T
diNdi + (K̃lBdi)

T (BdiK̃l))xd(t),
2ẋT (t)Y3Λijx(t) ≤ 2ẋT (t)Y3Aix(t) + ερ2ẋT (t)Y3Y

T
3 ẋ(t)

+ε−1xT (t)(NT
i N+

i (K̄jBi)
T (BiK̄j))x(t),

2ẋT (t)Y3Λdilxd(t) ≤ 2ẋT (t)Y3Adixd(t) + ερ2ẋT (t)Y3Y
T
3 ẋ(t)

+ε−1xT
d (t)(N

T
diNdi + (K̃lBdi)

T (BdiK̃l))xd(t).
(14)

Substituting (14) into (13), results in

V̇ (x(t), t) ≤
∑s

i,j,l=1 hihjhdlη
T (t)T̃ijlη(t)−

∫ t

t−d(t)
ẋT (s)Rẋ(s)ds

−2ηT (t)X
∫ t

t−d(t)
ẋ(s)ds − [xT (t)Sx(t) +Wu2(t)]

≤
∑s

i,j,l=1 hihjhdlη
T (t)(T̃ijl + τXR−1XT )η(t)−

∫ t

t−d(t)

(
ηT (t)X + ẋT (s)R

)
×R−1

(
ηT (t)X + ẋT (s)R

)T
ds− [xT (t)Sx(t) +Wu2(t)]

≤
∑s

i,j,l=1 hihjhdlη
T (t)

(
T̃ijl + τXR−1XT

)
η(t)− [xT (t)Sx(t) +Wu2(t)] (15)

where T̃ijl =

 T̃11,ij ∗ ∗
T21,i T22,il ∗
T31,i T32,i T33

 , T̃11,ij = T11,ij+ρ2K̄T
i cos θiWK̄j cos θj −

ρ2K̄T
i WK̄i.

In the light of the inequality

K̄T
i cos θiWK̄j cos θj + K̄T

j cos θjWK̄i cos θi ≤ K̄T
i WK̄i cos θ

2
i + K̄T

j WK̄j cos θ
2
j ,

and from (15), we obtain

V̇ (x(t), t) ≤
∑s

i,j,l=1 hihjhdlη
T (t)

(
Tijl + τXR−1XT

)
η(t)

−[xT (t)Sx(t) +Wu2(t)] (16)

Applying the Schur complement to (8) yields

Tijl + τXR−1XT < 0.

Therefore, it follows from (16) that

V̇ (x(t), t) ≤ −[xT (t)Sx(t) +Wu2(t)] < 0 (17)
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which implies that the system (6) is asymptotically stable.
Integrating (17) from 0 to T , produces∫ T

0

[xT (t)Sx(t) +Wu2(t)]dt ≤ −V (x(T ), T ) + V (x(0), 0) ≤ V (x(0), 0) (18)

sines V (x(t), t) ≥ 0 and V̇ (x(t), t) < 0, we have lim
T→∞

V (x(T ), T ) = c, where c is a

nonnegative constant. thus, noting (3.3) and (4.3), the following inequality can be
obtained

J ≤ xT (0)Px(0) +

∫ 0

−d(0)

xT (s)Qx(s)ds+

∫ 0

−τ

∫ 0

θ

ẋT (s)Rẋ(s)dsdθ (19)

This completes the proof. �
Remark 4.4. In the derivation of Theorem 4.3, the free weighting matrices Xk ∈
Rn×n, Yk ∈ Rn×n, k = 1, 2, 3 are introduced, the purpose of which is to reduce
conservatism in the existing delay-dependent stabilization conditions, see [25].

In the following section, we shall turn the conditions given in Theorem 4.3 into
linear matrix inequalities (LMIs). Under the assumption that Y1, Y2, Y3 are non-

singular, we can define the matrix Y −T
i = λZ, i = 1, 2, 3, Z = P−1, λ > 0.

Pre- and post-multiply (4.3) with Θ = diag{Y −1
1 , Y −1

2 , Y −1
3 , Y −1

3 } and ΘT =

diag{Y −T
1 , Y −T

2 , Y −T
3 , Y −T

3 }, respectively, and letting Q̄ = Y −1
1 QY −T

1 ,

R̄ = Y −1
3 RY −T

3 , X̄i = Y −1
i XiY

−T
i , i = 1, 2, 3, we obtain the following inequali-

ties (20) is equivalent to (8)
T̄11,ij ∗ ∗ ∗
T̄21,i T̄22,il ∗ ∗
T̄31,i T̄32,i T̄33 ∗
τX̄1 τX̄2 τX̄3 −τR̄

 < 0, i, j, l = 1, 2, ..., s (20)

where

T̄11,ij = Q̄+ X̄1 + X̄T
1 + λAiZ + λZAT

i + λ2ZSZ + 2ερ2I
+3ε−1λ2ZNT

i NZ
i + 3ε−1λ2(BiK̄jZ)T (BiK̄jZ) + ρ2λ2ZK̄T

i WK̄iZ,
T̄21,i = −X̄T

1 + X̄2 + λAiZ + λZAT
di,

T̄31,i = λ2Z + X̄3 + λAiZ − λZ,
T̄22,il = −(1− σ)Q̄− X̄2 − X̄T

2 + λAdiZ + λZAT
di + 2ερ2I

+ 3ε−1λ2ZNT
diNdiZ + 3ε−1λ2(BdiK̃lZ)T (BdiK̃lZ),

T̄32,i = −X̄3 + λAdiZ − λZ,
T̄33 = −τR̄− 2λZ + 2ερ2I. (21)
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Applying the Schur complement to (20), results in

Γijl =



¯̄T11,i ∗ ∗ ∗ ∗
T̄21,i

¯̄T22,i ∗ ∗ ∗
T̄31,i T̄32,i T̄33 ∗ ∗
τX̄1 τX̄2 τX̄3 −τR̄ ∗
λZ 0 0 0 −S−1

λNiZ 0 0 0 0
λBiK̄jZ 0 0 0 0
ρλK̄iZ 0 0 0 0

0 λBdiK̃lZ 0 0 0
0 λNdiZ 0 0 0

(22)

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

− ε
3I ∗ ∗ ∗ ∗
0 − ε

3I ∗ ∗ ∗
0 0 −W−1 ∗ ∗
0 0 0 − ε

3I ∗
0 0 0 0 − ε

3I


< 0, i, j, l = 1, 2, . . . s,

where T11,i = Q̄ + X̄1 + X̄T
1 + λAiZ + λZAT

i + 2ερ2I, and T22,i = −(1 − σ)Q̄ −

X̄2 − X̄T
2 + λAdiZ + λZAT

di + 2ερ2I.

Obviously, the closed-loop fuzzy system (6) is asymptotically stable, if for some
scalars λ > 0, there exist matrices Z > 0, Q̄ > 0, R̄ > 0 and X̄1, X̄2, X̄3, Ki, i =
1, 2, .., s satisfying the inequalities (22).

Theorem 4.5. Consider the system (6) associated with cost function (7). For
given controller gain factor ρ > 0, upper bound of the time-varying delay τ > 0
and upper bound of its derivative σ > 0 and the factor of free weighting matrices
λ > 0, scalar constant δ > 0, if there exist matrices Z > 0, Q̄ > 0, R̄ > 0 and
X̄1, X̄2, X̄3, Mi ∈ R1×n, i = 1, 2, .., s and scalar ε > 0 satisfying the following
LMIs (23), system (6) is asymptotically stable and the control law (4) is a fuzzy
non-fragile guaranteed cost control law.[

Φ1,ijl ∗
Φ2,ijl Φ3

]
< 0, i, j, l = 1, 2, ..., s (23)

Moreover, the feedback gains are given by

Ki = MiZ
−1, i = 1, 2, ..., s

(24)
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and

J ≤ J0 = xT (0)Z−1x(0) +
∫ 0

−d(0)
xT (s) 1

λ2Z
−1Q̄Z−1x(s)ds

+
∫ 0

−τ

∫ 0

θ
ẋT (s) 1

λ2Z
−1R̄Z−1ẋ(s)dsdθ (25)

where

Φ1,ijl =



¯̄T11,i ∗ ∗ ∗ ∗
T̄21,i

¯̄T22,i ∗ ∗ ∗
T̄31,i T̄32,i T̄33 ∗ ∗
τX̄1 τX̄2 τX̄3 −τR̄ ∗
λZ 0 0 0 −S−1

λNiZ 0 0 0 0
λBiMj 0 0 0 0
ρλMi 0 0 0 0
0 λBdiMl 0 0 0
0 λNdiZ 0 0 0

(26)

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

− ε
3I ∗ ∗ ∗ ∗
0 − ε

3I ∗ ∗ ∗
0 0 −W−1 ∗ ∗
0 0 0 − ε

3I ∗
0 0 0 0 − ε

3I


,

Φ2,ijl =


λEkjZ 0 0 0 0 0 0 0 0 0
λEkiZ 0 0 0 0 0 0 0 0 0
0 λEklZ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 (BiHj)

T 0 0 0
0 0 0 0 0 0 0 ρHT

i 0 0
0 0 0 0 0 0 0 0 (BdiHl)

T 0

 ,

Φ3 = diag{−δI,−δI,−δI,−δ−1I,−δ−1I,−δ−1I}.

Proof. We prove the inequality (23) implies the inequality (20). Applying the Schur
complement to (23), results in
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Φ1,ijl + δ



0 0
0 0
0 0
0 0
0 0
0 0
BiHj 0
0 ρHi

0 0
0 0



[
0 0 0 0 0 0 (BiHj)

T 0 0 0
0 0 0 0 0 0 0 ρHT

i 0 0

]
(27)

+δ−1



(λEkjZ)T (λEkiZ)T

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0


×

[
λEkjZ 0 0 0 0 0 0 0 0 0
λEkiZ 0 0 0 0 0 0 0 0 0

]

+δ



0
0
0
0
0
0
0
0

BdiHl

0


[

0 0 0 0 0 0 0 0 (BdiHl)
T 0

]

+δ−1



0
(λEklZ)T

0
0
0
0
0
0
0
0


× [ 0 λEklZ 0 0 0 0 0 0 0 0 ] < 0

Using Lemma 4.2 and noting thatMi = KiZ, by the condition (27), the following

inequality, that is, (22) holds
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Φ1,ijl +



0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗
λBi∆Kj(t)Z 0 0 0 0 0 0 ∗ ∗ ∗
ρλ∆Ki(t)Z 0 0 0 0 0 0 0 ∗ ∗
0 λBdi∆Kl(t− d(t))Z 0 0 0 0 0 0 0 ∗
0 0 0 0 0 0 0 0 0 0


= Γijl < 0. (28)

Therefore, it follows from Theorem 4.3 that the system (6) is asymptotically stable
and the control law (4) is a fuzzy non-fragile guaranteed cost control law. Thus,
we complete the proof. �

Now, consider the upper bound of cost function (25). Similar to [28], we sup-
pose that there exist positive scalars α1, α2, α3 such that Z−1 ≤ α1I,

1
λ2PQ̄P ≤

α2I,
1
λ2PR̄P ≤ α1I. Then define SQ = Q̄−1, SR = R̄−1, by Schur complement

lemma, we have the following inequalities[
−α1I I
I −Z

]
≤ 0,

[
−α2I

1
λP

1
λP −SQ

]
≤ 0,

[
−α3I

1
λP

1
λP −SR

]
≤ 0, (29)

[
Z I
I P

]
≥ 0,

[
SQ I
I Q̄

]
≥ 0,

[
SR I
I R̄

]
≥ 0

Using the idea of the cone complementary linear algorithm in [6], we can obtain
the solution of the minimization problem of upper bound of the value of the cost
function (25) as follows

minimize {trace(PZ + SQQ̄+ SRR̄) + α1x
T (0)x(0)

+α2

∫ 0

−d(0)
xT (s)x(s)ds + α3

∫ 0

−τ

∫ 0

θ
ẋT (s)ẋ(s)dsdθ}

subject to (4.5), (4), ε> 0, Q̄ > 0, R̄ > 0, Z > 0, αi > 0, i = 1, 2, 3. (30)

Using the following cone complementary linearization (CCL) algorithm [6] can it-
eratively solve the minimization problem (30).

5. Simulation Examples

In this section, the proposed approach is applied to the following two examples
to verify its effectiveness. In the first example, a pure numerical example is given
to show the implement of the proposed method. The second example is a practical
application of the Van de Vusse system.
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Example 5.1. Consider a fuzzy time-delay system with local bilinear model

R1 : IF x1 is L1

THEN ẋ(t) = A1x(t) +Ad1xd(t) +B1u(t) +Bd1ud(t)
+N1x(t)u(t) +Nd1xd(t)ud(t)
R2 : IF x1 is L2

THEN ẋ(t) = A2x(t) +Ad2xd(t) +B2u(t) +Bd2ud(t)
+N2x(t)u(t) +Nd2xd(t)ud(t) (31)

where

A1 =

[
-45 7
5 37

]
, A2 =

[
-32 9
3 38

]
;N1 = N2 =

[
−3 0
0 −3

]
;

B1 =

[
3
1

]
, B2 =

[
1
1

]
;Bd1 = Bd2 =

[
−1
0

]
;Ad1 =

[
10 0
5 2

]
,

Ad2 =

[
5 0
0 2

]
;Nd1 =

[
0.5 0
0 0.2

]
, Nd2 =

[
0.3 0
0 0.5

]
.

The cost function associated with this system is given by S =

[
1 0
0 1

]
, W = 1.

The controller gain perturbation ∆K(t) is of the additive form and is given by
H1 = 0.1, H2 = 0.2, Ek1 = [0.05 -0.01] , Ek2 =

[
0.01 0.01

]
.The membership

functions are chosen as µL1(x1) =
1

1+exp(−2x1(t))
, µL2(x1) = 1− µL1(x1).

We considered the cost function (25) and by letting ρ = 0.6, τ = 3.5, σ =
1.5, δ = 0.11, λ = 2, solve the optimization problem (30), obtain the feasible
solution as follows

Z−1 = P =

[
8.0143 −0.7826
−0.7826 5.1804

]
;α1 = 8.5, Q̄ =

[
0.9050 0.5001
0.5001 0.9879

]
;

K1 = [−0.2013,−0.4564];K2 = [−1.0313,−0.5312];

α2 = 15, R̄ =

[
0.8457 −0.6487
−0.6487 1.1356

]
;α3 = 23, ε = 1.3646;

With the time-delay d(t) = 2 + 1.5 sin t and the initial function ϕ(t) = [0.8 −
0.6]T , −τ ≤ t ≤ 0, the simulation result on the non-fragile guaranteed cost control
is shown in Figure 1 and Figure 2. The state trajectories and control curve are
shown in Figure 1 and Figure 2, respectively. With the control law, the closed-loop
system is asymptotically stable and an upper bound of cost function (7) of the
closed-loop system is J0 = 125.3769.

Example 5.2. Consider the dynamics of an isothermal continuous stirred tank
reactor for the Van de Vusse

ẋ1 = −50x1 − 10x3
1 + u(10− x1) + u(t− d) + u(t− d)(0.5x1(t− d)

+0.2x2(t− d)) + 5x2(t− d)
ẋ2 = 50x1 − 100x2 − u(t− d) + u(t− d)(0.3x1(t− d)− 0.2x2(t− d))
+10x2(t− d)− 5x1(t− d) (32)
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Figure 1. State Responses of System
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Figure 2. Control Trajectory of System

From the system equation (32), some equilibrium points are tabulated in Table 1.
According to these equilibrium points, [xe ue], which are also chosen as the

desired operating points, [x
′

e u
′

e], we can use the similar modeling method that is
described in [19].

xTe xTe(t−d) ue ue(t−d)

[2.0422 1.2178] [2.0422 1.2178] 20.3077 20.3077
[3.6626 2.5443] [3.6626 2.5443] 77.7272 77.7272
[5.9543 5.5403] [5.9543 5.5403] 296.2414 296.2414

Table 1. Data for Equilibrium Points

Thus, the system (32) can be represented by
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R1 : IF x1 is about 2.0422
THEN ẋδ(t) = A1xδ(t) +Ad1xdδ(t) +B1uδ(t) +Bd1udδ(t)
+N1xδ(t)uδ(t) +Nd1xdδ(t)udδ(t)
R2 : IF x1 is about 3.6626
THEN ẋδ(t) = A2xδ(t) +Ad2xdδ(t) +B2uδ(t) +Bd2udδ(t)
+N2xδ(t)uδ(t) +Nd2xdδ(t)udδ(t)
R3 : IF x1 is about 5.9543
THEN ẋδ(t) = A3xδ(t) +Ad3xdδ(t) +B3uδ(t) +Bd3udδ(t)
+N3xδ(t)uδ(t) +Nd3xdδ(t)udδ(t) (33)

where

A1 =

[
−75.2383 7.7946
50 −100

]
, A2 =

[
-98.3005 11.7315
50 −100

]
,

A3 =

[
−122.1228 8.8577
50 −100

]
;N1 = N2 = N3 =

[
−1 0
0 −1

]
;

B1 = B2 = B3 =

[
10
0

]
; Ad1 = Ad2 = Ad3 =

[
0 5
10 −5

]
,

Nd1 = Nd2 = Nd3 =

[
0.5 0.2
0.3 −0.2

]
; Bd1 = Bd2 = Bd3 =

[
1
0

]
;

xδ = x(t)− x
′
e, uδ = u(t)− u

′
e, xdδ = x(t− d)− x

′
de, udδ = u(t− d)− u

′
de.

The cost function associated with this system is given by S =

[
1 0
0 1

]
, W = 1.

The controller gain perturbation ∆K of the additive form is give with H1 = H2 =
H3 = 0.1, Ek1 = [0.05 -0.01] , Ek2 = [0.02 0.01] , Ek3 = [−0.01 0].
The membership functions of state x1 are shown in Figure 3.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

x
1

Figure 3. Membership Functions

Then, solving LMIs (23) for ρ = 0.45, λ = 1.02 and δ = 0.11, τ = 2, σ = 0,
gives the following feasible solution:
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P =

[
7.5659 −1.3007
−1.3007 6.4906

]
, Q =

[
14.1872 −1.9381
−1.9381 13.0104

]
,

R =

[
8.3691 −1.3053
−1.3053 7.0523

]
, ε = 1.8043, K1 = [−0.4233− 0.5031],

K2 = [−0.5961− 0.7049], K3 = [−0.4593− 0.3874].

Figure 4-Figure 6 illustrate the simulation results of applying the non-fragile fuzzy

controller to the system (33) with x
′

e =
[
3.6626 2.5443

]T
and u

′

e = 77.7272

under initial condition ϕ(t) = [1.2 -1.8]T , t ∈ [−2, 0]. It can be seen that with
the fuzzy control law the closed-loop system is asymptotically stable and an upper
bound of the guaranteed cost is J0 = 292.0399. The simulation results show that
the fuzzy non-fragile guaranteed controller proposed in this paper is effective.
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Figure 4. State Responses of x1(t)
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Figure 5. State Responses of x2(t)
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Figure 6. Control Trajectory of System

6. Conclusions

In this paper, the problem of non-fragile guaranteed cost control for a class of
fuzzy time-varying delay systems with local bilinear models is investigated. The
fuzzy controller, which guarantees not only the asymptotically stability of the
closed-loop system but also the cost function bound constraint, has been provided
in terms of the feasible solutions to the LMIs. Two simulation examples are in-
cluded to show the effectiveness of the proposed approach. The robust non-fragile
guaranteed cost control and robust non-fragile H-infinite control based on Fuzzy
bilinear model will further investigate in the future work.
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