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FUZZY EQUATIONAL CLASSES ARE FUZZY VARIETIES

B. BUDIMIROVIĆ, V. BUDIMIROVIĆ, B. ŠEŠELJA AND A. TEPAVČEVIĆ

Abstract. In the framework of fuzzy algebras with fuzzy equalities and a

complete lattice as a structure of membership values, we investigate fuzzy
equational classes. They consist of special fuzzy algebras fulfilling the same

fuzzy identities, defined with respect to fuzzy equalities. We introduce basic

notions and the corresponding operators of universal algebra: construction of
fuzzy subalgebras, homomorphisms and direct products. We prove that every

fuzzy equational class is closed under these three operators, which means that
such a class is a fuzzy variety.

1. Introduction

Our topic is general algebra in the fuzzy framework, so let us mention the chrono-
logical development of some relevant fields. At the beginning of fuzzy era, particular
algebras have been introduced and investigated: fuzzy groups (Rosenfeld 1971 [20],
Das 1981 [10] and then many others), fuzzy semigroups (Malik, Mordeson and
Kuroki, the monograph from 2003, [18]), and other best known structures with
usually two binary operations (semirings, rings, lattices and connected structures).
Basic notions from general and universal algebra have also been investigated in
the fuzzy framework, like lattice valued algebras (by Di Nola and Gerla [13] and
others), fuzzy congruences (Šešelja 1981 [21], Murali [19] and others). Investigating
basic mathematics and algebra in the fuzzy context, Demirci has been dealing with
fuzzy functions and related notions ([11, 12]) and also Šostak, ([29]). In the same
period fuzzy homomorphisms were investigated, let us mention Chakraborty and
Khare, 1993 ([9]), then Šešelja ([22]) and also Kuraoka and Suzuki, ([16]). Though,
a systematic approach to fuzzy general algebras should be related to Bělohlávek
and Vychodil ([1, 2, 3]). Some recent research in fuzzy general algebra is presented
in [5] and [17], and also in [4], the latter for interval valued fuzzy sets.

In dealing with fuzzy structures, we use our previous results ([22, 23, 24, 25, 26,
27, 7]). The topic of our investigation presented here are classes of fuzzy algebras
which are defined within a fixed type (language). These are usual fuzzy subalgebras
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of crisp algebras of the same type, equipped with compatible fuzzy equalities, which
is introduced instead of the crisp equality. Let us mention the use of fuzzy equality
instead of the crisp one started several decades ago e.g., Höhle [15], then more
recently Demirci [12], and others. The ordered structure of membership values is,
in our case, a complete lattice. If all fuzzy algebras in the class fulfill a set of
particular formulas called fuzzy identities (which generalize crisp identities), then
this class is called an equational class of fuzzy algebras. Dealing with fuzzy relations
we use a special weak reflexivity. This notion already existed, paper [30] by Yeh
and Bang; and also Filep, [14]. Our approach to main fuzzy notions differs from
those existing in the literature.

After the definition of fuzzy algebra, we introduce basic universal algebraic con-
structions. These are fuzzy subalgebras, fuzzy homomorphisms and fuzzy direct
products. Each of these notions is appropriately defined with respect to fuzzy
equalities. We prove that each equational class of fuzzy algebras is closed under
these three constructions. As it is known, a class of algebras of the same type closed
under the above constructions is called a variety. Our main result here is that each
fuzzy equational class is a fuzzy variety.

Our first attempt to deal with fuzzy identities is presented in [28]. Fuzzy algebras
with the fuzzy equalities as introduced here, are elaborated in [6].

The structure of the membership values is in our present investigation a complete
lattice without additional operations (like e.g. a residuated lattice [1, 2]). Our
reason to use meet and join is that these lattice operations are idempotent; this
property is naturally connected with reflexivity that we use.

2. Preliminaries

2.1. Crisp Notions: Algebras, Equational Classes, Varieties. A language
or a type ℒ, is a set F of functional symbols, together with a set of natural
numbers (arities) associated with these symbols. An algebra A = (A,FA) of
a type ℒ consists of a nonempty set A, and a collection FA of operations on A.
Terms in the language ℒ are usual regular expressions constructed by the variables
and operational symbols. If v(x1, . . . , xn) is a term in the language of an algebra
A, then vA : An → A is the corresponding term-function on A. An identity
in ℒ is a formula u = v, where u, v are. A class of algebras of the same type,
fulfilling a set of identities is an equational class. A subalgebra of A is an
algebra of the same type, defined on a non-empty subset of A and with fundamental
operations being restrictions of those on A. If A and ℬ are algebras of the same
type, then the function ℎ : A → B compatible with the fundamental operations
in the sense that for an n-ary f ∈ F , and x1, . . . , xn ∈ A, ℎ(f(x1, . . . , xn)) =
f(ℎ(x1), . . . , ℎ(xn)) and for any constant c ∈ A, ℎ(c) is the corresponding constant
in ℬ, is a homomorphism of A into ℬ. The set of images ℎ(A) under ℎ is a
subalgebra of ℬ, a homomorphic image of A. For a family {Ai ∣ i ∈ I} of
algebras of the same type, Πi∈IAi is their direct product, an algebra of the
same type with operations defined componentwise. A class of algebras of the same
type is a variety if it is closed under subalgebras, homomorphic images and direct
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products. By Birkhoff’s theorem, an equational class is a variety and vice versa.
An equivalence relation � on A which is compatible with respect to all fundamental
operations (xi�yi, i = 1, . . . , n imply f(x1, . . . , xn)�f(y1, . . . , yn)) is a congruence
relation on A.

For more details in universal algebra, see e.g., [8].

2.2. Some Basic Notions of Fuzzy Algebra. Throughout the paper, (L,∧,∨, 0, 1)
is supposed to be a fixed, complete lattice and it is used as a set of membership
values for all the fuzzy objects.

A fuzzy set � on a nonempty set A is a function � : A → L. Consequently, a
mapping � : A2 → L is a fuzzy relation on A.

What we use here are the fuzzy relations on fuzzy sets, defined as follows. If
� : A→ L is a fuzzy set on a nonempty set A, then a fuzzy relation � : A2 → L on
A is said to be a fuzzy relation on � if for all x, y ∈ A

�(x, y) ⩽ �(x) ∧ �(y). (1)

A fuzzy relation � on a fuzzy set � is reflexive if for all x ∈ A,

�(x, x) = �(x). (2)

The above notion of reflexivity is known, see e.g., [14]. Observe that in the crisp
case, i.e., if � is the characteristic function of the domain A, then (2) actually
determines a classical reflexive relation (�(x, x) = 1). The following lemma is
obvious.

Lemma 2.1. If � : A2 → L is reflexive on � : A→ L, then for all x, y ∈ A,

�(x, y) ⩽ �(x, x) and �(y, x) ⩽ �(x, x).

A fuzzy relation on a fuzzy set � on A is symmetric and transitive if it fulfills
these conditions as a fuzzy relation on A:

� is symmetric if �(x, y) = �(y, x) for all x, y ∈ A; (3)

� is transitive if �(x, z) ∧ �(z, y) ⩽ �(x, y) for all x, y, z ∈ A, (4)

or equivalently, if
⋁
z∈A

(�(x, z) ∧ �(z, y)) ⩽ �(x, y) for all x, y ∈ A. (5)

A reflexive, symmetric and transitive relation � on a fuzzy set � is a fuzzy
equivalence on �.

A fuzzy equivalence relation � on �, fulfilling for all x, y ∈ A, x ∕= y,:

if �(x, x) ∕= 0, then �(x, y) < �(x, x), (6)

is called a fuzzy equality relation on �.
Let A = (A,FA) be a crisp algebra. As it is known, a fuzzy subalgebra of A

is any mapping � : A→ L fulfilling the following:
For any n-ary f ∈ F with the arity greater than 0, and all a1, . . . , an ∈ A, we

have that
n⋀
i=1

�(ai) ⩽ �(fA(a1, . . . , an)).
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For a nullary operation (constant) c ∈ F , we require that

�(c) = 1. (7)

The following proposition is a fuzzy version of the known property of term opera-
tions in universal algebra and it can be easily proved by induction on the complexity
of term.

Proposition 2.2. Let � : A → L be a fuzzy subalgebra of a crisp algebra A =
(A,FA) and let t(x1, . . . , xn) be a term in the language of A. If tA is the corre-
sponding term-operation on A and a1, . . . , an ∈ A, then the following holds:

n⋀
i=1

�(ai) ⩽ �(tA(a1, . . . , an)).

A fuzzy relation � : A2 → L on a fuzzy subalgebra � : A → L of A = (A,FA)
is said to be compatible with the operations from FA, if it is compatible as
a fuzzy relation on A, i.e., if for every n-ary operation fA ∈ FA and for all
a1, . . . , an, b1, . . . , bn ∈ A

n⋀
i=1

�(ai, bi) ⩽ �(fA(a1, . . . , an), fA(b1, . . . , bn)). (8)

In particular, for n = 1, �(a1, b1) ⩽ �(fA(a1), fA(b1)).
A compatible fuzzy equivalence on a fuzzy subalgebra � of A is a fuzzy con-

gruence on �. Obviously, compatible fuzzy equalities on � are particular fuzzy
congruences on this fuzzy subalgebra.

Notation throughout the paper: if f is an operational symbol and u is a term
in the given type (language), then the corresponding operation and term-operation
on the concrete algebra A of the same type are denoted respectively by fA and uA,
and analogously for other objects (e.g., relations).

3. Results

In order to deal with classes of fuzzy structures, we introduce fuzzy algebras,
and then the corresponding operators which enable the construction of subalgebras,
homomorphic images and direct products.

3.1. Fuzzy Algebra, Identity, Equational Class. Let A = (A,FA) be an al-
gebra of the type ℒ and let L be a fixed complete lattice, as introduced above.
Further, let � : A→ L be a fuzzy subalgebra of A and E� : A2 → L a compatible
fuzzy equality on �. Then we say that the four-tuple ℳ̄ = (A, �, E�, L) is a fuzzy
algebra of the type ℒ.

In other words, a fuzzy algebra is a fuzzy (lattice valued) subalgebra of a given
crisp algebra, endowed with a compatible fuzzy equality. That is why all relevant
parameters are explicitly listed in the defining four-tuple.

Remark 3.1. Let us compare our definition of a fuzzy algebra with the known
similar notions. If we take � : A → L to be the characteristic function of A and
we keep E� (hence with the diagonal having all values equal 1), then the above
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definition gives an algebra with fuzzy equality, [3]. Similarly, if � is a character-
istic function of a proper subalgebra of A, then E� can be considered as a fuzzy
equality on a subalgebra, as in the previous case. Finally, if both, � and E� take
values in {0, 1}, then we deal with classical subalgebras of A, equipped with the
corresponding crisp equalities.

Clearly, the above definition implies that two given fuzzy algebras ℳ̄ = (A, �,
E�, L) and N̄ = (ℬ, �, E� , L) are equal if A = ℬ, � = �, E� = E� and both refer
to the same lattice L.

As defined in [6], a fuzzy identity of the type ℒ over a set of variables X is
the expression E(u, v), where u(x1, . . . , xn), v(x1, . . . , xn) belong to the set T (X)
of terms over X and both have at most n variables.

Examples of fuzzy identities (in the suitable languages) are e.g., E(x∗(y∗z), (x∗
y) ∗ z), E(x ⋅ (y + z), (x ⋅ y) + (x ⋅ z)), E(f(x, x, y), f(y, x, x)) and so on.

We say that a fuzzy algebra ℳ̄ = (A, �, E�, L) satisfies a fuzzy identity E(u, v)
(or that this identity holds on ℳ̄), if for all a1, . . . , an ∈ A

n⋀
i=1

�(ai) ⩽ E
�(uA(a1, . . . , an), vA(a1, . . . , an)), (9)

where uA, vA are the corresponding term-operations over A.

Remark 3.2. In paper [6] we proved that for every fuzzy identity E(u, v) fulfilled
on a fuzzy subalgebra � of a crisp algebra A, there is the smallest compatible fuzzy
equality Em, such that Em(uA, vA) holds on �.

Observe that due to the definition of a fuzzy algebra ℳ̄ = (A, �, E�, L), we say
that all properties of � not referring to some fuzzy equality, are fulfilled also by ℳ̄.
In particular, Proposition 2.2 holds for a fuzzy algebra ℳ̄, if it is satisfied by the
underlying fuzzy subalgebra �.

Obviously, it may happen that � satisfies some property (e.g., a fuzzy identity)
with respect to some fuzzy equality, but not with respect to E� to which ℳ̄ refers.
In this case, ℳ̄ does not fulfill this property.

Let Σ be a set of fuzzy identities of type ℒ and let L be a fixed complete lattice.
Then all fuzzy algebras of this type satisfying all identities in Σ form an equational
class M of fuzzy algebras.

Remark 3.3. Observe that by the above definition, what is fixed in an equational
class M is the type (language) ℒ and the lattice of membership values L. There-
fore, together with fuzzy algebras, all structures mentioned in Remark 3.1 fulfilling
identities in Σ are included in M. More precisely, a fuzzy equational class consists
of three kinds of algebras:

1. Crisp algebras, fulfilling given identities with respect to the crisp equality
(and hence also with respect to the corresponding fuzzy ones, see Remark 3.2).

2. Fuzzy subalgebras of algebras mentioned in 1, fulfilling given identities with
respect to fuzzy equalities.

3. Fuzzy algebras being fuzzy subalgebras of crisp algebras in the given language,
such that the following holds: the crisp algebras do not fulfill given identities, while
the fuzzy ones do (with respect to some fuzzy equalities, see Remark 3.2).

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

6 B. Budimirović, V. Budimirović, B. Šešelja and A. Tepavčević
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Table 1. Algebra G

In the following two examples we describe fuzzy equational classes of fuzzy groups
and fuzzy lattices. One more is the equational class of commutative groupoids, given
in Example 3.18, at the end of part 3.5.

Example 3.4. Let us describe the equational class of fuzzy groups, with the mem-
bership values lattice given in Figure 1. The language ℒ contains one binary and
one unary operation (denoted by ⋅ and −1 respectively), and a nullary operation
(constant) e. Fuzzy identities defining the equational class of fuzzy groups are

E(x ⋅ (y ⋅ z), (x ⋅ y) ⋅ z), E(x ⋅ e, x), E(e ⋅ x, x), E(x ⋅ x−1, e), E(x−1 ⋅ x, e).

This equational class consists of all crisp groups (point 1. in Remark 3.3), their
fuzzy subgroups, as known in the classical fuzzy algebra (point 2. above), and of
fuzzy algebras which are fuzzy subalgebras of algebras in the language ℒ, fulfilling
the above fuzzy identities (point 3. above). An example of such fuzzy subalgebra is
given bellow. The crisp four-element algebra is (G, ⋅ , −1, e), the binary operation
is presented in Table 1, the unary operation is identity (x−1 = x), and the constant
is e. This algebra is not a group (associativity is not satisfied), while its fuzzy
subalgebra � : G→ L given by

�(x) =

(
e a b c
1 p q r

)
,

fulfils the above identities with respect to the fuzzy equality E� (Table 2). Hence,
(G,�,E�, L) is a fuzzy group in this equational class.

Example 3.5. Let L be the real interval [0, 1], and let ℒ = {f2, g2}, where the
arities are given as upper indexes (therefore the language consists of two binary
symbols). Let the identities be
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E� e a b c
e 1 s s s
a s p s s
b s s q s
c s s s r

Table 2. Fuzzy equality on �

E(f2(x, y), f2(y, x)), E(g2(x, y), g2(y, x)),

E(f2(f2(x, y), z), f2(x, f2(y, z))), E(g2(g2(x, y), z), g2(x, g2(y, z))),

E(f2(x, f2(y, x)), x), E(g2(x, g2(y, x)), x).

All fuzzy algebras with two binary operations and with membership values in
[0,1] satisfying all the above identities with respect to some fuzzy equalities form
an equational class of fuzzy lattices. Obviously, f and g correspond to meet and
join operations in a lattice.
3.2. Fuzzy Subalgebra of a Fuzzy Algebra. Here we start with a fuzzy al-
gebra ℳ̄ = (A, �, E�, L) and identify particular fuzzy subalgebras of A as fuzzy
subalgebras of ℳ̄.

The next theorem formalizes our intuition and enables the definition that follows.

Theorem 3.6. Let ℳ̄ = (A, �, E�, L) be a fuzzy algebra and � : A → L a fuzzy
subalgebra of A, fulfilling the following conditions:

(1) �(x) ⩽ �(x) for all x ∈ A.
(2) If x and y are distinct elements of A and �(x) > 0, then E�(x, y) < �(x).

Then, a fuzzy relation E� on � given by
E�(x, y) := E�(x, y) ∧ �(x) ∧ �(y),

is a compatible fuzzy equality on �.
Proof. (1) By the definition, E�(x, y) ⩽ �(x) ∧ �(y), i.e., E�(x, y) is a fuzzy

relation on �.
(2) Reflexivity of E� : E�(a, a) = E�(a, a) ∧ �(a) = �(a) ∧ �(a) = �(a).
(3) Symmetry: E�(a, b) = E�(a, b) ∧ �(a) ∧ �(b) = E�(b, a) ∧ �(b) ∧ �(a) =

E�(b, a).
(4) Transitivity: E�(a, b) = E�(a, b) ∧ �(a) ∧ �(b)

⩾ (E�(a, c) ∧ E�(c, b)) ∧ �(a) ∧ �(b) ∧ �(c)

= (E�(a, c) ∧ �(a) ∧ �(c)) ∧ (E�(c, b) ∧ �(c) ∧ �(b))

= E�(a, c) ∧ E�(c, b).

(5) Compatibility with operations: E�(fA(a1, ..., an), fA(b1, ..., bn))

= E�(fA(a1, ..., an), fA(b1, ..., bn)) ∧ �(fA(a1, ..., an)) ∧
�(fA(b1, ..., bn))

⩾
( n⋀
i=1

E�(ai, bi)
)
∧
( n⋀
i=1

�(ai)
)
∧
( n⋀
i=1

�(bi)
)

=

n⋀
i=1

(
E�(ai, bi) ∧ �(ai) ∧ �(bi)

)
=

n⋀
i=1

E�(ai, bi).
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(6) Finally, if a ∕= b and E�(a, a) = �(a) > 0, then E�(a, b) = E�(a, b)∧ �(a)∧
�(b) ⩽ E�(a, b) < �(a) = E�(a, a),

for all a, b, c, a1, ..., an, b1, ..., bn ∈ A, f ∈ F .
Therefore, E� is a compatible fuzzy equality on �. □

Now we are ready for the following definition.

Let ℳ̄ = (A, �, E�, L) be a fuzzy algebra and � : A→ L a fuzzy subalgebra of
A, fulfilling the following:

(1) �(x) ⩽ �(x) for all x ∈ A.
(2) If x and y are distinct elements from A and if �(x) > 0, then E�(x, y) <

�(x).
(3) E�(x, y) := E�(x, y) ∧ �(x) ∧ �(y).

Then we say that the fuzzy algebra N̄ = (A, �, E� , L) is a (fuzzy) subalgebra of
the fuzzy algebra ℳ̄.

Theorem 3.7. Let M be an equational class of fuzzy algebras and let ℳ̄ ∈ M
where ℳ̄ = (A, �, E�, L). If N̄ = (A, �, E� , L) is a fuzzy subalgebra of Ā, then
also N̄ ∈M.

Proof. Let ℳ̄ ∈M and let N̄ = (A, �, E� , L) be a fuzzy subalgebra of ℳ̄. Let also
ℳ̄ fulfils the fuzzy identity E(u(x1, ..., xn), v(x1, ..., xn)) , i.e., let

E�(uA(a1, ..., an), vA(a1, ..., an)) ⩾
n⋀
i=1

�(ai)

for all a1, ..., an ∈ A. Then we have:

E�(uA(a1, ..., an), vA(a1, ..., an))

= E�(uA(a1, ..., an), vA(a1, ..., an)) ∧ �(uA(a1, ..., an)) ∧
�(vA(a1, ..., an))

⩾
( n⋀
i=1

�(ai)
)
∧
( n⋀
i=1

�(ai)
)
∧
( n⋀
i=1

�(ai)
)

=

n⋀
i=1

�(ai)

Hence, N̄ also fulfils the identity E(u, v), and thus it belongs to M. □

3.3. Fuzzy Homomorphism. Let A1, A2 be two algebras and

ℳ̄1 = (A1, �1, E
�1 , L), ℳ̄2 = (A2, �2, E

�2 , L)

two fuzzy algebras, all of the same type ℒ. We say that ' : A1 → A2 is a fuzzy
algebraic mapping of ℳ̄1 into ℳ̄2 if the following conditions hold:

(1) (∀a ∈ A1) �2('(a)) ⩾ �1(a)
(2) Let u(x1, . . . , xn), v(x1, . . . , xn) be terms in the language ℒ, let uA1 , vA1 be

the corresponding term-operations on A1 and a1, . . . , an ∈ A1. Then from

E�1(uA1(a1, ..., an), vA1(a1, ..., an)) ⩾
n⋀
i=1

�1(ai),
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it follows that

E�2('(uA1(a1, ..., an)), '(vA1(a1, ..., an))) ⩾
�2('(uA1(a1, ..., an))) ∧ �2('(vA1(a1, ..., an))).

Remark 3.8. A fuzzy algebraic mapping defined here differs from the notion of
fuzzy mapping defined by Demirci in [11, 12]. In the cited articles the domain
is a crisp set equipped with a fuzzy equality and a fuzzy mapping is defined as
a particular fuzzy binary relation. In our approach, both the domain and the
co-domain are fuzzy sets, while the mapping is a special ordinary function.

Lemma 3.9. Let ℳ̄1 = (A1, �1, E
�1 , L), ℳ̄2 = (A2, �2, E

�2 , L) and ℳ̄3 =
(A3, �3, E

�3 , L) be fuzzy algebras of the same type. Let also ',  be fuzzy alge-
braic mappings from ℳ1 to ℳ2, and from ℳ2 to ℳ3, respectively. Then also
their composition ' ∘  is a fuzzy algebraic mapping from ℳ1 to ℳ3.

Proof. We prove that the conditions in the definition of a fuzzy algebraic mapping
are fulfilled.

(1) for every a ∈ A1

�3( ('(a))) ⩾ �2('(a)) ⩾ �1(a).

(2) Let u(x1, ..., xn), v(x1, ..., xn) be terms in the language of the given algebras;
let also uA1 , vA1 be the corresponding term operations in A1 and a1, ..., an ∈ A1. If

E�1(uA1(a1, ..., an), vA1(a1, ..., an)) ⩾
n⋀
i=1

�1(ai),

then E�2('(uA1(a1, ..., an)), '(vA1(a1, ..., an))) ⩾

⩾ �2('(uA1(a1, ..., an))) ∧ �2('(vA1(a1, ..., an))).

In the next step we use the following simple consequence of the definition 3.3:
If ' : A1 → A2 is a fuzzy algebraic mapping of ℳ̄1 into ℳ̄2, then the following

is fulfilled.
For all c, d ∈ A1 E�1(c, d) ⩾ �1(c) ∧ �1(d), implies

E�2('(c), '(d)) ⩾ �2('(c)) ∧ �2('(d)).

Therefore, E�3

(
 
(
'(uA1(a1, ..., an))

)
,  
(
'(vA1(a1, ..., an))

))
⩾

⩾ �3

(
 
(
'(uA1(a1, ..., an))

))
∧ �3

(
 
(
'vA1(a1, ..., an))

))
,

and ' ∘  is a fuzzy algebraic mapping. □

Let ℳ̄1 = (A1, �1, E
�1 , L) and ℳ̄2 = (A2, �2, E

�2 , L) be fuzzy algebras of the
same type. We say that the fuzzy algebraic mapping ' of the fuzzy algebra ℳ̄1 into
the fuzzy algebra ℳ̄2 is a fuzzy homomorphism of ℳ̄1 into ℳ̄2 if the following
holds:

(1) For each n-ary f ∈ F and for all a1, ..., an ∈ A1,
'(fA1(a1, ..., an)) = fA2('(a1), ..., '(an)).

(2) '(cA1) = cA2 , for every nullary operation c in the language, cA1 and cA2

being the corresponding constants in A1 and A2 respectively.
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In the following proposition we investigate a particular type of fuzzy subalgebras,
which we need in order to locate the homomorphic image of fuzzy homomorphisms.

Proposition 3.10. Let ℳ̄ = (A, �, E�, L) be a fuzzy algebra and ℬ = (B,FB) a
crisp subalgebra of A. Define � : A→ L by

�(x) :=

{
�(x), x ∈ B

0, else
and

E�(x, y) := E�(x, y) ∧ �(x) ∧ �(y),

then N̄ = (A, �, E� , L) is a fuzzy subalgebra of ℳ̄.

Proof. First we prove that � is a fuzzy subalgebra of A, i.e., that

�(fA(a1, ..., an)) ⩾
n⋀
i=1

�(ai)

for all a1, ..., an ∈ A and for fA corresponding to f ∈ F . We analyze two possibili-
ties.

(1) Let a1, ..., an ∈ B. Since ℬ is a subalgebra of A, we have
fA(a1, ..., an) ∈ B, and thus �(fA(a1, ..., an)) = �(fA(a1, ..., an)).

Further, �(fA(a1, ..., an)) = �(fA(a1, ..., an))

⩾
n⋀
i=1

�(ai)

=

n⋀
i=1

�(ai).

(2) If some aj is not in B, then �(xj) = 0, hence
n⋀
i=1

�(ai) = 0.

In any case �(fA(a1, ..., an)) ⩾
n⋀
i=1

�(ai).

Next, since �(c) > 0 for every constant c, we have �(c) = �(c).
Finally, let a and b be distinct elements from A and let �(a) > 0. Then �(a) =

�(a), and E�(a, b) < �(a) = �(a).
By the above and by Theorem 3.6, we have that N̄ = (A, �, E� , L) is a subal-

gebra of the fuzzy algebra ℳ̄. □

Theorem 3.11. Let ℳ̄1 = (A1, �1, E
�1 , L) and ℳ̄2 = (A2, �2, E

�2 , L) be fuzzy
algebras and ' : A1 → A2 a fuzzy homomorphism of ℳ1 into ℳ2. Let N̄ =
(A2, �, E

� , L) be an ordered quadruple, where for x, y ∈ A2

�(x) :=

{
�2(x), x ∈ '(A1)

0, otherwise

and

E�(x, y) = E�2(x, y) ∧ �(x) ∧ �(y).

Then, N̄ is a fuzzy subalgebra of fuzzy algebra ℳ̄2.
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Fuzzy subalgebra N̄ = (A2, �, E
� , L) of fuzzy algebra ℳ̄2, introduced in Theo-

rem 3.11, is said to be the homomorphic image of fuzzy algebra ℳ̄1.
We are now ready to prove that equational classes of fuzzy algebras are closed

under homomorphic images.

Theorem 3.12. Let M be an equational class of fuzzy algebras. If ℳ̄1 ∈M and
N̄ is a homomorphic image of ℳ̄1, then also N̄ ∈M.
Proof. Let ℳ̄1,ℳ̄2 and N̄ be as in Theorem 3.11. Assuming that ℳ̄1 fulfils fuzzy
identity E(u(x1, ..., xn), v(x1, ..., xn)), we prove that also its homomorphic image
N̄ satisfies the same identity.

Indeed, suppose that for a1, ..., an ∈ A1

E�1(uA1(a1, ..., an), vA1(a1, ..., an)) ⩾
n⋀
i=1

�1(ai),

where uA1 and vA1 are the term-operations on A1, and similarly uA2 and vA2 the
term-operations on A2, corresponding to u and v respectively. Now let b1, . . . , bn ∈
A2. In order to prove that the same fuzzy identity holds on N̄ , we analyze two
cases.

(1) If bi ∈ '(A1) for every i ∈ {1, ..., n}, then for every i there exists ai ∈ A1

such that '(ai) = bi.
By Proposition 2.2 and by the definition of fuzzy homomorphism, we

have

E�(uA2(b1, ..., bn), v
A2(b1, ..., bn)) =

= E�2(uA2(b1, ..., bn), v
A2(b1, ..., bn)) ∧ �(uA2(b1, ..., bn)) ∧

�(vA2(b1, ..., bn))

⩾ E�2(uA2('(a1), ..., '(an)), v
A2('(a1), ..., '(an))) ∧

( n⋀
i=1

�(bi)
)

= E�2('(uA1(a1, ..., an)), '(v
A1(a1, ..., an))) ∧

( n⋀
i=1

�(bi)
)

⩾ �2('(u
A1(a1, ..., an))) ∧ �2('(v

A1(a1, ..., an))) ∧
( n⋀
i=1

�(bi)
)

= �2(u
A2('(a1), ..., '(an))) ∧ �2(v

A2('(a1), ..., '(an))) ∧
( n⋀
i=1

�(bi)
)

⩾
( n⋀
i=1

�2('(ai))
)
∧
( n⋀
i=1

�(bi)
)

=

n⋀
i=1

�(bi).

(2) If for some i ∈ {1, ..., n} we have that bi ∕∈ '(A1), then �(bi) = 0, hence

E�(uA2(b1, ..., bn), vA2(b1, ..., bn)) ⩾
n⋀
i=1

�(bi) = 0.

Therefore, the homomorphic image of a fuzzy algebra in an equational class
M belongs to M as well.

□
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3.4. Direct Product of Fuzzy Algebras. Here we deal with the third algebraic
construction in the fuzzy framework, namely with the fuzzy direct products.

Theorem 3.13. Let {ℳ̄i = (Ai, �i, E�i , L) ∣ i ∈ I} be a family of fuzzy algebras
of the same type, A =

∏
i∈I
Ai the direct product of algebras Ai and let the following

holds for all g1, g2 ∈
∏
i∈I
Ai, g1 ∕= g2:

If
⋀
i∈I

�i(g1(i)) ∕= 0, then
⋀
i∈I

E�i(g1(i), g2(i)) ∕=
⋀
i∈I

�i(g1(i)). (10)

Now, if � :
∏
i∈I

Ai → L and E� : (
∏
i∈I

Ai)
2 → L are defined by

�(g) :=
⋀
i∈I

�i(g(i)), g ∈
∏
i∈I

Ai and

E�(g1, g2) :=
⋀
i∈I

E�i(g1(i), g2(i)); g1, g2 ∈
∏
i∈I

Ai respectively,

then ℳ̄ =
∏
i∈I
ℳ̄i := (A, �, E�, L) is a fuzzy algebra.

Proof. First we prove that � is a fuzzy subalgebra of the product algebra A. For an
n-ary operational symbol F in the given language, FAi denotes the corresponding
operation in algebra Ai:

�(F (g1, ..., gn)) =
⋀
i∈I

�i
(
FAi(g1(i), ..., gn(i))

)
⩾

⋀
i∈I

( n⋀
j=1

�i(gj(i))
)

=

n⋀
j=1

(⋀
i∈I

�i(gj(i))
)

=

n⋀
j=1

�(gj)

Next we prove that E� is a fuzzy equality on �.

a) E� is a fuzzy relation on �:

E�(f, g) =
⋀
i∈I

E�i(f(i), g(i)) ⩽
⋀
i∈I

(
�i(f(i)) ∧ �i(g(i))

)
=
( ⋀
i∈I

�i(f(i))
)
∧
( ⋀
i∈I

�i(g(i))
)

= �(f) ∧ �(g).

b) Reflexivity: E�(g, g) =
⋀
i∈I

E�i(g(i), g(i)) =
⋀
i∈I

�i(g(i)) = �(g)

c) Symmetry: E�(g1, g2) =
⋀
i∈I

E�i(g1(i), g2(i))

=
⋀
i∈I

E�i(g2(i), g1(i)) = E�(g2, g1)

d) Transitivity: E�(g1, g3) =
⋀
i∈I

E�i(g1(i), g3(i))

⩾
⋀
i∈I

(
E�i(g1(i), g2(i)) ∧ E�i(g2(i), g3(i))

)
=
( ⋀
i∈I

E�i(g1(i), g2(i))
)⋀( ⋀

i∈I
E�i(g2(i), g3(i))

)

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

Fuzzy Equational Classes are Fuzzy Varieties 13

= E�(g1, g2) ∧ E�(g2, g3)

e) Compatibility with the operations:

E�(FA(g1, ..., gn), FA(f1, ..., fn))

=
⋀
i∈I

E�i

(
FA(g1(i), ..., gn(i)), FA(f1(i), ..., fn(i))

)
⩾
⋀
i∈I

n⋀
j=1

E�i(gj(i), fj(i)) =
n⋀
j=1

⋀
i∈I

E�i(gj(i), fj(i)) =
n⋀
j=1

E�(gj , fj)

f) E� is a fuzzy equality:

Let g1 ∕= g2 and �(g1) ∕= 0. Since E�i(g1(i), g2(i)) ⩽ �i(g1(i)), we have⋀
i∈I

E�i(g1(i), g2(i)) ⩽
⋀
i∈I

(�i(g1(i)).

By ⋀
i∈I

E�i(g1(i), g2(i)) ∕=
⋀
i∈I

(�i(g1(i)),

we get ⋀
i∈I

E�i(g1(i), g2(i)) <
⋀
i∈I

�i(g1(i)).

i.e., E�(g1, g2) < �(g1) = E�(g1, g2).

□
The fuzzy algebra ℳ̄ := (A, �, E�, L) introduced in Theorem 3.13 is said to be

the direct product of fuzzy algebras ℳ̄i, i ∈ I.

Remark 3.14. In the proof of Theorem 3.13 we have⋀
i∈I

E�i(g1(i), g2(i)) ⩽
⋀
i∈I

(�i(g1(i))).

From E�i(g1(i), g2(i)) < �i(g1(i)), i ∈ I, it is not possible to deduce⋀
i∈I

E�i(g1(i), g2(i)) <
⋀
i∈I

(�i(g1(i))).

Therefore, it is necessary to include condition⋀
i∈I

E�i(g1(i), g2(i)) ∕=
⋀
i∈I

(�i(g1(i)))

in the definition of fuzzy direct product, as it is done by (10) in Theorem 3.13.
Observe that the corresponding condition for the crisp algebras is trivially ful-

filled. Indeed, let us take the contraposition of the implication in (10) and formulate
crisp claims corresponding to the given fuzzy formulas. It means that we have two
different members g1 ∕= g2 of some direct product, and the assumption (of the im-
plication obtained by contraposition) is the following: the components of g1 and g2

coincide iff i-th component in g1 belongs to i-th algebra in the product for every
i ∈ I. The consequence is that at least one component is not in the corresponding
algebra. Since g1 ∕= g2, the assumption (being logical equivalence) is false, and our
implication trivially holds.
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Next we prove that the direct product of fuzzy algebras satisfies a fuzzy identity
fulfilled by all the fuzzy algebras forming this product.

Theorem 3.15. If a fuzzy identity E(u(x1, ..., xn), v(x1, ..., xn)) holds on all fuzzy
algebras of the family {ℳ̄i = (Ai, �i, E�i , L) ∣ i ∈ I} and all these algebras are of
a fixed type, then also this fuzzy identity holds on the product ℳ̄ = (A, �, E�, L).

Proof. Let u(x1, ..., xn), v(x1, ..., xn) be terms in the language of fuzzy algebras
ℳ̄i, i ∈ I, and suppose that the fuzzy identity E(u, v) holds on all of these, i.e.,
that for all ai1, . . . , a

i
n ∈ Ai, i ∈ I

E�i(uAi(ai1, . . . , a
i
n), v

Ai(ai1, . . . , a
i
n)) ⩾

n⋀
j=1

�i(a
i
j).

Let f1, ..., fn be arbitrary elements from A =
∏
i∈I
Ai. Then

E�(uA(f1, ..., fn), v
A(f1, ..., fn))

=
⋀
i∈I

E�i(uAi(f1, ..., fn)(i), v
Ai(f1, ..., fn)(i))

=
⋀
i∈I

E�i(uAi(f1(i), ..., fn(i)), v
Ai(f1(i), ..., fn(i)))

⩾
⋀
i∈I

( n⋀
j=1

�i(fj(i))
)

=

n⋀
j=1

(⋀
i∈I

�i(fj(i))
)

=

n⋀
j=1

�(fj)

Therefore, the direct product of these fuzzy algebras also satisfies the identity
E(u, v). □

3.5. Fuzzy Variety. Now we give the final result, i.e., we prove that any fuzzy
equational class is closed under fuzzy subalgebras, homomorphic images and prod-
ucts.

Theorem 3.16. Let M be an equational class of fuzzy algebras. Then the following
hold:

(1) If Ā ∈M , and ℬ̄ is a fuzzy subalgebra of Ā, then ℬ̄ ∈M.
(2) If Ā ∈M , and D̄ is a homomorphic image of Ā, then D̄ ∈M.
(3) If for every i ∈ I, Āi belongs to M, then also

∏
i∈I
Āi ∈M.

Proof. Straightforward by Theorems 3.7, 3.12, 3.15. □

In order to formulate the above result appropriately in terms of general algebra,
let us define the following notion. For a fixed language and a complete lattice L, a
class V of fuzzy algebras closed under fuzzy subalgebras, fuzzy homomorphic images
and fuzzy direct products is a fuzzy variety.

In terms of fuzzy varieties, Theorem 3.7 can be formulated as follows.
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⋅ a b c d
a b b c c
b b a d d
c c c d d
d d d d c

Table 3. Groupoid G
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Figure 2. Lattice L

Corollary 3.17. Every fuzzy equational class is a fuzzy variety.

As illustrations of Corollary 3.17, let us mention that Example 3.4 describes a
fuzzy variety of fuzzy groups and Example 3.5 a fuzzy variety of fuzzy lattices, both
with particular lattices of membership values.

Under the present conditions, the converse of Corollary 3.17 is not true in general,
as witnessed by the following example.

Example 3.18. The class generated by crisp commutative groupoids with the
usual equality is a class of fuzzy groupoids in our approach, for any complete lat-
tice L of membership values: groupoids themselves represented by characteristic
functions, and the crisp equality taking values 0 and 1 from L. In addition, by the
fuzzy subalgebra operator, this class contains also fuzzy subgroupoids of crisp com-
mutative groupoids. Hence, with the operation represented by ⋅ , the fuzzy identity
E(x ⋅y, y ⋅x) holds. The class is closed under formation of fuzzy subalgebras, homo-
morphisms and products, hence being a fuzzy variety. However, fuzzy commutative
groupoids which are subgroupoids of crisp non-commutative groupoids (point 3.,
Remark 3.3) could not be obtained as described here, though they do belong to the
corresponding fuzzy equational class. An example is given in the sequel (formulated
in [6], but in a different context).
G is a four-element groupoid ({a, b, c, d}, ⋅ ), whose operation is given in Table

3, and L is a 16-element Boolean lattice, given in Figure 2.

Consider the fuzzy groupoid (G,�,E�, L), where � : G→ L is given by

�(x) =

(
a b c d
p p q q

)
,

and a fuzzy equality E� on � presented in Table 4.
Then (G,�,E�, L) fulfils the fuzzy identity E(x ⋅ y, y ⋅x), i.e., the formula E�(x ⋅

y, y ⋅ x) ⩾ �(x) ∧ �(y) is satisfied for all x, y ∈ {a, b, c, d}. This fuzzy commutative
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E� a b c d
a p 0 0 0
b 0 p 0 0
c 0 0 q t
d 0 0 t q

Table 4. Fuzzy Equality on �

groupoid belongs to the fuzzy equational class determined by L and a fuzzy identity
E(x ⋅y, y ⋅x), though it can not be generated by crisp commutative groupoids, using
operators S, H and P. Hence, it does not belong to the corresponding fuzzy variety.

4. Conclusion

As presented above, a one way round of the connection among equational classes
and fuzzy varieties in fuzzy framework is established. Namely, our notion of fuzzy
equality enable identification of fuzzy equational classes. Then we have introduced
and investigated particular fuzzy algebras and their subalgebras, as well as fuzzy
homomorphisms and products. The final result is that each fuzzy equational class
is a fuzzy variety. For the converse, in order to capture equational classes in gen-
eral, it should be necessary to introduce some additional requirements on fuzzy
homomorphisms, though the present notion seems quite natural. This is a problem
we would deal with as a continuation of our research elaborated here.

What seems to be the most important result of the present work, are possible
applications of fuzzy equational classes to concrete known algebraic structures and
their usage in mathematics, computer science, automata theory etc. Namely, using
our approach, equational classes of fuzzy semigroups, fuzzy groups and other impor-
tant algebraic structures could be introduced in the new way, capturing fuzziness
by fuzzy identities. This would lead to new directions in dealing with e.g, fuzzy
automata and fuzzy languages, or in applications of fuzzy quotient groups (e.g.,
coding theory in the fuzzy framework) etc.
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