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A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING

FUZZY CLASSIFICATION RULES INSPIRED BY

SUPPORT VECTOR MACHINES

M. TAHERI, H. AZAD, K. ZIARATI AND R. SANAYE

Abstract. Recently, tuning the weights of the rules in Fuzzy Rule-Base Clas-

sification Systems is researched in order to improve the accuracy of classifica-
tion. In this paper, a margin-based optimization model, inspired by Support
Vector Machine classifiers, is proposed to compute these fuzzy rule weights.
This approach not only considers both accuracy and generalization criteria in

a single objective function, but also is independent of any order in presenting
data patterns or fuzzy rules. It has a global optimum solution and needs only
one regularization parameter C to be adjusted. In addition, a rule reduction

method is proposed to eliminating low weighted rules and having a compact
rule-base. This method is compared with some greedy, reinforcement and lo-
cal search rule weighting methods on 13 standard datasets. The experimental
results show that, the proposed method significantly outperforms the other

ones especially from the viewpoint of generalization.

1. Introduction

Classification, one of the most important fields of pattern recognition, is cate-
gorizing some patterns of data into disjoint labeled classes. Although this field is
full of successful researches in proposing classifiers with good performance [9], [26],
but most of them do not provide interpretable systems and clear information about
properties of data cannot be extracted. Fuzzy systems not only consider uncer-
tainty both in input data and system output, but also prepare interpretable fuzzy
rules which can be used or modified by experts [29, 21]. These rules are constructed
based on known fuzzy sets in the field of research which are associated with lin-
guistic variables in describing attributes of data e.g. small, medium or large.
Importing fuzzy systems in the field of classification as Fuzzy Rule-Based Classi-
fication Systems (FRBCS), is not a modern approach [19, 4] but training a pre-
generated rule-base from the perspective of the rule weights is recently under re-
search [36, 35, 16]. In the normal form, each fuzzy rule plays a role similar to
others but by a more concentration, it is obvious that some rules are more impor-
tant than others in the classification process [16, 30]. Indeed, FRBCSes are weak
classifiers in comparison with the ones which are not limited to be interpretable.
Therefore, some investigations have been done to extract fuzzy rules from more
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powerful classifiers e.g. Neural Networks [10, 20], Decision Trees and SVM [34].
Tuning a predefined rule-base is highly researched [12, 6] but specially tuning the
weights of the fuzzy rules, without any change in other parameters of the rule-base,
in order to improve the classification performance can gather both interpretability
and performance in a classification system [16, 24].
Ishibuchi [24] proposed 4 heuristic functions for assigning the rule weights based
on the confidence of associated rules. These methods are fast but with low pre-
cision. Nozaki [31] proposed a reward and punishment approach of tuning these
rule weights. This process is not recommended by these authors due to its time
consumption and unreliablity with noisy datasets. It is dependent on the order of
patterns presented and, consequently, some noisy patterns presented in the final
steps of learning, may be misleading. Also GA, as a stable search strategy in com-
plex search spaces, is widely investigated upon the field of rule selection [23, 15, 25].
Then, Chen proposed a GA based method to improve the performance of the fuzzy
systems by weighting the rules [1, 2, 3]. One of the most drawbacks of this approach
is its time complexity.
These authors in [36] proposed a novel method of rule-weighting based on a greedy
local search strategy with high accuracy in classification process. It is called, in
this paper, Iterative Greedy Accuracy-based Rule-Weighting (IGARW). Its fast
convergence to the local optima speeds up the procedure of weighting. Addition-
ally, it removes irrelevant and redundant rules by setting their weights to zero as
a side-effect. Despite the fact that this approach is not order-dependent from the
viewpoint of patterns, it is highly sensitive to the order of weighting the rules and
initial values of the rule weights.
Most of these approaches are aimed at improving the classification rate on training
data neglecting their generalization for unseen data explicitly. This may lead to
encountering over-fitting on the training data. Moreover, most of them are order-
dependent from some perspectives or ramped to a local optima. But in many other
fields of learning classifier parameters, there are, nowadays, researches in order
to have a large-margin classification to improve the generalization of the classifier
with global optimum solutions [14]. In the sections to come, a novel model of
constraint programming has been put forward for rule-weighting. Due to have a
convex optimization, the global optimum is guaranteed to be found fast without
any order-dependency. Other than these, generalization perspectives have been
explicitly utilized in the objective function. In addition, this method removes inac-
curate rules by adjusting some of the rule weights to zero.
In the next section, FRBCS is briefly introduced and a novel linear programming
model of rule weighting is proposed in the section 3 due to be familiar with some
concepts. In section 4, SVM is briefly described and followed by a quadratic pro-
gramming model of margin based rule-weighting inspired from SVM in section 5.
Section 6 is dedicated to dual problems and some theoretical investigation in equal-
ity of the proposed model of rule weighting with SVM considering a special fuzzy
kernel. In Section 7, the classification problem is extended for multi-class datasets
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and FRBCSes. A post-processing method is proposed in section 8, in order to re-
duce the number of the rules based on resulted rule weights. Experimental results
are reported and explained in section 9 and is finally concluded.

2. Fuzzy Rule-based Classifying Systems (FRBCS)

A FRBCS is composed of three parts: Database, Rule-Base and Reasoning
Method. The Database contains a series of fuzzy sets which are associated with
specific linguistic variable e. g. small, medium, large. The Rule-Base is a collection
of fuzzy if-then rules utilized for pattern classification. Each rule covers a region in
the feature space, named its covering space, which is defined by antecedent part of
the rule. In the field of pattern classification problems, various types of fuzzy rules
have been proposed [19, 36, 16]. In this paper, the following type of fuzzy rules is
used which is highly implemented in the researches from 1992 [22]:

Rule (rk) : If
⟨
x1 = A1

k

⟩
&
⟨
x2 = A2

k

⟩
&...&

⟨
xd = Adk

⟩
⇒ class (hk)with (ωk) (1)

where, rk is the kth rule in the rule-base, xi is the i
th feature value of X as the pattern

under classification i.e. X = [x1, x2, ..., xd]. Also, d is the number of dimensions of the
feature space concerned. Aik is the fuzzy set used for the ith feature value in rk. In
addition, hk is a class label as the consequence part of rk. Each rule is associated with a
certainty factor ωk specifies how much this rule is trustable.
In order to specify how much a pattern X is compatible with a rule, a T-Norm function of
its membership values in each antecedent of the rule is computed [36, 16] and addressed
by µk(X) as the compatibility grade of pattern X with rk. The Reasoning Method is the
strategy of using both the rule-base and the database in the classification process. There
are two major types of reasoning [24], i.e. Single Winner and Weighted Vote. In the
Single Winner method, each pattern is classified by the rule which possesses the greatest
value of weighted compatibility grade. Although the single winner method is a very simple
reasoning strategy which is used in many classifiers (e.g. nearest neighbour), it is highly
noise sensitive.
In the Weighted Vote method [24, 18, 5] all the rules vote in the classification process with
their certainty factor. Finally, the class label with the largest value of accumulated votes
is assigned to X as shown in (2). This accumulated vote of each class c for a pattern X
is called here strength of the class c on X.

X is classified as c∗ ∈ CL where

c∗ = argmaxc∈CL
(∑

rk∈Rc ωkµk(X)
)

(2)

in which CL = {c1, c2, ..., c|CL|}) is the set of all class labels and µk(X) represents the
compatibility grade of X with the rule rk. Also Rc is the set of the rules with consequence
class label c (i.e. Rc = {rk|hk = c}). It is shown in [18] that, voting can smooth the
decision boundaries with higher generalization in classification. This is why, this paper
concentrates on weighted vote reasoning.
Due to the role of the certainty factor in (2), it is coined in the following: ”weight of
the rule”. Tuning these weights can improve the performance of the classification system.
Indeed, rule-weighting is a special case of tuning fuzzy sets without any change in semantics
of linguistic variables. Two samples of possible fuzzy sets are depicted in Figure 1, each
one is associated with a linguistic variable i.e. Low and High. In this figure , η

(
xi, A

)
is

the membership function of the feature value xi in the fuzzy set A.
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Figure 1. Membership Curve of Two Sample Fuzzy Sets

VS. Feature Value xi: Low and High

3. A Linear Model of Rule-weighting

The major aim of rule-weighting is tuning the system in order to achieve a better
classification rate on the training data. The set of training patterns is a collection of pairs
⟨Xp, yp⟩, where Xp is the feature vector of pth training pattern and yp is its associated
class label.
In this section, the problem is modeled in the format of a constraint linear programming.
Suppose our training data are patterns form two classes +1 and -1 (for a binary dataset).
Each pattern Xp is classified correctly by the application of weighted vote reasoning, if
(3) is satisfied.(∑

rk∈R+1 ωkµk (Xp)−
∑
rk∈R−1 ωkµk (Xp)

)
yp > 0⇒

∑
rk∈R

hkωkµk (Xp) > 0

hk = +1 or − 1, yp = +1 or − 1 (3)

The dataset will be called separable if it is possible to tune the rule weights such that all
training patterns are classified without any error. Otherwise, there is no feasible solution
for constraints defined by (3). In many cases, the dataset is not separable, and constraints
should be relaxed to have a feasible solution. Therefore, each constraint is permitted to
be satisfied with an error, like shown in (4). In this case the goal is to minimize these
errors.

Minimize
∑
Xp

ϵp

s.t. ∀Xp :
∑
rk∈R

hkωkµk (Xp) yp + ϵp > 0&ωk, ϵk ≥ 0 (4)

whereof ϵp is a constraint relaxation parameter and considered directly as error in the
objective function to be minimized. The problem (4) suffers from two drawbacks:

(1) It is trivial that ωk = 0 is the optimal solution of (4), not being desired here.

(2) It is desired to minimize just experimental risk on training data which may lead
to decrease the generalization performance

To overcome these disadvantages, a margin-based model has been proposed in this paper.
To make some comparisons between the proposed approach of rule-weighting and the well-
known margin-based classifier SVM, a brief explanation of SVM model is presented in the
next section.

4. Support Vector Machine Classifier(SVM)

SVM [32, 7] is a binary classifier that tends to classify patterns of two classes labeled
by -1 and +1, utilizing a discriminant function. In the case of simple SVM, this function
f(X) is linear respect to feature values of pattern X, forming a hyper-plane in the feature
space according to (5).
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f(X) = sgn
(
WTX − b

)
(5)

where, W is the perpendicular vector of discriminant hyper-plane biased with scalar value
b. This hyper-plane divides the feature space into two parts to classify the patterns as +1
or -1. Also, sgn(.) is the sign function that returns +1 and -1 for positive and negative
values, respectively.

4.1. Separable Datasets. The aim of SVM is to find a hyper-plane with maximum
symmetric margin on both sides, so that no training pattern is located in this margin as
depicted in Figure 2 . Increasing the margin induces increase in generalization potential of
the classifier. The signed Euclidian distance of a pattern Xp from the hyper-plane defined
by W and b can be computed by (6) as dW,b(Xp).

dW,b(Xp) =
(
WTX − b

)
/∥W∥ (6)

of which |W | is the 2-norm of W . Regardless of details described in [7], maximizing the
margin is equal to minimizing |W |. Hence, the problem is formulated in (7).

Minimize 1
2
W 2

s.t.
∀Xp :

(
WTXp − b

)
yp ≥ 1 (7)

4.2. Non-separable Datasets. Usually datasets are not separable into two disjoint
groups of classes by a hyper-plane, as depicted in Figure 2. In these cases, some pat-
terns are located in the margin or even misclassified. For the purpose of overcoming this
challenge, some errors will be attributed to patterns if they enter to the margin. Conse-
quently, (7) is converted into (8) as expressed in [7].

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

Figure 2. SVM Classifier with Maximum Margin for Inseparable
Data Points. One of the Solid and One of the Transparent Patterns

are (each) Located in the Margin with Errors ϵp and ϵq, Respectively

Minimize 1
2
W 2 + C

∑
p ϵp

s.t.
∀Xp :

(
WTXp − b

)
yp ≥ 1− ϵp

ϵp ≥ 0 (8)
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where ϵp is the error associated with Xp and C is a regularization coefficient. Increasing C
reduces the importance of generalization although finding a suitable C is itself a challenge.

4.3. Non-linear SVM Classifiers. Linear SVM classifiers are extended to nonlinear
ones by transferring data patterns into high dimension with nonlinear functions. After
this nonlinear transfer, new data patterns are discriminated by a hyper-plane as similar as
previous subsection. By this conversion, data points in the higher dimension are likely to
be more linear separable with less experimental error on training data; whereas the linear
separator function in high dimensional space forms a nonlinear separation in the original
space.
Assume ϕ(X) is a function transferring X to a high dimensional space. Also consider a
special case of SVM which the discriminant hyper-plane is forced to cross the origin (it
has no bias i.e. b = 0). Having unbiased SVM on ϕ(X), (8) is reformulated [7] as (9).

Minimize 1
2
W 2 + C

∑
p ϵp

s.t.
∀Xp :

(
WTϕ(Xp)− b

)
yp ≥ 1− ϵp

ϵp ≥ 0 (9)

5. Proposed Quadratic Margin-based Rule-weighting

Increasing the size of the margin in order to improve the generalization, is inspired by
SVM to be utilized in our rule-weighting process. In such an approach, the aim would
be to tune rule weights so that training patterns could be classified correctly as much as
possible. Moreover, it is desired that minimum distance of the patterns to the decision
boundaries is maximized.
Decision boundary is a subspace which separates decision spaces of classes +1 and -1.
Decision boundary in SVM is the discriminant function whereas, in FRBCSes, decision
boundary H is a set of points which have equal voted compatibility grades (strength) with
class -1 and +1 in (2), as demonstrated in (10). Here, the strength of the correct class
minus strength of the opposite class on each pattern is considered as its distance from the
decision boundary. Hence, discriminant function χ(X) and distance function δΨ(X) are
defined as shown in (10).

χ(X) = sgn
(∑

rk∈R
hkωkµk(X)

)
δΨ (X) = χ(X)

∥Ψ∥ (10)

according to which ψ is the vector of rule weights ψ =
[
ω1, ω2, . . . , ω|R|

]
. Also, δψ(X) is

the distance of pattern X from decision boundary. Considering definitions of distances in
(10) and (6), both of them are normalized by the norm of vectors ψ and W , respectively.
Also, decision boundary (χ(X) = 0) is a linear function of compatibility grades of points
with each rule. This linearity motivates us to define a transfer function as following.
Assume each data pattern X is transferred by M(X) to a new feature space such that
it is represented by its signed compatibility grades with the whole rules in the rule-base.
From now on, this new feature space is called compatibility grade space. M(X) is defined
in (11):

M(X)T =
[
h1µ1(X), . . . , hkµk(X), . . . , h|R|µ|R|(X)

]
(11)

Considering the transfer function (11), decision boundary H in (10) can be written as
(12).

H : χ(X) = ΨTM(X) = 0 (12)
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After this transfer, decision boundary is a discriminant hyper-plane crossing the origin
(having no bias). The Figure 3 depicts decision boundaries of the rules specified in Ta-
ble 1, for both original feature space and compatibility grade space. The rules of Table 1
are based on sample fuzzy sets proposed in Figure 1.

As shown in Figure 3, decision boundary in compatibility grade space is a linear func-

Rule No. Rule Description

1 If x1 is High then class +1 with ω1 = 0.5

2 If x1 is Low and x2 is High then class -1 with ω2 = 1

Table 1. Two Sample Fuzzy Rules

Figure 3. Decision Spaces of Each Rule Specified in Table 1: (a) in

Original Feature Space. (b) in Compatibility Grade Space

tion of feature values even if it would not be linear in the original space. In addition, the
perpendicular vector of discriminant hyper-plane in compatibility grade space (3.b) is the
same as the vector of rule weights utilized in original feature space.
Inversely, this transfer function can be utilized to weighting some predefined fuzzy rules.
First, transfer the training patterns to the compatibility grade space, and then, find a
proper discriminant hyper-plane in compatibility grade space (by any linear classifier i.e.
SVM here). Perpendicular vector of this hyper-plane can be finally used as fuzzy rule
weights. It should be underlined that this discriminant hyper-plane is forced to contain
the origin. Hence, the rule weighting problem can be presented as (13).

Minimize 1
2
Ψ2 + C

∑
p ϵps.t.

∀Xp : ΨTM(Xp)yp ≥ 1− ϵp
ϵp ≥ 0

∀rk ∈ R : ωk ≥ 0 (13)

This problem becomes so much similar to (9) by equalizing ψ and M(X) to W and ϕ(X),
respectively. There is a significant difference:
• Although wk in SVM plays the same roles as ωk in our proposed rule-weighing

method,ωk should be non-negative as a predefined condition in state of the art.
It should be commented that, in (13), the same as SVM, the margin is to be maximized.

6. Rule-weighting Kernel for SVM

Until now, all optimization problems are presented in primal form but, investigation of
dual forms are useful from some perspectives e.g. process and memory space complexities
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or similarity of different optimization problems. The dual problem of unbiased SVM with
transfer function ϕ(X) which is presented in (9), is shown in (14).

Maximize − 1
2

∑
p

∑
q αpαqypyqϕ(Xp)

Tϕ(Xq) +
∑
p αp

s.t.
W =

∑
p αpypϕ(Xp)

0 ≤ αp ≤ C (14)

Considering equality in (14), a new representation of decision function in (5) is shown
in (15).

f(X) = sgn

(∑
p

αpypϕ(Xp)
Tϕ(Xp)

)
(15)

Based on (15), it is enough to store only nonzero ? values called support vectors in SVM.
As demonstrated, both (14) and (15) use dot product of two data patterns after transfer-
ring to new feature space by ϕ(X). This is the most important reason to define a Kernel
K ⟨Xp,Xq⟩, as presented in (16).

K ⟨Xp, Xq⟩ = ϕ(Xp)
Tϕ(Xq) (16)

Similarities of the proposed method of rule weighting and SVM classifier can be touched
in dual forms more than primal forms as defined by (17).

Maximize − 1
2

∑
p

∑
q αpαqypyqM(Xp)

TM(Xq) +
∑
p αp −G

s.t.

G =
∑
rk∈R

(
βk
∑
p αpyphkµk(Xp) +

β2
k
2

)
0 ≤ αp ≤ C, βk ≥ 0 (17)

Note that in this equation, G is a cost function which is the result of the constraint ωk ≥ 0.
Without this non-negativity inequality, G and βk can be totally ignored and (17) will be
equal to (14). In this paper, it is claimed that the proposed rule-weighting is a special
case of unbiased SVM classifiers with a novel kernel defined in (18) and, of course, some
conditions (ωk ≥ 0).

K∗ ⟨Xp,Xq⟩ =M(Xp)
TM(Xq) =

∑
rk∈R

µk(Xp)µk(Xq) (18)

We make it a convention now to call the SVM classifier with this novel kernel ”Fuzzy Kernel
SVM” (FKSVM). Considering some conditions, the proposed rule weighting method is the
same as FKSVM:

(1) FKSVM would be unbiased implying that b would be set to zero
(2) There would be no restriction on rule weights (rule weights can be negative)

But in this paper, it is assumed that the weights are constrained to be nonnegative. In the
next section, a multi-class FRBCS and associated rule-weighting method are presented.

7. Multi-class Rule-weighting

SVM classifiers are primarily proposed for binary class datasets in [7]. But so far,
too many approaches are proposed to extend SVM classifiers for multi-class datasets [13].
Initially, some general methods for multi-class classification using binary classifiers are
proposed such as ”one vs. rest” and ”one vs. one” [13]. Weston and Watkins [33] propose
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a multi-class SVM, however, which optimizes a single function in order to adjust optimal
hyper-planes. The primal problem of multi-class SVM has been shown in (19).

Minimize 1
2

∑
ci∈CL (W ci)2 + C

∑
Xp

∑
ci∈CL−yp ϵ

ci
p

s.t.
∀Xp :

∀ci ∈ CL− yp :
[
(W yp)T ϕ(Xp)− byp

]
−
[
(W ci)T ϕ(Xp)− bci

]
≥ 2− ϵcip

ϵcip ≥ 0 (19)

whereuponW c and bc are, respectively, the perpendicular vector and the bias of the hyper-
plane discriminating class c from the rest of classes. By this optimization, the classification
function of X is defined as (20).

g(X) = arg max
ci∈CL

(
(W ci)T ϕ(Xp)− bci

)
(20)

Where, g(X) is the class label predicted for pattern X. For binary datasets, this opti-
mization problem and associated classification function is similar to binary SVM [33].
From another perspective, FRBCSs are not limited to binary datasets as can be concluded
from section 2. But the rule-weighting proposed in sections 5 and 6 is a model just appli-
cable to binary datasets. For multi-class datasets, each pattern should be voted by rules of
correct class more than accumulated votes of associated rules for each one of other classes.
Yet, minimizing 2nd norm of the vector of rule weights, increases the margin and some
patterns may also have some errors. Therefore, (13) is extended to (21) for multi-class
labels.

Minimize 1
2
Ψ2 + C

∑
p

∑
ci∈CL−yp ϵ

ci
p

s.t.
∀Xp, ci ∈ CL− yp :

∑
rk∈Ryp ωkµk(Xp)−

∑
rk∈Rci ωkµk(Xp) ≥ 1− ϵcip

ϵcip ≥ 0
∀rk ∈ R : ωk ≥ 0 (21)

By defining Ψc = [ωk|hk = c], (21) can be written similar to multi-class SVM problem
(19). Although there are some differences between Fuzzy Kernel SVM and our proposed
rule weighting (especially in having no bias and no negative weights), from now on, we
call this method of rule weighting as FKSVM.

8. Rule Reduction

Decreasing the number of the rules is not the direct goal of a rule weighting method but
it may be achived as a side effect by setting some weights to zero. For example, IGARW
follows a procedure to weighting the rules such that both of irrelevant and redundant rules
can be removed due to having zero weights. In this paper, rule reduction is never con-
sidered directly in the objective function. But since accuracy of classification on training
data is desired to be maximized, the weights of irrelevant rules are expected to be set to
zero after minimizing ∥W∥.
As a general trick in many rule weighting methods, the rules with weights less than a
threshold can be removed. In this paper, after the process of weighting the rules, all
of them are sorted according to their weights. Then a threshold for removing the low
weighted rules will be chosen such that classification rate on training data would be max-
imized. The pseudo-code of proposed rule reduction is shown in Table 2.
It experimentally seems that, removing low weighted rules by this procedure, not only
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results in a more compact rule-base but also decreases the complexity of the classifica-
tion system which leads to have more generalization capability in classifying unseen data
patterns [17].

1: function Rule Reduction(R,Ψ)
2: ◃ The fuzzy rules R = {r1, r2, . . . , r|R|} ◃ and their associated weight
Ψ = {ω1, ω2, . . . , ω|R|}

3: Rs ← {ra1 , ra2 , . . . , ra|R|} where ∀i < j ⇒ ωai ≤ ωaj ̸=ai ◃ Sort all the rules

according to their weights in ascending order as Rs.
4: Ψ ′ ← Ψ , bestIndex← 0 , bestAccuracy ← acc(Ψ)
5: for k = 1→ |R| do
6: ωak ← 0
7: tempAccuracy ← acc(Ψ)
8: if tempAccuracy ≥ bestAccuracy then
9: bestAccuracy ← tempAccuracy

10: bestIndex← k
11: end if
12: end for
13: Ψ ← Ψ ′

14: ∀k ≤ bestIndex : ωak ← 0
15: return Ψ
16: end function

Table 2. Pseudo-Code of Rule Reduction

9. Experimental Results

In this paper, 13 datasets from UCI repository, which are described in Table 3, are
considered for classification tests. These datasets are selected from different cases with
various numbers of class labels, features, patterns and variety in their complexities. Any
missing value is replaced by zero in these datasets if there is. Although there are many
methods to generate a good rule base [28, 27], since generation of the rule-base is not
important, it is assumed that a pre-generated rule-base has been provided similar to
[36, 25]. After weighting these rules, the ones with zero weights are removed from the rule
base.
In following experiments, each rule-base contains exactly 30 rules from each class. To
measure the power of each method to learn training data, ”Full train-Full Test” validation
is shown in Table 4. In this validation, all training data is used to train and all of them
are tested by the trained classifier. Here the classification rates on training data, using
7 various methods of rule weighting, are compared with the case of having equal weights
for all the rules (no weighting). These 7 methods are 4 greedy methods of rule-weighting
proposed by Ishibuchi [24], called G1-4, a reward and punishment procedure (R& P) [31],
our Iterative Greedy Accuracy-based Rule-Weighting (IGARW) [36] and the method of
this paper (FKSVM). Although IGARW is an iterative method, due to the danger of
over-fitting on training data, this method has run for only one iteration, in this paper.
FKSVM has no parameter except of C which is 10 here.

As shown in Table 4, G1-4 cannot improve the classification rate even on training data.
The method R&P is better than G1-4 but, on the one hand, it is highly time consuming,
and on the other hand, it has been compared with IGARW in [36]. It was shown that
IGARW improves the classification rate more than R&P. Indeed, none of G1-4 and R&P
is aimed to improve an explicit objective function.

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

A Quadratic Margin-based Model for Weighting Fuzzy Classification Rules Inspired by ... 51

Dataset
Pattern Feature Class

Dataset
Pattern Feature Class

No. No. No. No. No. No.

Haberman 306 3 2 Iris 150 4 3

Pima 768 8 2 Wine 178 13 3

Bcancer 684 10 2 Lung
32 56 3

WDBC5 569 30 2 Cancer

WPBC 198 33 2 Heart 287 13 5

Ionosphere 351 34 2 Glass 214 9 6

Sonar 208 60 2 Image 210 19 7

Table 3. List of UCI Datasets Used in This Paper

Dataset
No

G1 G2 G3 G4 R&P IGARW FKSVM
weight

Haberman 73.86 73.53 73.86 =G2 =G2 75.49 79.41 78.10

Pima 71.61 72.14 72.40 =G2 =G2 74.87 77.21 77.34

BCancer 94.74 94.59 94.44 =G2 =G2 94.74 97.37 96.64

WDBC5 91.74 92.27 92.44 =G2 =G2 94.02 95.08 95.25

WPBC 77.27 77.27 76.77 =G2 =G2 83.84 84.34 85.35

Ionosphere 80.91 82.05 82.05 =G2 =G2 86.61 88.89 88.32

Sonar 75.96 76.44 75.96 =G2 =G2 77.40 80.29 78.85

Iris 96.00 96.00 96.00 96.00 96.00 95.33 98.00 96.00

Wine 96.07 96.07 96.07 96.07 96.07 95.51 98.88 98.31

Lung
84.38 84.38 87.5 84.38 84.38 93.75 93.75 93.75

Cancer

Heart 60.63 60.63 60.63 60.63 60.28 64.11 67.25 63.76

Glass 64.49 64.49 64.49 65.42 64.49 65.89 70.56 68.69

Image 80.00 80.00 80.00 80.00 80.00 80.48 81.43 80.48

Average 80.59 80.76 80.97 80.80 80.75 83.23 85.57 84.68

Table 4. Classification Rate on Training Data After Rule-Weighting

by G1-4 [24], R&P [31], IGARW [36] and FKSVM

In Table 5, full train- full test classification rate and the number of remained rules (rules
with nonzero weights) for IGARW and FKSVM are compared. The proposed rule pruning
in Table 2 is also applied after FKSVM and the results are reported in Table 5. As can
be seen, it seems that the proposed rule pruning and IGARW, compete with each other
to reduce the number of the rules. Based on our experiments, this pruning increases the
generalization of FKSVM due to decreasing the system complexity. The classification
rate of FKSVM is often less than IGARW on training data. This is due to considering
generalization in FKSVM such that, in cases that IGARW over-fits on training data, the
proposed rule weighting improves the accuracy of classification on unseen data.
In order to have a more statistical comparison of FKSVM and other methods, in Table 6,
these methods are compared by Ten Fold-Ten Cross Validation (10CV). Here, C is found
by cross-validation from the set of values {100, 10, 1}. In our experiments it is usually set
to 10.
In this table, mean and standard deviation of classification rates of all 100 runs are reported
for each pair of dataset and weighting method. In addition, for each dataset, paired T-test
is used to compute statistical significance of the hypothesis that FKSVM is better than
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Dataset

IGARW FKSVM

1 Iteration 2 Iteration 3 Iteration
No Rule With Rule

Reduction Reduction

Rate
Rule

Rate
Rule

Rate
Rule

Rate
Rule

Rate
Rule

No. No. No. No. No.

Haberman 79.41 29 79.74 27 80.39 28 78.10 60 78.76 45

Pima 77.21 34 77.86 28 77.99 27 77.34 60 77.73 3

Cancer 97.37 20 97.37 19 97.37 19 96.64 60 97.22 8

WDBC5 95.08 52 95.25 46 95.25 45 95.25 60 95.96 15

WPBC 84.34 32 84.34 31 84.34 31 85.35 60 87.37 45

Ionosphere 88.89 24 89.17 18 89.17 13 88.32 60 88.32 28

Sonar 80.29 48 80.29 25 80.29 17 78.85 60 80.77 23

Iris 98.00 37 98.00 37 98.00 37 96.00 90 98.00 7

Wine 98.88 24 98.88 15 98.88 13 98.31 90 99.44 26

Lung
93.75 12 93.75 9 93.75 7 93.75 90 96.88 34

Cancer

Heart 67.25 25 67.60 22 67.60 21 63.76 150 63.76 58

Glass 70.56 32 71.50 25 71.50 23 68.69 180 69.63 104

Image 81.43 9 81.43 7 81.43 7 80.48 210 80.48 137

Table 5. Comparison Between IGARW and FKSVM with Rule Reduction

According to Classification Rate on Training Data and the Number of Remained Rules

Datasets
No

G1 G2 G3 G4 R&P
IGARW with FKSVM with

T-test
Weight one iteration Rule reduction

Haberman 71.80 71.96 73.00 =G2 =G2 73.54 72.43± 8.23 76.25± 7.09 +

Pima 71.38 71.59 72.19 =G2 =G2 74.76 74.97±4.21 77.13±3.83 +

Cancer 94.23 94.11 94.05 =G2 =G2 94.43 96.74±1.95 96.68±1.85 -

WDBC5 91.41 91.90 92.43 =G2 =G2 93.78 93.95±3.25 95.32±2.76 +

WPBC 76.30 76.31 76.29 =G2 =G2 77.83 78.85±8.31 82.19±7.57 +

Ionosphere 80.99 81.43 82.00 =G2 =G2 85.41 85.59±6.10 87.36±5.60 +

Sonar 74.50 73.59 72.88 =G2 =G2 75.75 77.81±9.48 80.45±8.19 +

Iris 95.93 95.93 96.00 96.00 96.00 95.47 95.13±5.32 96.33±4.47 +

Wine 94.99 94.84 95.02 95.29 94.96 95.10 96.13±4.58 98.04±3.01 +

Lung
49.33 54.33 52.42 49.50 51.50 57.16 54.5±24.82 66.58±19.81 +

Cancer

Heart 56.83 56.47 56.28 56.48 56.38 53.86 54.01±8.50 57.94±8.60 +

Glass 54.71 57.58 56.07 56.45 57.37 58.77 58.78±10.89 62.31±10.14 +

Image 79.43 80.19 80.05 80.10 80.19 80.00 79.48±9.32 81.00±8.61 -

Table 6. Comparison of FKSVM with Other Rule Weighting

Methods Using 10CV

IGARW (for significance level of 95%). Not only, in none of cases, FKSVM is significantly
worse than IGARW, but also in the most of cases, which are marked by (+), FKSVM is
significantly better than IGARW. The datasets, for which the hypothesis is rejected, are
marked by (-).
Paired T-test can be used in order to statistically comparing two methods over only
one dataset. Also, T-test have been used in the literature review for comparing two
classifiers on multiple datasets, but it is not recommended in recent researches [8, 11] for
this task. In this paper, two nonparametric methods are used, to compare performance
of two classifiers over multiple datasets [8]: ”Wilcoxon signed-ranks test” and ”Counts
of wins, losses and ties: Sign test”. Using both of these tests, FKSVM is significantly
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better than other methods for significance level of 95%, based on the classification results
reported in Table 6.

10. Conclusion

In this paper, a novel quadratic model is proposed to tune the weights of fuzzy classifi-
cation rules. Improving the classification rate on training data and increasing the general-
ization capability by a margin based approach, both of them, are considered explicitly in
the objective function. A fuzzy kernel for Support Vector Machine (SVM) classifiers has
been introduced here, and equality of the proposed method of rule-weighting, in special
conditions, with nonbiased Fuzzy Kernel SVM (FKSVM) has been investigated here in
order to use the deep background theory of SVM. In addition, experimental results show a
significant improvement on classification rate of Fuzzy Rule-Based Classifier Systems (FR-
BCS) after weighting with FKSVM, in comparison with other methods of rule-weighting
such as fast and powerful Iterative Greedy Accuracy-based Rule-Weighting (IGARW).
Moreover, not only the proposed method has been extended for multi-class datasets, but
also some other approaches such as having negative rules or bias rule in FRBCSes are
touched for future works. Inspecting this quadratic programming model for rule-weighting
with Single Winner reasoning, tracing the global solution by changing the value of C, local
training, and reducing the complexity of this model respect to the special properties of
the rule-weighting, are some of works which can be followed in future.
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