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A FUZZY VERSION OF HAHN-BANACH EXTENSION
THEOREM

L. ZEDAM

ABSTRACT. In this paper, a fuzzy version of the analytic form of Hahn-Banach
extension theorem is given. As application, the Hahn-Banach theorem for r-
fuzzy bounded linear functionals on r-fuzzy normed linear spaces is obtained.

1. Introduction

Hahn-Banach theorem is one of the most famous and useful result in functional
analysis. Ramakrishnan [15] established the norm-preserving fuzzy completion of a
fuzzy normed algebra and gave a fuzzy extension of Hahn-Banach theorem. In the
same year Rhie and Hwang [16] investigated the relation between fuzzy seminorms
and crisp seminorms on a linear space X and extended the analytic form of the
Hahn-Banach theorem with the notion of fuzzy seminorm. In recent years, a fuzzy
version of Hahn-Banach theorem on a vector space over the set of fuzzy real numbers
and some related applications were proved by Binimol and Sunny Kuriakose [6,
7]. There are also many other fuzzy versions of Hahn-Banach theorem for fuzzy
bounded linear operators on fuzzy mormed spaces (see e.g. [2, 9, 12, 19] etc...).

In this paper, using the definition of fuzzy order due to L. A. Zadeh (see [21]),
we assume that the set of real numbers IR endowed with a fuzzy order r instead of
the natural order < and prove a:new fuzzy version of the analytic form of Hahn-
Banach theorem. As application, the Hahn-Banach theorem for r—fuzzy bounded
linear functionals on r—fuzzy normed linear spaces is obtained.

2. Preliminaries

We begin-with a number of definitions related to fuzzy orders. We follow the
notation and vocabulary of Zadeh [21] closely, and refer the reader to Amroune
and Davvaz [1], Beg [3], Bernadette [4], Billot [5], Bodenhofer and et.al. [8], Kundu
[10], Li-and Yen [11], Ovchinnikov [13, 14], Stouti and Zedam [17], Venugopalan
[18], Zadeh [21] and Zimmermann [22] for elementary definitions and facts about
fuzzy order relations.

The concept of a fuzzy set in a non-empty set was introduced by Zadeh [20] in
1965.
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Let X be a nonempty set, a fuzzy subset A of X is characterized by its membership
function A : X — [0, 1] and A(x) is interpreted as the degree of membership of the
element z in the fuzzy subset A for each z € X.

In [21], Zadeh gave the following definition of fuzzy order.

Definition 2.1. [21] Let X be a nonempty set. A Zadeh’s binary fuzzy partial
order (briefly, fuzzy order) on X is a fuzzy subset r on X x X in which the following
conditions are satisfied:

(i) for all z € X, r(z,z) = 1, (fuzzy reflexivity);

(ii) for all z,y € X, (r(z,y) > 0 and = # y) implies (r(y,z) = 0), (fuzzy antisym-
metry);

(iii) for all z,y, z € X, r(x, z) > maxyex min{r(z,y),r(y, 2)}], (fuzzy transitivity).

Note that each crisp order < on X can be considered a fuzzy order defined by
r(z,y) =1if <y and r(z,y) = 0 if 2 and y are incomparable elements.

A nonempty set X with a fuzzy order r defined on it is called fuzzy ordered set
(for short, foset) and we denote it by (X, r).

If Y is a subset of a foset (X,r), then the restriction of r to Y is a fuzzy order
in Y and is called induced fuzzy order.

A fuzzy order r is linear (or total) on X if for every x,y € X, we have r(z,y) >0
or r(y,z) > 0. If x # y, by the fuzzy antisymmetry of r, clearly only one of these
conditions can be satisfied. A fuzzy ordered set (X, r) in which r is total is called a
r-fuzzy chain. Conversely, if for any =,y € Xyr(x,y) > 0 if and only if z = y, then
(X,r) is called r-fuzzy antichain.

Next, we give some examples of fuzzy order.

Example 2.2. Let X = {a,b,¢c,d,e, f,g}. Then the fuzzy subset r defined on
X x X by the following table:

a“lble| d e f g
al 1L |0[0]0.55]0.40 | 0.45 | 0.60
b0 |1]0]0.60|0.50]0.35|0.75
c|[015]0(1/|0.30]|0.70 | 0.80 | 0.90
d|{ 0 |(0]|0] 1 0 |015] O
e[ 0 |00 O 1 10.30|0.25
f1 0 |0]0] O 0 1 0
g| 0 |00 O 0 [020] 1

is a fuzzy order on X.

Example 2.3. Let z,y € R. Then the fuzzy subset r) defined for all z,y € IR by:

L, if v=uy;
ra(z,y) = min(l,47), if v <y,
0, if x> y;

is a total fuzzy order on R.

Clearly, 0 < ry(z,y) < 1 for all x,y € R. Thus r) is well defined. Now let us
show that ry is a fuzzy order on RR.
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1) For all z € R, ry(x,x) = 1. Thus r) is fuzzy reflexive.

2) Let =,y € R with « # y. Then, r)(z,y) > 0 is true only in the case z < y.
So, 7 is fuzzy antisymmetric.

3) Let x,y, 2 € R. Then, we have three cases to study.

3.4) If ra(x, z) = 1, then ry(x, z) > min{ry(z,y),rr(y, 2)}, for all y € R.

3.ii) If ra(z, 2) = 5% > 0, then 2 < z. Hence, for y € IR we have three cases to
consider:

(a) if z < z <y, then r)(y, 2z) = 0.

(b) If 2 <y < 2,50 55 > =¥, Hence, we get ra(z,2) > ra(y, 2).

(¢) f y < z < 2, then ry(z,y) = 0. Thus ry(x,z) > min{ry(z,y),rr(y, 2)}, for
all y € R.

3.ii) If rx(z, z) = 0, then x > 2. So, for every y € R we have three cases:

(a) if & > z >y, then ry(z,y) = 0.

(b) If x >y >z s0rxr(y,z) =0.

(¢) If y > x > z, hence r)(y, z) = 0.

Hence, r(z,z) > min{ry(z,y),rr(y, 2)}, for all y € R.. Thus, ry is fuzzy transi-
tive. Therefore, 7y is a fuzzy order on IR.

Since for all x,y € R, such that z # y we have either ' <y or y < x. Then, we
get either min(1, ¥5*) > 0 or min(1, *5¥) > 0 Thus, ry is a total fuzzy order.

Example 2.4. Let X = R. Then, the fuzzy relation r defined for all z,y € R by:

1, ifm=y;
0, if z>y;
r(z,y) = 1=2 if0<z<y; |,

1—%,if:c<y§0;
1, if x<0andy>0;
is a total fuzzy order on IR.

Clearly, 0 < r(z,y) < 1 for all z,y € R. Thus r is well defined. Now let us show
that r is a fuzzy order on RR.

1) For allz € R, r(x,x) = 1. Thus r is fuzzy reflexive.

2) Let z,y € R such that x # y. Then, we have r(z,y)r(y,x) = 0. So, r is fuzzy
antisymmetric.

3) Let x,yyz € R. Then, we have four cases to study.
3.4) If r(x, z) = 1, then r(z, 2z) > min{r(z,y), r(y, 2)}, for all y € R.

3.i) ' If r(z,2z) = 0, then > 2. Hence, for every y € R we distinguish the
following subcases.

(a) If > z > y, then it holds that r(z,y) = 0.
(b) If z > y > %, then it holds that r(y, z) = 0.
(c) If y > = > z, then it holds that r(y, z) = 0.
Thus, r(z,z) > min{r(z,y),r(y, 2)}, for all y € R.
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3.ii) If r(z,2) =1 — Z, then 0 < x < z. Hence, for y € R we have four cases to
consider:

(a) If 0 <z < z <y, then r(y,z) = 0.

b)If0<zr<y<zsol—-2>1—*% Hence, we get r(z,2) > r(y, 2).

(c)f0<y<uz<z, then r(z,y) =0.

dIfy<0<z<zsor(zry) =0.

Thus 7(z, z) > min{r(z,y),7(y, 2)}, for all y € R.

3.iv) If r(x,2) = 1 — Z, then by using a similar argument as in the case (3.iii)
we can see that r(x, z) > min{r(z,y),r(y, 2)}, for all y € R.

Hence, r is fuzzy transitive. Thus, r is a fuzzy order on IR.

As for all z,y € R, such that = # y we have either x < y or y < x, then we get

either r(x,y) =1— 7 >0or r(y,r) =1—% > 0. Thus, 7 is a total fuzzy order.

Definition 2.5. Let (X, r) be a fuzzy ordered set and A be a subset of X.

(a) An element u € X is an r-upper bound of A if r(z,u) > 0 for all z € A. The
set of all r-upper bounds of A is denoted by A". If wis the r-upper bound of A
and u € A, then w is called a greatest element of A. The r<lower bound and least
element are defined analogously and the set of all r-lower bounds of A is denoted
by A

(b) An element m € A is called a maximal element of A if there is no x # m in
A for which r(m,z) > 0. = m. Minimal elements are defined similarly.

(c) As usual, the r-supremum of A is defined by sup,(A) = the least element
of r-upper bounds of A (if it exists).+ Similarly, the r-infimum of A defined by
inf,.(A) = the greatest element of 7-lower bounds of A (if it exists).

We write z V, y the r-supremum and @ A, y the r-infimum of the set {z,y}. For
linear fuzzy order, = V,'y = max,{z, y} and = A, y = min, {xz, y}.

Definition 2.6. Let 7-be a fuzzy order on R and z € R. If r(0,z) > 0, then z is
called an r-positive real number. The set of them all is denoted by IR;". Similarly,
if r(x,0) > 0 then  is called an r-negative real number, and the set of them all is
denoted by R,

Definition 2.7. 1) Let r be a fuzzy order on IR. We say that r is compatible with
the addition if for all (z1,41), (z2,2) € R?, we have

(r(x1,y1) > 0 and 7(z2,y2) > 0) = (r(z1 + x2,y1 + y2) > 0).
2) The fuzzy order r is said to be compatible with the multiplication by scalars
if for all (z,) € R? and A > 0, we have
(r(z,y) > 0) = (r(A\x, \y) > 0).
Example 2.8. The fuzzy order relation given in Example 2.4 is compatible with
the addition and multiplication by scalars on R.

(i) 7 is compatible with the addition. Indeed, let (z1,%1), (z2,%2) € IR? such that
r(x1,y1) > 0 and r(z2,y2) > 0. By the definition of r we get that 1 < y; and
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e < yz. Then, x1 + x5 < y1 + yo. Hence, r(x1 + x2,y1 + y2) > 0. Thus, r is

compatible with the addition.

(ii) 7 is compatible with the multiplication by scalars. Indeed, let (z,y) € R? such

that r(z,y) > 0 and A > 0. By the definition of r we get that z < y. Then, Az < Ay.

Hence, r(Az, Ay) > 0. Thus, r is compatible with the multiplication by scalars.
Therefore, r is compatible with the addition and multiplication by scalar on R.
Next, we show the following two propositions which we shall need for proving a

fuzzy version of Hahn-Banach theorem.

Proposition 2.9. Let R, = (IR,r) be the set of all real numbers endowed with
a fuzzy order r compatible with the addition and the multiplication by scalar, and
x,y € IR. Then we have the following:

i) If r(0,z) > O then r(—z,0) > 0.

it) If r(0,z) > 0 then r(—z,z) > 0.
Proof. Let x,y € R,.. i) Since r(0,z) > 0 and by the fuzzy reflexivity r(=z, —z) =
1 > 0, then from the compatibility of r with the addition we have that (0 +
(—x),x + (—z)) > 0. Hence, r(—z,0) > 0.

ii) We assume that 7(0,2) > 0. It is clear from (i) that r(—x;0) > 0. Then, from
the compatibility of » with the addition we have that r(—z;z) > 0. O

Proposition 2.10. Let R, = (IR,r) be the set of all real numbers endowed with
a fuzzy order r compatible with the addition and multiplication by scalar, and let
x,y € IR such that x #y. Then the following are equivalent.

(i) r(z,y) > 0;

(i1) There exists T € IR such that r(@,7) > 0 and r(7,y) > 0, (r-fuzzy density).
Proof. Let x,y € R, such that # # yrand r(z,y) > 0. For the one direction, let
T = 2 Since r(z,z) = 1 > 0cand r(z,y) > 0, from the compatibility of r with

the addition we get that
r(z+z,2+y)>0.

Now, by the compatibility of r with the multiplication we obtain that
r+y
2

r(z, ) > 0.
Thus, r(zg7) > 0.
In the same way we get that r(7,y) > 0.
The other direction follows directly from the fuzzy transitivity. O

3. Results

In this section we assume that IR, is the set of real numbers IR endowed with a,
fuzzy order r compatible with the addition and multiplication by scalar instead of
the natural order < and we shall prove a fuzzy version of Hahn-Banach extension
theorem. The prove of this fuzzy version will follow the same steps as the crisp
case. As application, we define the notion of r-fuzzy normed space with the help
of r-fuzzy norm as a generalization of crisp normed space, we introduce the notion
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of r-fuzzy bounded linear functional and we prove the Hahn-Banach theorem for
r-fuzzy bounded linear functionals on r-fuzzy normed linear spaces.

Definition 3.1. Let X be an real linear space, and T" a mapping of X into R,.
We say that T is a r-fuzzy sublinear functional on X if

D) r(T(x+y), T(x)+T(y)) >0 for all z,y € X, (r-subadditivity);

ii) T(\z) = A\T'(z) for all z € X and A € R;}, (r—positively homogeneous).

Example 3.2. The mapping T : R, — R, defined by T'(z) = |z|, = max,{z, —x}
is an r-fuzzy sublinear functional on IR,..

The following is a useful fact for r-fuzzy sublinear functionals.

Proposition 3.3. If T is an r-fuzzy sublinear functional on a real linear space X
then r(AT(x), T(Ax)) > 0, for allx € X and X\ € R,.

Proof. Let x € X and A € R,.. If A € R} we have T'(\z) = AT (z). Hence,
r(AT(z), T(Ax)) =1>0. (1)
If A € R, then from Proposition 2.9(i) we get that —\-€ R. As A\T(z) =
—(=AT(z)) so by the r—positively homogeneous of T' we have AT (z) = —(—AT(z)) =
—T(=Azx). On the other hand, since T'(A\x — Az ).= T(0) = 0, by the r—subadditivity
of T'we have r (T (Az+(—Az)), T (Ax)+T(—Az)) >0. Hence, r(0, T (\x)+T(—Ax)) >
0. Now, from the compatibility of r with the addition we have r(—T'(=Ax), T'(Az)) >

0. Thus,

r(AT(x), T(Az)) > 0. (2)
Therefore, (1) and (2) implies that r(A\T(z),T(Az)) > 0, for all z € X and
AeRR,. O

Theorem 3.4 (Fuzzy version of Hahn=-Banach theorem). Let X be a subspace of
a real linear space X, T a r-fuzzy sublinear functional on X, and ug be an linear
functional on Xg such that r(ug(x), T(x)) > 0 for all x € Xo. Then there exists a
linear functional@w on X extends ug to X and satisfies r(u(z),T(x)) > 0, for all
reX.

Proof. Let y € X such that y ¢ Xy and denote by Y the vector subspace generated
by Xo U {y}; so
Y={x0+y /20 € Xoand X € R, — {0}}
Let 7 € IR,., and provisionally define
u(zo + Ay) = up(zo) + A7.

It is easy to show that w is a linear extension of ug to Y; hence it remains to
choose 7 € R, such that for all g € Xy, and A € R,. — {0},

r(uo(zo) + A1, T(zo + Ay)) > 0. (3)

For all A € R} — {0}, replacing xo by Azo, using the r—positive homogeneity of
T, and from the compatibility of r with the multiplication, it suffices to see that

r(uo(zo) + 7, T(xo +y)) > 0. (4)
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r(uo(zo) + 7, T (20 +y)) > 0.
Therefore, from the r-fuzzy compatibility of r» with the addition, it suffices to

see that (7, T(z0 + y) — uo(wo)) > 0. (5)

For all A € R,” — {0}, replacing o by Azg, using the r—positive homogeneity
of T, and from the compatibility of r with the multiplication, we observe that it
suffices to see that

r(=uo(zo) — 7,7 (=20 —y)) >0 (6)
Therefore, from the r-fuzzy compatibility of r with the addition, it suffices to see
that

r(—uo(zo) — T(—zo —y),7) > 0. (7)
To see the existence of 7 € R, satisfying (5) and (6), start by observing that
r(—uo(zo) — T'(—z0 — y), T'(z0 +y) — uo(zo))

r(=T(=zo —y), T(xo +y))}

In addition, from Proposition 3.3 we have r(—=T(—z¢ = y), T (zo+ y)) > 0.

Then r(—ug(zg) — T(—zo — y), T(zo + y) — uo(zp)) > 05
and therefore by Proposition 2.10 there exists 7 € R, satisfies (5) and (6). Hence,

there exists 7 € IR, satisfies (3).
Now, an application of Zorn’s Lemma complete the proof. O

min{r(—uo (o), =uo(zo)),

>
> min{l,r(=TL(-z0 — ), T (@0 +v))},

Next, we shall give an application of r-fuzzy Hahn-Banach theorem, but in this
subsection, we assume that r is linear order on IR compatible with the addition and
multiplication.

Definition 3.5. Let X be a real linear space. An r-fuzzy norm on X is a mapping
z +— [|z||, from X into R, such that forall 2,y € X and A\ € R;!, the following
properties hold:

i) ||z]|» = 0 if and only<if x = 0.

it) A2l = [\l ol

i) (2 + yls Nl + gl ) 0

A linear space X equipped with an r-fuzzy norm ||.||,- is called an r-fuzzy normed
linear space. We denote it by (X, ||.||»)-

Example 3.6. The r-fuzzy absolute value |z|, = z V, (—z) is an r-fuzzy norm on
R

i) Let @ € R,., since r is a total order we have either r(0,2) > 0 or r(0, —z) > 0.
Then by Proposition 2.9(ii) we have either r(—xz,z) > 0 or r(z, —x) > 0.

Hence, (0, |z|.) > 0.

i) Obvious.

i) [Azll; = Az Vy (=Az) = [Alpz Vi (<[Al2) = [Alr (2 Ve (7)) = Al ]

iv) Let z,y € R,.To prove that r(||z + yl|,, ||z + ||yll-) > 0 six cases are
considered.

a) If r(0,z) > 0 and r(0,y) > 0 then

r(le +yle, [zl + lyle) = r(@ +y, 2 +y) =7 > 0.
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b) If r(z,0) > 0 and r(y,0) > 0 then
r(lz 4yl |2l + lylr) =r(-2 —y,—2 —y) =7 > 0.

c) If r(0,z) > 0, r(y,0) > 0 and r(x, —y) > 0 then

r(le +yle |zl +lyl) = r(-z-y,2—-y)

> min{r(—=,z),7(—y, —y)} > 0.
d) If r(0,z) > 0, r(y,0) > 0 and r(—y,z) > 0 then
rle+yle |zl +lyl) = rl@+yz-y)

> min{r(z,z),r(y, —y)} > 0.

e) If r(z,0) > 0, r(0,y) > 0 and r(y, —x) > 0 then
rle +yle |zl +lyl) = r(-z -y, —z+y)

> min{r(—x, _CC)7 T(_yv y)} > 0.
f) If r(x,0) > 0, r(0,y) > 0 and r(—=z,y) > 0 then
r(le +yle, [zl +[ylr) = r(@+y,—z+y)
> min{T(w, —a?),T(y, y)} > 0.

Definition 3.7. Let (X, |.||;) and (Y,].||-) be r-fuzzy normed linear spaces. A
linear operator u from X into Y is called an r-fuzzy bounded operator if there
exists K € R, such that

r(lu(@)llr, Kllz]l») >0, = forall z € X.

Remark 3.8. The r-fuzzy norms in X and Y are different. But we use same
notation |.||-, because there is no confusion.

Example 3.9. Let (X,|.||») be an r-fuzzy normed linear space, we define an op-
erator u : (X, |.|r) — (X, |||l») by u(xz) = Az where A(# 0) € R is fixed. Clearly
u is an r-fuzzy bounded linear operator.

In the following Lemma we describe the r-fuzzy boundedness of a linear operator
between r-fuzzy normed linear spaces by means of an r-fuzzy norm of it.

Lemma 3.10. Let u be an r=fuzzy bounded linear operator from (X,|.||,) into
(Y, ||.|l-)- Then there exists an r-fuzzy norm of u, denoted by ||ul|, such that:

r(Jlw@) || l|ull-lz]-) >0, for all x € X.

Proof. Since u is an'r-fuzzy bounded linear operator, there exists K € IR, such
that
r(JJu(@)|r, K||z|») > 0, for all z € X.

From the compatibility of r with the multiplication we obtain

r(M7K)>07 for all x € X.
2]l

Hence,
r(sup{W creXHK) >0, for all x € X.

This means that sup,.( ”ﬁgﬁl)l‘r) is finite.



www.SID.ir

A Fuzzy Version of Hahn-Banach Extension Theorem 65

Now we put ||u|, = sup, {14+ 2 € X}. It is clear that [|ull,, = 0 if and only

.-

if u =0, and that ||Au||, = |A|.||u|,. Since
r([lu+o@)lr lu@)llr + llo(@)],) >0, forall z € X,

it follows from the compatibility of r with the multiplication that
r<||U+U(w)||r lw(@)llr , lo@@)]lr

, ) >0, for all z € X.
(E | (e [E1S
Then we obtain

r(llw+ ol llully + llvfl-) > 0.

Hence, ||u||, is a r-fuzzy norm of w.

In addition, as ||ul|, = supr{% :x € X}, we get
T('T(x”)'lr, |lull-) > 0, for all x € X,
Z|r
which implies
r(||w(z)||r, |ull-lz)-) >0, for all z € Xu

O

Theorem 3.11. Let Xy be a subspace of an r-fuzzy normed linear space X, and ug
be an r-fuzzy bounded linear functional on Xo. Then there exists an r-fuzzy bounded
linear functional u on X such that u(x) = up(x) for all x € Xo and ||ull» = |luol|,

Proof. T(x) = ||ugl|+||x]|-. It is easy to see that T'(x) is an r-fuzzy sublinear func-
tional on X. Since ug is an r-fuzzy bounded linear functional on Xg, we obtain for
all z € Xy, that

r(uo(z), T(®)) = r(uo(x), [[uollr[|#[lr) > 0.

Then from the r-fuzzy -Hahn-Banach theorem there exists a linear functional u on
X extends ug to X and satisfies r(u(z), ||uol|-||x]~) > 0, for all z € X. Moreover,
for all x € X we have

r(u(=z), luoll-[| = 2||») > 0.
This shows that
r(—u(z), luoll+[lz]l») > 0.
Hence,
r([u(@)]r [uollrllzl[») > 0.

Therefore, u is an r-fuzzy bounded linear functional on X and satisfies
r([lullr [Juoll-) > 0.

But u extends ug, so 7(||uo||r, ||ull) > 0 and therefore |ju|l,. = |luo]|:- O
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