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A FUZZY VERSION OF HAHN-BANACH EXTENSION

THEOREM

L. ZEDAM

Abstract. In this paper, a fuzzy version of the analytic form of Hahn-Banach

extension theorem is given. As application, the Hahn-Banach theorem for r-

fuzzy bounded linear functionals on r-fuzzy normed linear spaces is obtained.

1. Introduction

Hahn-Banach theorem is one of the most famous and useful result in functional
analysis. Ramakrishnan [15] established the norm-preserving fuzzy completion of a
fuzzy normed algebra and gave a fuzzy extension of Hahn-Banach theorem. In the
same year Rhie and Hwang [16] investigated the relation between fuzzy seminorms
and crisp seminorms on a linear space X and extended the analytic form of the
Hahn-Banach theorem with the notion of fuzzy seminorm. In recent years, a fuzzy
version of Hahn-Banach theorem on a vector space over the set of fuzzy real numbers
and some related applications were proved by Binimol and Sunny Kuriakose [6,
7]. There are also many other fuzzy versions of Hahn-Banach theorem for fuzzy
bounded linear operators on fuzzy normed spaces (see e.g. [2, 9, 12, 19] etc...).

In this paper, using the definition of fuzzy order due to L. A. Zadeh (see [21]),
we assume that the set of real numbers IR endowed with a fuzzy order r instead of
the natural order ≤ and prove a new fuzzy version of the analytic form of Hahn-
Banach theorem. As application, the Hahn-Banach theorem for r–fuzzy bounded
linear functionals on r–fuzzy normed linear spaces is obtained.

2. Preliminaries

We begin with a number of definitions related to fuzzy orders. We follow the
notation and vocabulary of Zadeh [21] closely, and refer the reader to Amroune
and Davvaz [1], Beg [3], Bernadette [4], Billot [5], Bodenhofer and et.al. [8], Kundu
[10], Li and Yen [11], Ovchinnikov [13, 14], Stouti and Zedam [17], Venugopalan
[18], Zadeh [21] and Zimmermann [22] for elementary definitions and facts about
fuzzy order relations.

The concept of a fuzzy set in a non-empty set was introduced by Zadeh [20] in
1965.
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Let X be a nonempty set, a fuzzy subset A of X is characterized by its membership
function A : X → [0, 1] and A(x) is interpreted as the degree of membership of the
element x in the fuzzy subset A for each x ∈ X.

In [21], Zadeh gave the following definition of fuzzy order.

Definition 2.1. [21] Let X be a nonempty set. A Zadeh’s binary fuzzy partial
order (briefly, fuzzy order) on X is a fuzzy subset r on X×X in which the following
conditions are satisfied:
(i) for all x ∈ X, r(x, x) = 1, (fuzzy reflexivity);
(ii) for all x, y ∈ X, (r(x, y) > 0 and x 6= y) implies (r(y, x) = 0), (fuzzy antisym-
metry);
(iii) for all x, y, z ∈ X, r(x, z) ≥ maxy∈X [min{r(x, y), r(y, z)}] , (fuzzy transitivity).

Note that each crisp order ≤ on X can be considered a fuzzy order defined by
r(x, y) = 1 if x ≤ y and r(x, y) = 0 if x and y are incomparable elements.

A nonempty set X with a fuzzy order r defined on it is called fuzzy ordered set
(for short, foset) and we denote it by (X, r).

If Y is a subset of a foset (X, r), then the restriction of r to Y is a fuzzy order
in Y and is called induced fuzzy order.

A fuzzy order r is linear (or total) on X if for every x, y ∈ X, we have r(x, y) > 0
or r(y, x) > 0. If x 6= y, by the fuzzy antisymmetry of r, clearly only one of these
conditions can be satisfied. A fuzzy ordered set (X, r) in which r is total is called a
r-fuzzy chain. Conversely, if for any x, y ∈ X, r(x, y) > 0 if and only if x = y, then
(X, r) is called r-fuzzy antichain.

Next, we give some examples of fuzzy order.

Example 2.2. Let X = {a, b, c, d, e, f, g}. Then the fuzzy subset r defined on
X ×X by the following table:

a b c d e f g
a 1 0 0 0.55 0.40 0.45 0.60
b 0 1 0 0.60 0.50 0.35 0.75
c 0.15 0 1 0.30 0.70 0.80 0.90
d 0 0 0 1 0 0.15 0
e 0 0 0 0 1 0.30 0.25
f 0 0 0 0 0 1 0
g 0 0 0 0 0 0.20 1

is a fuzzy order on X.

Example 2.3. Let x, y ∈ IR. Then the fuzzy subset rλ defined for all x, y ∈ IR by:

rλ(x, y) =


1 , if x = y;

min(1, y−xλ ), if x < y
0, if x > y;

,

is a total fuzzy order on IR.

Clearly, 0 ≤ rλ(x, y) ≤ 1 for all x, y ∈ IR. Thus rλ is well defined. Now let us
show that rλ is a fuzzy order on IR.
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1) For all x ∈ IR, rλ(x, x) = 1. Thus rλ is fuzzy reflexive.

2) Let x, y ∈ IR with x 6= y. Then, rλ(x, y) > 0 is true only in the case x < y.
So, rλ is fuzzy antisymmetric.

3) Let x, y, z ∈ IR. Then, we have three cases to study.

3.i) If rλ(x, z) = 1, then rλ(x, z) ≥ min{rλ(x, y), rλ(y, z)}, for all y ∈ IR.

3.ii) If rλ(x, z) = z−x
λ > 0, then x < z. Hence, for y ∈ IR we have three cases to

consider:

(a) if x < z < y, then rλ(y, z) = 0.
(b) If x ≤ y ≤ z, so z−x

λ ≥
z−y
λ . Hence, we get rλ(x, z) ≥ rλ(y, z).

(c) If y < x < z, then rλ(x, y) = 0. Thus rλ(x, z) ≥ min{rλ(x, y), rλ(y, z)}, for

all y ∈ IR.

3.iii) If rλ(x, z) = 0, then x > z. So, for every y ∈ IR we have three cases:

(a) if x > z ≥ y, then rλ(x, y) = 0.
(b) If x ≥ y > z, so rλ(y, z) = 0.
(c) If y > x > z, hence rλ(y, z) = 0.

Hence, r(x, z) ≥ min{rλ(x, y), rλ(y, z)}, for all y ∈ IR. Thus, rλ is fuzzy transi-
tive. Therefore, rλ is a fuzzy order on IR.

Since for all x, y ∈ IR, such that x 6= y we have either x < y or y < x. Then, we
get either min(1, y−xλ ) > 0 or min(1, x−yλ ) > 0 Thus, rλ is a total fuzzy order.

Example 2.4. Let X = IR. Then, the fuzzy relation r defined for all x, y ∈ IR by:

r(x, y) =


1 , if x = y;
0 , if x > y;

1− x
y , if 0 ≤ x < y;

1− y
x , if x < y ≤ 0;

1 , if x < 0 and y > 0;

,

is a total fuzzy order on IR.

Clearly, 0 ≤ r(x, y) ≤ 1 for all x, y ∈ IR. Thus r is well defined. Now let us show
that r is a fuzzy order on IR.

1) For all x ∈ IR, r(x, x) = 1. Thus r is fuzzy reflexive.

2) Let x, y ∈ IR such that x 6= y. Then, we have r(x, y)r(y, x) = 0. So, r is fuzzy
antisymmetric.

3) Let x, y, z ∈ IR. Then, we have four cases to study.

3.i) If r(x, z) = 1, then r(x, z) ≥ min{r(x, y), r(y, z)}, for all y ∈ IR.

3.ii) If r(x, z) = 0, then x > z. Hence, for every y ∈ IR we distinguish the
following subcases.

(a) If x > z ≥ y, then it holds that r(x, y) = 0.
(b) If x ≥ y > z, then it holds that r(y, z) = 0.
(c) If y > x > z, then it holds that r(y, z) = 0.

Thus, r(x, z) ≥ min{r(x, y), r(y, z)}, for all y ∈ IR.
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3.iii) If r(x, z) = 1− x
z , then 0 ≤ x < z. Hence, for y ∈ IR we have four cases to

consider:

(a) If 0 ≤ x < z < y, then r(y, z) = 0.
(b) If 0 ≤ x < y < z, so 1− x

z ≥ 1− y
z . Hence, we get r(x, z) ≥ r(y, z).

(c) If 0 ≤ y < x < z, then r(x, y) = 0.
(d) If y < 0 ≤ x < z, so r(x, y) = 0.

Thus r(x, z) ≥ min{r(x, y), r(y, z)}, for all y ∈ IR.

3.iv) If r(x, z) = 1 − z
x , then by using a similar argument as in the case (3.iii)

we can see that r(x, z) ≥ min{r(x, y), r(y, z)}, for all y ∈ IR.
Hence, r is fuzzy transitive. Thus, r is a fuzzy order on IR.

As for all x, y ∈ IR, such that x 6= y we have either x < y or y < x, then we get
either r(x, y) = 1− x

y > 0 or r(y, x) = 1− y
x > 0. Thus, r is a total fuzzy order.

Definition 2.5. Let (X, r) be a fuzzy ordered set and A be a subset of X.

(a) An element u ∈ X is an r-upper bound of A if r(x, u) > 0 for all x ∈ A. The
set of all r-upper bounds of A is denoted by Au. If u is the r-upper bound of A
and u ∈ A, then u is called a greatest element of A. The r-lower bound and least
element are defined analogously and the set of all r-lower bounds of A is denoted
by A`.

(b) An element m ∈ A is called a maximal element of A if there is no x 6= m in
A for which r(m,x) > 0. x = m. Minimal elements are defined similarly.

(c) As usual, the r-supremum of A is defined by supr(A) = the least element
of r-upper bounds of A (if it exists). Similarly, the r-infimum of A defined by
infr(A) = the greatest element of r-lower bounds of A (if it exists).

We write x∨r y the r-supremum and x∧r y the r-infimum of the set {x, y}. For
linear fuzzy order, x ∨r y = maxr{x, y} and x ∧r y = minr{x, y}.

Definition 2.6. Let r be a fuzzy order on IR and x ∈ IR. If r(0, x) > 0, then x is
called an r-positive real number. The set of them all is denoted by IR+

r . Similarly,
if r(x, 0) > 0 then x is called an r-negative real number, and the set of them all is
denoted by IR−r .

Definition 2.7. 1) Let r be a fuzzy order on IR. We say that r is compatible with
the addition if for all (x1, y1), (x2, y2) ∈ IR2, we have

(r(x1, y1) > 0 and r(x2, y2) > 0) =⇒ (r(x1 + x2, y1 + y2) > 0).

2) The fuzzy order r is said to be compatible with the multiplication by scalars
if for all (x, y) ∈ IR2 and λ > 0, we have

(r(x, y) > 0) =⇒ (r(λx, λy) > 0).

Example 2.8. The fuzzy order relation given in Example 2.4 is compatible with
the addition and multiplication by scalars on IR.

(i) r is compatible with the addition. Indeed, let (x1, y1), (x2, y2) ∈ IR2 such that
r(x1, y1) > 0 and r(x2, y2) > 0. By the definition of r we get that x1 ≤ y1 and
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x2 ≤ y2. Then, x1 + x2 ≤ y1 + y2. Hence, r(x1 + x2, y1 + y2) > 0. Thus, r is
compatible with the addition.
(ii) r is compatible with the multiplication by scalars. Indeed, let (x, y) ∈ IR2 such
that r(x, y) > 0 and λ > 0. By the definition of r we get that x ≤ y. Then, λx ≤ λy.
Hence, r(λx, λy) > 0. Thus, r is compatible with the multiplication by scalars.

Therefore, r is compatible with the addition and multiplication by scalar on IR.

Next, we show the following two propositions which we shall need for proving a
fuzzy version of Hahn-Banach theorem.

Proposition 2.9. Let IRr = (IR, r) be the set of all real numbers endowed with
a fuzzy order r compatible with the addition and the multiplication by scalar, and
x, y ∈ IR. Then we have the following:

i) If r(0, x) > 0 then r(−x, 0) > 0.
ii) If r(0, x) > 0 then r(−x, x) > 0.

Proof. Let x, y ∈ IRr. i) Since r(0, x) > 0 and by the fuzzy reflexivity r(−x,−x) =

1 > 0, then from the compatibility of r with the addition we have that r(0 +
(−x), x+ (−x)) > 0. Hence, r(−x, 0) > 0.

ii) We assume that r(0, x) > 0. It is clear from (i) that r(−x, 0) > 0. Then, from
the compatibility of r with the addition we have that r(−x, x) > 0. �

Proposition 2.10. Let IRr = (IR, r) be the set of all real numbers endowed with
a fuzzy order r compatible with the addition and multiplication by scalar, and let
x, y ∈ IR such that x 6= y. Then the following are equivalent.

(i) r(x, y) > 0;
(ii) There exists τ ∈ IR such that r(x, τ) > 0 and r(τ, y) > 0, (r-fuzzy density).

Proof. Let x, y ∈ IRr such that x 6= y and r(x, y) > 0. For the one direction, let
τ = x+y

2 . Since r(x, x) = 1 > 0 and r(x, y) > 0, from the compatibility of r with
the addition we get that

r(x+ x, x+ y) > 0.

Now, by the compatibility of r with the multiplication we obtain that

r(x,
x+ y

2
) > 0.

Thus, r(x, τ) > 0.

In the same way we get that r(τ, y) > 0.
The other direction follows directly from the fuzzy transitivity. �

3. Results

In this section we assume that IRr is the set of real numbers IR endowed with a
fuzzy order r compatible with the addition and multiplication by scalar instead of
the natural order ≤ and we shall prove a fuzzy version of Hahn-Banach extension
theorem. The prove of this fuzzy version will follow the same steps as the crisp
case. As application, we define the notion of r-fuzzy normed space with the help
of r-fuzzy norm as a generalization of crisp normed space, we introduce the notion
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of r-fuzzy bounded linear functional and we prove the Hahn-Banach theorem for
r-fuzzy bounded linear functionals on r-fuzzy normed linear spaces.

Definition 3.1. Let X be an real linear space, and T a mapping of X into IRr.
We say that T is a r-fuzzy sublinear functional on X if

i) r(T (x+ y), T (x) + T (y)) > 0 for all x, y ∈ X, (r–subadditivity);
ii) T (λx) = λT (x) for all x ∈ X and λ ∈ IR+

r , (r–positively homogeneous).

Example 3.2. The mapping T : IRr −→ IRr defined by T (x) = |x|r = maxr{x,−x}
is an r-fuzzy sublinear functional on IRr.

The following is a useful fact for r-fuzzy sublinear functionals.

Proposition 3.3. If T is an r-fuzzy sublinear functional on a real linear space X
then r(λT (x), T (λx)) > 0, for all x ∈ X and λ ∈ IRr.

Proof. Let x ∈ X and λ ∈ IRr. If λ ∈ IR+
r we have T (λx) = λT (x). Hence,

r(λT (x), T (λx)) = 1 > 0. (1)

If λ ∈ IR−r , then from Proposition 2.9(i) we get that −λ ∈ IR+
r . As λT (x) =

−(−λT (x)) so by the r–positively homogeneous of T we have λT (x) = −(−λT (x)) =
−T (−λx). On the other hand, since T (λx−λx) = T (0) = 0, by the r–subadditivity
of T we have r(T (λx+(−λx)), T (λx)+T (−λx)) > 0. Hence, r(0, T (λx)+T (−λx)) >
0. Now, from the compatibility of r with the addition we have r(−T (−λx), T (λx)) >
0. Thus,

r(λT (x), T (λx)) > 0. (2)

Therefore, (1) and (2) implies that r(λT (x), T (λx)) > 0, for all x ∈ X and
λ ∈ IRr. �

Theorem 3.4 (Fuzzy version of Hahn-Banach theorem). Let X0 be a subspace of
a real linear space X, T a r-fuzzy sublinear functional on X, and u0 be an linear
functional on X0 such that r(u0(x), T (x)) > 0 for all x ∈ X0. Then there exists a
linear functional u on X extends u0 to X and satisfies r(u(x), T (x)) > 0, for all
x ∈ X.

Proof. Let y ∈ X such that y /∈ X0 and denote by Y the vector subspace generated
by X0 ∪ {y}, so

Y = {x0 + λy / x0 ∈ X0 and λ ∈ IRr − {0}}
Let τ ∈ IRr, and provisionally define

u(x0 + λy) = u0(x0) + λτ.

It is easy to show that u is a linear extension of u0 to Y ; hence it remains to
choose τ ∈ IRr such that for all x0 ∈ X0, and λ ∈ IRr − {0},

r(u0(x0) + λτ, T (x0 + λy)) > 0. (3)

For all λ ∈ IR+
r −{0}, replacing x0 by λx0, using the r−positive homogeneity of

T , and from the compatibility of r with the multiplication, it suffices to see that

r(u0(x0) + τ, T (x0 + y)) > 0. (4)
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r(u0(x0) + τ, T (x0 + y)) > 0.

Therefore, from the r-fuzzy compatibility of r with the addition, it suffices to
see that

r(τ, T (x0 + y)− u0(x0)) > 0. (5)

For all λ ∈ IR−r − {0}, replacing x0 by λx0, using the r−positive homogeneity
of T , and from the compatibility of r with the multiplication, we observe that it
suffices to see that

r(−u0(x0)− τ, T (−x0 − y)) > 0 (6)

Therefore, from the r-fuzzy compatibility of r with the addition, it suffices to see
that

r(−u0(x0)− T (−x0 − y), τ) > 0. (7)

To see the existence of τ ∈ IRr satisfying (5) and (6), start by observing that

r(−u0(x0)− T (−x0 − y), T (x0 + y)− u0(x0)) ≥ min{r(−u0(x0),−u0(x0)),

r(−T (−x0 − y), T (x0 + y))} ≥ min{1, r(−T (−x0 − y), T (x0 + y))},

In addition, from Proposition 3.3 we have r(−T (−x0 − y), T (x0 + y)) > 0.
Then r(−u0(x0)− T (−x0 − y), T (x0 + y)− u0(x0)) > 0,

and therefore by Proposition 2.10 there exists τ ∈ IRr satisfies (5) and (6). Hence,
there exists τ ∈ IRr satisfies (3).
Now, an application of Zorn’s Lemma complete the proof. �

Next, we shall give an application of r-fuzzy Hahn-Banach theorem, but in this
subsection, we assume that r is linear order on IR compatible with the addition and
multiplication.

Definition 3.5. Let X be a real linear space. An r-fuzzy norm on X is a mapping
x 7→ ‖x‖r from X into IR+

r such that for all x, y ∈ X and λ ∈ IR+
r , the following

properties hold:
i) ‖x‖r = 0 if and only if x = 0.
ii) ‖λx‖r = |λ|r‖x‖r.
iii) r(‖x+ y‖r, ‖x‖r + ‖y‖r) > 0.

A linear space X equipped with an r-fuzzy norm ‖.‖r is called an r-fuzzy normed
linear space. We denote it by (X, ‖.‖r).

Example 3.6. The r-fuzzy absolute value |x|r = x ∨r (−x) is an r-fuzzy norm on
IRr.

i) Let x ∈ IRr, since r is a total order we have either r(0, x) > 0 or r(0,−x) > 0.
Then by Proposition 2.9(ii) we have either r(−x, x) > 0 or r(x,−x) > 0.

Hence, r(0, |x|r) > 0.
ii) Obvious.
iii) ‖λx‖r = λx ∨r (−λx) = |λ|rx ∨r (−|λ|rx) = |λ|r(x ∨r (−x)) = |λ|r‖x‖r.
iv) Let x, y ∈ IRr.To prove that r(‖x + y‖r, ‖x‖r + ‖y‖r) > 0 six cases are

considered.
a) If r(0, x) > 0 and r(0, y) > 0 then

r(|x+ y|r, |x|r + |y|r) = r(x+ y, x+ y) = r > 0.
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b) If r(x, 0) > 0 and r(y, 0) > 0 then
r(|x+ y|r, |x|r + |y|r) = r(−x− y,−x− y) = r > 0.

c) If r(0, x) > 0, r(y, 0) > 0 and r(x,−y) > 0 then
r(|x+ y|r, |x|r + |y|r) = r(−x− y, x− y)

≥ min{r(−x, x), r(−y,−y)} > 0.

d) If r(0, x) > 0, r(y, 0) > 0 and r(−y, x) > 0 then
r(|x+ y|r, |x|r + |y|r) = r(x+ y, x− y)

≥ min{r(x, x), r(y,−y)} > 0.

e) If r(x, 0) > 0, r(0, y) > 0 and r(y,−x) > 0 then
r(|x+ y|r, |x|r + |y|r) = r(−x− y,−x+ y)

≥ min{r(−x,−x), r(−y, y)} > 0.

f) If r(x, 0) > 0, r(0, y) > 0 and r(−x, y) > 0 then
r(|x+ y|r, |x|r + |y|r) = r(x+ y,−x+ y)

≥ min{r(x,−x), r(y, y)} > 0.

Definition 3.7. Let (X, ‖.‖r) and (Y, ‖.‖r) be r-fuzzy normed linear spaces. A
linear operator u from X into Y is called an r-fuzzy bounded operator if there
exists K ∈ IR+

r such that

r(‖u(x)‖r,K‖x‖r) > 0, for all x ∈ X.

Remark 3.8. The r-fuzzy norms in X and Y are different. But we use same
notation ‖.‖r, because there is no confusion.

Example 3.9. Let (X, ‖.‖r) be an r-fuzzy normed linear space, we define an op-
erator u : (X, ‖.‖r) −→ (X, ‖.‖r) by u(x) = λx where λ(6= 0) ∈ IR is fixed. Clearly
u is an r-fuzzy bounded linear operator.

In the following Lemma we describe the r-fuzzy boundedness of a linear operator
between r-fuzzy normed linear spaces by means of an r-fuzzy norm of it.

Lemma 3.10. Let u be an r-fuzzy bounded linear operator from (X, ‖.‖r) into
((Y, ‖.‖r). Then there exists an r-fuzzy norm of u, denoted by ‖u‖r such that:

r(‖u(x)‖r, ‖u‖r‖x‖r) > 0, for all x ∈ X.

Proof. Since u is an r-fuzzy bounded linear operator, there exists K ∈ IR+
r such

that

r(‖u(x)‖r,K‖x‖r) > 0, for all x ∈ X.
From the compatibility of r with the multiplication we obtain

r(
‖u(x)‖r
‖x‖r

,K) > 0, for all x ∈ X.

Hence,

r(sup
r
{‖u(x)‖r
‖x‖r

: x ∈ X},K) > 0, for all x ∈ X.

This means that supr(
‖u(x)‖r
‖x‖r ) is finite.
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Now we put ‖u‖r = supr{
‖u(x)‖r
‖x‖r : x ∈ X}. It is clear that ‖u‖r = 0 if and only

if u = 0, and that ‖λu‖r = |λ|r‖u‖r. Since

r(‖u+ v(x)‖r, ‖u(x)‖r + ‖v(x)‖r) > 0, for all x ∈ X,

it follows from the compatibility of r with the multiplication that

r(
‖u+ v(x)‖r
‖x‖r

,
‖u(x)‖r
‖x‖r

+
‖v(x)‖r
‖x‖r

) > 0, for all x ∈ X.

Then we obtain

r(‖u+ v‖r, ‖u‖r + ‖v‖r) > 0.

Hence, ‖u‖r is a r-fuzzy norm of u.

In addition, as ‖u‖r = supr{
‖u(x)‖r
‖x‖r : x ∈ X}, we get

r(
‖u(x)‖r
‖x‖r

, ‖u‖r) > 0, for all x ∈ X,

which implies

r(‖u(x)‖r, ‖u‖r‖x‖r) > 0, for all x ∈ X.
�

Theorem 3.11. Let X0 be a subspace of an r-fuzzy normed linear space X, and u0
be an r-fuzzy bounded linear functional on X0. Then there exists an r-fuzzy bounded
linear functional u on X such that u(x) = u0(x) for all x ∈ X0 and ‖u‖r = ‖u0‖r.

Proof. T (x) = ‖u0‖r‖x‖r. It is easy to see that T (x) is an r-fuzzy sublinear func-
tional on X. Since u0 is an r-fuzzy bounded linear functional on X0, we obtain for
all x ∈ X0, that

r(u0(x), T (x)) = r(u0(x), ‖u0‖r‖x‖r) > 0.

Then from the r-fuzzy Hahn-Banach theorem there exists a linear functional u on
X extends u0 to X and satisfies r(u(x), ‖u0‖r‖x‖r) > 0, for all x ∈ X. Moreover,
for all x ∈ X we have

r(u(−x), ‖u0‖r‖ − x‖r) > 0.

This shows that

r(−u(x), ‖u0‖r‖x‖r) > 0.

Hence,

r(|u(x)|r, ‖u0‖r‖x‖r) > 0.

Therefore, u is an r-fuzzy bounded linear functional on X and satisfies

r(‖u‖r, ‖u0‖r) > 0.

But u extends u0, so r(‖u0‖r, ‖u‖r) > 0 and therefore ‖u‖r = ‖u0‖r. �
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