A FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM

L. ZEDAM

ABSTRACT. In this paper, a fuzzy version of the analytic form of Hahn-Banach extension theorem is given. As application, the Hahn-Banach theorem for r-fuzzy bounded linear functionals on r-fuzzy normed linear spaces is obtained.

1. Introduction

Hahn-Banach theorem is one of the most famous and useful result in functional analysis. Ramakrishnan [15] established the norm-preserving fuzzy completion of a fuzzy normed algebra and gave a fuzzy extension of Hahn-Banach theorem. In the same year Rhie and Hwang [16] investigated the relation between fuzzy seminorms and crisp seminorms on a linear space X and extended the analytic form of the Hahn-Banach theorem with the notion of fuzzy seminorm. In recent years, a fuzzy version of Hahn-Banach theorem on a vector space over the set of fuzzy real numbers and some related applications were proved by Binimol and Sunny Kuriakose [6, 7]. There are also many other fuzzy versions of Hahn-Banach theorem for fuzzy bounded linear operators on fuzzy normed spaces (see e.g. [2, 9, 12, 19] etc...).

In this paper, using the definition of fuzzy order due to L. A. Zadeh (see [21]), we assume that the set of real numbers \mathbb{R} endowed with a fuzzy order r instead of the natural order \leq and prove a new fuzzy version of the analytic form of Hahn-Banach theorem. As application, the Hahn-Banach theorem for r-fuzzy bounded linear functionals on r-fuzzy normed linear spaces is obtained.

2. Preliminaries

We begin with a number of definitions related to fuzzy orders. We follow the notation and vocabulary of Zadeh [21] closely, and refer the reader to Amroune and Davvaz [1], Beg [3], Bernadette [4], Billot [5], Bodenhofer and et.al. [8], Kundu [10], Li and Yen [11], Ovchinnikov [13, 14], Stouti and Zedam [17], Venugopalan [18], Zadeh [21] and Zimmermann [22] for elementary definitions and facts about fuzzy order relations.

The concept of a fuzzy set in a non-empty set was introduced by Zadeh [20] in 1965.

Received: December 2010; Accepted: September 2012

Key words and phrases: Fuzzy order, r-fuzzy bounded linear functional, r-fuzzy norm, r-fuzzy Hahn-Banach theorem.

Let X be a nonempty set, a fuzzy subset A of X is characterized by its membership function $A: X \to [0, 1]$ and A(x) is interpreted as the degree of membership of the element x in the fuzzy subset A for each $x \in X$.

In [21], Zadeh gave the following definition of fuzzy order.

Definition 2.1. [21] Let X be a nonempty set. A Zadeh's binary fuzzy partial order (briefly, fuzzy order) on X is a fuzzy subset r on $X \times X$ in which the following conditions are satisfied:

(i) for all $x \in X$, r(x, x) = 1, (fuzzy reflexivity);

(ii) for all $x, y \in X$, (r(x, y) > 0 and $x \neq y$) implies (r(y, x) = 0), (fuzzy antisymmetry);

(iii) for all $x, y, z \in X$, $r(x, z) \ge \max_{y \in X} [\min\{r(x, y), r(y, z)\}]$, (fuzzy transitivity).

Note that each crisp order \leq on X can be considered a fuzzy order defined by r(x, y) = 1 if $x \leq y$ and r(x, y) = 0 if x and y are incomparable elements.

A nonempty set X with a fuzzy order r defined on it is called fuzzy ordered set (for short, foset) and we denote it by (X, r).

If Y is a subset of a foset (X, r), then the restriction of r to Y is a fuzzy order in Y and is called induced fuzzy order.

A fuzzy order r is linear (or total) on X if for every $x, y \in X$, we have r(x, y) > 0or r(y, x) > 0. If $x \neq y$, by the fuzzy antisymmetry of r, clearly only one of these conditions can be satisfied. A fuzzy ordered set (X, r) in which r is total is called a r-fuzzy chain. Conversely, if for any $x, y \in X$, r(x, y) > 0 if and only if x = y, then (X, r) is called r-fuzzy antichain.

Next, we give some examples of fuzzy order.

Example 2.2. Let $X = \{a, b, c, d, e, f, g\}$. Then the fuzzy subset r defined on $X \times X$ by the following table:

	a	b	с	d	е	f	g
a	1	0	0	0.55	0.40	0.45	0.60
b	0	1	0	0.60	0.50	0.35	0.75
c	0.15	-0	1	0.30	0.70	0.80	0.90
d	0	0	0	1	0	0.15	0
е	0	0	0	0	1	0.30	0.25
f	0	0	0	0	0	1	0
g	0	0	0	0	0	0.20	1

is a fuzzy order on X.

Example 2.3. Let $x, y \in \mathbb{R}$. Then the fuzzy subset r_{λ} defined for all $x, y \in \mathbb{R}$ by:

$$r_{\lambda}(x,y) = \begin{cases} 1, & \text{if } x = y; \\ \min(1, \frac{y-x}{\lambda}), & \text{if } x < y \\ 0, & \text{if } x > y; \end{cases}$$

is a total fuzzy order on ${\rm I\!R}.$

Clearly, $0 \leq r_{\lambda}(x, y) \leq 1$ for all $x, y \in \mathbb{R}$. Thus r_{λ} is well defined. Now let us show that r_{λ} is a fuzzy order on \mathbb{R} .

1) For all $x \in \mathbb{R}$, $r_{\lambda}(x, x) = 1$. Thus r_{λ} is fuzzy reflexive.

2) Let $x, y \in \mathbb{R}$ with $x \neq y$. Then, $r_{\lambda}(x, y) > 0$ is true only in the case x < y. So, r_{λ} is fuzzy antisymmetric.

3) Let $x, y, z \in \mathbb{R}$. Then, we have three cases to study.

3.i) If $r_{\lambda}(x,z) = 1$, then $r_{\lambda}(x,z) \ge \min\{r_{\lambda}(x,y), r_{\lambda}(y,z)\}$, for all $y \in \mathbb{R}$.

3.ii) If $r_{\lambda}(x, z) = \frac{z-x}{\lambda} > 0$, then x < z. Hence, for $y \in \mathbb{R}$ we have three cases to consider:

(a) if x < z < y, then $r_{\lambda}(y, z) = 0$.

(b) If $x \le y \le z$, so $\frac{z-x}{\lambda} \ge \frac{z-y}{\lambda}$. Hence, we get $r_{\lambda}(x,z) \ge r_{\lambda}(y,z)$.

(c) If y < x < z, then $r_{\lambda}(x, \hat{y}) = 0$. Thus $r_{\lambda}(x, z) \ge \min\{r_{\lambda}(x, y), r_{\lambda}(y, z)\}$, for all $y \in \mathbb{R}$.

3.iii) If $r_{\lambda}(x,z) = 0$, then x > z. So, for every $y \in \mathbb{R}$ we have three cases:

(a) if $x > z \ge y$, then $r_{\lambda}(x, y) = 0$.

(b) If $x \ge y > z$, so $r_{\lambda}(y, z) = 0$.

(c) If y > x > z, hence $r_{\lambda}(y, z) = 0$.

Hence, $r(x, z) \ge \min\{r_{\lambda}(x, y), r_{\lambda}(y, z)\}$, for all $y \in \mathbb{R}$. Thus, r_{λ} is fuzzy transitive. Therefore, r_{λ} is a fuzzy order on \mathbb{R} .

Since for all $x, y \in \mathbb{R}$, such that $x \neq y$ we have either x < y or y < x. Then, we get either $\min(1, \frac{y-x}{\lambda}) > 0$ or $\min(1, \frac{x-y}{\lambda}) > 0$ Thus, r_{λ} is a total fuzzy order.

Example 2.4. Let $X = \mathbb{R}$. Then, the fuzzy relation r defined for all $x, y \in \mathbb{R}$ by:

$$r(x,y) = \begin{cases} 1 \ , \ if \ x = y; \\ 0 \ , \ if \ x > y; \\ 1 - \frac{x}{y} \ , \ if \ 0 \le x < y; \\ 1 - \frac{y}{x} \ , \ if \ x < y \le 0; \\ 1 \ , \ if \ x < 0 \ and \ y > 0; \end{cases}$$

is a total fuzzy order on ${\rm I\!R}.$]

Clearly, $0 \le r(x, y) \le 1$ for all $x, y \in \mathbb{R}$. Thus r is well defined. Now let us show that r is a fuzzy order on \mathbb{R} .

1) For all $x \in \mathbb{R}$, r(x, x) = 1. Thus r is fuzzy reflexive.

2) Let $x, y \in \mathbb{R}$ such that $x \neq y$. Then, we have r(x, y)r(y, x) = 0. So, r is fuzzy antisymmetric.

3) Let $x, y, z \in \mathbb{R}$. Then, we have four cases to study.

3.i) If r(x, z) = 1, then $r(x, z) \ge \min\{r(x, y), r(y, z)\}$, for all $y \in \mathbb{R}$.

3.ii) If r(x, z) = 0, then x > z. Hence, for every $y \in \mathbb{R}$ we distinguish the following subcases.

(a) If $x > z \ge y$, then it holds that r(x, y) = 0.

(b) If $x \ge y > z$, then it holds that r(y, z) = 0.

(c) If y > x > z, then it holds that r(y, z) = 0.

Thus, $r(x, z) \ge \min\{r(x, y), r(y, z)\}$, for all $y \in \mathbb{R}$.

3.iii) If $r(x, z) = 1 - \frac{x}{z}$, then $0 \le x < z$. Hence, for $y \in \mathbb{R}$ we have four cases to consider:

(a) If $0 \le x < z < y$, then r(y, z) = 0.

(b) If $0 \le x < y < z$, so $1 - \frac{x}{z} \ge 1 - \frac{y}{z}$. Hence, we get $r(x, z) \ge r(y, z)$. (c) If $0 \le y < x < z$, then r(x, y) = 0.

(d) If $y < 0 \le x < z$, so r(x, y) = 0.

Thus $r(x, z) \ge \min\{r(x, y), r(y, z)\}$, for all $y \in \mathbb{R}$.

3.iv) If $r(x,z) = 1 - \frac{z}{r}$, then by using a similar argument as in the case (3.iii) we can see that $r(x, z) \ge \min\{r(x, y), r(y, z)\}$, for all $y \in \mathbb{R}$.

Hence, r is fuzzy transitive. Thus, r is a fuzzy order on \mathbb{R} .

As for all $x, y \in \mathbb{R}$, such that $x \neq y$ we have either x < y or y < x, then we get either $r(x,y) = 1 - \frac{x}{y} > 0$ or $r(y,x) = 1 - \frac{y}{x} > 0$. Thus, r is a total fuzzy order.

Definition 2.5. Let (X, r) be a fuzzy ordered set and A be a subset of X.

(a) An element $u \in X$ is an r-upper bound of A if r(x, u) > 0 for all $x \in A$. The set of all r-upper bounds of A is denoted by A^u . If u is the r-upper bound of A and $u \in A$, then u is called a greatest element of A. The r-lower bound and least element are defined analogously and the set of all r-lower bounds of A is denoted by A^{ℓ} .

(b) An element $m \in A$ is called a maximal element of A if there is no $x \neq m$ in A for which r(m, x) > 0. x = m. Minimal elements are defined similarly.

(c) As usual, the r-supremum of A is defined by $\sup_r(A) =$ the least element of r-upper bounds of A (if it exists). Similarly, the r-infimum of A defined by $\inf_r(A) =$ the greatest element of *r*-lower bounds of A (if it exists).

We write $x \vee_r y$ the r-supremum and $x \wedge_r y$ the r-infimum of the set $\{x, y\}$. For linear fuzzy order, $x \lor_r y = \max_r \{x, y\}$ and $x \land_r y = \min_r \{x, y\}$.

Definition 2.6. Let r be a fuzzy order on \mathbb{R} and $x \in \mathbb{R}$. If r(0, x) > 0, then x is called an r-positive real number. The set of them all is denoted by \mathbb{R}_r^+ . Similarly, if r(x,0) > 0 then x is called an r-negative real number, and the set of them all is denoted by \mathbb{R}_r^- .

Definition 2.7. 1) Let r be a fuzzy order on \mathbb{R} . We say that r is compatible with the addition if for all $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$, we have

 $(r(x_1, y_1) > 0 \text{ and } r(x_2, y_2) > 0) \Longrightarrow (r(x_1 + x_2, y_1 + y_2) > 0).$

2) The fuzzy order r is said to be compatible with the multiplication by scalars if for all $(x, y) \in \mathbb{R}^2$ and $\lambda > 0$, we have

$$r(x, y) > 0) \Longrightarrow (r(\lambda x, \lambda y) > 0).$$

Example 2.8. The fuzzy order relation given in Example 2.4 is compatible with the addition and multiplication by scalars on ${\rm I\!R}.$

(i) r is compatible with the addition. Indeed, let $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ such that $r(x_1, y_1) > 0$ and $r(x_2, y_2) > 0$. By the definition of r we get that $x_1 \leq y_1$ and

 $x_2 \leq y_2$. Then, $x_1 + x_2 \leq y_1 + y_2$. Hence, $r(x_1 + x_2, y_1 + y_2) > 0$. Thus, r is compatible with the addition.

(ii) r is compatible with the multiplication by scalars. Indeed, let $(x, y) \in \mathbb{R}^2$ such that r(x, y) > 0 and $\lambda > 0$. By the definition of r we get that $x \leq y$. Then, $\lambda x \leq \lambda y$. Hence, $r(\lambda x, \lambda y) > 0$. Thus, r is compatible with the multiplication by scalars.

Therefore, r is compatible with the addition and multiplication by scalar on \mathbb{R} . Next, we show the following two propositions which we shall need for proving a

fuzzy version of Hahn-Banach theorem.

Proposition 2.9. Let $\mathbb{R}_r = (\mathbb{R}, r)$ be the set of all real numbers endowed with a fuzzy order r compatible with the addition and the multiplication by scalar, and $x, y \in \mathbb{R}$. Then we have the following:

- i) If r(0, x) > 0 then r(-x, 0) > 0.
- *ii)* If r(0, x) > 0 then r(-x, x) > 0.

Proof. Let $x, y \in \mathbb{R}_r$. i) Since r(0, x) > 0 and by the fuzzy reflexivity r(-x, -x) = 0

1 > 0, then from the compatibility of r with the addition we have that r(0 + (-x), x + (-x)) > 0. Hence, r(-x, 0) > 0.

ii) We assume that r(0, x) > 0. It is clear from (i) that r(-x, 0) > 0. Then, from the compatibility of r with the addition we have that r(-x, x) > 0.

Proposition 2.10. Let $\mathbb{R}_r = (\mathbb{R}, r)$ be the set of all real numbers endowed with a fuzzy order r compatible with the addition and multiplication by scalar, and let $x, y \in \mathbb{R}$ such that $x \neq y$. Then the following are equivalent.

(*i*) r(x, y) > 0;

(ii) There exists $\tau \in \mathbb{R}$ such that $r(x,\tau) > 0$ and $r(\tau,y) > 0$, (r-fuzzy density).

Proof. Let $x, y \in \mathbb{R}_r$ such that $x \neq y$ and r(x, y) > 0. For the one direction, let $\tau = \frac{x+y}{2}$. Since r(x, x) = 1 > 0 and r(x, y) > 0, from the compatibility of r with the addition we get that

$$r(x+x, x+y) > 0.$$

Now, by the compatibility of r with the multiplication we obtain that

$$r(x, \frac{x+y}{2}) > 0.$$

Thus, $r(x, \tau) > 0$.

In the same way we get that $r(\tau, y) > 0$.

The other direction follows directly from the fuzzy transitivity.

3. Results

In this section we assume that \mathbb{R}_r is the set of real numbers \mathbb{R} endowed with a fuzzy order r compatible with the addition and multiplication by scalar instead of the natural order \leq and we shall prove a fuzzy version of Hahn-Banach extension theorem. The prove of this fuzzy version will follow the same steps as the crisp case. As application, we define the notion of r-fuzzy normed space with the help of r-fuzzy norm as a generalization of crisp normed space, we introduce the notion

of r-fuzzy bounded linear functional and we prove the Hahn-Banach theorem for r-fuzzy bounded linear functionals on r-fuzzy normed linear spaces.

Definition 3.1. Let X be an real linear space, and T a mapping of X into \mathbb{R}_r . We say that T is a r-fuzzy sublinear functional on X if

i) r(T(x+y), T(x) + T(y)) > 0 for all $x, y \in X$, (*r*-subadditivity);

ii) $T(\lambda x) = \lambda T(x)$ for all $x \in X$ and $\lambda \in \mathbb{R}^+_r$, (*r*-positively homogeneous).

Example 3.2. The mapping $T : \mathbb{R}_r \longrightarrow \mathbb{R}_r$ defined by $T(x) = |x|_r = \max_r \{x, -x\}$ is an *r*-fuzzy sublinear functional on \mathbb{R}_r .

The following is a useful fact for r-fuzzy sublinear functionals.

Proposition 3.3. If T is an r-fuzzy sublinear functional on a real linear space X then $r(\lambda T(x), T(\lambda x)) > 0$, for all $x \in X$ and $\lambda \in \mathbb{R}_r$.

Proof. Let $x \in X$ and $\lambda \in \mathbb{R}_r$. If $\lambda \in \mathbb{R}_r^+$ we have $T(\lambda x) = \lambda T(x)$. Hence, $r(\lambda T(x), T(\lambda x)) = 1 > 0.$ (1)

If $\lambda \in \mathbb{R}_r^-$, then from Proposition 2.9(i) we get that $-\lambda \in \mathbb{R}_r^+$. As $\lambda T(x) = -(-\lambda T(x))$ so by the *r*-positively homogeneous of *T* we have $\lambda T(x) = -(-\lambda T(x)) = -T(-\lambda x)$. On the other hand, since $T(\lambda x - \lambda x) = T(0) = 0$, by the *r*-subadditivity of *T* we have $r(T(\lambda x + (-\lambda x)), T(\lambda x) + T(-\lambda x)) > 0$. Hence, $r(0, T(\lambda x) + T(-\lambda x)) > 0$. Now, from the compatibility of *r* with the addition we have $r(-T(-\lambda x), T(\lambda x)) > 0$. Thus,

$$r(\lambda T(x), T(\lambda x)) > 0.$$
⁽²⁾

Therefore, (1) and (2) implies that $r(\lambda T(x), T(\lambda x)) > 0$, for all $x \in X$ and $\lambda \in \mathbb{R}_r$.

Theorem 3.4 (Fuzzy version of Hahn-Banach theorem). Let X_0 be a subspace of a real linear space X, T a r-fuzzy sublinear functional on X, and u_0 be an linear functional on X_0 such that $r(u_0(x), T(x)) > 0$ for all $x \in X_0$. Then there exists a linear functional u on X extends u_0 to X and satisfies r(u(x), T(x)) > 0, for all $x \in X$.

Proof. Let $y \in X$ such that $y \notin X_0$ and denote by Y the vector subspace generated by $X_0 \cup \{y\}$, so

$$Y = \{x_0 + \lambda y \mid x_0 \in X_0 \text{ and } \lambda \in \mathbb{R}_r - \{0\}\}$$

Let $\tau \in \mathbb{R}_r$, and provisionally define

$$u(x_0 + \lambda y) = u_0(x_0) + \lambda \tau.$$

It is easy to show that u is a linear extension of u_0 to Y; hence it remains to choose $\tau \in \mathbb{R}_r$ such that for all $x_0 \in X_0$, and $\lambda \in \mathbb{R}_r - \{0\}$,

$$r(u_0(x_0) + \lambda \tau, T(x_0 + \lambda y)) > 0.$$
 (3)

For all $\lambda \in \mathbb{R}_r^+ - \{0\}$, replacing x_0 by λx_0 , using the *r*-positive homogeneity of T, and from the compatibility of r with the multiplication, it suffices to see that

$$r(u_0(x_0) + \tau, T(x_0 + y)) > 0.$$
(4)

$$r(u_0(x_0) + \tau, T(x_0 + y)) > 0.$$

Therefore, from the r-fuzzy compatibility of r with the addition, it suffices to $r(\tau T(r_0 \pm u) = u_1(m)) > 0$ see that

$$r(\tau, T(x_0 + y) - u_0(x_0)) > 0.$$
 (5)

For all $\lambda \in \mathbb{R}_r^- - \{0\}$, replacing x_0 by λx_0 , using the *r*-positive homogeneity of T, and from the compatibility of r with the multiplication, we observe that it suffices to see that

$$r(-u_0(x_0) - \tau, T(-x_0 - y)) > 0 \tag{6}$$

Therefore, from the r-fuzzy compatibility of r with the addition, it suffices to see that

$$r(-u_0(x_0) - T(-x_0 - y), \tau) > 0.$$
⁽⁷⁾

To see the existence of $\tau \in \mathbb{R}_r$ satisfying (5) and (6), start by observing that

$$r(-u_0(x_0) - T(-x_0 - y), T(x_0 + y) - u_0(x_0)) \ge \min\{r(-u_0(x_0), -u_0(x_0)), r(-T(-x_0 - y), T(x_0 + y))\} \ge \min\{1, r(-T(-x_0 - y), T(x_0 + y))\},$$

In addition, from Proposition 3.3 we have $r(-T(-x_0 - y), T(x_0 + y)) > 0$. Then $r(-u_0(x_0) - T(-x_0 - y), T(x_0 + y) - u_0(x_0)) > 0$,

and therefore by Proposition 2.10 there exists $\tau \in \mathbb{R}_r$ satisfies (5) and (6). Hence, there exists $\tau \in \mathbb{R}_r$ satisfies (3).

Next, we shall give an application of r-fuzzy Hahn-Banach theorem, but in this subsection, we assume that r is linear order on \mathbb{R} compatible with the addition and multiplication.

Definition 3.5. Let X be a real linear space. An r-fuzzy norm on X is a mapping $x \mapsto \|x\|_r$ from X into \mathbb{R}^+_r such that for all $x, y \in X$ and $\lambda \in \mathbb{R}^+_r$, the following properties hold:

- i) $||x||_r = 0$ if and only if x = 0.
- ii) $\|\lambda x\|_r = |\lambda|_r \|x\|_r$. iii) $r(\|x+y\|_r, \|x\|_r + \|y\|_r) > 0$.

A linear space X equipped with an r-fuzzy norm $\|.\|_r$ is called an r-fuzzy normed linear space. We denote it by $(X, \|.\|_r)$.

Example 3.6. The *r*-fuzzy absolute value $|x|_r = x \vee_r (-x)$ is an *r*-fuzzy norm on \mathbb{R}_r .

i) Let $x \in \mathbb{R}_r$, since r is a total order we have either r(0, x) > 0 or r(0, -x) > 0. Then by Proposition 2.9(ii) we have either r(-x, x) > 0 or r(x, -x) > 0.

Hence, $r(0, |x|_r) > 0$.

ii) Obvious.

iii) $\|\lambda x\|_r = \lambda x \lor_r (-\lambda x) = |\lambda|_r x \lor_r (-|\lambda|_r x) = |\lambda|_r (x \lor_r (-x)) = |\lambda|_r \|x\|_r.$

iv) Let $x, y \in \mathbb{R}_r$. To prove that $r(||x + y||_r, ||x||_r + ||y||_r) > 0$ six cases are considered.

a) If r(0, x) > 0 and r(0, y) > 0 then

$$r(|x+y|_r, |x|_r + |y|_r) = r(x+y, x+y) = r > 0.$$

b) If r(x,0) > 0 and r(y,0) > 0 then $r(|x+y|_r, |x|_r + |y|_r) = r(-x-y, -x-y) = r > 0.$ c) If r(0,x) > 0, r(y,0) > 0 and r(x, -y) > 0 then $r(|x+y|_r, |x|_r + |y|_r) = r(-x-y, x-y)$ $\ge \min\{r(-x,x), r(-y, -y)\} > 0.$ d) If r(0,x) > 0, r(y,0) > 0 and r(-y,x) > 0 then $r(|x+y|_r, |x|_r + |y|_r) = r(x+y, x-y)$ $\ge \min\{r(x,x), r(y, -y)\} > 0.$ e) If r(x,0) > 0, r(0,y) > 0 and r(y, -x) > 0 then $r(|x+y|_r, |x|_r + |y|_r) = r(-x-y, -x+y)$ $\ge \min\{r(-x, -x), r(-y, y)\} > 0.$ f) If r(x,0) > 0, r(0,y) > 0 and r(-x,y) > 0 then $r(|x+y|_r, |x|_r + |y|_r) = r(x+y, -x+y)$ $\ge \min\{r(x, -x), r(y, y)\} > 0.$

Definition 3.7. Let $(X, \|.\|_r)$ and $(Y, \|.\|_r)$ be *r*-fuzzy normed linear spaces. A linear operator *u* from *X* into *Y* is called an *r*-fuzzy bounded operator if there exists $K \in \mathbb{R}_r^+$ such that

$$r(||u(x)||_r, K||x||_r) > 0,$$
 for all $x \in X.$

Remark 3.8. The *r*-fuzzy norms in X and Y are different. But we use same notation $\|.\|_r$, because there is no confusion.

Example 3.9. Let $(X, \|.\|_r)$ be an *r*-fuzzy normed linear space, we define an operator $u: (X, \|.\|_r) \longrightarrow (X, \|.\|_r)$ by $u(x) = \lambda x$ where $\lambda \neq 0 \in \mathbb{R}$ is fixed. Clearly u is an *r*-fuzzy bounded linear operator.

In the following Lemma we describe the r-fuzzy boundedness of a linear operator between r-fuzzy normed linear spaces by means of an r-fuzzy norm of it.

Lemma 3.10. Let u be an r-fuzzy bounded linear operator from $(X, \|.\|_r)$ into $((Y, \|.\|_r)$. Then there exists an r-fuzzy norm of u, denoted by $\|u\|_r$ such that:

 $r(||u(x)||_r, ||u||_r ||x||_r) > 0,$ for all $x \in X.$

Proof. Since u is an r-fuzzy bounded linear operator, there exists $K \in \mathbb{R}_r^+$ such that

 $r(||u(x)||_r, K||x||_r) > 0,$ for all $x \in X.$

From the compatibility of r with the multiplication we obtain

$$r(\frac{\|u(x)\|_r}{\|x\|_r}, K) > 0, \qquad \text{for all } x \in X.$$

Hence,

$$r(\sup_{r} \{ \frac{\|u(x)\|_{r}}{\|x\|_{r}} : x \in X \}, K) > 0, \quad \text{for all } x \in X.$$

This means that $\sup_r(\frac{\|u(x)\|_r}{\|x\|_r})$ is finite.

Now we put $||u||_r = \sup_r \{ \frac{||u(x)||_r}{||x||_r} : x \in X \}$. It is clear that $||u||_r = 0$ if and only if u = 0, and that $||\lambda u||_r = |\lambda|_r ||u||_r$. Since

$$r(||u+v(x)||_r, ||u(x)||_r + ||v(x)||_r) > 0,$$
 for all $x \in X$,

it follows from the compatibility of r with the multiplication that

$$r(\frac{\|u+v(x)\|_{r}}{\|x\|_{r}}, \frac{\|u(x)\|_{r}}{\|x\|_{r}} + \frac{\|v(x)\|_{r}}{\|x\|_{r}}) > 0, \quad \text{for all } x \in X.$$

Then we obtain

$$r(||u+v||_r, ||u||_r + ||v||_r) > 0.$$

Hence, $||u||_r$ is a *r*-fuzzy norm of *u*.

In addition, as $||u||_r = \sup_r \{ \frac{||u(x)||_r}{||x||_r} : x \in X \}$, we get

$$r(\frac{\|u(x)\|_r}{\|x\|_r}, \|u\|_r) > 0,$$
 for all $x \in$

which implies

$$r(||u(x)||_r, ||u||_r ||x||_r) > 0,$$
 for all $x \in X$

Theorem 3.11. Let X_0 be a subspace of an r-fuzzy normed linear space X, and u_0 be an r-fuzzy bounded linear functional on X_0 . Then there exists an r-fuzzy bounded linear functional u on X such that $u(x) = u_0(x)$ for all $x \in X_0$ and $||u||_r = ||u_0||_r$.

Proof. $T(x) = ||u_0||_r ||x||_r$. It is easy to see that T(x) is an r-fuzzy sublinear functional on X. Since u_0 is an r-fuzzy bounded linear functional on X_0 , we obtain for all $x \in X_0$, that

$$r(u_0(x), T(x)) = r(u_0(x), ||u_0||_r ||x||_r) > 0.$$

Then from the r-fuzzy Hahn-Banach theorem there exists a linear functional u on X extends u_0 to X and satisfies $r(u(x), ||u_0||_r ||x||_r) > 0$, for all $x \in X$. Moreover, for all $x \in X$ we have

$$r(u(-x), ||u_0||_r|| - x||_r) > 0.$$

This shows that

$$r(-u(x), ||u_0||_r ||x||_r) > 0.$$

Hence,

$$r(|u(x)|_r, ||u_0||_r ||x||_r) > 0.$$

Therefore, u is an r-fuzzy bounded linear functional on X and satisfies

$$r(||u||_r, ||u_0||_r) > 0.$$

But u extends u_0 , so $r(||u_0||_r, ||u||_r) > 0$ and therefore $||u||_r = ||u_0||_r$.

www.SID.ir

References

- A. Amroune and B. Davvaz, Fuzzy ordered sets and duallity for finite fuzzy distributive lattices, Iranian Journal of Fuzzy Systems, 8(5) (2011), 1–12.
- [2] T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151 (2005), 513-547.
- [3] I. Beg, Some applications of fuzzy ordered relations, CUBO, 6(1) (2004), 103–114.
- [4] B. M. Bernadette, La logique floue et ses applications, Addison-Wesley, Paris, 1995.
- [5] A. Billot, *Economic theory of fuzzy equilibria*, Lecture Notes in Economics and Mathematical systems-373, Springer-Verlag, Berlin, 1992.
- [6] P. Binimol and A. S. Kuriakose, Fuzzy Hahn-Banach Theorem-a new approch I, J. Fuzzy Math., 12(1) (2004), 127-1363.
- [7] P. Binimol and A. S. Kuriakose, Fuzzy Hahn-Banach Theorem-a new approch II, J. Fuzzy Math., 13(1) (2005), 25-33.
- [8] U. Bodenhofer, B. De Baets and F. Janos, A compendium of fuzzy weak orders: representations and constructions, Fuzzy Sets and Systems, 158 (2007), 811-829.
- [9] M. Itoh and M. Cho, Fuzzy bounded operators, Fuzzy Sets and Systems, 93 (1998), 353-362.
 [10] S. Kundu, Similarity relations, fuzzy linear orders and fuzzy partial orders, Fuzzy Sets and Systems, 109 (2000), 419-428.
- [11] H. X. Li and V. C. Yen, Fuzzy sets and fuzzy decision-making, CRC Press. Inc., London, 1995.
- [12] A. Narayanan, S. Vijayabalajt and N. Thillaigovindan, Intuitionistic fuzzy bounded linear operators, Iranian Journal of Fuzzy Systems, 4(1) (2007), 89–101.
- [13] S. V. Ovchinnikov, Similarity relations, fuzzy partitions, and fuzzy ordering, Fuzzy Sets and Systems, 40 (1991), 107-126.
- [14] S. V. Ovchinnikov, An introduction to fuzzy relations, In D. Dubois, H. Prade, Fundamentals of Fuzzy Sets, The Handbooks of fuzzy sets, Kluwer Academic Publisher, Boston, 7 (2000), 233-259.
- [15] T. V. Ramakrishnan, A fuzzy extension of Hahn-Banach Theorem, J. Fuzzy Math., 7(3) (1999), 620-630.
- [16] G. S. Rhie and I. A. Hwang, On the fuzzy Hahn-Banach theorem-an analytic form, Fuzzy Sets and Systems, 108 (1999), 117-121.
- [17] A. Stouti and L. Zedam, On α-fuzzy orders, J. Fuzzy Math., 18(1) (2010), 171-192.
- [18] P. Venugopalan, Fuzzy ordered sets, Fuzzy Sets and Systems, 46 (1992), 221-226.
- [19] J. Z. Xiao, Hahn-Banach theorem for fuzzy normed spaces, J. Baoji College Arts Sci.Nat. Sci., 22(1) (2002), 11-14.
- [20] L. A. Zadeh, *Fuzzy sets*, Information and Control, 8 (1965), 338-353.
- [21] L. A. Zadeh, Similarity relations and fuzzy orderings, Information Sciences, 3 (1971), 177-200.
- [22] H. J. Zimmermann, Fuzzy set theory and its applications, Kluwer Academic Publisher, Dordrecht, 1991.

LEMNAOUAR ZEDAM, DEPARTMENT OF MATHEMATICS, FACULTY OF MATHEMATICS AND INFOR-MATICS, M'SILA UNIVERSITY, P.O.BOX 166 ICHBILIA, M'SILA 28105, ALGERIA

E-mail address: L.zedam@yahoo.fr