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A NOTE ON STRATIFIED LM-FILTERS

G. JÄGER

Abstract. We develop a theory of stratified LM -filters which generalizes the

theory of stratified L-filters. Our stratification condition explicitly depends on

a suitable mapping between the lattices L and M . If L and M are identical and
the mapping is the identity mapping, then we obtain the theory of stratified

L-filters. Based on the stratified LM -filters, a general theory of lattice-valued

convergence spaces can be developed.

1. Introduction

In [18] Yao stated at the end that it is unclear how to define stratified LM -filters.
In this short note we point to a possible answer. We consider two frames L,M ,
i.e. two complete lattices where finite meets distribute over arbitrary joins. We
then have an implication in L defined by α → β =

∨
{γ ∈ L : α ∧ γ ≤ β} (and

similarly for M). We denote the bottom and top elements in L and M by ⊥L,>L
and ⊥M ,>M , respectively.

We consider mappings ϕ : L −→M with the following properties: (M1) ϕ(⊥L) =
⊥M , (M2) ϕ(>L) = >M , and (M3) ϕ(α∧β) = ϕ(α)∧ϕ(β). Here and in the sequel
we use for both lattices the same symbols for the meets, joins and implications.
This should not lead to confusion. In particular, any frame morphism between L
and M can be used as an example of such a mapping. Further examples are the
following.

• ϕ0(α) =

{
>M if α = >L
⊥M otherwise.

satisfies (M1), (M2) and (M3). It is the

pointwise smallest such mapping.
• If ⊥L is prime, i.e. of α∧β = ⊥L implies that α = ⊥L or β = ⊥L, then the

mapping ϕ1(α) =

{
⊥M if α = ⊥L
>M otherwise.

is satisfying the conditions (M1),

(M2) and (M3). (For (M3) we need the primeness of ⊥L.) It is the pointwise
largest such mapping.

For a set X we denote the L-set by a, b, c, ... : X −→ L. The set of all L-sets on
X is denoted by LX . A constant L-set with value α ∈ L is denoted by αX or by αLX
in order to emphasize the lattice L. The lattice operations are extended pointwise
from L to LX .
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2. Stratified LM-filters: Examples and Characterizations

We hold one mapping ϕ : L −→ M with the properties (M1), (M2) and (M3)
fixed. A mapping F : LX −→ M is called an LM -filter on X if it satisfies the
following properties: For all a, b ∈ LX , α ∈ L
(F1) F(⊥X) = ⊥M , F(>X) = >M ;
(F2) a ≤ b implies F(a) ≤ F(b);
(F3) F(a) ∧ F(b) ≤ F(a ∧ b).
If F additionally satisfies the condition

(Fs) ϕ(α) ∧ F(a) ≤ F(αX ∧ a) for all a ∈ LX , α ∈ L
then we call F a ϕ-stratified LM -filter on X.

It is not difficult to show that (Fs) is equivalent to

(Fs’) ϕ(α) ≤ F(αX) for all α ∈ L.

One of the reviewers pointed out that a mapping ϕ : L −→M with (M1), (M2)
and (M3) can be considered as a fuzzy filter with value set M . The condition (Fs’)
can then be interpreted as a compatibility condition between this fuzzy filter and
the LM -filter F . Note that (F2) and (F3) are equivalent to F(a)∧F(b) = F(a∧ b)
for all a, b ∈ LX . We make this compatibility condition precise as follows. For an
LM -filter F : LX −→M we define the mapping ϕF : L −→M by ϕF (α) = F(αX).
Then ϕF satisfies the conditions (M1), (M2) and (M3) and F is ϕ-stratified if and
only if ϕ ≤ ϕF pointwise. This also shows that ϕF is the (pointwise) largest possible
mapping ϕ : L −→M such that (M1), (M2) and (M3) is satisfied and for which F
is ϕ-stratified.

We obtain the following Corollary.

Lemma 2.1. Let ϕ and ϕ be mappings from L to M which satisfy (M1), (M2) and
(M3) and let for all α ∈ L, ϕ(α) ≤ ϕ(α). If F is a ϕ-stratified LM -filter, then F
is ϕ-stratified.

For a family of mappings (ϕi)i∈J , we define
∨
i∈J ϕi as the minimal upper bound

of the ϕi in the set of mappings that satisfy (M1), (M2) and (M3), whenever there
is an upper bound ϕ : L −→ M that satisfies (M1), (M2) and (M3). Clearly, for
the existence of such an upper bound we can reformulate a corresponding criterion
for L-filters (see e.g. [7]), cf. Section 3 below.) If an LM -filter F is ϕi-stratified for
all ϕi (i ∈ J), then F is also (

∨
i∈J ϕi)-stratified.

Example 2.2. (1) If L = M and ϕ = idL is the identity mapping, then idL-
stratified LL-filters are just stratified L-filters ([7]). So if L ⊆ M and L is
a subframe of M , then it seems most natural to demand ιL ≤ ϕF , where
ιL(α) = α for all α ∈ L, as stratification condition.

(2) If L = {0, 1} then a stratified LM -filter is an M -filter of ordinary subsets
[6]. Note that in this case the stratification condition (Fs) is true for any
ϕ that satisfies (M1) and (M2).

(3) If L = [0, 1] is the unit interval and M = {0, 1}, then an LM -filter, F , can
be identified with a prefilter, i.e. a filter in LX [13, 12]. If we define the
characteristic value of such a prefilter by c(F) =

∧
F(αX)=1 α (see [13, 12])
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and the mapping

ϕc(F)(α) =

{
1 if α > c(F)
0 otherwise

then F is ϕc(F)-stratified.
(4) Every LM -filter is ϕ0-stratified.
(5) If L = M = {0, 1} then a ϕ-stratified LM -filter can be identified with

a filter. Note that there is only one mapping ϕ : {0, 1} −→ {0, 1} with
(M1) and (M2), namely the identity mapping. Hence filters are always
ϕ-stratified.

Further examples are given below.

Example 2.3. We define the ϕ-stratified LM -point filter of x ∈ X by

[x]ϕ(a) = ϕ(a(x)) for a ∈ LX .

Example 2.4. An enriched LM -fuzzy topological space (X,∆) [7] is a set X
together with a mapping ∆ : LX −→ M which satisfies the axioms: For all
a, b, ai ∈ LX (i ∈ J), α ∈ L
(O1) ∆(>X) = >M ;
(O2) ∆(a) ∧∆(b) ≤ ∆(a ∧ b);
(O3)

∧
i∈J ∆(ai) ≤ ∆(

∨
i∈J ai);

(Oe) ∆(αX) = >M for all α ∈ L.

We define the following mapping Ux∆ : LX −→M ,

Ux
∆(a) =

∨
b≤a

(ϕ(b(x)) ∧∆(b)) .

Then Ux∆ is a ϕ-stratified LM -filter. If L = M and ϕ = idL we get Wei Yao’s
approach [16]. We note further that if M = {0, 1}, then we can identify enriched
LM -fuzzy topological spaces with stratified L-topological spaces [7]. However, in
this case Ux∆ is not a stratified L-filter unless L = {0, 1}.

Example 2.5. An enriched L-fuzzy filter on X [7] is a mapping F : LX ×L −→ L
with the following properties. For all a, b ∈ LX , α, β ∈ L
(FF1) F(>X , α) = >L, F(⊥X , α) = ⊥L;
(FF2) a ≤ b and β ≤ α implies F(a, α) ≤ F(b, β);
(FF3) F(a, α) ∧ F(b, α) ≤ F(a ∧ b, α);
(FFe) β ∧ F(a, α) ≤ F(βX ∧ a, α).

We can identify such an enriched L-fuzzy filter with a ϕ-stratified LM -filter, F̃ , if

we put M = LL, ϕ : L −→ LL, α 7−→ αL by defining F̃ : LX −→ LL, F̃(a)(α) =
F(a, α). We note that in this way we obtain a special class of ϕ-stratified LM -filters
which satisfy additionally the condition

α ≤ β implies F̃(a)(β) ≤ F̃(a)(α) ∀a ∈ LX ,

i.e. the mappings F̃(a) : L −→ L are order-reversing.

Example 2.6. We consider L = [0, 1]. A mapping ϕ : L −→ L then satisfies (M3)
if and only if it is non-decreasing. If X = {x} is a one-point set, then we can
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identify LX with L and a ϕ-stratified LL-filter is then a mapping F : L −→ L that
satisfies (M1), (M2) and (M3) and ϕ(α) ≤ F(α) for all α ∈ L. In particular, then
any LL-filter F is F-stratified and ϕ = F is the largest of possible mappings ϕ.

The following result generalizes a characterization of stratified L-filters given by
Fang [2].

Lemma 2.7. A mapping F : LX −→ M is a ϕ-stratified LM -filter if and only if
it satisfies the following conditions.

(F1) F(>X) = >M and F(⊥X) = ⊥M ;
(F2’) ϕ(

∧
x∈X(a(x)→ b(x))) ≤ F(a)→ F(b);

(F3) F(a) ∧ F(b) ≤ F(a ∧ b).

Proof. We need to show that (F2’) is equivalent to (F2) and (Fs). Let first
condition (F2’) be true. Then F(α) = >M → F(α) = F(>X) → F(α) ≥
ϕ(
∧
x∈X((>X)(x)→ αX(x))) = ϕ(α), i.e. (Fs) is true. If a ≤ b, then

∧
x∈X(a(x)→

b(x)) = >L and hence >M = ϕ(>L) ≤ F(a) → F(b) which is the same as
F(a) ≤ F(b).
Let now (F2) and (Fs) be satisfied. We then conclude, with (F2) and (Fs),
ϕ(
∧
x∈X(a(x) → b(x))) ∧ F(a) ≤ F((

∧
x∈x(a(x) → b(x)) ∧ a) ≤ F(b), because

(
∧
x∈x(a(x)→ b(x)) ∧ a ≤ b. Hence ϕ(

∧
x∈X(a(x)→ b(x))) ≤ F(a)→ F(b). �

3. Properties of Stratified LM-filters

In this section we briefly discuss generalizations of results about stratified L-
filters. Most of these generalizations are easy and require no new methods. There-
fore we can be brief and mainly refer to the corresponding papers, where the L-filter
results are originally stated and proved. We denote the set of all ϕ-stratified LM -
filters on X by FϕsLM (X). This set is endowed with the pointwise order, i.e. we
define F ≤ G if for all a ∈ LX we have F(a) ≤ G(a). It is easy to see that for a
family of ϕ-stratified LM -filters, (Fi)i∈J the meet,

∧
i∈J Fi, can be calculated by

(
∧
i∈J Fi)(a) =

∧
i∈J Fi(a). It is also easy to see that the join,

∨
i∈J Fi exists if and

only if for each finite subfamily we have Fi1(a1) ∧ Fi2(a2) ∧ · · · ∧ Fin(an) = ⊥M
whenver a1 ∧ a2 ∧ · · · ∧ an = ⊥X . The join is then given by F(a) =

∨
{Fi1(a1) ∧

Fi2(a2) ∧ · · · ∧ Fin(an) : a1 ∧ a2 ∧ · · · ∧ an ≤ a}, which is clearly ϕ-stratified. (see
[7] for the case L = M).

Lemma 3.1. [7] Let F ∈ FϕsLM (X) and let a ∈ LX . Then

ϕ(
∧
x∈x

a(x)) ≤ F(a) ≤ ϕ((
∨
x∈X

a(x))→ ⊥L)→ ⊥M .

Proof. With (Fs) and (F2) we obtain ϕ(
∧
x∈X a(x)) ≤ F(

∧
x∈X a(x)) ≤ F(a).

Moreover, again by (Fs), we have

ϕ((
∨
x∈X

a(x))→ ⊥L) ∧ F(a) ≤ F(((
∨
x∈X

a(x))→ ⊥L) ∧ a)

≤ F((a→ ⊥X) ∧ a) = F(⊥X) = ⊥M .

Hence F(a) ≤ ϕ((
∨
x∈X a(x))→ ⊥L)→ ⊥M . �
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It is not difficult to show that F0(a) = ϕ(
∧
x∈X a(x)) defines the smallest ϕ-

stratified LM -filter on X. If ϕ respects arbitrary meets, then F0 =
∧
x∈X [x]ϕ.

As in the case L = M we can see that the set FϕsLM (X) has maximal elements,
which are called ϕ-stratified LM -ultrafilters. The following characterization gener-
alizes a result of Höhle [5].

Lemma 3.2. F ∈ FϕsLM (X) is a ϕ-stratified LM -ultrafilter if and only if F(a) =
F(a→ ⊥LX)→ ⊥M for all a ∈ LX .

Proof. We can repeat the proof in [7]. We only have to make sure that for g ∈ LX
fixed

F(a) = F(a) ∨ (F(g → a) ∧ (F(g → ⊥L
X)→ ⊥M ))

is ϕ-stratified. This however is trivial. �

Lemma 3.3. Let L be a complete Boolean algebra, F ∈ FϕsLM (X) and let a ∈ LX .
Then there is G ∈ FϕsLM (X) such that F ≤ G, F(a) = G(a) and G(a) → ⊥M =
G(a→ ⊥LX).

Proof. Again we can copy the proof in [7]. We only have to check that G(b) =
F(b) ∨ (F(a ∨ b) ∧ (F(a)→ ⊥M )) defines a ϕ-stratified LM -filter. But also this is
easy to see. For the proof of (F3) we need that L is a complete Boolean algebra. �

Corollary 3.4. [7] Let L and M be complete Boolean algebras and let F ∈ FϕsLM (X).
Then

F =
∧

U≥F,U∈Fϕs
LM

(X) ultra

U .

If we have two sets, X and Y , and a mapping f : X −→ Y and F ∈ FϕsLM (X) and
G ∈ FϕsLM (Y ), then we define the image of F under f , f(F), by f(F)(b) = F(f←(b))
for b ∈ LY [7]. It is easy to see that f(F) is a ϕ-stratified LM -filter on Y . Further,
the inverse image of G under f , f←(G), is defined by f←(F)(a) =

∨
{F(b) :

f←(b) ≤ a} for a ∈ LX . f←(G) is a ϕ-stratified LM -filter on X if and only if
f←(b) = ⊥X implies F(b) = ⊥M [8]. We further define the product of two ϕ-
stratified LM -filters F ∈ FϕsLM (X), G ∈ FϕsLM (Y ) by

F × G(a) =
∨
{F(f) ∧ G(g) : f × g ≤ a}

for a ∈ LX×Y . Here, it is defined f × g(x, y) = f(x) ∧ g(y) for f ∈ LX and
g ∈ LY . The following result is needed in the proof that the category of lattice-
valued convergence spaces is Cartesian closed (see the next section).

Lemma 3.5. [8] Let f : X × Y −→ Z and x ∈ X. We define

fx :

{
Y −→ Z
y 7−→ f(x, y)

. If F ∈ FϕsLM (Y ) then fx(F) ≥ f([x]ϕ ×F).

Proof. We have for a ∈ LY that f([x]ϕ×F)(a) = [x]ϕ×F(f←(a)) =
∨
{ϕ(a1(x))∧

F(a2) : a1 × a2 ≤ f←(a)}. If a1 × a2 ≤ f←(a), then for (x, y) ∈ X × Y we have
a1(x) ∧ a2(y) ≤ f←(a)(x, y) = a(f(x, y)) = a(fx(y)) = f←x (a)(y). Hence, with the
condition (Fs),

f([x]ϕ×F)(a) ≤
∨
{F(a1(x)∧a2) : a1(x)∧a2 ≤ f←x (a)} ≤ F(f←x (a)) = fx(F)(a).

�
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4. Remarks on Stratified LMN-convergence Spaces

Let L, M and N be frames and ϕ : L −→ M be a mapping that satisfies (M1),
(M2) and (M3). A ϕ-stratified LMN -generalized convergence space is a set X
together with a limit map lim : FϕsLM −→ NX which satisfies the axioms (for all
x ∈ X,F ,G ∈ FϕsLM (X))
(L1) lim[x]ϕ(x) = >N ;
(L2) F ≤ G implies limF ≤ limG.
A mapping f : (X, limX) −→ (Y, limY ) between two ϕ-stratified LMN -generalized
convergence spaces is called continuous if limXF(x) ≤ limY f(F)(f(x)) for all
F ∈ FϕsLM (X) and all x ∈ X. The category with objects the ϕ-stratified LMN -
generalized convergence spaces and continuous mappings as morphisms is denoted
by ϕsLMN -GCS.

Example 4.1. (1) If L = M = N and ϕ = idL, then a ϕ-stratified LMN -
generalized convergence space is a stratified L-generalized convergence space
[8, 9, 11]. Note that these spaces are the same as left-continuous L-
convergence spaces introduced in [3]. Also note that if L = M = N = {0, 1}
we obtain Preuss’ generalized convergence spaces [14].

(2) If L = M = {0, 1} and N = [0, 1], then a ϕ-stratified LMN -generalized
convergence space can be identified with a left continuous probabilistic
convergence space [15].

(3) If L = {0, 1} and M = N then we obtain the fuzzifying M -convergence
spaces introduced in [17].

(4) If L = [0, 1], M = {0, 1} and N = [0, 1], then we obtain convergence
spaces where each prefilter gets assigned a grade of convergence to the
points of X. Note that the axioms are different from the ones in Lowen
and Lowen [12]. Also note that prefilters are in general only ϕ0-stratified.
This has the consequence that the point prefilter, [x]ϕ0

, must be defined by
[x]ϕ0

= {a ∈ [0, 1]X : a(x) = 1}.
(5) L = M , N = {0, 1} then we obtain Gähler’s fuzzy convergence structures

[4].

If M = N , then we can define a ϕ-stratified LM -neighbourhood filter by

Ux(a) =
∧

F∈Fϕs
LM

(X)

(limF(x)→ F(a)).

Then Ux ∈ FϕsLM (X) and Ux ≤ [x]ϕ. In this case we can also define pretopological
ϕ-stratified LM -convergence spaces by requiring the axiom
(Lp) limF(x) =

∧
a∈LX (Ux(a)→ F(a)).

For the case L = M , see in this regard the papers [8, 9, 10]. Note that we can
formulate the L-topological axiom,

Ux(a) =
∨
{U(b) : b(y) ≤ Uy(a)∀y ∈ X},

(see [7, 8]) only in case L = M = N .
We do not want to develp the theory of ϕ-stratified LMN -convergence spaces

here. This theory is very similar to the theory of stratified L-generalized conver-
gence spaces and almost all proofs parallel the corresponding proofs in [8]. We
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leave the details to the reader. We only remark that the category ϕsLMN -GCS is
topological over SET , where the initial structure on X with respect to the source
(fi : X −→ (Xi, limi))i∈J is given by

limF(x) =
∧
i∈J

limifi(F)(fi(x)) (F ∈ Fϕs
LM (X), x ∈ X).

Further, on the set C(X,Y ) = {f : (X, limX) −→ (Y, limY ) continuous}, we can
define the limit map

c− limF(g) =
∧

G∈Fϕs
LM

(X)

∧
x∈X

(
limXG(x)→ limY ev(F × G)(g(x))

)
.

(g ∈ C(X,Y ), F ∈ FϕsLM (C(X,Y ))). This limit map is called the structure of
continuous convergence and makes the category ϕsLMN -GCS Cartesian closed.
We need Lemma 3.5 to show this (see [8]) and remark that the ϕ-stratification is
essentially used in the proof of Lemma 3.5.

5. Conclusions

We outlined in this note a theory of stratified LM -filters, where the stratification
condition depends on the choice of a mapping ϕ : L −→M with suitable properties.
We thus were able to answer a question raised by Wei Yao [18]. The theory of these
ϕ-stratified LM -filters can be used to define very general lattice-valued convergence
spaces, which, by suitable choices of L,M and N , encompass many examples of
convergence spaces found in the literature. We need the ϕ-stratification of the
LM -filters in order to show that this general category of lattice-valued convergence
spaces is Cartesian closed.
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[7] U. Höhle and A. P. Sostak, Axiomatic foundations of fixed-basis fuzzy topology, In: Math-

ematics of Fuzzy Sets. Logic, Topology and Measure Theory (U. Höhle, S. E. Rodabaugh,
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