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UNIVERSAL TRIPLE I METHOD FOR FUZZY REASONING

AND FUZZY CONTROLLER

Y. M. TANG AND F. J. REN

Abstract. As a generalization of the triple I method, the universal triple I

method is investigated from the viewpoints of both fuzzy reasoning and fuzzy
controller. The universal triple I principle is put forward, which improves the

previous triple I principle. Then, unified form of universal triple I method

is established based on the (0,1)-implication or R-implication. Moreover, the
reversibility property of universal triple I method is analyzed from expansion,

reduction and other type operators, which demonstrate that its reversibility

property seems fine, especially for the case employing the (0,1)-implication.
Lastly, we analyze the response ability of fuzzy controllers based on universal

triple I method, then the practicability of triple I method is improved.

1. Introduction

Fuzzy reasoning plays a significant role in fuzzy control, artificial intelligence,
affective computing, image processing and complex system (see [1, 7, 17, 18, 26, 28]).
It is well-known that the most basic problem of fuzzy reasoning is fuzzy modus
ponens (FMP) as follows:

FMP: For a given rule “If x is A then y is B ” and input “x is A∗ ”,

to compute B∗ (output), (1)

where A,A∗ ∈ F (X), B,B∗ ∈ F (Y ) (F (X), F (Y ) respectively denote the set of all
fuzzy subsets on X and Y ). As for the FMP problem (1), the broadly used method
in fuzzy control is the famous CRI (Compositional Rule of Inference) method pro-
posed by Zadeh (see [4, 8, 20, 37]). The CRI solution is as follows:

B∗(y) = sup
x∈X

{A∗(x) ∧ (A(x) → B(y))} (y ∈ Y ) (2)

where → is an implication. In 1999, Wang pointed out that the CRI method had
some blemishes (see [33]). To improve the CRI method Wang put forward the triple
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I method (see [33]), whose idea is to seek the optimal B∗ ∈ F (Y ) such that

(A(x) → B(y)) → (A∗(x) → B∗(y)) (3)

takes the maximum for any x ∈ X, y ∈ Y . Following that, lots of scholars carried
through a series of researches related to the triple I method (see [5, 14, 34, 38]),
demonstrating that the triple I method possesses many advantages such as its logic
basis, excellent reversibility property, and the property of pointwise optimization
(see [11, 24, 27, 36]), which is excellent from the viewpoint of logic.

It is pointed out in [10,12] that many usual fuzzy controllers (including the one
based on the CRI method) can be regarded as an interpolation method. Following
that, the interpolation mechanism (or more general terminology called “ response
ability ”) of fuzzy controllers based on the triple I method or CRI method, have
attracted rapidly growing interests (see [6, 14, 15, 25, 29]). Li et al. discussed the
response ability of 23 fuzzy controllers based on the CRI method, where got the
fact that 12 fuzzy controllers can be used (see [14]). In [6], Hou et al. analyzed the
response ability of 51 fuzzy controllers based on the triple I method, and achieved
only 2 usable fuzzy controllers. Li et al. discussed the response ability of 4 fuzzy
controllers based on the triple I method, and obtained 2 usable fuzzy controllers
(see [15]). We drew the conclusion that 2 fuzzy controllers are practicable in 11
fuzzy controllers via the triple I method, while 4 fuzzy controllers are usable in
11 ones via the CRI method, which are constructed by the same 11 implications
(see [29]). As a result, there are very few usable fuzzy controllers based on the
triple I method, implying that the response ability and practicability of the triple
I method are imperfect (from the viewpoint of fuzzy controllers).

To solve this problem, an important way is to improve the triple I method. Li
pointed out in [11] the fact that the CRI method is a special case of the triple I
method only if three implications in (3) are different. In detail, the CRI method
can be regarded as the triple I method where (3) is changed into

(A(x)→ B(y))→2 (A∗(x)→2 B
∗(y)),

where →2 takes the Mamdani operator IM .
Enlightened by this idea, we can let the latter two implications be the same and

the first one unlimited, that is, generalize (3) to:

(A(x)→1 B(y))→2 (A∗(x)→2 B
∗(y)), (4)

where →1 and →2 (respectively called the first implication and second implication
in the sequel) can take different implications, and the triple I method derived from
(4) is called the differently implicational universal triple I method of (1, 2, 2) type
(universal triple I method for short). In [30, 31], we have already proposed and
discussed the universal triple I method with some preliminary results.

In the theory of fuzzy reasoning, there are no acknowledged standards to judge
whether a fuzzy reasoning method is excellent; but the reversibility property of
fuzzy reasoning method is a basic demand (embodying the compatibility), which
is recognized by a lot of scholars (see [5, 23, 24, 27]). The reversibility property of
universal tripe I method is not researched. Therefore, one aim of this paper is to
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analyze the reversibility property of universal tripe I method. Following that, we
shall inspect the universal tripe I method from the viewpoint of fuzzy controllers,
i.e., the response ability of fuzzy controllers based on universal triple I methods.

The rest of this paper is organized as follows. Section 2 is the preliminaries. In
sections 3 and 4, the universal triple I method is investigated from the viewpoint
of fuzzy reasoning. The solutions of universal triple I method are discussed, then
based on them, the reversibility property of universal triple I method is analyzed.
In section 5, the universal triple I method is investigated from the viewpoint of
fuzzy controllers. The response ability of single-input single-output (SISO) fuzzy
controllers and double-input single-output (DISO) fuzzy controllers based on the
universal triple I method are respectively researched. Section 6 provides several
discussions of the universal triple I method. Section 7 concludes this paper.

2. Preliminaries

Definition 2.1. An implication on [0, 1] is a function I : [0, 1]2 → [0, 1] satisfying
(C1) I(0, 0) = I(0, 1) = I(1, 1) = 1, I(1, 0) = 0.

I(a, b) is also written as a→ b (a, b ∈ [0, 1]).

Definition 2.2. A function T : [0, 1]2 → [0, 1] is called a t-norm if T is associative
commutative, increasing and satisfies T (1, a) = a (a ∈ [0, 1]).

Definition 2.3. A function S : [0, 1]2 → [0, 1] is called a t-conorm if S is associative
commutative, increasing and satisfies S(0, a) = a (a ∈ [0, 1]).

Definition 2.4. A decreasing function N : [0, 1]→ [0, 1] is called a strong negation,
if N(0) = 1, N(1) = 0 and N(N(a)) = a (a ∈ [0, 1]).
Definition 2.5. [18] An implication→ is said to be an R-implication if there exist
a left-continuous t-norm T such that (where ∨ denotes supremum)

a→ b = ∨{x ∈ [0, 1]| T (a, x) ≤ b}, a, b ∈ [0, 1]. (5)

Definition 2.6. Let T , → be two [0, 1]2 → [0, 1] functions, (T,→) is called a
residual pair or, T and→ are residual to each other, if the residual condition holds,
i.e., (iff denotes “if and only if”)

T (a, b) ≤ c iff b ≤ a→ c, a, b, c ∈ [0, 1]. (6)

Proposition 2.7. [3] Let T be a t-norm, then the following are equivalent: (i) T
is left-continuous; (ii) T and → form a residual pair, where → is from (5).

Definition 2.8. An implication → is said to be an S-implication if there exist a
t-conorm S and a strong negation N such that

a→ b = S(N(a), b), a, b ∈ [0, 1].

Definition 2.9. An implication→ is called a QL-implication if there exist a t-norm
T , a t-conorm S and a strong negation N such that

a→ b = S(N(a), T (a, b)), a, b ∈ [0, 1].
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Definition 2.10. [32] Let → be a function I : [0, 1]2 → [0, 1].

(i)→ is called an expansion type operator, if a→ b ≥ b holds for all a ∈ [0, 1], b ∈
[0, 1].

(ii)→ is called a reduction type operator, if a→ b ≤ b holds for all a ∈ [0, 1], b ∈
[0, 1].

(iii) → is called an other type operator if it is neither expansion type nor reduc-
tion type.
Proposition 2.11. [32] If → is an R-implication or S-implication, then → is an
expansion type operator.

It follows from Theorem 3.1 of [30] that Proposition 2.12 can be proved.

Proposition 2.12. Let → be an implication satisfying
(C2) a→ b is non-decreasing w.r.t. b (a, b ∈ [0, 1]),
(C3) a→ b is right-continuous w.r.t. b (a ∈ [0, 1], b ∈ [0, 1)),
(C4) a ≤ b iff a→ b = 1 (a, b ∈ [0, 1]),

and define T : [0, 1]2 → [0, 1] as follows:

T (a, b) = ∧{x ∈ [0, 1]| b ≤ a→ x}, a, b ∈ [0, 1],

then (T,→) is a residual pair, and (5) holds, where ∧ denotes infimum.

Definition 2.13. Let → be an implication satisfying (C2), (C3) and (C4), and its
residual function T satisfy T (1, b) = b, T (0, b) = 0 (b ∈ [0, 1]), then → is called a
(0,1)-implication.

It is easy to prove Lemma 2.14 (from residual condition (6)).

Lemma 2.14. Let → be an implication satisfying (C2), (C3) and (C4), and T the
function residual to →, then (a, b, c ∈ [0, 1]) (i) if b ≤ c, then T (a, b) ≤ T (a, c); (ii)
T (a, b) ≤ a; (iii) T (0, b) = 0; (iv) T (a, a→ b) ≤ b.

It follows from Lemma 2.14 that T (0, b) = 0 can be deleted in Definition 2.13.

Proposition 2.15. If → is an R-implication, then → is a (0,1)-implication.

Proof. There uniquely exists T which is the residual function w.r.t. →, and T is a
left-continuous t-norm, thus we have T (1, b) = b, T (0, b) = 0 (b ∈ [0, 1]). It follows
from Proposition 4.3 in [30] and Proposition 1 in [36] that → satisfies (C2), (C3)
and (C4). Thus it is easy to get that → is a (0,1)-implication. �

Definition 2.16. [34] Let T , → be two [0, 1]2 → [0, 1] functions. ([0, 1], T,→) is
called a residuated lattice, if the following conditions hold:

(i) ([0, 1], T ) is a commutative semigroup with unit 1.

(ii) (T,→) is a residual pair in which T is non-decreasing w.r.t. every variable,
and → is an implication where a→ b is non-increasing w.r.t. a and non-decreasing
w.r.t. b (a, b ∈ [0, 1]);
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Lemma 2.17. [34] If ([0, 1], T,→) is a residuated lattice, then

(i) ∧{a→ xi|i ∈ I} = a→ ∧{xi|i ∈ I} holds for any a, xi ∈ [0, 1] (I 6= ∅);

(ii) → satisfies (C1) and (C4).

Lemma 2.18. [30] If → satisfies ∧{a → xi|i ∈ I} = a → ∧{xi|i ∈ I} where
a, xi ∈ [0, 1], I 6= ∅, then → satisfies (C2) and (C3).

Proposition 2.19. If ([0, 1], T,→) is a residuated lattice, then → is a (0,1)-
implication.

Proof. Since ([0, 1], T,→) is a residuated lattice, (T,→) is a residual pair, and it
follows from Lemma 2.17 that the implication → satisfies (C4), and ∧{a → xi|i ∈
I} = a → ∧{xi|i ∈ I} holds for any a, xi ∈ [0, 1] (I 6= ∅). By Lemma 2.18, we
get that → satisfies (C2) and (C3). Meanwhile, since ([0, 1], T ) is a commutative
semigroup with unit 1, we have T (a, b) = T (b, a), T (1, b) = b (a, b ∈ [0, 1]). Then
considering (T,→) is a residual pair, we achieve that (T,→) is a residual pair, thus
→ is a (0,1)-implication. �

Here we mainly consider 9 familiar operators. They are Lukasiewicz implication
IL, Fodor implication IFD (see [2], which is also called I0 implication, see [22, 33]),
Gödel implication IG, Goguen implication IGo, revised Reichenbach implication
IRR (see [14, 21]), Zadeh implication IZ , Kleene-Dienes implication IKD, Mamdani
operator IM and Larsen operator ILa as the following.

IL(a, b) =

{
1, a ≤ b
1− a+ b, a > b

, IFD(a, b) =

{
1, a ≤ b
(1− a) ∨ b, a > b

,

IG(a, b) =

{
1, a ≤ b
b, a > b

, IGo(a, b) =

{
1, a ≤ b
b/a, a > b

,

IRR(a, b) =

{
1, a ≤ b
1− a+ ab, a > b

, IZ(a, b) = (1− a) ∨ (a ∧ b),

IKD(a, b) = (1− a) ∨ b, IM (a, b) = a ∧ b,
ILa(a, b) = a× b.

Here IL, IFD, IG, IGo, IRR satisfies (C1), (C2), (C3) and (C4); IZ , IKD satisfies
(C1), (C2) and (C3); IM , ILa satisfies (C2), (C3).

It is noted that IM , ILa do not satisfy (C1), but they are also recognized by some
authors (see e.g. [6, 11, 14, 32]). Moreover it is pointed out in [19] that IM , ILa

are referred to collectively as engineering implications. Therefore, for convenience,
IM , ILa can also be regarded as special implications.

It is easy to prove Propositions 2.20 and 2.21.

Proposition 2.20. The operations residual to IL, IFD, IG, IGo, IRR are respec-
tively:

TL(a, b) =

{
a+ b− 1, a+ b > 1
0, a+ b ≤ 1

, TFD(a, b) =

{
a ∧ b, a+ b > 1
0, a+ b ≤ 1

,

TG(a, b) = a ∧ b, TGo(a, b) = a× b,

TRR(a, b) =

{
[(a+ b− 1)/a] ∧ a, a+ b > 1
0, a+ b ≤ 1

.
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Proposition 2.21. In these implications, we have the following results:

(i) IL, IFD, IG, IGo, IRR are (0,1)-implications.
(ii) IL, IFD, IG, IGo are R-implications; IL, IFD, IKD are S-implications; IL, IFD,

IKD, IZ are QL-implications.
(iii) IL, IFD, IG, IGo, IRR, IKD are expansion type operators; IM , ILa are reduc-

tion type operators; and IZ is an other type operator.

Definition 2.22. Let Z be any nonempty set and F (Z) the set of all fuzzy subsets
on Z, define partial order relation ≤F on F (Z) (according to pointwise order) as:
A ≤F B iff A(z0) ≤ B(z0) for any z0 ∈ Z, where A,B ∈ F (Z).

Lemma 2.23. [35] < F (Z),≤F> is a complete lattice.

3. Solutions of Universal Triple I Method

For the FMP problem (1), from the point of view of universal triple I method,
we can obtain the following principle:

Universal triple I principle: The conclusion B∗ (in < F (Y ),≤F>) of the FMP
problem (1) is the smallest fuzzy set which makes (4) get its maximum for any
x ∈ X, y ∈ Y .

Such principle improves the previous triple I principle for FMP in [33] or [36],
since (4) is a generalization of (3) and the former can provide bigger choosing space.

Definition 3.1. Suppose that A,A∗ ∈ F (X), B ∈ F (Y ), if B∗ (in < F (Y ),≤F>)
makes (4) get its maximum for any x ∈ X, y ∈ Y , then B∗ is called a universal
triple I solution.

Definition 3.2. Suppose that A,A∗ ∈ F (X), B ∈ F (Y ), and that nonempty set
E is the set of all universal triple I solutions, and finally that D∗ (in < F (Y ),≤F>)
is the infimum of E. Then D∗ is called an Inf-quasi-solution. And, if D∗ is the
minimum of E, then D∗ is also called a Min-solution.

From Lemma 2.23, < F (Y ),≤F> is a complete lattice. Thus the Inf-quasi-
solution (i.e., the infimum of E) uniquely exists since the non-empty set E ⊂ F (Y ).

Proposition 3.3. Suppose that →2 is an implication satisfying (C2), and that D1

is a universal triple I solution, and finally that D1 ≤F D2 (in which D1, D2 ∈<
F (Y ),≤F>). Then D2 is a universal triple I solution.

Proof. Since D1 is a universal triple I solution, it follows that (A(x)→1 B(y))→2

(A∗(x) →2 D1(y)) takes its maximum for any x ∈ X, y ∈ Y . Because D1 ≤F D2

and →2 satisfies (C2), we get that A∗(x)→2 D1(y) ≤ A∗(x)→2 D2(y) and

(A(x)→1 B(y))→2 (A∗(x)→2 D1(y)) ≤ (A(x)→1 B(y))→2 (A∗(x)→2 D2(y))

hold for any x ∈ X, y ∈ Y . Therefore D2 is also a universal triple I solution. �

Remark 3.4. Suppose that→2 satisfies (C2). For (4), once there exists a universal
triple I solution B∗, then every fuzzy set D which is larger than B∗ (D ∈ F (Y )),
will be a solution (it is easy to know from Proposition 3.3). This means that there
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are many solutions, including B∗(y) ≡ 1 (y ∈ Y ). This last is a special solution,
for which (4) always takes its maximum no matter what major premise A →1 B
and minor premise A∗ are adopted. Therefore, when the optimal universal triple
I solution exists, it should be the smallest one; in other words, it should be the
infimum of all solutions (i.e. the infimum of E).

Theorem 3.5. Suppose that →2 is a (0,1)-implication, and that T the function
residual to →2, then the Min-solution can be computed as follows:

B∗(y) = sup
x∈X

{T (A∗(x), (A(x) →1 B(y)))}, y ∈ Y. (7)

Proof. To begin with, we shall show that B∗ (given by (7)) is a universal triple I
solution, that is, the following formula holds for any x ∈ X, y ∈ Y :

(A(x) →1 B(y)) →2 (A∗(x) →2 B∗(y)) = 1. (8)

In fact, it follows from (7) that T (A∗(x), (A(x)→1 B(y))) ≤ B∗(y), x ∈ X, y ∈ Y .
Since (T,→2) is a residual pair, we get that A(x) →1 B(y) ≤ A∗(x) →2 B

∗(y)
holds for any x ∈ X, y ∈ Y . Thus (8) holds (considering →2 satisfies (C4)).

Furthermore we shall prove that B∗ is the minimum of all universal triple I so-
lutions. Suppose that D is any universal triple I solution, thus (A(x)→1 B(y))→2

(A∗(x) →2 D(y)) = 1 holds for any x ∈ X, y ∈ Y . So A(x) →1 B(y) ≤
A∗(x) →2 D(y) holds for any x ∈ X, y ∈ Y (noting that →2 satisfies (C4)).
Then, from the fact that (T,→2) is a residual pair, we obtain T (A∗(x), (A(x) →1

B(y))) ≤ D(y) holds for any x ∈ X, y ∈ Y . Therefore, D(y) is an upper bound of
{T (A∗(x), (A(x)→1 B(y)))| x ∈ X}, y ∈ Y. Thus it follows from (7) that B∗ ≤F D.
Thus, we obtain that B∗ is the minimum of all universal triple I solutions.

Therefore B∗ expressed as (7) is the Min-solution (from Definition 3.2). �
We can get Proposition 3.6 from Theorem 3.5 and Proposition 2.15.

Proposition 3.6. Suppose that →2 is an R-implication, and that T the function
residual to →2, then the Min-solution can be computed as (7).

Lemma 3.7. [30] (i) If →2 is IM , then the Min-solution is B∗(y) = supx∈X
{A∗(x) ∧ (A(x)→1 B(y))}, y ∈ Y .

(ii) If →2 is IZ , then the Min-solution is B∗(y) = supx∈Ey
{A∗(x) ∧ (A(x) →1

B(y))}, y ∈ Y , where Ey = {x ∈ X| (1−A∗(x)) ∨ 0.5 < A(x)→1 B(y)}.
(iii) If →2 ∈ {IKD, ILa}, then the Min-solution is B∗(y) = 1 if y ∈ E, B∗(y) = 0
if y ∈ Y − E, where E = {y ∈ Y | supx∈X{(A(x)→1 B(y))×A∗(x)} > 0}.

Remark 3.8. When→1=→2 in (4), the universal triple I method degenerates into
the triple I method. From Lemma 3.7, it is easy to know that when →2 takes IM ,
the universal triple I method degenerates into the CRI method.

4. Reversibility Property of Some Universal Triple I Methods

As pointed out in [36], the most fundamental deduction rule in logic is the
classical modus ponens (meaning that if A→ B and A are given, then B follows),
thus it is natural to hope that the FMP conclusion B∗ of (1) should be equal to
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B if A∗ = A, which is also called that such fuzzy reasoning method possesses the
reversibility property (see Definition 4.1).

Definition 4.1. For a method (of fuzzy reasoning) to solve the FMP problem, if
this method satisfies the classical modus ponens whenever condition P holds, then
this method is said to be reversible under condition P , or P -reversible.

Here 3 conditions are considered as follows: (i) P1 means that A is a normal
fuzzy set (i.e., there exists a ∈ X such that A(a) = 1). (ii) P2 means that P1

and {A(x)|x ∈ X} ⊃ {B(y)|y ∈ Y } hold. (iii) P3 means that P1 and B(y) ∈
(0, 5, 1] ∪ {0} (for any y ∈ Y ) hold.

When Wang proposed the triple I method, he pointed out the fact that the triple
I method has the reversibility property while the CRI method has not (see [33]),
which is an important evidence illustrating that the triple I method has stronger
logicality. Following that, the reversibility property of triple I method becomes a
hot research topic (see [24, 27, 34, 36]).

Similarly, we also need to analyze the reversibility property of universal triple I
method, which is not discussed in [30]. Since the universal triple I method is decided
by the first implication and second implication, we shall research aiming at some
familiar implications (i.e., →1,→2∈ {IFD, IL, IGo, IG, IRR, IKD, IM , ILa, IZ}).

For convenience, for any fuzzy set A(x), denote A
′
(x) , 1−A(x).

4.1. Reversibility Property for Expansion Type Operators. We shall inves-
tigate the case that →2 takes an expansion type operator (in detail, IFD, IL, IGo,
IG, IRR, IKD).

Lemma 4.2. Let→ be a (0,1)-implication, then→ satisfies the following condition:
(C5) 1→ b ≥ b, (b ∈ [0, 1]).

Theorem 4.3. If →2 is a (0,1)-implication, and →1 satisfies (C5) and
(C6) a→1 b ≤ a→2 b whenever a > b (a, b ∈ [0, 1]),

then the universal triple I method is P1−reversible.

Proof. Since→2 is a (0,1)-implication, there uniquely exists the function T which is
residual to →2 and T (1, b) = b (b ∈ [0, 1]). When A∗ = A, it follows from Theorem
3.5 that the Min-solution is B∗(y) = supx∈X{T (A(x), (A(x)→1 B(y)))}, y ∈ Y.

Taking into account that P1 holds, there exists a ∈ X such that A(a) = 1. Since
→2 is a (0,1)-implication and →1 satisfies (C5), we obtain

B∗(y) ≥ T (A(a), (A(a)→1 B(y))) = T (1, (1→1 B(y))) = 1→1 B(y) ≥ B(y),

i.e. B∗(y) ≥ B(y).
We shall show B∗(y) ≤ B(y). For any x ∈ X, it follows Lemma 2.14(iv) that

T (A(x), (A(x)→2 B(y))) ≤ B(y) . Since→1 satisfies (C6), we get a→1 b ≤ a→2 b
if a > b, and a →2 b = 1 ≥ a →1 b if a ≤ b (noting that →2 satisfies (C4)). Thus
a →1 b ≤ a →2 b holds for any a, b ∈ [0, 1]. So, we get by Lemma 2.14(i) that
T (A(x), (A(x) →1 B(y))) ≤ T (A(x), (A(x) →2 B(y))) ≤ B(y). Then we have
B∗(y) ≤ B(y).

Therefore B∗ = B. �
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From Proposition 2.15, we can further get Theorem 4.4 and Proposition 4.5.

Theorem 4.4. If →2 is an R-implication, and →1 satisfies (C5) and (C6), then
the universal triple I method is P1−reversible.

Proposition 4.5. (i)If →2 takes IFD, and →1 satisfies (C5) and
(C7) a→1 b ≤ (1− a) ∨ b whenever a > b,

then the universal triple I method is P1−reversible, especially for the case of →1∈
{IFD, IG, IKD, IM , ILa, IZ}.

(ii) If →2 takes IL, and →1 satisfies (C5) and
(C8) a→1 b ≤ 1− a+ b whenever a > b (a, b ∈ [0, 1]),

then the universal triple I method is P1−reversible, especially for the case of →1∈
{IFD, IL, IGo, IG, IRR, IKD, IM , ILa, IZ}.

(iii)If →2 takes IGo, and →1 satisfies (C5) and
(C9) a→1 b ≤ b/a whenever a > b,

then the universal triple I method is P1−reversible, especially for the case of →1∈
{IGo, IG, IM , ILa}.

(iv) If →2 takes IG, and →1 satisfies (C5) and
(C10) a→1 b ≤ b whenever a > b (a, b ∈ [0, 1]),

then the universal triple I method is P1−reversible, especially for the case of →1∈
{IG, IM , ILa}.

(v) If →2 takes IRR, and →1 satisfies (C5) and
(C11) a→1 b ≤ 1− a+ ab whenever a > b (a, b ∈ [0, 1]),

then the universal triple I method is P1−reversible, especially for the case of →1∈
{IFD, IG, IRR, IKD, IM , ILa, IZ}.

Remark 4.6. If →2 takes IFD, and →1 satisfies (C5) but does not satisfy (C7),
then the universal triple I method can not ensure to be P1−reversible. In fact,
when A(x) > B(y) > 0, considering →1 does not satisfy (C7), there may exist

x0 ∈ Ey such that A(x0) > B(y) > 0 and A(x0) →1 B(y) > A
′
(x0) ∨ B(y), then

A(x0)∧ (A(x0)→1 B(y)) > B(y), thus B∗(y) > B(y). Especially, if→2 takes IFD,
→1∈ {IL, IGo, IRR}, then we have the same result. When →2∈ {IL, IGo, IRR, IG},
we can get similar analysis.

If →2 takes IKD , then the universal triple I method can not ensure to be
P−reversible where P ∈ {P1, P2, P3}. In fact, when A∗ = A, it follows from
Lemma 3.7 that we can get the Min-solution B∗(y). When 0 < B(y) < 1, then
B∗(y) 6= B(y) holds (noting that B∗(y) ∈ {0, 1}).

Corollary 4.7. Let→2 be a (0,1)-implication, and→1=→2,→, then the universal
triple I method (i.e. the triple I method) is P1−reversible.

Proof. Since →1=→2, we have that →1 satisfies (C6). Considering →1 is a (0,1)-
implication, we get from Lemma 4.2 that 1→1 b ≥ b holds ( i.e. →1 satisfies (C5)),
thus it follows from Theorem 4.3 that the conclusion is correct. �

From Corollary 4.7, Propositions 2.15, 2.19 and 2.21, we can easily get Corollaries
4.8, 4.9 and 4.10.
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Corollary 4.8. Let →2∈ {IFD, IL, IGo, IG, IRR}, and →1=→2,→, then the uni-
versal triple I method (i.e. the triple I method) is P1−reversible.

Corollary 4.9. Let →2 be an R-implication, and →1=→2,→, then the universal
triple I method (i.e. the triple I method) is P1−reversible.

Corollary 4.10. Let ([0, 1], T,→) be a residuated lattice, and →1=→2,→, then
the universal triple I method (i.e. the triple I method) is P1−reversible.

Remark 4.11. In [33, 34], Wang discussed the reversibility property of triple I
method (for the FMP problem), which was only aiming at the case of IFD. And
Theorem 4 in [33] and Theorem 4.4.12 in [34] pointed out the fact that the triple I
method via IFD is P1−reversible. It is evident that this conclusion is the same as
the related one of Corollary 4.8 in this paper.

Remark 4.12. In Theorem 5 of [36] and Theorem 6 of [24], Wang and Pei all gave
the same result that the triple I method (for the FMP problem) is P1−reversible if
the implication takes an R-implication, which coincides with Corollary 4.9 in this
paper. Moreover, it follows from Proposition 2.15 in this paper that Theorem 5
of [36] (or Theorem 6 in [24]) is a special case of Corollary 4.7 in this paper.

Remark 4.13. In Theorem 5 of [23], Pei got the result that if ([0, 1], T,→) is a
residuated lattice, then the triple I method (for the FMP problem) employing →
is P1−reversible, which is the same as Corollary 4.10 in this paper. Moreover, it
follows from Proposition 2.19 in this paper that Theorem 5 of [23] is a special case
of Corollary 4.7 in this paper.

4.2. Reversibility Property for Reduction Type Operator. We shall inves-
tigate the case that →2 takes a reduction type operator (in detail, IM , ILa).

Theorem 4.14. If →2 takes IM , and →1 satisfies (C5) and (C10), then the uni-
versal triple I method is P1−reversible, especially for the case of→1∈ {IG, IM , ILa}.

Proof. It follows from Lemma 3.7 that when A∗ = A, the Min-solution B∗(y) =
supx∈X{A(x) ∧ (A(x)→1 B(y))}.

Since P1 is satisfied, there exists a ∈ X such that A(a) = 1, then we get B∗(y) ≥
1 ∧ (1 →1 B(y)) ≥ B(y) (noting that →1 satisfies (C5)), i.e. B∗(y) ≥ B(y). For
any x ∈ X, if A(x) ≤ B(y), then A(x) ∧ (A(x) →1 B(y)) ≤ A(x) ≤ B(y); if
A(x) > B(y), then A(x) ∧ (A(x) →1 B(y)) ≤ A(x) →1 B(y) ≤ B(y) (noting that
→1 satisfies (C10)), thus B∗(y) ≤ B(y).

Therefore, B∗ = B. �

Remark 4.15. If →2 takes IM , and →1 satisfies (C5) but does not satisfy (C10),
then it is similar to Remark 4.6 that the universal triple I method can not ensure
to be P1−reversible. Especially, if →1∈ {IFD, IL, IGo, IRR, IKD, IZ}, we have the
same conclusion.

If →2 takes ILa, then it is similar to the case of IKD that the universal triple I
method can not ensure to be P−reversible where P ∈ {P1, P2, P3}.
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4.3. Reversibility Property for Other Type Operators. Noting that IZ is an
other type operator (and also a typical QL-implication), we shall analyze the case
that →2 takes IZ .

Theorem 4.16. If →2 takes IZ , and →1 satisfies (C5), (C7) together with
(C12) a→1 a = 1 whenever 0 < a ≤ 0.5 (a ∈ [0, 1]),

then the universal triple I method is P2−reversible.

Proof. When A∗ = A, we get from Lemma 3.7 that the Min-solution is B∗(y) =

supx∈Ey
{A(x) ∧ (A(x) →1 B(y))} where Ey = {x ∈ X| A′(x) ∨ 0.5 < A(x) →1

B(y)}.
(i) Suppose B(y) = 0. We shall observe the structure of Ey. If A(x) > 0,

considering→1 satisfies (C7), we have A
′
(x) < A(x)→1 B(y) ≤ A′(x)∨0 = A

′
(x),

which is a contradiction. If A(x) = 0, then A
′
(x)∨ 0.5 = 1 < A(x)→1 B(y), which

is also a contradiction. Thus we get Ey = ∅, therefore B∗(y) = 0 = B(y).
(ii) Suppose B(y) > 0. At first, we shall show B∗(y) ≥ B(y). (a) Suppose

B(y) > 0.5. Since P2 holds, there exists a ∈ X such that A(a) = 1, thus A(a) →1

B(y) ≥ B(y) > A
′
(a) ∨ 0.5 (noting that →1 satisfies (C5)). Thus a ∈ Ey, and

then B∗(y) ≥ A(a) ∧ (A(a) →1 B(y)) ≥ B(y), i.e. B∗(y) ≥ B(y). (b) Suppose
0 < B(y) ≤ 0.5. Since P2 is satisfied, there exists b ∈ X such that A(b) = B(y),

so A(b)→1 B(y) = 1 > A
′
(b) ∨ 0.5 (noting that →1 satisfies (C12)). Thus b ∈ Ey,

and then B∗(y) ≥ A(b) ∧ (A(b)→1 B(y)) = A(b) = B(y), i.e. B∗(y) ≥ B(y).
Furthermore, we shall prove B∗(y) ≤ B(y) when B(y) > 0. Inspecting the

process above, it is easy to know Ey is not empty. For any x ∈ Ey, A
′
(x) ∨ 0.5 <

A(x)→1 B(y) holds. If A(x) ≤ B(y), then A(x)∧ (A(x)→1 B(y)) ≤ A(x) ≤ B(y).

If A(x) > B(y), then A
′
(x)∨ 0.5 < A(x)→1 B(y) ≤ A′(x)∨B(y) (noting that →1

satisfies (C7)), thus A
′
(x) < B(y), and A(x) ∧ (A(x) →1 B(y)) ≤ A(x) ∧ [A

′
(x) ∨

B(y)] = A(x) ∧B(y) ≤ B(y). To sum up, we have B∗(y) ≤ B(y).
Therefore B∗ = B whenever B(y) > 0. Summarizing above, B∗ = B holds. �

From Theorem 4.16, we can easily get Proposition 4.17.

Proposition 4.17. Let →2 take IZ , and →1∈ {IFD, IG}, then the universal triple
I method is P2−reversible.

Remark 4.18. If →2 takes IZ , and →1 satisfies (C5), (C12) but does not satisfy
(C7), then it is similar to Remark 4.6 that B∗(y) > B(y) may hold when A(x) >
B(y) > 0, and thus the universal triple I method can not ensure to be P2−reversible.
Especially, if I1 ∈ {IL, IGo, IRR}, we have the same result.

Proposition 4.19. If →2 takes IZ , →1∈ {IKD, IM , ILa, IZ} and A is a normal
fuzzy set. Then, when A∗ = A, B∗(y) = 0 if B(y) ≤ 0.5, B∗(y) = B(y) if
B(y) > 0.5.

Proof. Suppose A∗ = A. It is obvious that the Min-solution B∗(y) is the same as
Theorem 4.16. Note that IKD, IM , ILa, IZ obviously satisfy (C5) and (C7) (but do
not satisfy (C12)), then from the proving process of Theorem 4.16, it is easy to get
B∗(y) = 0 if B(y) = 0, and B∗(y) = B(y) if B(y) > 0.5. We shall show B∗(y) = 0
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when 0 < B(y) ≤ 0.5. We only prove the case of→1= IKD as an example. Suppose
→1= IKD, then

Ey = {x ∈ X| A
′
(x) ∨ 0.5 < A

′
(x) ∨B(y)} = {x ∈ X| A

′
(x) ∨ 0.5 < B(y)}.

When 0 < B(y) ≤ 0.5, we can easily get Ey = ∅, and then B∗(y) = 0. �

It follows from Proposition 4.19 that we can easily get Theorem 4.20.

Theorem 4.20. Let →2 take IZ , and →1∈ {IKD, IM , ILa, IZ}, then the universal
triple I method is P3−reversible.

Remark 4.21. If →2 takes IZ , and →1 satisfies (C5), (C7) but does not satisfy
(C12), then B∗(y) 6= B(y) may hold when 0 < B(y) ≤ 0.5, and the universal triple I
method can not ensure to be P2−reversible. Especially, if→1∈ {IKD, IM , ILa, IZ},
we have the same result (from Proposition 4.19 and Theorem 4.20); but under
more strict condition (i.e. P3), the universal triple I method possesses the re-
versibility property. In [27], Song investigated the triple I method based on IZ and
its reversibility property, and got Theorem 4 and Corollary 5 for the reversibility
property of triple I method (for the FMP problem), which are respectively the same
as the related conclusions of Proposition 4.19 and Theorem 4.20 in this paper.

4.4. Summarizations of Reversibility Property of Universal Triple I Meth-
ods. We shall summarize the reversibility property of universal triple I methods.
By Remark 3.8, when →2= IM , the universal triple I method degenerates into the
CRI method, then we get the reversibility property of related CRI methods by The-
orem 4.14 and Remark 4.15 (see Proposition 4.22). When →1=→2, the universal
triple I method degenerates into the triple I method. Inspecting the results men-
tioned above, we get the reversibility property of triple I methods (see Proposition
4.23).

Proposition 4.22. Let →2 take IM , →1∈ {IG, IM , ILa}, then the universal triple
I method (i.e. the CRI method) is P1−reversible.

Proposition 4.23. Take →1=→2,→, then the universal triple I method (that
is, the triple I method) is P1−reversible if →∈ {IFD, IL, IGo, IG, IRR, IM}, and
P3−reversible if →∈ {IZ}.

Remark 4.24. In Theorem 3.1 of [5], Hou and Li pointed out the fact that the
CRI method where →∈ {IG, IM , ILa} is P1−reversible, and the one where →∈
{IFD, IL, IGo, IRR, IKD, IZ} is not, which are the same as the related conclusions
of Proposition 4.22 and Remark 4.15 in this paper. In Theorem 3.2 of [5], Hou and
Li drew the conclusions that the triple I method (for the FMP problem) where→∈
{IFD, IL, IGo, IG, IRR, IM} is P1−reversible, and the one where→∈ {IKD, ILa, IZ}
is not, which coincide with the related conclusions of Proposition 4.5, Remark 4.6
and Proposition 4.23 in this paper. From Propositions 4.22 and 4.23, the triple I
method is superior to the CRI method from the viewpoint of reversibility property.

Table 1 summarizes the reversibility property of universal triple I method (except
the case of →2∈ {IKD, ILa}), where Pi represents that corresponding universal
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PPPPPPPP→2

→1 IFD IL IGo IG IRR IKD IM ILa IZ

IFD P1 P1 P1 P1 P1 P1

IL P1 P1 P1 P1 P1 P1 P1 P1 P1

IGo P1 P1 P1 P1

IG P1 P1 P1

IRR P1 P1 P1 P1 P1 P1 P1

IM P1 P1 P1

IZ P2 P2 P3 P3 P3 P3

Table 1. The Reversibility Property of Some Universal Triple I Methods

triple I method (employing first implication →1 and second implication →2) is
Pi−reversible. The universal triple I method possesses reversibility property under
very strict condition if→2 takes IZ (which is an other type operator); and it hardly
is reversible if→2∈ {IKD, ILa}. However, when→2 takes a (0,1)-implication (which
belongs to an expansion type operator), the reversibility property seems excellent,
which is embodied as that the universal triple I method is P−reversible for a lot
of first implications. By the way, when →1 takes a reduction type operator (e.g.,
IM , ILa), the reversibility property seems fine.

From another viewpoint, when→2 takes an R-implication (e.g., IFD, IL, IGo, IG),
the reversibility property of universal triple I method seems fine. When →2 is an
S-implication (e.g., IFD, IL, IKD) or a QL-implication (e.g., IFD, IL, IKD, IZ), the
reversibility property is uncertain, where the case of →2∈ {IKD} is unacceptable,
and the case of →2∈ {IZ} is complicated, and finally the case of →2∈ {IFD, IL} is
excellent.

5. Response Ability of Fuzzy Controllers Based on Universal

Triple I Methods

In this section, we shall investigate the universal triple I methods from the view-
point of fuzzy controllers.

First of all, we shall review briefly Mamdanian fuzzy control algorithm (which
approximates to an interpolation function), where takes the SISO fuzzy controller
as an example, thus some necessary concepts and signs are introduced.

Let X and Y be the input and output universe, respectively. Denote A =
{Ai}(1≤i≤n), B = {Bi}(1≤i≤n) where Ai ∈ F (X), Bi ∈ F (Y ). A,B are regarded as
linguistic variables, thus the fuzzy reasoning rules can be expressed as follows:

If x is Ai, then y is Bi, i = 1, · · · , n, (9)

where x ∈ X, y ∈ Y are called base variables.
According to the Mamdanian fuzzy control algorithm, the inference relation of

the i-th rule can be regarded as a fuzzy relation from X to Y (i = 1, · · · , n),
denoting by Ai(x) →1 Bi(y) (where →1 is an implication). And such n rules can
be connected by ‘or’ relation (i.e, taking ‘max’ operator for rules), thus the whole
rule is

IR(x, y) , ∨ni=1(Ai(x)→1 Bi(y)).
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Given A∗ ∈ F (X), the inference conclusion B∗ ∈ F (Y ) can be obtained as

B∗ , A∗ ◦ IR, by the CRI method, in which

B∗(y) = sup
x∈X
{A∗(x) ∧ IR(x, y)}, y ∈ Y. (10)

For a fuzzy controller, since its input is a crisp quantity, it should be transformed
into fuzzy set to utilize (10) by

A∗(x) =

{
1, x = x∗

0, x 6= x∗
, A∗x∗ ,

which is called a singleton fuzzification.
Furthermore, it is known that B∗ should be turned into a crisp quantity by

using some defuzzification methods, and the commonly used method is the so-called
method of centroid:

y∗ =

∫
Y
yB∗(y)dy∫

Y
B∗(y)dy

. (11)

Then, a natural problem arise: What is interpolation representation of such
fuzzy controller if we replace the CRI method with the universal triple I method?
This is the task of this section.

5.1. SISO Fuzzy Controllers Based on Universal Triple I Methods. Here
we employ the universal triple I method instead of the CRI method. Thus, for
fuzzy reasoning rules (9), it is easy to get that (4) should be turned into:

IR(x, y)→2 (A∗(x)→2 B
∗(y)). (12)

Therefore, there is an output y∗ = F (x∗) for each input x∗. Thus a SISO fuzzy
controller based on universal triple I method is obtained.

Definition 5.1. Let Z be any nonempty set and C = {Ci}(1≤i≤n) a family of nor-
mal fuzzy sets on Z, where the peak-point of Ci is zi (i.e. the unique point satisfying
Ci(zi) = 1 in Z). C is called a fuzzy partition of Z if (∀z ∈ Z)(

∑n
i=1 Ci(z) = 1)

holds, and Ci is defined as a base element in C. Thus C is also called a group of
base elements of Z.

Remark 5.2. Definition 5.1 obviously implies (∀i, j)(i 6= j ⇒ zi 6= zj) and that C
has Kronecker property (i.e. Ci(zj) = δij where δij = 1 if i = j, δij = 0 if i 6= j).

To investigate interpolation mechanism of fuzzy controller, suppose that A and
B are respectively fuzzy partitions of X and Y (in which Ai, Bi are integrable
functions). We assume that X and Y are all real number intervals, e.g. X = [a, b]
and Y = [c, d] where a < x1 < x2 < · · · < xn < b, c < y1 < y2 < · · · < yn < d, in
which xi, yi are respectively peak-points of Ai, Bi.

Let h1 = y1− c, hi = yi− yi−1 (i = 2, 3, · · · , n) and h = max1≤i≤n{hi}. Since A
and B are all fuzzy partitions, they have Kronecker property: Ai(xj) = δij = Bi(yj)
(i, j = 1, · · · , n). By the definition of definite integral, we achieve for the method
of centroid:

y∗ =

∫
Y
yB∗(y)dy∫

Y
B∗(y)dy

≈
∑n

i=1 yiB
∗(yi)hi∑n

i=1B
∗(yi)hi

. (13)
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Similar to Theorem 3.5, we can prove Proposition 5.3.

Proposition 5.3. Suppose that →2 is a (0,1)-implication, and that T the function
residual to→2, then the Min-solution derived from (12) can be expressed as follows:

B∗(y) = sup
x∈X
{T (A∗(x), IR(x, y))}, y ∈ Y.

Theorem 5.4. Let →2 be a (0,1)-implication, then the Min-solution B∗(y) =
IR(x∗, y) for the SISO fuzzy controller based on universal triple I method.

Proof. Let →2 be a (0,1)-implication. Then there uniquely exists T which is the
residual function w.r.t. →2, and T (1, b) = b, T (0, b) = 0 (b ∈ [0, 1]). It follows
from Proposition 5.3 that the Min-solution B∗(y) = supx∈X{T (A∗(x), IR(x, y))},

y ∈ Y . As for input x∗ , we get A∗x∗ =

{
1, x = x∗

0, x 6= x∗
. Because T (1, b) = b,

T (0, b) = 0 (b ∈ [0, 1]), we obtain T (A∗(x), IR(x, y)) = T (1, IR(x∗, y)) = IR(x∗, y)
for the case of x = x∗ , and T (A∗(x), IR(x, y)) = T (0, IR(x, y)) = 0 for the case of
x ∈ X − {x∗}. Therefore B∗(y) = supx∈X{T (A∗(x), IR(x, y))} = IR(x∗, y). �

Theorem 5.4 gives the equivalent form of Min-solution in SISO fuzzy controller.

Lemma 5.5. In the SISO fuzzy controller based on universal triple I method,
(i) if →1 is an expansion type operator, then IR(x∗, yj) > 0 for any x∗ ∈ X

(j = 1, · · · , n);
(ii) if →1 is a reduction type operator satisfying

(C13) a→ 1 = a (a ∈ [0, 1]),
then there exists yj such that IR(x∗, yj) > 0 for any x∗ ∈ X (j ∈ {1, · · · , n});

(iii) if →1 is an other type operator satisfying
(C14) a→ 1 > 0 (a ∈ [0, 1]),

then IR(x∗, yj) > 0 for any x∗ ∈ X (j = 1, · · · , n);
(iv) if →1 is an R-implication or S-implication, then IR(x∗, yj) > 0 for any

x∗ ∈ X (j = 1, · · · , n);
(v) if →1 is a QL-implication, then IR(x∗, yj) > 0 for any x∗ ∈ X (j =

1, · · · , n).

Proof. In the SISO fuzzy controller based on universal triple I method, suppose any
x∗ ∈ X, then IR(x∗, y) = ∨ni=1(Ai(x

∗)→1 Bi(y)).
(i) Suppose that →1 is an expansion type operator. Then a →1 1 = 1, and

thus IR(x∗, yj) = ∨ni=1(Ai(x
∗) →1 Bi(yj)) = 1 > 0 holds (j = 1, · · · , n) since

Bi(yj) = δij (i, j = 1, · · · , n).
(ii) Suppose that →1 is a reduction type operator satisfying (C13). Then we

have a →1 0 = 0 (a ∈ [0, 1]). Suppose, on the contrary, that there exists x∗ ∈ X
such that IR(x∗, yj) = 0 for any yj (j = 1, · · · , n). Since Bi(yj) = δij (i, j =
1, · · · , n) and a →1 1 = a, a →1 0 = 0, we get 0 = IR(x∗, yj) = ∨ni=1(Ai(x

∗) →1

Bi(yj)) = Aj(x
∗) (j = 1, · · · , n), and then

∑n
j=1Aj(x

∗) = 0. But, from the

previous assumption, A = {Ai}(1≤i≤n) is a fuzzy partition on X, then it follows

from Definition 5.1 that
∑n

j=1Aj(x
∗) = 1, which is a contradiction. Therefore,

there exists yj such that IR(x∗, yj) > 0 for any x∗ ∈ X (j ∈ {1, · · · , n}).
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(iii) Suppose that→1 is an other type operator satisfying (C14). Since Bi(yj) =
δij (i, j = 1, · · · , n), we get IR(x∗, yj) = ∨ni=1(Ai(x

∗) →1 Bi(yj)) ≥ Aj(x
∗) →1

Bj(yj) = Aj(x
∗)→1 1 > 0 holds (j = 1, · · · , n).

(iv) Since an R-implication or S-implication is also an expansion type operator,
then similarly we get the conclusion.

(v) Suppose that→1 is a QL-implication, then it is easy to get a→1 1 > 0, thus
we also get the conclusion. �

Theorem 5.6. Let →2 be a (0,1)-implication. If →1 is a reduction type operator
satisfying (C13), then there exists a group of base functions A∗ = {A∗i }(1≤i≤n) such
that the SISO fuzzy controller based on universal triple I method is approximately a
univariate piecewise interpolation function regarding A∗i as its base functions, i.e.
F (x) =

∑n
i=1A

∗
i (x)yi, and A∗ is a fuzzy partition of X. Moreover, if {yi}(1≤i≤n)

is an equidistant partition, then A∗ degenerates into A, i.e. F (x) =
∑n

i=1Ai(x)yi.

Proof. Since →2 is a (0,1)-implication, it follows from Theorem 5.4 that Min-
solution B∗(y) = IR(x∗, y) = ∨nk=1(Ak(x∗) →1 Bk(y)). Since →1 is a reduction
type operator satisfying (C13), then a→1 1 = a, a→1 0 = 0. Noting Bk(yi) = δki
(k, i = 1, · · · , n), it follows from (13) that

y∗ ≈
∑n

i=1 yiB
∗(yi)hi∑n

i=1B
∗(yi)hi

=

∑n
i=1 hi[∨nk=1(Ak(x∗)→1 Bk(yi))]yi∑n
i=1 hi[∨nk=1(Ak(x∗)→1 Bk(yi))]

=

∑n
i=1 hiAi(x

∗)yi∑n
i=1 hiAi(x∗)

,
(14)

where there exists yi such that B∗(yi) = IR(x∗, yi) > 0 (i ∈ {1, · · · , n}) by Lemma
5.5(ii), so

∑n
i=1B

∗(yi)hi > 0 and then (14) makes sense.

Denote A∗i (x∗) , hiAi(x
∗)/(

∑n
i=1 hiAi(x

∗)), then y∗ ≈
∑n

i=1A
∗
i (x∗)yi. Let

A∗ , {A∗i }(1≤i≤n), F (x) ,
∑n

i=1A
∗
i (x)yi. We get

F (xi) =

n∑
k=1

A∗k(xi)yk =

∑n
k=1 hkAk(xi)yk∑n
k=1 hkAk(xi)

= yi (i = 1, · · · , n),

noting that Ak(xi) = δki (i, k = 1, · · · , n), then F (x) is a univariate piecewise
interpolation function which regards A∗i as its base functions.

Furthermore,
∑n

i=1A
∗
i (x) =

∑n
i=1[hiAi(x)/(

∑n
i=1 hiAi(x))] = 1 holds for any

x ∈ X, thus A∗ is a fuzzy partition of X. At last, if {yi}(1≤i≤n) is an equidistant
partition (i.e. (∀i)(hi = h)), then it is evident that A∗i = Ai, A∗ = A, and hence
F (x) =

∑n
i=1Ai(x)yi. �

Note that IM , ILa are reduction type operators satisfying (C13), which implies
Corollary 5.7 (by virtue of Theorem 5.6).

Corollary 5.7. Let →2 be a (0,1)-implication. If →1∈ {IM , ILa}, then there ex-
ists a group of base functions A∗ = {A∗i }(1≤i≤n) such that the SISO fuzzy controller
based on universal triple I method is approximately a univariate piecewise interpo-
lation function regarding A∗i as its base functions and A∗ is a fuzzy partition of X.
Moreover, if {yi}(1≤i≤n) is an equidistant partition, then A∗ degenerates into A.
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Since IZ is an other type operator satisfying (C14), and it is also a typical
QL-implication, we shall investigate the case that →1 takes IZ .

Theorem 5.8. Let →2 be a (0,1)-implication. If →1 is IZ , then there exists a
group of base functions A∗ = {A∗i }(1≤i≤n) such that the SISO fuzzy controller based
on universal triple I method is approximately a univariate piecewise fitted function
regarding A∗i as its base functions, i.e. F (x) =

∑n
i=1A

∗
i (x)yi.

Proof. It is similar to Theorem 5.6 that B∗(y) = ∨nk=1(Ak(x∗) →1 Bk(y)). Since
→1 is IZ and Bk(yi) = δki (k, i = 1, · · · , n), it follows from (13) that

y∗ ≈
∑n

i=1 yiB
∗(yi)hi∑n

i=1B
∗(yi)hi

=

∑n
i=1 hi[∨nk=1((1−Ak(x∗)) ∨ (Ak(x∗) ∧Bk(yi)))]yi∑n
i=1 hi[∨nk=1((1−Ak(x∗)) ∨ (Ak(x∗) ∧Bk(yi)))]

=

∑n
i=1 hi[Ai(x

∗) ∨ (∨nk=1(1−Ak(x∗)))]yi∑n
i=1 hi[Ai(x∗) ∨ (∨nk=1(1−Ak(x∗)))]

,
(15)

where B∗(yi) = IR(x∗, yi) > 0 (i = 1, · · · , n) according to Lemma 5.5(iii)(v), so∑n
i=1B

∗(yi)hi > 0 and then (15) makes sense.

Denote

Ci(x
∗) , Ai(x

∗) ∨ (∨nk=1(1−Ak(x∗))), A∗i (x∗) , hiCi(x
∗)/(

n∑
i=1

hiCi(x
∗)),

then y∗ ≈
∑n

i=1A
∗
i (x∗)yi. Let A∗ , {A∗i }(1≤i≤n) and F (x) ,

∑n
i=1A

∗
i (x)yi. It is

easy to verify that it can’t make F (xi) = yi hold for any i, thus F (x) is a univariate
piecewise fitted function which regards A∗i as its base functions. �

Theorem 5.9. Let→2 be a (0,1)-implication. If→1 is an expansion type operator,
then the SISO fuzzy controller based on universal triple I method is approximately
a step response function.

Proof. It is similar to Theorem 5.6 that B∗(y) = ∨nk=1(Ak(x∗) →1 Bk(y)). Since
→1 is an expansion type operator, then a →1 1 = 1. Noting Bk(yi) = δki (k, i =
1, · · · , n), it follows from (13) that

y∗ ≈
∑n

i=1 hi[∨nk=1(Ak(x∗)→1 Bk(yi))]yi∑n
i=1 hi[∨nk=1(Ak(x∗)→1 Bk(yi))]

=

∑n
i=1 hiyi∑n
i=1 hi

, c0,
(16)

where B∗(yi) = IR(x∗, yi) > 0 (i = 1, · · · , n) according to Lemma 5.5(i), thus∑n
i=1B

∗(yi)hi > 0 and then (16) makes sense. �

We can prove Theorem 5.10 using Theorem 5.9 and Proposition 2.11.

Theorem 5.10. Let →2 be a (0,1)-implication. If →1 is an R-implication or S-
implication, then the SISO fuzzy controller based on universal triple I method is
approximately a step response function.

Note that IFD, IL, IGo, IG, IRR, IKD are expansion type operators, we can get
Corollary 5.11.
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Corollary 5.11. Let→2 be a (0,1)-implication. If→1∈ {IFD, IL, IGo, IG, IRR, IKD},
then the SISO fuzzy controller based on universal triple I method is approximately
a step response function.

Remark 5.12. When →2∈ {IFD, IL, IGo, IG, IRR, IM}, the related results (e.g.,
Theorems 5.4, 5.6, 5.8, 5.9 and 5.10) are also correct, since IFD, IL, IGo, IG, IRR

are (0,1)-implications, and the case of →2= IM is similar to the one of →2= IG
(which has the same expression of Min-solution).

5.2. DISO Fuzzy Controllers Based on Universal Triple I Methods. Let
X,Y be the universes of input variables and Z the universe of output variable.
Denote A = {Ai}(1≤i≤n), B = {Bi}(1≤i≤n) and C = {Ci}(1≤i≤n), where Ai ∈ F (X),
Bi ∈ F (Y ), Ci ∈ F (Z). A,B,C are regarded as linguistic variables, thus the fuzzy
reasoning rules can be expressed as follows:

If x is Ai and y is Bi, then z is Ci, i = 1, · · · , n, (17)

where x ∈ X, y ∈ Y, z ∈ Z are called base variables. Similarly, the inference relation
of i−th inference rule can be changed into (Ai(x) ∧ Bi(y)) →1 Ci(z), and we get
the whole inference rule

IR(x, y, z) , ∨ni=1((Ai(x) ∧Bi(y))→1 Ci(z)).

For a DISO fuzzy controller, the input value is a crisp quantity (x∗, y∗) ∈ X×Y .

We treat (x∗, y∗) by singleton fuzzification, and get A∗x∗ =

{
1, x = x∗

0, x 6= x∗
, B∗y∗ ={

1, y = y∗

0, y 6= y∗
. Then we achieve C∗ by universal triple I method of fuzzy reasoning

from the input A∗x∗ and B∗y∗ , where (12) should be turned into:

IR(x, y, z)→2 ((A∗(x) ∧B∗(y))→2 C
∗(z)). (18)

Lastly, to defuzzify C∗, we adopt the method of centroid, that is,

z∗ =

∫
Z

zC∗(z)dz
/∫

Z

C∗(z)dz.

Therefore, there is an output z∗ = G(x∗, y∗) for each input (x∗, y∗). Then a
DISO fuzzy controller based on universal triple I method is achieved.

To analyze interpolation mechanism of DISO fuzzy controller, suppose that
A,B,C are respectively the fuzzy partitions of X, Y and Z (where Ai, Bi, Ci are
integrable functions). We assume that X, Y and Z are all real number intervals,
e.g. X = [a, b], Y = [c, d] and Z = [e, f ] where a < x1 < x2 < · · · < xn < b,
c < y1 < y2 < · · · < yn < d and e < z1 < z2 < · · · < zn < f , in which xi, yi, zi are
respectively peak-points of Ai, Bi, Ci.

Let h1 = z1−e, hi = zi−zi−1 (i = 2, 3, · · · , n) and h = max1≤i≤n{hi}. Since A,
B and C are all fuzzy partitions, they have Kronecker property: Ai(xj) = Bi(yj) =
Ci(zj) = δij (i, j = 1, · · · , n). By the definition of definite integral, we obtain for
the method of centroid:

z∗ =

∫
Z
zC∗(z)dz∫

Z
C∗(z)dz

≈
∑n

i=1 ziC
∗(zi)hi∑n

i=1 C
∗(zi)hi

. (19)
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It is similar to Proposition 5.3 that Proposition 5.13 can be obtained.

Proposition 5.13. Suppose that→2 is a (0,1)-implication, and that T the function
residual to→2, then the Min-solution derived from (18) can be expressed as follows:

C∗(z) = sup
(x,y)∈X×Y

{T ((A∗(x) ∧B∗(y)), IR(x, y, z))}, z ∈ Z.

Theorem 5.14. Let →2 be a (0,1)-implication, then the Min-solution C∗(z) =
IR(x∗, y∗, z) for the DISO fuzzy controller based on universal triple I method.

Proof. Let →2 be a (0,1)-implication. Then there uniquely exists T which is the
residual function w.r.t. →2, and T (1, b) = b, T (0, b) = 0 (b ∈ [0, 1]). It follows
from Proposition 5.13 that the Min-solution is C∗(z) = sup(x,y)∈X×Y {T ((A∗(x) ∧
B∗(y)), IR(x, y, z))}, z ∈ Z. As for input (x∗, y∗), we get A∗x∗ and B∗y∗ . Be-
cause T (1, b) = b, T (0, b) = 0 hold for any b ∈ [0, 1], we have: T ((A∗(x) ∧
B∗(y)), IR(x, y, z)) = T (1, IR(x∗, y∗, z)) = IR(x∗, y∗, z) for the case of (x, y) =
(x∗, y∗), and T ((A∗(x) ∧B∗(y)), IR(x, y, z)) = T (0, IR(x, y, z)) = 0 for the case of
(x, y) ∈ X × Y − {(x∗, y∗)}. Therefore C∗(z) = IR(x∗, y∗, z). �

Similar to Lemma 5.5, we can prove Lemma 5.15.

Lemma 5.15. In the DISO fuzzy controller based on universal triple I method,
(i) if→1 is an expansion type operator, then IR(x∗, y∗, zj) > 0 for any (x∗, y∗) ∈

X × Y (j = 1, · · · , n);
(ii) if →1 is a reduction type operator satisfying (C13), then there exists zj such

that IR(x∗, y∗, zj) > 0 for any (x∗, y∗) ∈ X × Y (j ∈ {1, · · · , n});
(iii) if →1 is an other type operator satisfying (C14), then IR(x∗, y∗, zj) > 0 for

any (x∗, y∗) ∈ X × Y (j = 1, · · · , n);
(iv) if →1 is an R-implication, an S-implication or a QL-implication, then

IR(x∗, y∗, zj) > 0 for any (x∗, y∗) ∈ X × Y (j = 1, · · · , n).

Theorem 5.16. Let →2 be a (0,1)-implication. If →1 is a reduction type opera-
tor satisfying (C13), then there exists a group of base functions Φ = {ϕi}(1≤i≤n)
such that the DISO fuzzy controller based on universal triple I method is approxi-
mately a binary piecewise interpolation function taking ϕi as its base functions, i.e.
G(x, y) =

∑n
i=1 ϕi(x, y)zi.

Proof. Note that→2 is a (0,1)-implication, it follows from Theorem 5.14 that Min-
solution C∗(z) = IR(x∗, y∗, z) = ∨nk=1((Ak(x∗) ∧Bk(y∗))→1 Ck(z)).

Since →1 is a reduction type operator satisfying (C13), then a→1 1 = a, a→1

0 = 0. Noting Ck(zi) = δki (i, k = 1, · · · , n), it follows from (19) that

z∗ ≈
∑n

i=1 ziC
∗(zi)hi∑n

i=1 C
∗(zi)hi

=

∑n
i=1 zi[∨nk=1((Ak(x∗) ∧Bk(y∗))→1 Ck(zi))]hi∑n
i=1[∨nk=1((Ak(x∗) ∧Bk(y∗))→1 Ck(zi))]hi

=

∑n
i=1 zi(Ai(x

∗) ∧Bi(y
∗))hi∑n

i=1(Ai(x∗) ∧Bi(y∗))hi
, (20)

where there exists zi such that C∗(zi) = IR(x∗, y∗, zi) > 0 (i ∈ {1, · · · , n}) by
Lemma 5.15(ii), so

∑n
i=1 C

∗(zi)hi > 0 and then (20) makes sense.
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Denote

Ci(x
∗, y∗) , Ai(x

∗) ∧Bi(y
∗), ϕi(x

∗, y∗) , hiCi(x
∗, y∗)/(

n∑
i=1

hiCi(x
∗, y∗)),

then we get z∗ ≈
∑n

i=1 ϕi(x
∗, y∗)zi. Let Φ , {ϕi}(1≤i≤n), G(x, y) ,

∑n
i=1 ϕi(x, y)zi.

Considering Ak(xi) = Bk(yi) = δki (i, k = 1, · · · , n), we get

G(xi, yi) =

∑n
k=1 zk(Ak(xi) ∧Bk(yi))hk∑n
k=1(Ak(xi) ∧Bk(yi))hk

=
zihi
hi

= zi, i = 1, · · · , n,

then G(x, y) is a binary piecewise interpolation function. �

Corollary 5.17. Let →2 be a (0,1)-implication. If →1∈ {IM , ILa}, then there
exists a group of base functions Φ = {ϕi}(1≤i≤n) such that the DISO fuzzy controller
based on universal triple I method is approximately a binary piecewise interpolation
function taking ϕi as its base functions.

Similarly Theorems 5.18, 5.19, 5.20 and Corollary 5.21 can be obtained.

Theorem 5.18. Let →2 be a (0,1)-implication. If →1= IZ , then there exists a
group of base functions Φ = {ϕi}(1≤i≤n) such that the DISO fuzzy controller based
on universal triple I method is approximately a binary piecewise fitted function
regarding ϕi as its base functions, i.e. G(x, y) =

∑n
i=1 ϕi(x, y)zi.

Theorem 5.19. Let →2 be a (0,1)-implication. If →1 is an expansion type oper-
ator, then the DISO fuzzy controller based on universal triple I method is approxi-
mately a step response function.

Theorem 5.20. Let →2 be a (0,1)-implication. If →1 is an R-implication or S-
implication, then the DISO fuzzy controller based on universal triple I method is
approximately a step response function.

Corollary 5.21. Let →2 be a (0,1)-implication. If →1∈ {IFD, IL, IGo, IG, IRR,
IKD}, then the DISO fuzzy controller based on universal triple I method is approx-
imately a step response function.

Remark 5.22. Similar to Remark 5.12, when →2∈ {IFD, IL, IGo, IG, IRR, IM},
the related results (e.g., Theorems 5.14, 5.16, 5.18, 5.19 and 5.20) are also right.

Remark 5.23. Since an R-implication is a (0,1)-implication, the related results in
this section is also applicable to the case that →2 takes an R-implication.

Remark 5.24. When→2 takes IM , the universal triple I method degenerates into
the CRI method, thus we can easily get the response ability of SISO and DISO fuzzy
controllers based on the CRI method (e.g., from Remarks 5.12, 5.22, Theorems 5.6,
5.8, 5.9, 5.16, 5.18 and 5.19). Obviously, there are more usable fuzzy controllers
based on the universal triple I method than the ones based on the CRI method.

Remark 5.25. The response ability of fuzzy controllers based on universal triple
I methods can be divided into 3 kinds as follows:
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(i) If →2 is a (0,1)-implication and →1 is a reduction type operator satisfying
(C13), then the fuzzy controller based on universal triple I method is approximately
an interpolation function, thus it can be universal approximator and then usable
in practice.

(ii) If →2 is a (0,1)-implication, and →1 takes IZ (noting that IZ is an other
type operator, and also a typical QL-implication), then the fuzzy controller based
on universal triple I method is approximately a fitted function, hence it may be
usable.

(iii) If→2 is a (0,1)-implication, and→1 is an expansion type operator (including
R-implication or S-implication), then the fuzzy controller based on universal triple
I method is approximately a step response function, thus it only has step response
ability, therefore it can hardly be used in practice.

6. Several Discussions of the Universal Triple I Method

To begin with, we shall discuss the important value of generalization from the
triple I method to the universal triple I method. The reversibility property of
universal triple I method is totally determined by the second and third implications
in (3) (corresponding to →2 in (4)) if →2∈ {IKD, ILa}; and is unitedly determined
by →1 and →2, if →2 is a (0,1)-implication or →2∈ {IM , IZ} (see e.g., Theorems
4.3, 4.4, 4.14 and 4.16). Therefore, it is reasonable to let the first implication be
→1, and the second and third implications be →2 (i.e., generalize (3) to (4)).

Furthermore, when →1 and →2 are allowed to take different implications, more
usable fuzzy controllers are achieved. For example, it follows from Remark 5.25 that
we obtain 18 usable fuzzy controllers based on universal triple I method (in which
(→1,→2) ∈ {IM , ILa, IZ} × {IFD, IL, IGo, IG, IRR, IM}). In fact, if we get more
(0,1)-implications (or reduction type operators satisfying (C13)), we can achieve
more usable fuzzy controllers. However, we get from [6, 15] that there are only 2
usable fuzzy controllers based on the triple I method. Therefore, the practicability
of the universal triple I method is superior to the triple I method.

To sum up, it is of significance to generalize the triple I method to the universal
triple I method.

At last, we shall analyze the duty of first implication →1 and second implica-
tion →2, together with how to choose →1 and →2. It is easy to know that the
form of universal triple I solution is basically determined only if →2 is chosen (i.e.
→2 takes an implication), and hence →2 determines the reasoning mechanism to a
large extent (see e.g. Theorem 3.5, Lemma 3.7 and Proposition 5.3). Meanwhile,
→1 often exists as the form of (A(x)→1 B(y)) (or IR(x, y) and so on) embodying
the function of rule base (see e.g. Theorem 3.5, Propositions 5.3 and 5.13). Sum-
marizing above, the second implication and first implication respectively embody
the reasoning mechanism and function of rule base. What is more, the second
implication has leading status in virtue of its effect on direction of inference.

Note that a universal triple I method is decided if →1 and →2 are chosen.
Naturally, how to reasonably choose →1 and →2 becomes a key research topic in
the universal triple I method. We will not discuss it here in detail, but give some
instructional principles. From the results mentioned above, when →2 takes the
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(0,1)-implication (or more strict R-implication), the universal triple I method has
good property from the viewpoints of reversibility property and response ability,
thus →2 can prefer to be the (0,1)-implication (or R-implication). Besides, it is
natural to let the universal triple I method possess both the reversibility property
and good response ability to the greatest extent for choosing →1 and →2.

7. Conclusions

The universal triple I method is investigated from the viewpoints of both fuzzy
reasoning and fuzzy controllers. The main contributions are as follows.

(i) The universal triple I principle is brought forward, which improves the previ-
ous triple I principle. Then, unified form of universal triple I method is established
(to allow different implications to be employed in the same manner), where →2

takes a (0,1)-implication or an R-implication. The CRI method and the triple I
method can be regarded as special cases of the universal triple I method.

(ii) The reversibility property of universal triple I method is analyzed from ex-
pansion, reduction and other type operators. It is found that the universal triple I
method can be reversible so long as we appropriately choose →1 and →2, and the
reversibility property seems excellent if →2 takes a (0,1)-implication.

(iii) We investigate the response ability of fuzzy controllers based on universal
triple I methods. When →2 takes a (0,1)-implication, and →1 takes IZ or a re-
duction type operator satisfying (C13), the corresponding fuzzy controller can be
practicable. There are more usable fuzzy controllers based on the universal triple I
method than the ones based on the CRI method or the triple I method.

(iv) It is pointed out that, in universal triple I method, →1 and →2 respectively
embody the function of rule base and the reasoning mechanism. Moreover, it is
suggested that →2 should prefer to take the (0,1)-implication (or R-implication).

In the universal triple I method, how do we reasonably choose →1 and →2?
There is only preparatory research involving it in this paper. Moreover, for the
fuzzy controllers based on universal triple I methods, we analyze the case that the
combination operator of inference rules takes ‘max’ operator, then how about the
‘min’ operator (where the whole inference rule is ∧ni=1(Ai(x) →1 Bi(y)))? These
problems will be investigated in the further research.

Furthermore, the properties related to universal triple I method (and correspond-
ing fuzzy controllers), such as continuity, robustness as well as stability (see [9, 13,
16]), are also vital topics, which will be our research emphases in the future.
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