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MEET-CONTINUITY ON L-DIRECTED COMPLETE POSETS

S. SU, Q. LI AND L. GUO

Abstract. In this paper, the definition of meet-continuity on L-directed com-

plete posets (for short, L-dcpos) is introduced. As a generalization of meet-
continuity on crisp dcpos, meet-continuity on L-dcpos, based on the gener-

alized Scott topology, is characterized. In particular, it is shown that ev-

ery continuous L-dcpo is meet-continuous and L-continuous retracts of meet-
continuous L-dcpos are also meet-continuous. Then, some topological prop-

erties of meet-continuity on L-dcpos are discussed. It is shown that meet-

continuity on L-dcpos is a topological invariant with respect to the generalized
Scott topology, and meet-continuity on L-dcpos is hereditary with respect to

generalized Scott closed subsets.

1. Introduction

In the past three decades, quantitative domain theory has formed a new branch
of domain theory and has attracted much attention. Rutten’s generalized (ul-
tra)metric spaces [11], Flagg’s continuity spaces [4] and Wagner’s Ω-categories [12]
are actually examples of quantitative domains. The main idea of these examples is
to provide a metrization of the order relation in domains, which often means that
one can use some other lattice instead of 2 quantify the order. This idea suggests
that we can deal with quantitative domain theory via fuzzy set theory (see e.g.[19]).
In[1,2,3], L-posets were introduced as the basic framework for quantitative domain
theory. Recently, taking complete Hetying algebras as structures of truth values,
Zhang and Fan [19,22] introduced the notions of L-dcpo, continuous L-dcpo, gener-
alized Scott topology and L-complete lattice. Taking complete residuated lattices
as structures of truth values, Yao [13,14,17] proposed the notions of L-way-below
relation, L-domain and L-Scott topology. However, based on our knowledge, meet-
continuity on L-dcpos is still not given in the literature.1

As is well-known, in domain theory, the classical definition of meet-continuity for
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1The term “fuzzy” currently is employed in the theories, which are built over the unit interval

[0,1]. Since this paper is built over an arbitrary frame L, according to the reviewers’ advice, we use
“L-poset”, “L-dcpo”, “L-complete lattice”, “L-way-below relation”, “ L-domain”, and “L-Scott

topology” to denote “fuzzy poset”, “fuzzy dcpo”, “fuzzy complete lattice”, “fuzzy way-below

relation”, “ fuzzy domain”, and “fuzzy Scott topology” respectively.
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a directed complete meet-semilattice L is that a ∧ (
∨
D) =

∨
d∈D(a ∧ d) for every

a ∈ L and every directed subset D ⊆ L. Therefore, in order to generalize meet-
continuity from crisp posets to L-posets, one at least has to introduce a binary meet
operation on L-posets. In the many-valued setting, Zhao and Zhang [23] proposed
a kind of meet Ω-semilattices; Yao [15] introduced a kind of L-frames and then suc-
cessfully established a fuzzy version of Parpert-Parpert-Isbell-adjunction between
the category of the related L-locales and the category of stratified L-topological
spaces in [16]. Based on the above works, one may be able to construct a fuzzy
version of meet-continuity. On the other hand, the classical meet-continuity can be
equivalently characterized by the Scott topology as clσ(↓x ∩ ↓D) = ↓x, whenever
x ≤

∨
D (see e.g.[6]). It provides a suitable approach to generalizing the notion of

meet-continuity on dcpos. More precisely, a dcpo X is meet-continuous if x ≤
∨
D

implying clσ(↓x ∩ ↓D) = ↓x for every x ∈ X and every directed subset D ⊆ X. In
our opinion, this kind of definition of meet-continuity constructs a close connection
between topology and order structure. Hence, this paper is devoted to construct-
ing meet-continuity on L-dcpos by the generalized Scott topology. We show that
meet-continuity on L-dcpos generalizes meet-continuity on crisp dcpos, and that
meet-continuity is a topological invariant and is a hereditary property.

The main idea of L-ideal and generalized Scott topology defined in [19] comes
from the literature [4]. As shown in [4], this kind of definition of ideal and Scott
topology is appropriate for quantitative domain theory including ordinary domain
theory, metric domains, ultrametric domains and other examples, such as proba-
bilistic domains and structure spaces, which may be useful in programming language
semantics. As a result, our work is not only a generalization of ordinary domain
theory, but also provides a reference for the studies of other quantitative domain
systems.

The content of the paper is arranged as follows. In section 2, we recall some
known notions and results. In section 3, based on the generalized Scott topology,
we define meet-continuity on L-dcpos and then show that every continuous L-
dcpo is meet-continuous, and also that L-continuous retracts of meet-continuous
L-dcpos are meet-continuous. In section 4, some topological properties of meet-
continuity on L-dcpos are investigated. It is shown that meet-continuity on L-
dcpos is a topological invariance and also is hereditary. Finally, some conclusions
are presented in section 5.

2. Preliminaries

Suppose that L is a complete lattice and p, q ∈ L. As defined in [5], p is said to
be wedge-below q, denoted p≪ q, if for every subset A ⊆ L, q ≤

∨
A implies p ≤ r

for some r ∈ A. The relation ≪ is called multiplicative if for every p, q, r ∈ L,
p≪ q and p≪ r imply p≪ q ∧ r.

A complete lattice L is said to be completely distributive if it satisfies the com-
plete distributivity law, i.e.,∧

j∈J

∨
k∈K(j)

xj,k =
∨
f∈M

∧
j∈J

xj,f(j)
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Meet-continuity on L-directed Complete Posets 65

holds for every family {xj,k | j ∈ J, k ∈ K(j)} in L, where M is the set of functions
defined on J with the values f(j) ∈ K(j).

Suppose that L is a completely distributive lattice and p ∈ L. If p = a∨b implies
p = a or p = b for every a, b ∈ L, then p is said to be ∨-irreducible.

A frame (or complete Heyting algebra) is a complete lattice L satisfying the
following infinite distributive law:

a ∧ (
∨
B) =

∨
{a ∧ b | b ∈ B}

for every a ∈ L and every B ⊆ L.
Suppose that L is a frame and a, b ∈ L. We define a→ b =

∨
{c ∈ L|a ∧ c ≤ b}.

Throughout this paper, L denotes a frame with >,⊥ as the largest and smallest
elements respectively. The following definitions and theorems can be found in [7,
18, 19, 20, 22], and for convenience of the readers, proofs of some results are given.

2.1. L-dcpos.

Definition 2.1. An L-poset is a pair (X, e) such that X is a set and e : X×X −→ L
is a mapping, called an L-order, that satisfies for every x, y, z ∈ X,

(1) e(x, x) = >;
(2) e(x, y) ∧ e(y, z) ≤ e(x, z);
(3) e(x, y) = e(y, x) = > implies x = y.

A poset (X,≤) can be seen as an L-poset (X, e≤), in which e≤ : X ×X −→ L =
{⊥,>} defined as follows:

e≤(x, y) =

{
> x ≤ y
⊥ x 6≤ y (1)

for every x, y ∈ X. In the sequel, (X, e≤) will be always defined as above for a
poset (X,≤).

Definition 2.2. Let (X, e) be an L-poset. ϕ ∈ LX is called an L-directed set on
X if

(1) there exists x ∈ X such that ⊥≪ ϕ(x);
(2) for every x1, x2 ∈ X and every a1, a2, a ∈ L with a1≪ ϕ(x1), a2≪ ϕ(x2)

and a≪ >, there exists x ∈ X such that a≪ ϕ(x), a1 ≪ e(x1, x), and
a2≪ e(x2, x).

Definition 2.3. Let (X, e) be an L-poset. ϕ ∈ LX is called an L-lower set if for
every x, y ∈ X, ϕ(x) ∧ e(y, x) ≤ ϕ(y).

If ϕ is an L-directed set and L-lower set, then we call ϕ an L-ideal. We use
DL(X) to denote the set of all L-directed sets on X and IL(X) the set of all
L-ideals on X.

Definition 2.4. Let (X, e) be an L-poset, let x0 ∈ X, and let ϕ ∈ LX . Consider
the following conditions:

(1) for every x ∈ X,ϕ(x) ≤ e(x, x0);
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(2) for every y ∈ X,
∧
x∈X ϕ(x)→ e(x, y) ≤ e(x0, y).

x0 is called a join of ϕ, denoted tϕ, if it satisfies (1) and (2); x0 is called an upper
bound of ϕ if it satisfies (1).

Corollary 2.5. Let (X, e) be an L-poset and let ϕ ∈ LX . If the join of ϕ exists,
then it is unique.

Proposition 2.6. Let (X, e) be an L-poset, let ϕ ∈ LX , and let x0 ∈ X. Then
x0 = tϕ iff

∧
x∈X ϕ(x)→ e(x, y) = e(x0, y) for every y ∈ X.

Definition 2.7. An L-poset (X, e) is called an L-directed complete poset (for short,
L-dcpo) if every L-directed set on X has a join.

Let (X, e) be an L-poset, let x ∈ X, and let ϕ ∈ LX . ↓x ∈ LX and ↓ϕ ∈ LX are
defined as follows:

↓x(y) = e(y, x), ↓ϕ(y) =
∨
x′∈X

ϕ(x′) ∧ e(y, x′)

for every y ∈ X. It is simple to check that ↓ϕ is an L-lower set and ϕ ≤ ↓ϕ
pointwisely.

Proposition 2.8. The following conditions are equivalent for an L-poset (X, e)
and ϕ ∈ LX :

(1) tϕ exists;
(2) t↓ϕ exists.

And if these conditions are satisfied, then tϕ=t↓ϕ.

Lemma 2.9. If (X, e) is an L-dcpo, then ↓ϕ = ϕ holds for every L-lower set ϕ.

2.2. Generalized Scott Topology. Let (X, e) be an L-poset. We introduce the
following notations for x ∈ X, a ∈ L, F ⊆ X and ϕ ∈ LX :

↑oax = {y ∈ X | a≪ e(x, y)}, ↑ax = {y ∈ X | a ≤ e(x, y)},
↓oax = {y ∈ X | a≪ e(y, x)}, ↓ax = {y ∈ X | a ≤ e(y, x)},

↑oaF =
⋃
{↑oax | x ∈ F}, ↑aF =

⋃
{↑ax | x ∈ F},

δa(ϕ) = {x ∈ X | a≪ ϕ(x)}.
Note. ↑oax and ↑ax are exactly P oa (x) and Pa(x) introduced in [19], respectively. In
our opinion, the notations of ↑oax and ↑ax are more intuitive. Moreover, according
to the reviewer’s advice, we use δa(ϕ) to denote σa(ϕ) defined in [19].

Definition 2.10. Let (X, e) be an L-dcpo and let U ⊆ X. Then U is generalized
Scott open if for every ϕ ∈ DL(X),

⊔
ϕ ∈ U implies the existence of a≪ > and

x ∈ X such that a≪ ϕ(x) and ↑ax ⊆ U . The collection of all generalized Scott
open subsets of X is a topology, called the generalized Scott topology, denoted
σe(X) (for short, σe). The collection of all generalized Scott closed subsets of X is
denoted by γe(X) (for short, γe).

Let (X, e) be an L-dcpo. Then we have γe(X) = {A ⊆ X | X \A ∈ σe(X)} by
Definition 2.10.
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Corollary 2.11. Let (X, e) be an L-poset and let U ⊆ X. If U is a generalized
Scott open set, then for every x ∈ U , there exists a≪ > such that ↑ax ⊆ U .

Proof. For every x ∈ X, it is obvious that ↓x ∈ DL(X) and t↓x = x. Since U is
a generalized Scott open set, there exist a≪ > and z ∈ X such that a≪ e(z, x)
and ↑az ⊆ U . Then for every y ∈ ↑ax, we have a ≤ e(z, x)∧ e(x, y) ≤ e(z, y), which
implies ↑ax ⊆ ↑az ⊆ U . �

Proposition 2.12. Let (X, e) be an L-dcpo and let U ⊆ X. The following are
equivalent:

(1) U is a generalized Scott closed set;
(2) for every ϕ ∈ DL(X), the property that a 6≪ ϕ(x) or ↑ax∩U 6= ∅ for every

a≪ > and every x ∈ X implies, tϕ ∈ U .

Proof. By Definition 2.10, it follows that U is a generalized Scott closed set iff X \U
is a generalized Scott open set iff for every ϕ ∈ DL(X),

⊔
ϕ ∈ X \ U implies the

existence of a≪ > and x ∈ X such that a≪ ϕ(x) and ↑ax ⊆ X \ U iff for every
ϕ ∈ DL(X), the property that a 6≪ ϕ(x) or ↑ax ∩ U 6= ∅ for every a≪ > and
every x ∈ X implies that tϕ ∈ U . �

By Proposition 2.12, we immediately obtain the following result.

Corollary 2.13. Let (X, e) be an L-dcpo and let U ⊆ X. If for every ϕ ∈ DL(X),
the property that a≪ ϕ(x) and ↑ax ∩ U 6= ∅ for every a≪ > and every x ∈ X
implies that tϕ ∈ U , then U is a generalized Scott closed set.

Proposition 2.14. Let L be a completely distributive lattice, let (X, e) be an L-
poset, and let x ∈ X. Then for every b≪ >, ↓bx is generalized Scott closed.

Proof. Suppose that ϕ ∈ DL(X) with a≪ ϕ(x′) and ↑ax′∩↓bx 6= ∅ for every a≪
> and every x′ ∈ X, which implies that for every a≪ > and every x′ ∈ X, there
exists z ∈ ↑ax′ such that z ∈ ↓bx, i.e., a ≤ e(x′, z) and b ≤ e(z, x). Then we have
a ∧ b ≤ e(x′, z) ∧ e(z, x) ≤ e(x′, x). In such a case, it follows that for every y ∈ X,
b ∧ ϕ(y) = b ∧ (

∨
a≪ϕ(y) a) =

∨
a≪ϕ(y) a ∧ b ≤ e(x′, x), i.e., b ≤ ϕ(y) → e(x′, x).

Thus, we have b ≤
∧
y∈X ϕ(y)→ e(x′, x) ≤ e(tϕ, x), i.e., tϕ ∈ ↓bx. Therefore, ↓bx

is generalized Scott closed by Proposition 2.12. �

By Proposition 2.14, we know that if >≪ >, then ↓> x is generalized Scott
closed.

Definition 2.15. Let (X, eX), and (Y, eY ) be L-posets and let f : X −→ Y
be a mapping. Then f is called L-monotone if for every x, y ∈ X, eX(x, y) ≤
eY (f(x), f(y)).

Let (X, eX), and (Y, eY ) be L-posets and let f : X −→ Y be an ordinary

mapping. One can define an L-powerset operator f̃→ : LX −→ LY as follows:

f̃→(ϕ)(y) =
∨
x∈X ϕ(x) ∧ eY (y, f(x)) for every ϕ ∈ LX and every y ∈ Y .

Remark 2.16. (1) A non-empty set X can be seen as an L-poset (X, eX), in which
eX : X ×X −→ L = {⊥,>} is defined as follows:
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eX(x, y) =

{
> x = y

⊥ x 6= y (2)

for every x, y ∈ X. Given an ordinary mapping f from X to Y , for every ϕ ∈ LX
and every y ∈ Y ,

f̃→(ϕ)(y) =
∨
x∈X

(ϕ(x) ∧ eY (y, f(x))) =
∨
{ϕ(x) | x ∈ X, y = f(x)}.

Here f̃→ is exactly the L-forward powerset operator of f [8, 9, 10],. Thus, the
L-forward powerset operator is a special case of the above operator.

(2) Let (X,≤X), and (Y,≤Y ) be posets, let f : X −→ Y be an ordinary mapping,
let A ⊆ X, and let B ⊆ Y . Consider (X,≤X) and (Y,≤Y ) respectively as the L-
posets (X, e≤X

) and (Y, e≤Y
), where L = {⊥,>}. Then for every y ∈ Y ,

f̃→(χA)(y) = > ⇔ ∃x ∈ X,χA(x) = >, e≤Y
(y, f(x)) = >

⇔ ∃x ∈ A, y ≤ f(x)⇔ y ∈ ↓f→(A).

This indicates that the above L-powerset operator f̃→ is a generalization of usual
image ↓f→.

(3) An Ω-category is a set A together with a binary function A : A × A −→ Ω
such that (1) I ≤ A(a, a) for every a ∈ A; (2) A(a, b) ∗ A(b, c) ≤ A(a, c) for every
a, b, c ∈ A. Then it is easy to check that (1) Ω is an Ω-category when Ω(a, b) = a→ b
for every a, b ∈ Ω; (2) the opposite Aop of an Ω-category A is also an Ω-category,
where Aop(a, b) = A(b, a) for every a, b ∈ A. Let f : A −→ B be an Ω-functor,
i.e., f is a function between Ω-categories A and B with A(a, b) ≤ B(f(a), f(b))
for every a, b ∈ A. Then an Ω-functor f→ : Aop −→ Ω is defined as follows:
f→(φ)(b) =

∨
a∈A φ(a) ∗ B(b, f(a)), for every b ∈ B and every φ ∈ ΩA

op

, where

ΩA
op

denotes the set of all mappings from Aop to Ω. If Ω = L, then f→ is exactly

f̃→.

Proposition 2.17. Let (X, eX), (Y, eY ) be two L-posets and let f : X → Y be an

L-monotone mapping. Then for every ϕ ∈ DL(X), f̃→(ϕ) ∈ IL(Y ).

Definition 2.18. Let (X, eX) and (Y, eY ) be L-dcpos. An L-monotone mapping
f : X −→ Y is L-Scott continuous if it preserves joins of L-directed sets, that is

f(tϕ) = tf̃→(ϕ) for every ϕ ∈ DL(X).

Proposition 2.19. Let (X, eX) and (Y, eY ) be L-dcpos. If a mapping f : X −→ Y
preserves joins of L-directed sets, then f is L-monotone.

Proof. For every x, x′ ∈ X,

eX(x, x′) = ↓x′(x) = ↓x′(x) ∧ eY (f(x), f(x))

≤
∨

x′′∈X
↓x′(x′′) ∧ eY (f(x), f(x′′))

= f̃→(↓x′)(f(x)) ≤ eY (f(x),tf̃→(↓x′))
= eY (f(x), f(t↓x′)) = eY (f(x), f(x′)),
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which implies that f : X −→ Y is L-monotone. �

Theorem 2.20. Let L be a completely distributive lattice, let (X, eX), and (Y, eY )
be L-dcpos, and let f : X −→ Y be an L-monotone mapping. Then f is L-Scott
continuous iff f is topologically continuous with respect to the generalized Scott
topologies.

Proof. Necessity. Suppose that f is L-Scott continuous. Let V ⊆ Y be a generalized
Scott open set and let ϕ ∈ DL(X) with tϕ ∈ f−1(V ). Then it follows that

tf̃→(ϕ) = f(tϕ). Since V is a generalized Scott open set, there exist a ≪ >
and y ∈ Y such that a ≪ f̃→(ϕ)(y) =

∨
x∈X ϕ(x) ∧ eY (y, f(x)) and ↑ay ⊆ V ,

which implies that there exists x ∈ X such that a≪ ϕ(x) and a≪ eY (y, f(x)).
Then for every x′ ∈ ↑ax, we have a ≤ eX(x, x′) ≤ eY (f(x), f(x′)) and so a ≤
eY (y, f(x)) ∧ eY (f(x), f(x′)) ≤ eY (y, f(x′)), which implies that f(x′) ∈ ↑ay ⊆ V ,
i.e., x′ ∈ f−1(V ). Therefore, we have ↑ax ⊆ f−1(V ). To sum up the above, it
follows that f−1(V ) is a generalized Scott open set.

Sufficiency. Suppose that f is topologically continuous w.r.t. the generalized
Scott topologies. Let ϕ ∈ DL(X). Since f is L-monotone, it follows that

eY (tf̃→(ϕ), f(tϕ)) =
∧
y∈Y

f̃→(ϕ)(y)→ eY (y, f(tϕ))

=
∧
y∈Y

(
∨
x∈X

ϕ(x) ∧ eY (y, f(x)))→ eY (y, f(tϕ))

=
∧
x∈X

ϕ(x)→ eY (f(x), f(tϕ))

≥
∧
x∈X

ϕ(x)→ eX(x,tϕ) = eX(tϕ,tϕ) = >.

Conversely, let a≪ > with a 6≤ eY (f(tϕ),tf̃→(ϕ)), i.e., f(tϕ) ∈ Y \(↓atf̃→(ϕ)),

which implies that tϕ ∈ f−1(Y \ (↓atf̃→(ϕ))). Furthermore, since f−1(Y \
(↓atf̃→(ϕ))) is a generalized Scott open set by continuity of f and Proposition 2.14,

there exist b≪ > and x ∈ X such that b≪ ϕ(x) and ↑bx ⊆ f−1(Y \(↓atf̃→(ϕ))).
On the other hand, since ϕ is an L-directed set, there exists x′ ∈ X such that

a≪ ϕ(x′) and b ≤ eX(x, x′), i.e., x′ ∈ ↑bx ⊆ f−1(Y \ (↓atf̃→(ϕ))), which implies

that f(x′) ∈ Y \ (↓atf̃→(ϕ)), i.e., a 6≤ eY (f(x′),tf̃→(ϕ)). But, since a≪ ϕ(x′) =

ϕ(x′) ∧ eY (f(x′), f(x′)) ≤
∨
z∈X ϕ(z) ∧ eY (f(x′), f(z)) = f̃→(ϕ)(f(x′)), it follows

that a ≤ eY (f(x′),tf̃→(ϕ)), which is a contradiction. Therefore, for every a≪ >,

it follows that a ≤ eY (f(tϕ),tf̃→(ϕ)), which implies that eY (f(tϕ),tf̃→(ϕ)) =

>. To sum up the above, we have, f(tϕ) = tf̃→(ϕ), i.e., f is L-Scott continu-
ous. �

2.3. Continuous L-dcpos.

Definition 2.21. Let (X, e) be an L-dcpo, let x, y ∈ X, and let a ∈ L. If for every
ϕ ∈ DL(X), a≪ e(y,tϕ) implies that a≪ ϕ(z) and a≪ e(x, z) for some z ∈ X,
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then x is called La-way below y, denoted x�a y. x is said to be L−way below y,
denoted x�L y, if for every a≪ >, x�a y.

Definition 2.22. Let (X, e) be an L-dcpo and let B ⊆ X. If for every x ∈ X,

there exists ϕ ∈ DL(B) such that x =
⊔
ĩB
→

(ϕ) and δa(ĩB
→

(ϕ)) ⊆ ⇓ax for every
a≪ >, then B is called a basis for X, where iB is the embedding of B into X and
⇓ax = {y ∈ X | y �a x}.

Definition 2.23. An L-dcpo (X, e) is said to be continuous if it has a basis.

Theorem 2.24. Let L be a completely distributive lattice, in which > is ∨-irreducible
and ≪ is multiplicative, and let (X, e) be a continuous L-dcpo. Then for every
⊥ 6= a≪ > and every x ∈ X, ⇑ax = {y ∈ X | x�a y} is a generalized Scott open
set and {⇑ax | x ∈ X,⊥ 6= a≪ >} is a basis for generalized Scott open sets.

Remark 2.25. Theorem 2.24 is exactly Lemma 4.12 and Corollary 4.14 in [19],
so for the proof of Theorem 2.24, the readers can refer to that of Lemma 4.12 and
Corollary 4.14 in [19].

3. Meet-continuous L-dcpos

In this section, based on the generalized Scott topology, we propose the meet-
continuity on L-dcpos, present equivalent descriptions of meet-continuous L-dcpos,
and discuss the relationships between meet-continuity and continuous L-dcpos.
Moreover, it is also shown that L-continuous retracts of meet-continuous L-dcpos
are meet-continuous.

Definition 3.1. Let (X, e) be an L-dcpo and let a ∈ L. Then (X, e) is said to
be La-meet-continuous if for every x ∈ X and every ϕ ∈ DL(X), a≪ e(x,tϕ)
implies x ∈ clσe(δa(↓ϕ) ∩ ↓ax). (X, e) is said to be meet-continuous if for every
a≪ >, (X, e) is La-meet-continuous.

The definition above can be interpreted as follows: for every x ∈ X and every
directed set ϕ, x ≤ tϕ implies x ∈ clσ(↓ϕ ∩ ↓x), which is exactly the definition of
meet-continuity of [6] for crisp dcpos.

Theorem 3.2. Let (X, e) be an L-dcpo and let a ∈ L. Then (X, e) is La-meet
continuous iff for every x ∈ X and every ϕ ∈ IL(X), a≪ e(x,tϕ) implies x ∈
clσe

(δa(ϕ) ∩ ↓ax).

Proof. Necessity. Obviously.
Sufficiency. Let ϕ ∈ DL(X) with a≪ e(x,tϕ). Then ↓ϕ ∈ IL(X) and tϕ =

t↓ϕ, which yields a≪ e(x,t↓ϕ). By the assumption and Lemma 2.9, we have x ∈
clσe

(δa(↓↓ϕ)∩ ↓ax) = clσe
(δa(↓ϕ)∩ ↓ax). Hence, (X, e) is La-meet-continuous. �

The following lemma is a particular version of the remark made just after Propo-
sition 3.3 in [19].

Lemma 3.3. Let (X,≤) be a dcpo. Then

(1) for every ϕ ∈ DL(X) and every a≪ >, δa(ϕ) is a directed set on (X,≤)
and tϕ =

∨
δa(ϕ);
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(2) for every directed subset D ⊆ X, χD is an L-directed set on (X, e≤) and
tχD =

∨
D;

(3) for every subset A ⊆ X and every x ∈ X, δ>(↓χA) = ↓A and ↓>x = ↓x.

By Lemma 3.3, it follows that (X,≤) is a dcpo iff (X, e≤) is an L-dcpo.

Lemma 3.4. Let (X,≤) be a dcpo. Then for every L-directed set ϕ on (X, e≤),
D = {y ∈ X | ↓ϕ(y) = >} is an ideal on (X,≤).

Proof. Firstly, we show that D = {y ∈ X | ↓ϕ(y) = >} is a directed set. Since ϕ
is L-directed, it follows that δ>(ϕ) = {y ∈ X | ϕ(y) = >} is directed on (X,≤) by
Lemma 3.3 (1). Then there exists x0 ∈ X such that ϕ(x0) = >. Furthermore, since
ϕ(x) ≤ ↓ϕ(x) for every x ∈ X, ↓ϕ(x0) = >, which implies D = {y ∈ X | ↓ϕ(y) =
>} is non-empty. Now, let x1, x2 ∈ D, i.e., ↓ϕ(x1) = ↓ϕ(x2) = >. Since ↓ϕ ∈
DL(X), there exists z ∈ X such that ↓ϕ(z) = > and > = e≤(x1, z) = e≤(x2, z),
i.e., z ∈ D and x1 ≤ z, x2 ≤ z. Thus, D is a directed set.

We further show that D is a lower set. Let x1 ∈ D and let x2 ≤ x1, i.e.,
↓ϕ(x1) = > and e≤(x2, x1) = >. Furthermore, since ↓ϕ is an L-lower set on
(X, e≤), we have ↓ϕ(x1) ∧ e≤(x2, x1) ≤ ↓ϕ(x2) and so ↓ϕ(x2) = >, i.e., x2 ∈ D.
This implies that D is a lower set. �

Lemma 3.5. Let (X,≤) be a dcpo and let U ⊆ X. Then U is a generalized Scott
open set on (X, e≤) iff U is a Scott open set on (X,≤).

Proof. Necessity. Suppose that U is a generalized Scott open set on (X, e≤). Then
for every x ∈ U with x ≤ y, there exists a≪ > such that ↑ax ⊆ U by Corollary
2.11. In such a case, y ∈ ↑>x ⊆ ↑ax ⊆ U . Thus, U is an upper set on (X,≤). Let
D be a directed set on (X,≤) such that

∨
D ∈ U . By Lemma 3.3 (2), we have χD

is an L-directed set on (X, e≤) and tχD =
∨
D, which implies tχD ∈ U . Then

there exist a≪ > and y ∈ X such that a≪ χD(y) and ↑ay ⊆ U , which means
that χD(y) = > and y ∈ U , i.e., y ∈ D ∩ U . To sum up the above, it follows that
U is a Scott open set on (X,≤).

Sufficiency. Suppose that U is a Scott open set on (X,≤). Let ϕ is an L-
directed set on (X, e≤) such that tϕ ∈ U . By Lemma 3.3 (1), we have δ>(ϕ) =
{x ∈ X | ϕ(x) = >} is a directed set on (X,≤) and tϕ =

∨
δ>(ϕ), which implies

that
∨
δ>(ϕ) ∈ U . Then there exists x ∈ X such that x ∈ δ>(ϕ) ∩ U , i.e., there

exists x ∈ U such that >≪ > = ϕ(x). Furthermore, since U is an upper set on
(X,≤), we have ↑>x = {y ∈ X | x ≤ y} ⊆ U . Hence, U is a generalized Scott open
set on (X, e≤). �

Theorem 3.6. Let (X,≤) be a dcpo. Then (X,≤) is meet-continuous iff (X, e≤)
is L>-meet-continuous.

Proof. Suppose that (X, e≤) is L>-meet-continuous. For every x ∈ X and every
directed subset D ⊆ X with x ≤

∨
D, we have, > ≪ e≤(x,tχD) = > and

χD ∈ DL(X) by Lemma 3.3 (2). Then we have x ∈ clσe
(δ>(↓ϕ) ∩ ↓>x) by the

L>-meet-continuity of (X, e≤). Furthermore, since σe(X) = σ(X), δ>(↓χD) = ↓D
and ↓>x = ↓x by Lemma 3.3 (3), 3.5, we have x ∈ clσ(↓D ∩ ↓x). Therefore, (X,≤)
is meet-continuous.
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Suppose that (X,≤) is meet-continuous. For every x ∈ X and every ϕ ∈ DL(X)
with > ≪ e≤(x,tϕ), we have x ≤ tϕ. Let D = {y ∈ X | ↓ϕ(y) = >}. Then
by Lemma 3.3 (1), 3.4 and Proposition 2.8, D is an ideal on (X,≤) and

∨
D =∨

↓D = tϕ = t↓ϕ. Thus, it follows that x ∈ clσ(↓D ∩ ↓x). Furthermore, since
σe(X) = σ(X), δ>(↓ϕ) = ↓D and ↓>x = ↓x by Lemma 3.3 (3), 3.5, we have
x ∈ clσe(δ>(↓ϕ) ∩ ↓>x). Therefore, (X, e≤) is L>-meet-continuous. �

The theorem above means that meet-continuity on L-dcpos generalizes meet-
continuity on crisp dcpos. Next, we give an equivalent characterization of meet-
continuity on L-dcpos.

Theorem 3.7. Let L be a completely distributive lattice, in which≪ is multiplica-
tive, let (X, e) be an L-dcpo, and let a≪ >. Then (X, e) is La-meet-continuous
iff ↑oa(U ∩ ↓ax) ∈ σe(X) for every U ∈ σe(X) and every x ∈ X.

Proof. Necessity. Let U ∈ σe(X) and let x ∈ X. Suppose ϕ ∈ IL(X) with tϕ ∈
↑oa(U ∩ ↓ax). Then there exists y ∈ U ∩ ↓ax such that a≪ e(y,tϕ). By La-meet-
continuity of X, we have U ∩ δa(ϕ) ∩ ↓ay 6= ∅. This implies δa(ϕ) ∩ ↑oa(U ∩ ↓ax) ⊇
δa(ϕ)∩↑oa(U ∩↓ay) 6= ∅, i.e., there exists z ∈ δa(ϕ) and z ∈ ↑oa(U ∩↓ax). Then there
exists z0 ∈ U ∩ ↓ax such that z ∈ ↑oaz0. Furthermore, since a≪ ϕ(z) ∧ e(z0, z) ≤
ϕ(z0), we have a≪ ϕ(z0) and ↑oa z0 ⊆ ↑

o
a(U ∩ ↓ax). Hence, ↑oa(U ∩ ↓ax) ∈ σe(X).

Sufficiency. Let x ∈ X and let ϕ ∈ IL(X) with a≪ e(x,tϕ). If x 6∈ clσe
(δa(ϕ)∩

↓ax), then there exists U ∈ σe(X) such that x ∈ U and U ∩ δa(ϕ) ∩ ↓ax = ∅.
This implies ↑oa(U ∩ ↓ax) ∩ δa(ϕ) = ∅. Since ↑oa(U ∩ ↓ax) ∈ σe(X), there exist
y ∈ X and b≪ 1 such that b≪ ϕ(y) and ↑oby ⊆ ↑by ⊆ ↑

o
a(U ∩ ↓ax). Note that

since ϕ ∈ IL(X), there exists z ∈ X such that a ≪ ϕ(z), b ≪ e(y, z). Hence,
↑oa(U ∩ ↓ax) ∩ δa(ϕ) 6= ∅, which is a contradiction. �

Corollary 3.8. Let L be a completely distributive lattice, in which≪ is multiplica-
tive, and let (X, e) be an L-dcpo. Then (X, e) is meet-continuous iff ↑oa(U

⋂
↓ax) ∈

σe(X) for every U ∈ σe(X), every x ∈ X and every a≪ >.

Theorem 3.9. Let ≪ be multiplicative on L. Then every continuous L-dcpo is
meet-continuous.

Proof. Let a ≪ >, let x ∈ X, and let ϕ ∈ DL(X) with a ≪ e(x,tϕ). Since

(X, e) is continuous, (X, e) has a basis B ⊆ X such that x = tĩB
→

(φ) for some

φ ∈ DL(X) and δb(ĩB
→

(φ)) ⊆ ⇓bx for every b ≪ >. Let U be a generalized

Scott open neighborhood of x. Then tĩB
→

(φ) ∈ U . Since U ∈ σe(X), there exist

z ∈ X and c≪ > such that c≪ ĩB
→

(φ)(z) and ↑c z ⊆ U . Furthermore, since

ĩB
→

(φ) ∈ DL(X), there exists z0 ∈ X such that a≪ ĩB
→

(φ)(z0) and c≪ e(z, z0),

which implies z0 ∈ U . Note that for every b≪ >, we have δb(ĩB
→

(φ)) ⊆ ⇓bx, and
hence, z0 �a x, which means z0 ∈ ↓ax. Since z0 �a x, a≪ e(x,tϕ) implies that
there exists y ∈ X such that a≪ ϕ(y) and a≪ e(z0, y). Considering ↓ϕ ∈ IL(X),
we have ↓ϕ(z0) ≥ ↓ϕ(y) ∧ e(z0, y)≫ a, which implies z0 ∈ δa(↓ϕ). Therefore, we
have, z0 ∈ U ∩ δa(↓ϕ) ∩ ↓ax, i.e., U ∩ δa(↓ϕ) ∩ ↓ax 6= ∅. By the arbitrariness of
U , we have x ∈ clσe(↓ax∩ δa(↓ϕ)). This implies that (X, e) is La-meet-continuous.
Therefore, (X, e) is meet-continuous by the arbitrariness of a. �
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Definition 3.10 (21). Let (X, eX), (Y, eY ) be L-dcpos and let s : (X, eX) −→
(Y, eY ), r : (Y, eY ) −→ (X, eX) be L-Scott continuous mappings. Then a pair (s, r)
of mappings is called an L-continuous section-retraction-pair if r ◦s = idX . In such
a case, we call (X, eX) an L-continuous retract of (Y, eY ).

Theorem 3.11. Let ≪ be multiplicative on L and let (X, eX) be an L-continuous
retract of a meet-continuous L-dcpo (Y, eY ). Then (X, eX) is also meet-continuous.

Proof. Let a≪ >, let x ∈ X, and let ϕ ∈ DL(X) with a≪ eX(x,tϕ). Let U
be a generalized Scott open neighborhood of x. Since (X, eX) is an L-continuous
retract of (Y, eY ), there exist L-Scott continuous mappings s : (X, eX) −→ (Y, eY ),
r : (Y, eY ) −→ (X, eX) such that r ◦ s = idX . By the L-Scott continuity of s,
it is known that s is an L-monotone mapping and s(tφ) = ts̃→(φ) for every
φ ∈ DL(X), and hence, a ≪ eY (s(x), s(tϕ)) = eY (s(x),ts̃→(ϕ)) and s̃→(ϕ) ∈
DL(Y ) by Proposition 2.17. Since x = r ◦ s(x) ∈ U ∈ σe(X) and r is L-
Scott continuous, it follows that s(x) ∈ r−1(U) ∈ σe(Y ). Therefore, by the
meet-continuity of Y , we have s(x) ∈ clσe(Y )(δa(↓s̃→(ϕ)) ∩ ↓as(x)) and r−1(U) ∩
δa(↓s̃→(ϕ)) ∩ ↓as(x)) = r−1(U) ∩ δa(s̃→(ϕ)) ∩ ↓as(x)) 6= ∅. Choose y ∈ r−1(U) ∩
δa(s̃→(ϕ)) ∩ ↓as(x)), i.e., a≪ s̃→(ϕ)(y), a≪ eY (y, s(x)) and r(y) ∈ U . Since
s̃→(ϕ)(y) =

∨
z∈X ϕ(z) ∧ eY (y, s(z)), there exists z ∈ X such that a≪ ϕ(z) and

a≪ eY (y, s(z)). Furthermore, since the pair (s, r) is an L-continuous retract, we
have, a≪ eX(r(y), r ◦ s(x)) = eX(r(y), x), a≪ eX(r(y), r ◦ s(z)) = eX(r(y), z),
and hence, a≪ ↓ϕ(r(y)) =

∨
z∈X ϕ(z) ∧ eX(r(y), z). From the above discussion,

it follows that r(y) ∈ U ∩ δa(↓ϕ) ∩ ↓ax). By the arbitrariness of U , we have,
x ∈ clσe(X)(δa(↓ϕ) ∩ ↓ax), i.e., (X, eX) is La-meet-continuous. Thus, (X, eX) is
meet-continuous by the arbitrariness of a. �

On crisp dcpos, meet-continuity forces closer relationships between the Scott and
Lawson topologies. So we present the notions of generalized lower topology and
generalized Lawson topology, and discuss their relationships with the generalized
Scott topology on meet-continuous L-dcpos.

Definition 3.12. Let (X, e) be an L-dcpo and let a ∈ L. We call the topology
generated by the complements X\↑ax (x ∈ X) the La-generalized lower topology
and denote it by ωa(X). ωe(X) =

⋃
{ωa(X) | a ∈ L, a≪ >} is called then the

generalized lower topology.

Remark 3.13. It is obvious that clωa({x}) = ↑ax, ↑aF =
⋃
{↑ax | x ∈ X} is a

generalized lower closed set for every finite subset F ⊆ X and ωe(X) ⊆ σe(Xop).

Theorem 3.14. If (X, e) is an L-dcpo, then the generalized lower topology is T0.

Proof. Let x, y ∈ X with x 6= y. Since (X, e) is an L-dcpo, there exists a≪ > such
that a 6≪ e(x, y) or a 6≪ e(y, x), i.e., x ∈ X\↑ay or y ∈ X\↑ax. By the definition of
generalized lower topology, we have, X\↑ay, X\↑ax ∈ ωe(X). However, y 6∈ X\↑ay,
x 6∈ X\↑ax. So the generalized lower topology is T0. �

Definition 3.15. Let (X, e) be an L-dcpo. We call the topology generated by
σe(X) ∪ ωe(X) the generalized Lawson topology and denote it by λe(X).
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Theorem 3.16. If (X, e) is an L-dcpo, then the generalized Lawson topology is T1.

Proof. For every x ∈ X and every a≪ >, we have {x} = ↓ax
⋂
↑ax. Now, ↓ax is

a generalized Scott closed set, while ↑ax is a generalized lower closed set. Hence,
{x} is a generalized Lawson closed set, which implies that the generalized Lawson
topology is T1. �

Lemma 3.17. Let L be a completely distributive lattice, let a ∈ L, and let (X, e)
be a meet-continuous L-dcpo. Then the following assertions hold:

(1) if U ∈ λe(X), then ↑oaU ∈ σe(X);
(2) if Y = ↑oaY for Y ⊆ X, then intσe

Y = intλe
Y ;

(3) if Y = ↓oaY for Y ⊆ X, then clσeY = clλeY .

Proof. (1) Suppose tϕ ∈ ↑oaU , where U ∈ λe(X) and ϕ ∈ DL(X). Then we can
find x ∈ U with a ≪ e(x,tϕ). From the definition of the generalized Lawson
topology, there exist a generalized Scott open set V and a finite set F ⊆ X such
that x ∈ V \↑aF ⊆ U . By the meet-continuity of (X, e), it follows that x ∈
clσe(δa(↓ϕ) ∩ ↓ax), i.e., V ∩ δa(↓ϕ) ∩ ↓ax 6= ∅. In addition, since x ∈ V \↑aF , we
have V \↑aF ∩ δa(↓ϕ)∩↓ax = V ∩ δa(↓ϕ)∩↓ax 6= ∅. Then U ∩ δa(ϕ)∩↓ax 6= ∅, i.e.,
there exists y ∈ U such that a≪ ϕ(y) and ↑oay ⊆ ↑

o
aU . Therefore, ↑oaU ∈ σe(X).

(2) Suppose Y = ↑oaY for Y ⊆ X. Since σe ⊆ λe, we have intσe
Y ⊆ intλe

Y .
From (1), it holds that intλe

Y ⊆ ↑oa(intλe
Y ) = intσe

(↑oa(intλe
Y ) ⊆ intσe

↑oaY =
intσeY . Hence, intσeY = intλeY .

(3) Similar to the proof of (2). �

Lemma 3.18. Let (X, e) be an L-dcpo. Then ↓>x ⊆ U for every x ∈ U ∈ γe(X).

Proof. Suppose ↓>x * U . Then there exists y0 ∈ ↓>x such that y0 ∈ X\U ∈ σe(X).
Thus, there exists b≪ > such that ↑by0 ⊆ X \ U , which implies x ∈ X \ U . It is
a contradiction. �

Theorem 3.19. Let L be a completely distributive lattice, in which ≪ is multi-
plicative, and let >≪ >. If (X, e) is an L>-meet-continuous L-dcpo, then σe(X)op

is a complete Heyting algebra.

Proof. Let γe(X) = {A ⊆ X | X \ A ∈ σe(X)} be the generalized Scott closed
set lattice (ordered by set-theoretic inclusion). Then we have σe(X)op ∼= γe(X).
Let {Ai|i ∈ I} ⊆ γ(X) be a family of generalized Scott closed sets such that
K ⊆

∨
i∈I Ai. Since

∨
i∈I Ai = clσe

(
⋃
i∈I Ai), it follows that K ⊆

⋃
i∈I Ai. Assume

that there exists x ∈ K such that x 6∈
∨
i∈I(K ∩ Ai). Note that since

∨
i∈I(K ∩

Ai) = clσe
(
⋃
i∈I(K ∩ Ai)), we can find a generalized Scott open neighborhood U

of x such that U ∩
⋃
i∈I(K ∩ Ai) = U ∩ K ∩

⋃
i∈I Ai = ∅. By Theorem 3.7,

↑o>(U ∩ ↓>x) ∈ σe(X). Since x ∈ ↑o>(U ∩ ↓>x) and x ∈ K ⊆ clσ(
⋃
i∈I Ai), we

have (
⋃
i∈I Ai) ∩ ↑

o
>(U ∩ ↓>x) 6= ∅, which implies that there exist y ∈ X and

i0 ∈ I such that y ∈ Ai0 ∩ ↑
o
>(U ∩ ↓>x). It means that there exists z ∈ U

such that z ∈ ↓>x ∩ ↓>y. Note that since both K and Ai0 are generalized Scott
closed sets, it follows that ↓>x ⊆ K and ↓>y ⊆ Ai0 by Lemma 3.18. Then we have
z ∈ U∩K∩Ai0 ⊆ U∩K∩

⋃
i∈I Ai. It is a contradiction. Hence, K =

∨
i∈I(K∩Ai).
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This implies that γe(X) is a meet-continuous lattice. Thus, γe(X) is a complete
Heyting algebra. �

4. Topological Invariance and Heredity of Meet-continuous L-dcpos

In this section, we discuss the topological invariance of meet-continuity with
respect to generalized Scott topology and its heredity with respect to generalized
Scott closed subsets.

Let (X, e) be an L-dcpo and let A ⊆ X. For every ϕ ∈ LA, we define ϕ̃ ∈ LX

ϕ̃(x) =

{
ϕ(x) x ∈ A
⊥ x ∈ X −A. (3)

Lemma 4.1. Let (X, e) be an L-dcpo and let A ⊆ X. If ϕ ∈ DL(A), then ϕ̃ ∈
DL(X) and tϕ = tϕ̃.

Proof. Firstly, we show ϕ̃ ∈ DL(X).
(i) By the definition of ϕ̃ and ϕ ∈ DL(A), there exists x ∈ X such that ⊥≪

ϕ̃(x).
(ii) For every x1, x2 ∈ X and every a1, a2, a ∈ L such that a1 ≪ ϕ̃(x1), a2 ≪

ϕ̃(x2) and a≪ >, we have x1, x2 ∈ A. Otherwise, if x1 ∈ A′, then ϕ̃(x1) = ⊥ 6≫ a.
It is a contradiction. Note that since ϕ ∈ DL(A), there exists x ∈ A ⊆ X such that
a≪ ϕ(x) = ϕ̃(x), a1≪ e(x1, x) and a2≪ e(x2, x).

We further show that tϕ = tϕ̃. For every y ∈ X, e(tϕ̃, y) =
∧
x∈X ϕ̃(x) →

e(x, y) =
∧
x∈A ϕ̃(x)→ e(x, y) =

∧
x∈A ϕ(x)→ e(x, y), i.e., tϕ = tϕ̃. �

Proposition 4.2. Let (X, e) be an L-dcpo. If A 6= ∅ is a generalized Scott closed
set, then (A, e) is also an L-dcpo. Moreover, a subset of A is generalized Scott
closed in A iff it is generalized Scott closed in X.

Proof. Firstly, we show that (A, e) is an L-dcpo.
For every ϕ ∈ DL(A), by Lemma 4.1, we know that ϕ̃ ∈ DL(X) and tϕ = tϕ̃.

Now we show tϕ ∈ A. Suppose that tϕ 6∈ A, i.e., tϕ ∈ X \ A. Then there exist
a≪ > and y ∈ X such that a≪ ϕ̃(y) and ↑ay ⊆ X \A. This implies y ∈ X \A,
i.e., ϕ̃(y) = ⊥ 6≫ a. It is a contradiction.

Secondly, we show that for every B ⊆ A, if B ∈ γe(X), then B ∈ γe(A).
Let ϕ ∈ DL(A) which satisfies a 6≪ ϕ(y) or ↑ax ∩ B 6= ∅ for every a ≪ >

and every y ∈ A. Then we have ϕ(y) = ϕ̃(y) and ϕ̃ ∈ DL(X) by Lemma 4.1.
Furthermore, since B ∈ γe(X), we have tϕ = tϕ̃ ∈ B by Proposition 2.12 and
Lemma 4.1. Therefore, we have B ∈ γe(A) again by Proposition 2.12.

Finally, we show that for every B ⊆ A, if B ∈ γe(A), then B ∈ γe(X).
Suppose B 6∈ γe(X). By Proposition 2.12. there exists ϕ ∈ DL(X) such that for

every a≪ > and every x ∈ X, a 6≪ ϕ(x) or ↑ax ∩ B 6= ∅, but tϕ 6∈ B. Then we
have tϕ ∈ X \ A ∈ σe(X) or tϕ ∈ A \ B ∈ σe(A). If tϕ ∈ X \ A ∈ σe(X), then
there exist z ∈ X and b≪ > such that b≪ ϕ(z) and ↑bz ⊆ X \ A. This implies
that there exist b≪ > and z ∈ X such that b≪ ϕ(z) and ↑bz ∩ B = ∅, which is
a contradiction. Similarly, we can prove that the case tϕ ∈ A \B ∈ σe(A). �
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By Proposition 4.2, we have the following theorem.

Theorem 4.3. Let (X, e) be an L-dcpo. Then for every generalized Scott closed
subset A, the relative generalized Scott topology on A agrees with the generalized
Scott topology of the L-dcpo (A, e).

Lemma 4.4. Let (X, e) be an L-dcpo and let A be a non-empty generalized Scott
closed set. If x ∈ A and ϕ ∈ DL(A), then clσe

(δa(↓ϕ̃)∩↓ax) = clσe(A)(δa(↓ϕ)∩↓ax),
where a ∈ L.

Proof. Straightforward. �

Proposition 4.5. Let a ∈ L, let (X, e) be an La-meet-continuous L-dcpo, and let
A be a non-empty generalized Scott closed set. Then (A, e) is also an La-meet-
continuous L-dcpo. In particular, ↓bx is an La-meet-continuous L-dcpo for every
x ∈ X and every b≪ >.

Proof. Let ϕ ∈ DL(A) with a≪ e(x,tϕ). From Lemma 4.1, we have tϕ = tϕ̃ and
tϕ ∈ A. Then, we have x ∈ clσe

(δa(ϕ̃)∩↓ax) = clσe(A)(δa(ϕ)∩↓ax) by Lemma 4.4
and the La-meet-continuity of (X, e). Therefore, (A, e) is an La-meet-continuous
L-dcpo by Definition 3.1. �

Corollary 4.6. Let (X, e) be a meet-continuous L-dcpo and let A be a non-empty
generalized Scott closed set. Then (A, e) is also a meet-continuous L-dcpo. In
particular, ↓ax is a meet-continuous L-dcpo for every x ∈ X and every a≪ >.

Lemma 4.7. Let (X, eX), (Y, eY ) be L-dcpos and let σe(X), σe(Y ) be generalized
Scott topologies of (X, eX), (Y, eY ), respectively. If f : X −→ Y is a homeomor-
phism w.r.t. generalized Scott topology, then for every x1, x2 ∈ X, eX(x1, x2) =
eY (f(x1), f(x2)).

Proof. Straightforward. �

Theorem 4.8. Let (X, eX), (Y, eY ) be L-dcpos and let (X,σe(X)) ∼= (Y, σe(Y )),
where σe(X), σe(Y ) are generalized Scott topologies of (X, eX), (Y, eY ), respectively.
If (X, eX) is meet-continuous, then (Y, eY ) is also meet-continuous.

Proof. Let a≪ >, y ∈ Y and tϕ ∈ DL(Y ) with a≪ eY (y,tϕ). We show that for
every U ∈ σe(Y ) with y ∈ U , U ∩↓ay ∩ δa(↓ϕ) 6= ∅. Since (X,σe(X)) ∼= (Y, σe(Y )),
there exists a homeomorphism f : X −→ Y . Then there exists x ∈ X such that

y = f(x), x ∈ f−1(U) ∈ σe(X) and f̃−1
→

(ϕ) ∈ IL(X), which satisfies f−1(tϕ) =

tf̃−1
→

(ϕ). By Lemma 4.7, we have a≪ eY (y,tϕ) = eY (f(x), f(tf̃−1
→

(ϕ))) =

eX(x,tf̃−1
→

(ϕ)). Furthermore, since (X, eX) is meet-continuous, it follows that

f−1(U)∩↓ax∩ δa(↓f̃−1
→

(ϕ)) = f−1(U)∩↓ax∩ δa(f̃−1
→

(ϕ)) 6= ∅, i.e., there exists

x0 ∈ X such that x0 ∈ f−1(U), a ≤ eX(x0, x) and a≪ f̃−1
→

(ϕ)(x0). Note that

f̃−1
→

(ϕ)(x0) =
∨
y′∈Y (ϕ(y′) ∧ eX(x0, f

−1(y′)) =
∨
y′∈Y (ϕ(y′) ∧ eY (f(x0), y′) =

↓ϕ(f(x0)), so we have a≪ ↓ϕ(f(x0)). Hence, f(x0) ∈ U and a ≤ eY (f(x0), y) =
eY (f(x0), f(x)) = eX(x0, x) by the continuity of f and Lemma 4.7. To sum up the
above, we have U ∩ ↓ay ∩ δa(↓ϕ) 6= ∅. Therefore, (Y, eY ) is La-meet-continuous,
and hence, (Y, eY ) is meet-continuous by the arbitrariness of a. �
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5. Conclusions and Further Work

Taking frames as the structure of truth values, we proposed the notion of meet-
continuity on L-dcpos, based on the generalized Scott topology. Moreover, we
showed that every continuous L-dcpo defined in [19] is meet-continuous, and also
that L-continuous retracts of meet-continuous L-dcpos are meet-continuous. Ad-
ditionally, we introduced the notions of generalized lower topology and generalized
Lawson topology. As a result of our study, it follows that meet-continuity forces
closer relationships between the generalized Scott and generalized Lawson topolo-
gies. Finally, we investigated some topological properties of meet-continuity on
L-dcpos. In particular, it is shown that meet-continuity is a topological invariant
and is a hereditary property.

Further Work: Similar to Flagg’s logical approach to quantitative domain
theory in [4], Zhang and Fan [19] defined L-dcpos and built the generalized Scott
topology (a crisp topology) on L-dcpos. As shown in [4], this kind of definition of
dcpos and Scott topology is appropriate for quantitative domain theory. Moreover,
many nice results have been obtained in [19, 21, 22], for example, the generalized
Scott topology is not only a generalization of Scott topology on ordinary domain,
but also keeps a lot of good properties of Scott topology. Therefore, this paper
carried L-dcpos and the generalized Scott topology as its fundamental definitions
and concepts. On the other hand, Yao and Shi [13,14,17] redefined L-dcpos and
proposed the notion of L-Scott topology. The L-Scott topology is a stratified L-
topology and has some advantage. Naturally, one may be able to construct a
meet-continuity of L-dcpos by L-Scott topology just like the meet-continuity of
crisp dcops by crisp Scott topology.

Acknowledgements. The authors are thankful to the anonymous reviewers for
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