
Arc
hive

 of
 S

ID

Iranian Journal of Fuzzy Systems Vol. 10, No. 5, (2013) pp. 147-164 147

FURTHER STUDY ON L-FUZZY Q-CONVERGENCE

STRUCTURES

B. PANG

Abstract. In this paper, we discuss the equivalent conditions of pretopolog-

ical and topological L-fuzzy Q-convergence structures and define T0, T1, T2-
separation axioms in L-fuzzy Q-convergence space. Furthermore, L-ordered Q-

convergence structure is introduced and its relation with L-fuzzy Q-convergence

structure is studied in a categorical sense.

1. Introduction

Since Fischer [8] first introduced convergence structure based on filers in classical
sense, the theory developed rapidly. With the development of fuzzy set theory, the
classical filter has been generalized to different kinds of fuzzy filters [2, 9, 10, 12,
25]. Based on fuzzy filters, many researchers extended convergence structures to
fuzzy convergence structures and studied the relations between fuzzy topological
spaces and fuzzy convergence spaces. Using prefilters, Lowen [21, 22] considered
fuzzy convergence structures as a generalization of classical convergence structures.
Lee et al. [17, 18, 19] also introduced a kind of fuzzy convergence structure and
studied its separation. Yao [29] proposed the concept of L-fuzzifying convergence
structure which was built on L-filters of ordinary subsets and discussed the relations
between L-fuzzifying topological spaces and L-fuzzifying convergence spaces. In
[13], Jäger gave the concept of stratified L-fuzzy convergence structure based on
stratified L-filters and showed the resulting category has many good categorical
properties. Güloğlu and Coker [11] introduced the notion of I-fuzzy convergence
structure by means of I-filters which converged to fuzzy points, and proved that this
kind of convergence structures and I-fuzzy topologies are one-to-one corresponding.
In [24], Pang and Fang introduced L-fuzzy Q-convergence structures and proved
that the category of L-fuzzy topological spaces and that of topological L-fuzzy Q-
convergence spaces were isomorphic. There are also some relating works in [14, 26,
27, 28].

Many researchers also studied properties of fuzzy convergence spaces. In [15],
Jäger gave equivalent conditions of his pretopological and topological stratified L-
fuzzy convergence structures. Lee [18, 19], Minkler [23] and Jäger [16] all discussed
separation axioms in their fuzzy convergence spaces. Fang [6, 7] introduced the
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concept of stratified L-ordered convergence structure and studied its properties.
The aim of this paper is to consider these problems in L-fuzzy Q-convergence spaces.

The structure of this paper is as follows. In Section 2, we state some preliminary
concepts and their properties. In Section 3, some characterizations of pretopological
and topological L-fuzzy Q-convergence structures are given. In Section 4, we define
some separation axioms in L-fuzzy Q-convergence spaces and study their properties.
In Section 5, a new kind of convergence structure, named L-ordered Q-convergence
structure, is introduced. Moreover, the relations between L-ordered Q-convergence
structures and L-fuzzy Q-convergence structures are studied in a categorical sense.

2. Preliminaries

Let (L,
∨
,
∧
,′ ) be a completely distributive De Morgan algebra. M(L) denotes

the set of all non-zero coprimes in L. The smallest element and the largest element
in L are denoted by 0 and 1, respectively. For a, b ∈ L, we say “a is wedge below
b” in symbol a / b if for every subset D ⊆ L,

∨
D > b implies a 6 d for some d ∈ D.

We denote β(a) = {b | b / a}. Thus a =
∨
β(a) holds for each a ∈ L.

For a nonempety set X, LX denotes the set of all L-fuzzy subsets on X. The
smallest element and the largest element in LX are denoted by 0X and 1X , respec-
tively. LX is also a completely distributive De Morgan algebra when it inherits
the structure of the lattice L in a natural way, by defining

∨
,
∧
, 6 and ′ point-

wise. The set of non-zero coprimes in LX is denoted by pt(LX). It is easy to see
that pt(LX) is exactly the set of all fuzzy points xλ (λ ∈ M(L)). We say that xλ
quasi-coincides with A, denoted by xλq̂A, if λ 
 A′(x) or equivalently xλ 
 A′.
The relation “does not quasi-coincide with” is denoted by ¬q̂. We define a residual
implication operation→: L×L→ L as the right adjoint for the operation of binary
meets ∧ by

a→ b =
∨
{ c ∈ L | a ∧ c 6 b}.

This operator plays a particular role in the sequel. We list some of its properties.

Lemma 2.1. [12] Suppose that (L,
∨
,
∧

) is a completely distributive lattice and
→ is the implication operation corresponding to ∧. Then for all a, b, c, d ∈ L,
{aj}j∈J , {bj}j∈J ⊆ L, the following conditions hold:

(1) 1→ a = a.
(2) a 6 b if and only if a→ b = 1.
(3) a→

∧
j∈J aj =

∧
j∈J(a→ aj).

(4)
∨
j∈J aj → b =

∧
j∈J(aj → b).

(5)
∧
j∈J aj →

∧
j∈J bj >

∧
j∈J(aj → bj).

Lemma 2.2. [6] Let S(−,−) be the fuzzy inclusion order of L-subsets, i.e., for any
C, D ∈ LX ,

S(C,D) =
∧
x∈X

C(x)→ D(x).

Then for all A,B ∈ LX , {Ai}i∈I ⊆ LX , the following statements hold:

(1) A 6 B ⇐⇒ S(A,B) = 1.
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(2) S
( ∨
i∈I

Ai, A
)

=
∧
i∈I
S(Ai, A).

(3) S
(
A,
∧
i∈I

Ai

)
=
∧
i∈I
S(A,Ai).

Let f : X → Y be a mapping. Define f→ : LX → LY and f← : LY → LX

by f→(A)(y) =
∨

f(x)=y

A(x) for A ∈ LX and y ∈ Y , f←(B) = B ◦ f for B ∈ LY ,

respectively. Then the following lemma holds.

Lemma 2.3. [6] Let f : X → Y be a mapping. Then for A,B ∈ LX , C,D ∈ LY ,
it holds that

S(A,B) 6 S(f→(A), f→(B)) and S(C,D) 6 S(f←(C), f←(D)).

Definition 2.4. [12] A mapping F : LX → L is called an L-filter on X iff for all
A,B ∈ LX ,

(F1) F(0X) = 0,F(1X) = 1;
(F2) A 6 B ⇒ F(A) 6 F(B);
(F3) F(A ∧B) > F(A) ∧ F(B).

It will be called stratified if it satisfies moreover,

(Fs) α ∧ F(A) 6 F(α ∧A).

The family of all (stratified) L-filters on X is denoted by (FsL(X)) FL(X).

Example 2.5. [24] For each xλ ∈ pt(LX), we define q̂(xλ) as follows:

∀A ∈ LX , q̂(xλ)(A) =

{
1, xλq̂A,
0, xλ¬q̂A.

Then q̂(xλ) is an L-filter.

For any mapping H : LX → L, we define a new mapping 〈H〉 : LX → L by

∀A ∈ LX , 〈H〉(A) =
∨
B6A

H(B).

Then we have the following definition.

Definition 2.6. [3, 4, 5] A mapping B : LX → L is called an L-filter base on X iff
for all A,B ∈ LX ,
(B1) B(0X) = 0,

∨
A∈LX

B(A) = 1;

(B2) 〈B〉(A ∧B) > B(A) ∧ B(B).

Note that if B is an L-filter base on X, then 〈B〉 is an L-filter and B is called an
L-filter base of 〈B〉.

Next we list some definitions and lemmas for L-filters. Since all these results are
similar to those for stratified L-filters in [12, 13] and they can be checked easily, we
will omit the proof.

On the set FL(X) of all L-filters on X, we define an order by F 6 G if F(A) 6
F(A) for all A ∈ LX . Then we have the following lemmas.
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Lemma 2.7. [12] In (FL(X),6), every nonempty family {Fi}i∈I of L-filters has
an infimum

∧
i∈I
Fi, which can be calculated as(∧

i∈I

Fi
)
(A) =

∧
i∈I

(Fi(A)), ∀A ∈ LX .

Lemma 2.8. [12] For a nonempty family {Fi}i∈I of L-filters, the followings are
equivalent:

(1) There exists an L-filter F such that F > Fi for all i ∈ I.
(2) Fi1(A1)∧· · ·∧Fin(An) = 0 if A1∧· · ·∧An = 0X (n ∈ N, A1, · · · , An ∈ LX ,

{i1, · · · , in} ⊆ I).

In the case of existence, we find(∨
i∈I

Fi

)
(A) =

∨
n∈N

∨
{Fi1(A1) ∧ · · · ∧ Fin(An) | A1 ∧ · · · ∧An 6 A}

as the supremum of {Fi}i∈I in (FL(X),6). We denote it by
∨
i∈I Fi. For two

L-filters F and G, we write F ∨ G ∈ FL(X) if F ∨ G exists.

Definition 2.9. [12] Let F ∈ FL(X) and f : X → Y be a mapping. Then
f⇒(F) : LY → L, A → F(f←(A)) is also an L-filter and is called the image of F
under f .

Lemma 2.10. [13] Let F ∈ FL(Y ) and f : X → Y be a mapping. Then the
following are equivalent:

(1) f⇐(F) : LX → L defined by f⇐(F)(A) =
∨
f←(B)6A F(B) is an L-filter on

X.
(2) ∀B ∈ LY , f←(B) = 0X implies F(B) = 0.

In case f⇐(F) ∈ FL(X), we call f⇐(F) the inverse image of F under f . Obvi-
ously, f⇐(F) exists if f is surjective.

Definition 2.11. [1] (1) A category C is called a topological category over Set
provided that for any set X, any class J, and family ((Xj , ξj))j∈J of C-objects and
any family (fj : X → Xj)j∈J of mappings, there exists a unique C-structure ξ on
X which is initial with respect to the source (fj : X → (Xj , ξj))j∈J . This means
that for a C-object (Y, η), a mapping g : (Y, η)→ (X, ξ) is a C-morphism iff for all
j ∈ J, fj ◦ g : (Y, η)→ (Xj , ξj) is a C-morphism.

(2) Let B be a category and E be a class of B-bimorphisms. A full subcategory
A of B is called bireflective in B provided that each B-object has an A-reflection
arrow in E as a bimorphism. This means that, for any B-object B, there exists an
A-reflection bimorphism r : B → A from B to an A-object A with the following
universal property: for any morphism f : B → A′ from B into some A-object A′,
there exists a unique A-morphism f ′ : A→ A′ such that f ′ ◦ r = f.

For more notions related to category theory, we refer to [1].
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3. Equivalent Conditions of (Pre)Topological L-fuzzy Q-convergence
Structures

In this section, we discuss the equivalent forms of pretopological and topological
L-fuzzy Q-convergence structures. We first give the following definition.

Definition 3.1. [24] An L-fuzzy Q-convergence structure (L-fqcs, in short) on X is
defined to be a mapping c : FL(X)→ LX such that ∀xλ ∈ pt(LX),F ,G ∈ FL(X),

(LQFC1) xλ 6 c(q̂(xλ));

(LQFC2) F 6 G ⇒ c(F) 6 c(G).

The pair (X, c) is called an L-fuzzy Q-convergence space (L-fqc space, in
short), and it will be called pretopological if it satisfies

(LQFC3) xλ 6 c(Fcxλ), where Fcxλ =
∧

xλ6c(F)

F .

The pair (X, c) is called a topological L-fuzzy Q-convergence space if it
satisfies moreover,

(LQFC4) For all xλ ∈ pt(LX), the L-filter Fcxλ has a base Bcxλ such that Bcxλ(A) 6
Bcyµ(A) for all A ∈ LX with yµq̂A.

A continuous mapping between L-fqc spaces (X, c) and (Y, d) is a mapping f :
X → Y such that for all F ∈ FL(X), c(F) 6 f←(d(f⇒(F))). The category of
pretopological L-fqc spaces and continuous mappings is denoted by L-QPrFCS,
and L-QFTCS denotes the full subcategory of L-QPrFCS consisting of topological
L-fqc spaces.

For convenience, we denote the category of L-fqc spaces with their continuous
mappings by L-QFCS and call Fcxλ the neighborhood filter of xλ.

Theorem 3.2. [24]The category L-QPrFCS of pretopological L-fuzzy Q-convergence
spaces is topological over Set.

Theorem 3.3. The category L-QFCS of L-fuzzy Q-convergence spaces is topolog-
ical over Set.

Proof. All necessary steps parallel to the proof of Theorem 3.2 (Proposition 4.7 in
[24]), which shows that the category L-QPrFCS is topological over Set. Hence the
proof is omitted. Here we only note that the mapping cX : FL(X) → LX defined
by

∀F ∈ FL(X), cX(F) =
∧
i∈I

f←i (ci(f
⇒
i (F)))

is the initial structure w.r.t. a source {fi : X → (Xi, ci)}i∈I in L-QFCS. �

Definition 3.4. (Product spaces) Let
∏
i∈I

ci denote the initial structure w.r.t. the

source {pi : X :=
∏
i∈I

Xi → (Xi, ci)}i∈I in L-QFCS, i.e.,

∀F ∈ FL(X),
∏
i∈I

ci(F) =
∧
i∈I

p←i (ci(p
⇒
i (F))).
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Then
( ∏
i∈I

Xi,
∏
i∈I

ci

)
is called the product space of {(Xi, ci)}i∈I .

Next we will give the characterizations of (pre)topological L-fuzzy Q-convergence
structures.

Theorem 3.5. Let (X, c) be an L-fuzzy Q-convergence space. The following con-
ditions are equivalent:

(LQFC3) xλ 6 c(Fcxλ).
(LQPC1) xλ 6 c(F)⇔ Fcxλ 6 F .
(LQPC2) c

( ∧
i∈I
Fi
)
=
∧
i∈I

c(Fi).

Proof. (LQFC3)⇒(LQPC1) If xλ 6 c(F), then Fcxλ =
∧

xλ6c(G)
G 6 F . Conversely,

let Fcxλ 6 F . Then by (LQFC2) and (LQFC3), we have

xλ 6 c(Fcxλ) 6 c(F).

(LQPC1)⇒(LQPC2) For each xλ ∈ pt(LX), it holds that

xλ 6
∧
i∈I

c(Fi) ⇔ ∀i ∈ I, xλ 6 c(Fi)

⇔ ∀i ∈ I, Fcxλ 6 Fi ( by (LQPC1) )

⇔ Fcxλ 6
∧
i∈I

Fi

⇔ xλ 6 c
( ∧
i∈I

Fi
)
. ( by (LQPC1) )

(LQPC2)⇒(LQFC3) By (LQPC2), it follows that

xλ 6
∧

xλ6c(F)

c(F) = c

 ∧
xλ6c(F)

F

 = c(Fcxλ ).

�

Remark 3.6. Generally, there are three different ways to characterize the pretopo-
logical condition of convergence structures. Lee [17] requires that the neighborhood
filter of a fuzzy point xλ converge to xλ. The second form requires the convergence
structure be closed for arbitrary meets. Xu [27] defined his pretopological limit
structure in this way. Another form is that a filter F converges to x if and only if
F contains the neighborhood filter of x. Jäger [13] and Yao [29] all adapted this
form in lattice-valued situation. Li and Jin [20] showed that pretopological strati-
fied L-convergence structures (stratified L-ordered convergence structures [6]) could
be characterized in both the first and the third form. From the above theorem, we
see that pretopological L-fuzzy Q-convergence structures can be characterized in
all the three ways.

The topological convergence structure is usually defined by the neighborhood fil-
ter, and sometimes it is characterized by the diagonal condition which is equivalent
to the former way [15]. The axiom (LQFC4) in L-fuzzy Q-convergence structure is
complicated and doesn’t satisfy each of the two ways. The following theorem will
give a simple characterization by means of the neighborhood filter Fcxλ .
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Theorem 3.7. Let (X, c) be a pretopological L-fuzzy Q-convergence space. Then
the followings are equivalent:

(LQFC4) For all xλ ∈ pt(LX), the L-filter Fcxλ has a base Bcxλ such that Bcxλ(A) 6
Bcyµ(A) for all A ∈ LX with yµq̂A.

(LQTCS) Fcxλ(A) =
∨

xλq̂B6A

∧
yµq̂B

Fcyµ(B).

Proof. (LQFC4)⇒(LQTCS) It suffices to prove Fcxλ(A) 6
∨

xλq̂B6A

∧
yµq̂B

Fcyµ(B). By

(LQFC4), there exists an L-filter base Bcxλ of Fcxλ such that

∀ yµ ∈ pt(LX), A ∈ LX , yµq̂A⇒ Bcxλ(A) 6 Bcyµ(A).

Take any α ∈ M(L), α � Fcxλ(A) = 〈Bcxλ〉(A) =
∨
B6A

Bcxλ(B). Then there exists

Bα such that Bα 6 A and α 6 Bcxλ(Bα) 6 Fcxλ(Bα). For each yµq̂Bα, we have
Bcxλ(Bα) 6 Bcyµ(Bα) 6 Fcyµ(Bα). Therefore Bcxλ(Bα) 6

∧
yµq̂Bα

Fcyµ(Bα). This means

that
α 6 Bcxλ (Bα) 6 Fcxλ (Bα) ∧

∧
yµq̂Bα

Fcyµ (Bα)

6
∨
B6A

(
Fcxλ (B) ∧

∧
yµq̂B

Fcyµ (B)
)

=
∨

xλq̂B6A

∧
yµq̂B

Fcyµ (B). ( Fcxλ (B) 6 q̂(xλ)(B) = 0 when xλ¬q̂B )

From the arbitrariness of α, we get that Fcxλ(A) 6
∨

xλq̂B6A

∧
yµq̂B

Fcyµ(B).

(LQTCS)⇒(LQFC4) Let Bcxλ(A) = Fcxλ(A) ∧
∧
yµq̂A

Fcyµ(A). We will check that

Bcxλ is just the L-filter base which satisfies (LQFC4).

Firstly, we prove Bcxλ is an L-filter base.

(B1) Bcxλ (0X) 6 Fcxλ (0X) = 0,∨
A∈LX

Bcxλ (A) =
∨

A∈LX

(
Fcxλ (A) ∧

∧
yµq̂A

Fyµ (A)
)

> Fcxλ (1X) ∧
∧

yµq̂(1X )

Fyµ (1X) = 1.

(B2) Take any A,B ∈ LX . Then

〈Bcxλ 〉(A ∧B) =
∨

C6A∧B
Bcxλ (C)

> Bcxλ (A ∧B)

= Fcxλ (A ∧B) ∧
∧

yµq̂(A∧B)

Fcyµ (A ∧B)

= Fcxλ (A) ∧ Fcxλ (B) ∧
∧

yµq̂A,yµq̂B

(
Fcyµ (A) ∧ Fcyµ (B)

)
( yµq̂(A ∧B) ⇔ yµq̂A, yµq̂B )

> Bcxλ (A) ∧ Bcxλ (B).
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Secondly, we check that Bcxλ is an L-filter base of Fcxλ .

〈Bcxλ 〉(A) =
∨
B6A

Bcxλ (B)

=
∨
B6A

(
Fcxλ (B) ∧

∧
yµq̂B

Fcyµ (B)
)

=
∨

xλq̂B6A

∧
yµq̂B

Fcyµ (B) ( Fcxλ (B) = 0 when xλ¬q̂B )

= Fcxλ (A).

Finally, for any zν ∈ pt(LX), A ∈ LX with zν q̂A, we have

Bcxλ (A) = Fcxλ (A) ∧
∧
yµq̂A

Fcyµ (A)

6
∧
yµq̂A

Fcyµ (A)

= Fczν (A) ∧
∧
yµq̂A

Fcyµ (A) = Bczν (A).

Therefore (LQFC4) holds. �

Remark 3.8. In (LQTCS), we use the neighborhood filter Fcxλ to define topological
L-fuzzy Q-convergence structure and it’s more succinct than (LQFC4). Although
the diagonal condition is another way to define topological convergence structure
[15], we can’t find the diagonal condition of topological L-fuzzy Q-convergence
structure. So we will leave this problem for further research.

4. Separation Axioms

In this section, we introduce separation axioms to L-fuzzy Q-convergence space
and investigate some properties of the initial space with respect to separation ax-
ioms.

Definition 4.1. Let (X, c) be an L-fuzzy Q-convergence space. If it satisfies

(T0) ∀xλ, yµ ∈ pt(LX), xλ 6 c(q̂(yµ)) and yµ 6 c(q̂(xλ))⇒ x = y,
then it is called a T0-space. If it satisfies

(T1) ∀xλ, yµ ∈ pt(LX), xλ 6 c(q̂(yµ)) or yµ 6 c(q̂(xλ))⇒ x = y,
then it is called a T1-space. If it satisfies

(T2) ∀xλ, yµ ∈ pt(LX), ∀F ∈ FL(X), xλ 6 c(F) and yµ 6 c(F)⇒ x = y,
then it is called a T2-space.

Proposition 4.2. Let (X, c) be a pretopological L-fuzzy Q-convergence space. Then
the following conclusions hold:

(1) (T0) ⇔ ∀xλ, yµ ∈ pt(LX), Fcxλ 6 q̂(yµ) and Fcyµ 6 q̂(xλ)⇒ x = y.

(2) (T1) ⇔ ∀xλ, yµ ∈ pt(LX), Fcxλ 6 q̂(yµ) or Fcyµ 6 q̂(xλ)⇒ x = y.

(3) (T2) ⇔ ∀xλ, yµ ∈ pt(LX), Fcxλ ∨ F
c
yµ ∈ FL(X)⇒ x = y.
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Proof. By Theorem 3.5, the proof is easy and omitted. �

In crisp set theory, if a set of topological spaces {(Xi, τi)}i∈I satisfies T0-axiom

(resp. T1 and T2), then their product space
( ∏
i∈I

Xi,
∏
i∈I

τi

)
, as a special initial

space, also satisfies T0-axiom (resp. T1 and T2). For L-fuzzy Q-convergence space,
we also have similar conclusions.

Theorem 4.3. If all L-fuzzy Q-convergence spaces (Xi, ci) (i ∈ I) are T0-spaces
(resp. T1, T2-spaces) and the family of mappings (fi : X → Xi)i∈I separates points
(i.e., for x 6= y there is an i ∈ I such that fi(x) 6= fi(y)), then the initial space
(X, cX) is a T0-space (resp. T1, T2-space).

Proof. We only prove T0 and the proofs of T1 and T2 are similar.
In order to prove that (X, cX) is a T0-space, we need only prove for any xλ, yµ ∈

pt(LX) with x 6= y and xλ 6 cX(q̂(yµ)), it holds that yµ 
 cX(q̂(xλ)).
By the definition of cX in Theorem 3.3, it follows that

xλ 6 c
X(q̂(yµ)) =

∧
i∈I

f←i (ci(f
⇒
i (q̂(yµ)))).

Then fi(x)λ 6 ci(q̂(fi(y)µ)) for each i ∈ I. Since (fi : X → Xi)i∈I separates
points, there exists an i0 ∈ I such that fi0(x) 6= fi0(y). By T0-axiom of (Xi0 , ci0),
we have

fi0(y)µ 
 ci0(q̂(fi0(x)λ)) = ci0(f⇒i0 (q̂(xλ))).

This implies

yµ 
 f←i0 (ci0(q̂(fi0(x)λ))) = f←i0 (ci0(f⇒i0 (q̂(xλ)))).

Therefore

yµ 

∧
i∈I

f←i (ci(f
⇒
i (q̂(xλ)))) = cX(q̂(xλ)).

Thus the initial space (X, cX) is a T0-space. �

Corollary 4.4. If all L-fuzzy Q-convergence spaces (Xi, ci) (i ∈ I) are T0-spaces

(resp. T1, T2-spaces), then their product space
( ∏
i∈I

Xi,
∏
i∈I

ci

)
is a T0-space (resp.

T1, T2-space).

In Definition 4.1, the fuzzy points are arbitrary. If we refine them with the same
height, then the following separation axioms are obtained.

Definition 4.5. Let (X, c) be an L-fuzzy Q-convergence space. If it satisfies

(qT0) ∀xλ, yλ ∈ pt(LX), xλ 6 c(q̂(yλ)) and yλ 6 c(q̂(xλ))⇒ x = y,
then it is called a qT0-space. If it satisfies

(qT1) ∀xλ, yλ ∈ pt(LX), xλ 6 c(q̂(yλ)) or yλ 6 c(q̂(xλ))⇒ x = y,
then it is called a qT1-space. If it satisfies

(qT2) ∀xλ, yλ ∈ pt(LX), ∀F ∈ FL(X), xλ 6 c(F) and yλ 6 c(F)⇒ x = y,
then it is called a qT2-space.

Similarly, the following two propositions hold obviously and we omit the proof.
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Proposition 4.6. Let (X, c) be a pretopological L-fuzzy Q-convergence space. Then
the following conclusions hold:

(1) (qT0) ⇔ ∀xλ, yλ ∈ pt(LX), Fcxλ 6 q̂(yλ) and Fcyλ 6 q̂(xλ)⇒ x = y.

(2) (qT1) ⇔ ∀xλ, yλ ∈ pt(LX), Fcxλ 6 q̂(yλ) or Fcyλ 6 q̂(xλ)⇒ x = y.

(3) (qT2) ⇔ ∀xλ, yλ ∈ pt(LX), Fcxλ ∨ F
c
yλ
∈ FL(X)⇒ x = y.

Proposition 4.7. If all L-fuzzy Q-convergence spaces (Xi, ci) (i ∈ I) are qT0-
spaces (resp. qT1, qT2-spaces) and the family of mappings (fi : X → Xi)i∈I
separates points, then the initial space (X, cX) is a qT0-space (resp. qT1, qT2-space).

Next we discuss qT0 (resp. qT1, qT2)-separation of product space of L-fuzzy
Q-convergence spaces. We first give the following lemma.

Lemma 4.8. Suppose that 0 ∈ L is a prime. Let Xi be a nonempty set, Fi ∈
FL(Xi) and pi :

∏
j∈I Xj → Xi be the projection mapping for each i ∈ I. Then

(1)
∨
i∈I p

⇐
i (Fi) ∈ FL(

∏
j∈I Xj).

(2) p⇒j (
∨
i∈I p

⇐
i (Fi)) > Fj for all j ∈ I.

Proof. (1) It suffices to prove that (i) p⇐i (Fi) exists for all i ∈ I and (ii)
∨
i∈I p

⇐
i (Fi)

exists.
For (i), condition (2) in Lemma 2.10 is trivially satisfied since pi is surjective.
For (ii), we need only verify that {p⇐i (Fi)}i∈I satisfies condition (2) in Lemma

2.8. Let n = 2 and A1 ∧A2 = 0X (X :=
∏
i∈I Xi). Then

p⇐1 (F1)(A1) ∧ p⇐2 (F2)(A2)

=
∨

p←1 (B1)6A1

F1(B1) ∧
∨

p←2 (B2)6A2

F2(B2)

=
∨

p←1 (B1)6A1

∨
p←2 (B2)6A2

F1(B1) ∧ F2(B2)

6
∨

p←1 (B1)∧p←2 (B2)6A1∧A2

F1(B1) ∧ F2(B2)

=
∨

p←1 (B1)∧p←2 (B2)=0X

F1(B1) ∧ F2(B2)

=
∨
{F1(B1) ∧ F2(B2) |

∨
x∈X

B1(p1(x)) ∧B2(p2(x)) = 0}

=
∨
{F1(B1) ∧ F2(B2) |

∨
(x1,x2)∈X1×X2

B1(x1) ∧B2(x2) = 0}

=
∨
{F1(B1) ∧ F2(B2) |

∨
x1∈X1

B1(x1) ∧
∨

x2∈X2

B2(x2) = 0}

6
∨

α∧β=0

F1(α) ∧ F2(β)

= 0. (0 is a prime)
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This proves
∨
i∈I p

⇐
i (Fi) ∈ FL(

∏
j∈I Xj).

(2) Take any Aj ∈ LXj . Then

p⇒j

(∨
i∈I

p⇐i (Fi)
)

(Aj) =
∨
i∈I

p⇐i (Fi)(p←j (Aj))

> p⇐j (Fj)(p←j (Aj))

=
∨

p←j (Bj)6p←j (Aj)

Fj(Bj)

> Fj(Aj).

From the arbitrariness of Aj , we obtain p⇒j (
∨
i∈I p

⇐
i (Fi)) > Fj for all j ∈ I. �

Proposition 4.9. Suppose that 0 is a prime. Let (Xi, ci) (i ∈ I) be L-fuzzy Q-
convergence spaces. Then they are all qT0-spaces (resp. qT1, qT2-spaces) if and

only if their product space
( ∏
i∈I

Xi,
∏
i∈I

ci

)
is a qT0-space (resp. qT1, qT2-space).

Proof. We only prove qT2. By Proposition 4.7, the necessity is obvious. It is enough
to prove the sufficiency.

In order to prove (Xi0 , ci0) (∀i0 ∈ I) is a qT2-space, we need only prove that for
any (xi0)λ, (yi0)λ ∈ pt(LXi0 ), Fi0 ∈ FL(Xi0) with xi0 6= yi0 and (xi0)λ 6 ci0(Fi0),
it follows that (yi0)λ 
 ci0(Fi0).

Take x, y ∈
∏
i∈I

Xi such that pi0(x) = xi0 , pi0(y) = yi0 and pi(x) = pi(y) for

i 6= i0. By Lemma 4.8 (1), we define F ∈ FL
( ∏
i∈I

Xi

)
as follows:

F :=
∨
i∈I

p⇐i (Fi),

where Fi = q̂(pi(x)λ) for i 6= i0 and Fi = Fi0 for i = i0. By Definition 3.4 and
Lemma 4.8 (2), it is easy to check that

xλ 6
(∏
i∈I

ci

)
(F) =

∧
i∈I

p←i (ci(p
⇒
i (F))).

Since
( ∏
i∈I

Xi,
∏
i∈I

ci

)
is a qT2-space and x 6= y, it follows that

yλ 

(∏
i∈I

ci

)
(F) =

∧
i∈I

p←i (ci(p
⇒
i (F))).

If i 6= i0, then by Lemma 4.8 (2), we have

pi(y)λ = pi(x)λ 6 ci(q̂(pi(x)λ)) 6 ci(p
⇒
i (F)).

This implies that

pi0(y)λ 
 ci0(p⇒i0 (F)) > ci0(Fi0).

Therefore (yi0)λ 
 ci0(Fi0), as desired. �
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5. L-ordered Q-convergence Structures

In [6], Fang defined fuzzy inclusion order in FL(X) in the following way:

∀F , G ∈ FL(X), SF (F ,G) =
∧

A∈LX
F(A)→ G(A).

Inspired by this, we modify the axioms (LQFC2) and (LQFC3) in the definition of
L-fuzzy Q-convergence structures and construct a new kind of convergence struc-
tures. Furthermore, the relations between them are discussed.

Definition 5.1. An L-ordered Q-convergence structure on X is defined to be a
mapping c : FL(X)→ LX such that ∀xλ ∈ pt(LX),F ,G ∈ FL(X),

(LQFC1) xλ 6 c(q̂(xλ));

(LOCS2) SF (F ,G) 6 S(c(F), c(G)).

The pair (X, c) is called an L-ordered Q-convergence space. It will be called
pretopological if it satisfies

(LOCS3) SF (Fcxλ ,F) 6 S(xλ, c(F)).
The pair (X, c) is called a topological L-ordered Q-convergence space if it
satisfies moreover,

(LQTCS) Fcxλ(A) =
∨

xλq̂B6A

∧
yµq̂B

Fcyµ(B).

A continuous mapping between L-ordered Q-convergence spaces (X, c) and (Y, d)
is a mapping f : X → Y such that for all F ∈ FL(X), c(F) 6 f←(d(f⇒(F))).

Let L-OQCS denote the category of L-ordered Q-convergence spaces with con-
tinuous mappings, and L-OQPrCS the full subcategory of L-OQCS consisting of
pretopological L-ordered Q-convergence spaces.

Theorem 5.2. An (pretopological, topological) L-ordered Q-convergence space must
be an (pretopological, topological) L-fuzzy Q-convergence space.

Proof. By Lemma 2.2 (1) and Theorem 3.5, the conclusion is obvious. �

The inversion of the above theorem doesn’t hold, the following example demon-
strate this.

Example 5.3. Let X = {x, y} and L = {0, 1
2 , 1} be a chain. We define a mapping

c : FL(X)→ LX by

∀F ∈ FL(X), z ∈ X, c(F)(z) =
{

1, q̂(z 1
2
) 6 F ,

0, otherwise.

Then it is easy to check (X, c) is an (pretopological) L-fuzzy Q-convergence space
in the sense of Definition 3.1. But on the other hand, the space (X, c) is not
an (pretopological) L-ordered Q-convergence space. To see this, we introduce a
mapping F∗ : LX → L by

∀A ∈ LX , F∗(A) =


1, if A = 1X ,
1
2
, if A(x) = 1, A(y) 6= 1,

1
2
, if A(x) = 1

2
,

0, if A(x) = 0.
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It’s routine to verify F∗ ∈ FL(X).
In this case, for A ∈ LX defined by A(x) = 1, A(y) 6= 1, we have q̂(x 1

2
)(A) = 1 >

1
2 = F∗(A). This implies q̂(x 1

2
) 
 F∗. Further it holds that

SF (q̂(x 1
2
), F∗) =

∧
B∈LX

(
q̂(x 1

2
)(B)→ F∗(B)

)
= (1→ 1) ∧ (1→ 1

2
) ∧ (0→ 1

2
) ∧ (0→ 0)

=
1

2
,

which can be checked by considering the nine different L-sets B ∈ LX . But we also
obtain that

S(c(q̂(x 1
2
), c(F∗)) =

(
c(q̂(x 1

2
))(x)→ c(F∗)(x)

)
∧
(
c(q̂(x 1

2
))(y)→ c(F∗)(y)

)
6 c(q̂(x 1

2
))(x)→ c(F∗)(x)

= (1→ 0)

= 0.

It follows that

S(c(q̂(x 1
2
), c(F∗)) = 0 �

1

2
= SF (q̂(x 1

2
), F∗).

This means that this L-fuzzy Q-convergence space (X, c) doesn’t satisfy the axiom
(LOCS2). Therefore we point out that an L-fuzzy Q-convergence space may not
be an L-ordered Q-convergence space.

Let X be a nonempety set, and Cloc(X) denote the fibre

{c : c is an L-ordered Q-convergence structure on X}

of X. We can define a partial order on Cloc(X) as follows:

c1 6 c2 ⇔ id : (X, c2)→ (X, c1) is continuous.

That is to say

c1 6 c2 ⇔ ∀x ∈ X, F ∈ FL(X), c2(F)(x) 6 c1(F)(x).

Then the following theorem holds.

Theorem 5.4. (Cloc(X),6) is a complete lattice.

Proof. Firstly, we define csm : FL(X)→ LX by

∀F ∈ FL(X), csm(F) = 1X .

Obviously csm is the minimal element.

Secondly, let {cj}j∈J ⊆ Cloc(X). Define supj∈J cj : FL(X)→ LX as follows:

∀F ∈ FL(X), x ∈ X,
(

sup
j∈J

cj

)
(F)(x) =

∧
j∈J

cj(F)(x).
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Then we claim that supj∈J cj is an L-ordered Q-convergence structure on X.
(LQFC1) (supj∈J cj)(q̂(xλ))(x) =

∧
j∈J

cj(q̂(xλ))(x) >
∧
j∈J

λ = λ.

(LOCS2) For each F , G ∈ FL(X), it follows that

S
((

sup
j∈J

cj

)
(F),

(
sup
j∈J

cj

)
(G)
)

=
∧
x∈X

( ∧
j∈J

cj(F)(x)→
∧
j∈J

cj(G)(x)
)

>
∧
x∈X

∧
j∈J

(cj(F)(x)→ cj(G)(x)) ( by Lemma 2.1 (5) )

=
∧
j∈J
S(cj(F), cj(G))

> SF (F , G).

Finally, it’s trivial to check that supj∈J cj is the minimal upper bound. �

Lemma 5.5. [6] Let f : X → Y be a mapping. Then for all F , G ∈ FL(X),

SF (F ,G) 6 SF (f⇒(F), f⇒(G)).

Lemma 5.6. Let (Y, cY ) be an L-ordered Q-convergence space, f be a mapping
from X to Y . Define cX : FL(X)→ LX such that

∀F ∈ FL(X), cX(F) = f←(cY (f⇒(F))).

Then cX is an L-ordered Q-convergence structure on X.

Proof. That cX satisfies (LQFC1) and (LOCS2) is verified as follows:

(LQFC1) cX(q̂(xλ))(x) = f←(cY (f⇒(q̂(xλ))))(x) = cY (q̂(f(x)λ))(f(x)) > λ.

(LOCS2) Take any F , G ∈ FL(X). Then

S(cX(F), cX(G)) = S(f←(cY (f⇒(F))), f←(cY (f⇒(G))))

> S(cY (f⇒(F)), cY (f⇒(G))) ( by Lemma 2.3 )

> SF (f⇒(F), f⇒(G))

> SF (F , G). ( by Lemma 5.5 )

Completes the proof. �

Theorem 5.7. The category L-OQCS of all L-ordered Q-convergence spaces is a
bireflective full subcategory in L-QFCS.

Proof. Let (X, c) ∈ |L-QFCS| and Ec = { c | (X, c) ∈ |L-OQCS|, c 6 c }. By
Theorem 5.4, we define (X, c∗) ∈ |L-OQCS| such that

∀ F ∈ FL(X), x ∈ X, c∗(F)(x) =
∧
c∈Ec

c(F)(x).

We claim that idX : (X, c)→ (X, c∗) is the L-OQCS-reflection.
For this it suffices to prove:

(1) idX : (X, c)→ (X, c∗) is continuous.
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(2) For each L-ordered Q-convergence space (Y, cY ), and each mapping f :
X → Y , the continuity of f : (X, c) → (Y, cY ) implies the continuity of
f : (X, c∗)→ (Y, cY ).

(1) is true since c∗ ∈ Ec, that is to say,

c∗ 6 c⇔ ∀F ∈ FL(X), x ∈ X, c(F)(x) 6 c∗(F)(x).

(2) By definition, we need only prove

∀F ∈ FL(X), x ∈ X, c∗(F)(x) 6 cY (f⇒(F))(f(x)).

By Lemma 5.6, cX defined by cX(F) = f←(cY (f⇒(F))) is an L-ordered Q-
convergence structure on X. Further by the continuity of f : (X, c)→ (Y, cY ), we
have

c(F)(x) 6 f←(cY (f⇒(F)))(x) = cX(F)(x).

Then from the arbitrariness of F and x, we obtain that cX 6 c and cX ∈ Ec. This
shows cX 6 c∗.
Therefore

c∗(F)(x) 6 cX(F)(x) = cY (f⇒(F))(f(x)).

The continuity of f : (X, c∗)→ (Y, cY ) is proved. �

By Theorems 3.3 and 5.7, we have

Corollary 5.8. The category L-OQCS of all L-ordered Q-convergence spaces is
topological over Set.

We write Cploc(X) for the set of all pretopological L-ordered Q-convergence
structures on X and still write 6 for the restriction of the order on Cloc(X)
to Cploc(X). Let {cj}j∈J be a nonempety family of pretopological L-ordered Q-
convergence structures on X. It can be checked that the supremum supj∈J of
{cj}j∈J in (Cploc(X),6) is also defined by

∀F ∈ FL(X), x ∈ X,
(

sup
j∈J

cj

)
(F)(x) =

∧
j∈J

cj(F)(x).

Now we will discuss the relations between pretopological L-fuzzy Q-convergence
structures and pretopological L-ordered Q-convergence structures. For this the
following lemma is necessary.

Lemma 5.9. Suppose {(X, ci)}i∈I are all L-ordered Q-convergence spaces and

supj∈J cj is defined as above. Then F supj∈J cj
xλ >

∨
j∈J
Fcjxλ .

Proof. Take any xλ ∈ pt(LX), F ∈ FL(X). Then

F supj∈J cj
xλ =

∧
xλ6(supj∈J cj)(F)

F =
∧

λ6
∧
j∈J

cj(F)(x)

F

>
∨
j∈J

∧
λ6cj(F)(x)

F

=
∨
j∈J
Fcjxλ .
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The conclusion is proved. �

Theorem 5.10. (Cploc(X),6) is a complete lattice.

Proof. The proof is the same as that of Theorem 5.4. It is sufficient to show that
supj∈J cj satisfies (LOCS3).

Take xλ ∈ pt(LX), F ∈ FL(X). Then

S
(
xλ,

(
sup
j∈J

cj

)
(F)

)
=

∧
j∈J
S(xλ, cj(F)) ( by Lemma 2.2 (3) )

>
∧
j∈J
SF (Fcjxλ , F)

= SF
( ∨
j∈J
Fcjxλ , F

)
( by Lemma 2.2 (2) )

> SF
(
F supj∈J cj
xλ , F

)
. ( by Lemma 5.9 )

Hence supj∈J cj satisfies (LOCS3). �

Theorem 5.11. The category L-OQPrCS of all pretopological L-ordered Q-convergence

spaces is a bireflective full subcategory in L-QFPrCS.

Proof. The proof is the same as that of Theorem 5.6. We need only prove the
following conclusion.

For a mapping f : X → (Y, cY ), where (Y, cY ) is a pretopological L-ordered
Q-convergence space, the mapping cX : FL(X)→ LX defined by

∀F ∈ FL(X), cX(F) = f←(cY (f⇒(F)))

is a pretopological L-ordered Q-convergence structure. For this it is enough to
prove that cX satisfies (LOCS3). First we have

f⇒(FcXxλ ) = f⇒(
∧

xλ6cX(F)

F) =
∧

xλ6cX(F)

f⇒(F)

=
∧

λ6cY (f⇒(F))(f(x))

f⇒(F) =
∧

f(x)λ6cY (f⇒(F))

f⇒(F)

>
∧

f(x)λ6cY (G)

G

= FcYf(x)λ .

Then it follows that

SF (FcXxλ , F) 6 SF (f⇒(FcXxλ ), f⇒(F)) ( by Lemma 5.4 )

6 SF (FcYf(x)λ , f
⇒(F)) ( by Lemma 2.2 (2) )

6 S(f(x)λ, cY (f⇒(F)))

= λ→ cY (f⇒(F))(f(x))

= λ→ cX(F)(x)

= S(xλ, cX(F)).
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This proves the conclusion. �

From Theorems 3.2 and 5.11, the following result holds.

Corollary 5.12. The category L-OQPrCS of all pretopological L-ordered Q-convergence

spaces is topological over Set.
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[12] U. Höhle and A. P. S̆ostak, Axiomatic foudations of fixed-basis fuzzy topology, In: U. Höhle,
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