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PONTRYAGIN’S MINIMUM PRINCIPLE FOR FUZZY OPTIMAL

CONTROL PROBLEMS

B. FARHADINIA

Abstract. The objective of this article is to derive the necessary optimality

conditions, known as Pontryagin’s minimum principle, for fuzzy optimal con-
trol problems based on the concepts of differentiability and integrability of a

fuzzy mapping that may be parameterized by the left and right-hand functions
of its α-level sets.

1. Introduction

Classical optimal control problems play an increasingly important role in de-
signing of modern systems where the objective is to characterize the control signals
that will cause a process to satisfy the economical, social, or physical constraints
and at the same time these signals have to minimize some performance criterion.
Many authors have studied classical optimal control problems from different view
points and the detailed arguments can be found in many textbooks ( refer [1] and
references therein).

In the past few decades, fuzzy optimal control problems have attracted a great
deal of attention and the interest in the filed of fuzzy optimal control theory has
increased. A large number of existing schemes of fuzzy optimal control for nonlinear
systems are proposed based on the framework of Takagi-Sugeno (T-S) fuzzy model
originating from fuzzy identification [15]. Moreover, for most of the T-S modeled
nonlinear systems, fuzzy control design is carried out by the aid of the parallel
distributed compensation (PDC) approach [16]. Within the framework of T-S fuzzy
model, the sufficient conditions for the stability of a fuzzy system is stated in terms
of the feasibility of a set of linear matrix inequalities (LMIs) [7, 9]. Recently, a kind
of fuzzy optimal control theory as a fuzzy counterpart of stochastic control theory
has been established [11] and many results of research have been then reported in
the literature ( refer [12] and references therein). In [10] based on Banach fixed point
theorem, the existence and the uniqueness of solutions and also the controllability
of the semilinear fuzzy integrodifferential equations are studied. In [14] the fuzzy
control differential equation as the generalization of a fuzzy differential equation is
presented and the existence of the solutions of fuzzy differential equation is then
discussed. In [13] a fuzzy/approximate necessary optimality condition is derived
in the extended Euler-Lagrange form for discrete approximation of the Mayer-type
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problem for semilinear evolution inclusion. However, there exists a large literature
dealing with fuzzy optimal control problems in which the rule-based fuzzy controller
is implemented to construct the optimal control function.

Although the notion of fuzzy sets is widely spread to various control optimiza-
tion problems, establishing necessary optimality conditions for fuzzy optimal control
problems is seldom available in literatures. Our pervious success of deriving neces-
sary optimality conditions for both fuzzy unconstrained and constrained variational
problems [4] lead us to believe that the concepts of differentiability and integrabil-
ity of a fuzzy mapping, parameterized by the left and right-hand functions of its
α-level sets, may be a good way to handle fuzzy optimal control problems. Thus,
in this article, we are going to investigate the necessary optimality conditions for
fuzzy optimal control problems in the framework of α-level sets of fuzzy state and
fuzzy control functions involved in such problems. It seems that, it is a new idea to
derive the necessary optimality conditions for fuzzy optimal control problems using
the fuzzy differentiability concept introduced in [2].

In this article, we first recall and generalize some fundamental concepts that are
key to our discussion, including the concepts of differentiability and integrability
of a fuzzy mapping. We then establish the main results concerning the necessary
optimality conditions for the fuzzy optimization problems and the fuzzy Pontrya-
gin’s minimum principle for the fuzzy optimal control problems in the remaining
sections. Finally, we discuss the applicability of the main theorems through an
example.

2. Fundamental Concepts

In this section, it seems essential to recall some basic notions that we discussed
in [4] and furthermore we shall introduce some new concepts concerning fuzzy
optimization problems by appealing to some familiar results from the theory of
crisp optimization problems.

The fuzzy number ã : R → [0, 1] is a mapping with the properties: (i) ã is
normal, i.e., there exists an x ∈ R such that ã(x) = 1; (ii) ã is fuzzy convex, i.e.,
ã(λx + (1 − λ)y) ≥ min{ã(x), ã(y)} for all λ ∈ [0, 1], x, y ∈ R; (iii) ã is upper
semicontinuous, i.e., ã(x0) ≥ limk→∞ã(xk) for any xk ∈ R, as xk → x0; (iv) The
support of ã which is supp(ã) = cl{x ∈ R : ã(x) > 0} is compact.
We denote by F the set of all fuzzy numbers on R. The α-level set of ã ∈ F, denoted
by ã[α], is defined by ã[α] = {x ∈ R : ã(x) ≥ α} for all α ∈ (0, 1]. The 0-level set
ã[0] is defined as the closure of {x ∈ R : ã(x) > 0}, i.e., ã[0] = cl(supp(ã)).
Obviously, the α-level set ã[α] = [al(α), ar(α)] is a closed interval in R for all
α ∈ [0, 1], where al(α) and ar(α) denote the left-hand and right-hand endpoints
of ã[α], respectively. Needless to say that ã is a crisp number with value k if its
membership function is given by ã(x) = 1 if x = k, and ã(x) = 0 otherwise. Also
we define fuzzy zero as

0̃(x) =

{
1, x = 0,
0, x 6= 0.

By the following lemma, from [5], we present some interesting properties associated
with al(α) and ar(α) of a fuzzy number ã ∈ F.
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Lemma 2.1. Let al : [0, 1]→ R and ar : [0, 1]→ R satisfy the conditions:

C1: al : [0, 1]→ R is a bounded increasing function;
C2: ar : [0, 1]→ R is a bounded decreasing function;
C3: al(1) ≤ ar(1);
C4: limα→k− a

l(α) = al(k) and limα→k− a
r(α) = ar(k), for 0 < k ≤ 1;

C5: limα→0+ a
l(α) = al(0) and limα→0+ a

r(α) = ar(0).

Then ã : R → [0, 1] characterized by ã(x) = sup{α : al(α) ≤ x ≤ ar(α)} is a fuzzy
number. Also if ã : R → [0, 1] is a fuzzy number with ã[α] = [al(α), ar(α)], then
functions al(α) and ar(α) satisfy conditions C1-C5.

Using the extension principle [8, 17], the binary operation ”·” in R can be ex-

tended to the binary operation ”�” of two fuzzy numbers ã and b̃ and it is defined
by

(ã� b̃)(z) = sup
x· y=z

min{ã(x), b̃(y)}.

Furthermore from [3], −ã is the opposite of the fuzzy number ã and character-
ized by −ã(x) = ã(−x). In the case that ã[α] = [al(α), ar(α)], we have −ã[α] =
[−ar(α),−al(α)] for all α ∈ [0, 1].
We say that the fuzzy number ã is triangular if al(1) = ar(1), al(α) = al(1)− (1−
α)(al(1)− al(0)) and ar(α) = al(1) + (1− α)(ar(0)− al(1)). The triangular fuzzy
number ã is generally denoted by ã = 〈al(0), al(1), ar(0)〉.

Definition 2.2. (H-difference). Let ã, b̃ ∈ F, where ã[α] = [al(α), ar(α)] and

b̃[α] = [bl(α), br(α)] for all α ∈ [0, 1]. By the Hukuhara’s idea [6] of introducing the
difference operator ”	”, the H-difference is defined by

ã	 b̃ = c̃, if and only if ã = b̃+ c̃.

Obviously, ã	 ã = 0̃, and the α-level set of H-difference is

(ã	 b̃)[α] = [al(α)− bl(α), ar(α)− br(α)], ∀α ∈ [0, 1].

Definition 2.3. (Partial ordering). Let ã, b̃ ∈ F. We write ã � b̃, if al(α) ≤ bl(α)

and ar(α) ≤ br(α) for all α ∈ [0, 1]. We also write ã ≺ b̃, if ã � b̃ and there exists

an α̂ ∈ [0, 1] so that al(α̂) < bl(α̂) or ar(α̂) < br(α̂). Moreover, ã = b̃, if ã � b̃ and

ã � b̃. In the other words, ã = b̃, if ã[α] = b̃[α] for all α ∈ [0, 1].

In the sequel, we say that ã, b̃ ∈ F are comparable if either ã � b̃ or ã � b̃, and
non-comparable otherwise.

Definition 2.4. (Fuzzy-valued function). The function f̃ : S ⊆ R → F is called

a fuzzy-valued function if for any x ∈ S, f̃(x) is a fuzzy number. We also denote

f̃(x)[α] = [f l(x, α), fr(x, α)], where f l(x, α) = (f̃(x))l(α) = min{f̃(x)[α]} and

fr(x, α) = (f̃(x))r(α) = max{f̃(x)[α]}. Therefore any fuzzy-valued function f̃
may be understood by f l(x, α) and fr(x, α) being respectively a bounded increasing
function of α and a bounded decreasing function of α for α ∈ [0, 1]. Also it holds
f l(x, α) ≤ fr(x, α) for any α ∈ [0, 1].

Now we are going to introduce some concepts from [2] those play important roles
in the fuzzy variational theory.

www.SID.ir


www.SID.ir

Arc
hive

 of
 S

ID

30 B. Farhadinia

Definition 2.5. (Continuity of a fuzzy function). We say that f̃ : S ⊆ R → F
is continuous at x ∈ S, if both f l(x, α) and fr(x, α) are continuous functions of
x ∈ S, for all α ∈ [0, 1].

Definition 2.6. (Differentiability of a fuzzy function). Suppose that f̃ : S ⊆
R → F is fuzzy-valued function with f̃(x)[α] = [f l(x, α), fr(x, α)]. If the partial
derivatives of f l(x, α) and fr(x, α) with respect to x ∈ R exist and the interval

[df
l(x,α)
dx , df

r(x,α)
dx ] for x ∈ R, α ∈ [0, 1] defines the α-level set of a fuzzy number,

then f̃(x) is called differentiable and we write

df̃(x)

dx
[α] = [

df l(x, α)

dx
,
dfr(x, α)

dx
],

for x ∈ R, α ∈ [0, 1].

Remark 2.7. Using the similar notion as described above, we define the gradient

of a fuzzy function f̃ : S ⊆ Rn → F as follows: if for each i = 1, 2, ..., n, ∂f̃(x)∂xi
[α] =

[∂f
l(x,α)
∂xi

, ∂f
r(x,α)
∂xi

], defines the α-level set of a fuzzy number, then the gradient of f̃
at x is

∇f̃(x)[α] = (
∂f̃(x)

∂x1
[α], ...,

∂f̃(x)

∂xn
[α]).

From Lemma 2.1, the sufficient conditions that the gradient of f̃ at x exist
are: The partial derivatives of f l(x, α) and fr(x, α) exist with respect to xi for

α ∈ [0, 1]; ∂f
l(x,α)
∂xi

is a continuous increasing function of α (condition C1); ∂f
r(x,α)
∂xi

is

a continuous decreasing function of α (condition C2); ∂f
l(x,1)
∂xi

≤ ∂fr(x,1)
∂xi

(condition

C3).

Definition 2.8. (Integrability of a fuzzy function). We say that f̃ : S ⊆ R→ F is
integrable with respect to x, if both f l(x, α) and fr(x, α) are Lebesgue integrable
functions of x ∈ R, for all α ∈ [0, 1] and [

∫
f l(x, α) dx,

∫
fr(x, α) dx], defines the

α-level set of a fuzzy number. We denote the integral of fuzzy function f̃ with
respect to x by ∫

f̃(x)[α] dx = [

∫
f l(x, α) dx,

∫
fr(x, α) dx],

for α ∈ [0, 1].

Following from Lemma 2.1, the sufficient conditions that the integral of f̃ with
respect to x exist are: The Lebesgue integrals of f l(x, α) and fr(x, α) exist with
respect to x for α ∈ [0, 1];

∫
f l(x, α) dx is a continuous increasing function of α

(condition C1);
∫
fr(x, α) dx is a continuous decreasing function of α (condition

C2);
∫
f l(x, 1) dx ≤

∫
fr(x, 1) dx (condition C3).

Definition 2.9. (Distance measure between fuzzy functions). Consider that f̃ :
S ⊆ R → F and g̃ : S ⊆ R → F are two fuzzy functions. The distance measure
between f̃ and g̃ is defined by

DF(f̃(x), g̃(x)) = sup
0≤α≤1

H(f̃(x)[α], g̃(x)[α])

= max{ sup
z∈f̃(x)[α]

d(z, g̃(x)[α]), sup
y∈g̃(x)[α]

d(f̃(x)[α], y)}, ∀x ∈ S, (1)
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where H is the well-known Hausdorff metric on the family of all nonempty com-
pact subsets of R, and d(a,B) = infb∈B d(a, b).
For notational convenience, we define

||f̃(x)||2F = DF(f̃(x), f̃(x)), ∀x ∈ S, (2)

for any f̃ : S ⊆ R→ F.

Definition 2.10. (Fuzzy increment). Let x̃(.) and x̃(.) + δx̃(.) be fuzzy functions

for which the fuzzy functional J̃ is defined. The increment of J̃ , denoted by ∆J̃ , is
defined as

∆J̃ := J̃(x̃+ δx̃)	 J̃(x̃), (3)

where δx̃(.) is known as the variation of x̃(.).

In order to emphasize that the increment ∆J̃ depends on the fuzzy functions x̃
and δx̃, we may denote ∆J̃ by ∆J̃(x̃, δx̃).

Definition 2.11. (Differentiability of a fuzzy functional). Let the increment of J̃
can be written as

∆J̃(x̃, δx̃) := δJ̃(x̃, δx̃) + η(x̃, δx̃).||δx̃||F, (4)

where δJ̃ is linear in δx̃. We say that J̃ is differentiable on x̃ if for any ε > 0,

DF(η(x̃, δx̃), 0̃) < ε, as ||δx̃(.)||F → 0. (5)

3. The Calculus Variations in Fuzzy Environment

In this section, we investigate some results to be used in the subsequent discus-
sion. To begin with, let us recall the definition of minimizing function of a fuzzy
functional.

Definition 3.1. (Fuzzy relative minimum). A fuzzy functional J̃ with domain

C̃[t0, tf ], the class of all fuzzy continuous functions on [t0, tf ], has a fuzzy relative

minimizer x̃∗ = x̃∗(t), if the increment of J̃ is fuzzy non-negative, that is,

∆J̃ := J̃(x̃)	 J̃(x̃∗) � 0̃, (6)

or equivalently

J̃(x̃) � J̃(x̃∗), (7)

for all fuzzy functions x̃ in C̃[t0, tf ].

Notice that the inequality (7) holds if and only if

J l(x̃, α) ≥ J l(x̃∗, α), and Jr(x̃, α) ≥ Jr(x̃∗, α), (8)

for all α ∈ [0, 1] and all x̃′s ∈ C̃[t0, tf ].
Now we are in a position to state a fundamental theorem of the calculus of

variations in fuzzy environment.
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Theorem 3.2. (Fuzzy fundamental theorem) Suppose that x̃, δx̃ ∈ C̃[t0, tf ] are

fuzzy functions of t ∈ [t0, tf ] and J̃(x̃) is differentiable fuzzy functional of x̃. If

x̃∗ is a fuzzy minimizer of J̃ , then the variation of J̃ regardless of any boundary
conditions must vanish on x̃∗, that is,

δJ̃(x̃∗, δx̃) = 0̃, (9)

for all admissible δx̃ having the property x̃+ δx̃ ∈ C̃[t0, tf ].

Proof. It is obvious that equality (9) holds if and only if

δJ l(x̃∗(t)[α], δx̃(t)[α], t, α) = 0, (10)

δJr(x̃∗(t)[α], δx̃(t)[α], t, α) = 0, (11)

for all α ∈ [0, 1], t ∈ [t0, tf ] and all admissible δx̃ where δx̃(t)[α] = [δxl(t, α), δxr(t, α)].

It is easily observed from Definition 2.11 and sufficiently small ||δx̃||F that δJ̃

dominates the expression for ∆J̃ . On the other hand, J̃(x̃∗) is a fuzzy relative
minimum, if

∆J̃(x̃∗) = ∆J̃(x̃∗, δx̃) � 0̃,
(12)

for all admissible δx̃. This implies that

δJ̃(x̃∗, δx̃) � 0̃, (13)

or equivalently

δJ l(x̃∗(t)[α], δx̃(t)[α], t, α) ≥ 0, (14)

δJr(x̃∗(t)[α], δx̃(t)[α], t, α) ≥ 0, (15)

for all α ∈ [0, 1], t ∈ [t0, tf ] and all admissible δx̃.
To complete the proof, we shall show that δJ l = δJr = 0.
Assume that δJr(x̃∗(t)[α], δx̃(t)[α], t, α) > 0, for all α ∈ [0, 1], t ∈ [t0, tf ] and all

admissible δx̃. Let us take the small enough variation δx̃ = −k2δỹ, where k is a
non-zero small real number. By Definition 2.11, the linearity of δJ̃ in δx̃ = −k2δỹ
results in

δJ̃(x̃∗,−k2δỹ) = −k2δJ̃(x̃∗, δỹ),

or for all α ∈ [0, 1]

δJ̃(x̃∗(t),−k2δỹ(t))[α] = −k2δJ̃(x̃∗(t), δỹ(t))[α].

This implies that for all α ∈ [0, 1]

[δJ l(x̃∗(t)[α],−k2δỹ(t)[α], t, α), δJr(x̃∗(t)[α],−k2δỹ(t)[α], t, α)]

= −k2[δJ l(x̃∗(t)[α], δỹ(t)[α], t, α), δJr(x̃∗(t)[α], δỹ(t)[α], t, α)]

= [−k2δJr(x̃∗(t)[α], δỹ(t)[α], t, α),−k2δJ l(x̃∗(t)[α], δỹ(t)[α], t, α)].

Consequently, we get

δJ l(x̃∗(t)[α],−k2δỹ(t)[α], t, α) = −k2δJr(x̃∗(t)[α], δỹ(t)[α], t, α), (16)

δJr(x̃∗(t)[α],−k2δỹ(t)[α], t, α) = −k2δJ l(x̃∗(t)[α], δỹ(t)[α], t, α), (17)
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By the assumption δJ l ≥ 0 for all admissible δx̃, the equality (17) gives−k2 δJ l ≤ 0,
that is, for some admissible δx̃ and for all α ∈ [0, 1], t ∈ [t0, tf ],

δJr(x̃∗(t)[α], δx̃(t)[α], t, α) ≤ 0. This contradicts the assumption that J̃(x̃∗) is a
fuzzy relative minimum unless δJr = 0 is met.

By a similar reasoning, we can show that δJ l = 0. Therefore, if x̃∗ is a minimizer
of J̃ , it is necessary that

δJ̃(x̃∗, δx̃) = 0̃,

for any admissible δx̃. �

4. Fuzzy Constrained Minimization Problems

Let x̃ = x̃(t) be a fuzzy function of t ∈ [t0, tf ] ⊆ R and belongs to the class of
fuzzy functions with continuous first derivatives with respect to t ∈ [t0, tf ]. The
fuzzy constrained variational problem can now be posed:

(FCV P ) Minimize J̃(x̃) :=

∫ tf

t0

g̃(x̃(t), ˜̇x(t), t) dt

Subject to f̃(x̃(t), t) = 0̃,

x̃(t0) = x̃0, x̃(tf ) = x̃f .

Here, g̃ and f̃ assign a fuzzy number to the fuzzy points (x̃(t), ˜̇x(t), t) ∈ F2×R and

(x̃(t), t) ∈ F×R, respectively, where x̃(t) and ˜̇x(t) are fuzzy functions of t ∈ [t0, tf ].

We assume that the integrand g̃ and fuzzy function f̃ have continuous first and
second partial derivatives with respect to all of their arguments.

In order to attack this problem, we adopt fuzzy Lagrange multiplier. To begin
with, we formulate the fuzzy augmented functional as follows:

J̃a(x̃, λ̃) :=

∫ tf

t0

{g̃(x̃(t), ˜̇x(t), t) + λ̃(t)f̃(x̃(t), t)} dt. (18)

Needless to say that if the constraint is satisfied, we observe that J̃a = J̃ for any λ̃.
In this portion, in order to simplify the result presentations, we limit ourselves

to the special case stated in the following assumption. The further extension to the
general case will be done in Section 6.

Remark 4.1. To simplify the variational equations, we assume that J la(x̃, λ̃, t, α)

(or Jra(x̃, λ̃, t, α)) is stated in terms containing only xl(t, α) and ẋl(t, α) (or only
xr(t, α) and ẋr(t, α)). In this case, we may write J la(xl(t, α), λl(t, α), t, α) and

Jra(xr(t, α), λr(t, α), t, α) instead of J la(x̃, λ̃, t, α) and Jra(x̃, λ̃, t, α), respectively.

Now we derive the variation of the fuzzy functional J̃a as

δJ̃a(x̃, δx̃, λ̃, δλ̃)[α] = [δJ la(xl, δxl, λl, δλl, t, α), δJra(xr, δxr, λr, δλr, t, α)], (19)

for all α ∈ [0, 1], where

δJ la(xl, δxl, λl, δλl, t, α) =

∫ tf

t0

{[∂g
l

∂xl
(xl, ẋl, t, α) + λl(t, α)(

∂f l

∂xl
(xl, t, α))]δxl

+[
∂gl

∂ẋl
(xl, ẋl, t, α)]δẋl + [f l(xl, t, α)]δλl} dt, (20)
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and

δJra(xr, δxr, λr, δλr, t, α) =

∫ tf

t0

{[∂g
r

∂xr
(xr, ẋr, t, α) + λr(t, α)(

∂fr

∂xr
(xr, t, α))]δxr

+[
∂gr

∂ẋr
(xr, ẋr, t, α)]δẋr + [fr(xr, t, α)]δλr} dt. (21)

Here, xl/r, ẋl/r, δxl/r, λl/r and δλl/r stand for xl/r(t, α), ẋl/r(t, α), δxl/r(t, α),
λl/r(t, α) and δλl/r(t, α).

For the moment, we consider only (20). If we integrate by parts the term con-
taining δẋl and retain only the terms inside the integral of (20), then we get

δJ la(xl, δxl, λl, δλl, t, α) =

∫ tf

t0

{[∂g
l

∂xl
(xl, ẋl, t, α) + λl(t, α)(

∂f l

∂xl
(xl, t, α))

− d

dt
(
∂gl

∂ẋl
(xl, ẋl, t, α))]δxl + [f l(xl, t, α)]δλl} dt. (22)

By Theorem 3.2 we find that the variation (19) must be zero on a fuzzy minimizer
x̃∗ and consequently the latter variation must be zero on x̃∗l, too. Moreover, the
minimizer x̃∗ has to satisfy the constraint

f l(x∗l, t, α) = 0, for all α ∈ [0, 1], t ∈ [t0, tf ]. (23)

This relation makes that δλl is removed from the terms inside the integral of (22).
It can be seen that if the arbitrary λl is chosen such that the coefficient of δxl in
(22) is zero, then the following result is obtained

∂gl

∂xl
(x∗l, ẋ∗l, t, α) + λ∗l(t, α)(

∂f l

∂xl
(x∗l, t, α))− d

dt
(
∂gl

∂ẋl
(x∗l, ẋ∗l, t, α)) = 0. (24)

Now with respect to the left-hand augmented integrand function gla defined by

gla(xl, ẋl, λl, t, α) := gl(xl, ẋl, t, α) + λl(t, α)f l(xl, t, α), (25)

the equation (24) becomes

∂gla
∂xl

(x∗l, ẋ∗l, λ∗l, t, α)− d

dt
(
∂gla
∂ẋl

(x∗l, ẋ∗l, λ∗l, t, α)) = 0. (26)

Following the scheme of obtaining (23) and (26), and adapting it to the case under
consideration involving (21), one can show that on x̃∗

fr(x∗r, t, α) = 0, for all α ∈ [0, 1], t ∈ [t0, tf ], (27)

and

∂gra
∂xr

(x∗r, ẋ∗r, λ∗r, t, α)− d

dt
(
∂gra
∂ẋr

(x∗r, ẋ∗r, λ∗r, t, α)) = 0, (28)

where the right-hand augmented integrand function gra is defined by

gra(xr, ẋr, λr, t, α) := gr(xr, ẋr, t, α) + λr(t, α)fr(xr, t, α). (29)

We are now ready to state the necessary conditions that must be satisfied by a
fuzzy relative minimizer x̃∗ of (FCVP) as follows:
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Theorem 4.2. Let x̃∗ = x̃∗(t) be an admissible fuzzy function, i.e., it is twice
continuously differentiable fuzzy function. Then, in order that x̃∗ give a relative
(local) minimum to the fuzzy functional J̃ in (FCVP), it is necessary that for all
α ∈ [0, 1], t ∈ [t0, tf ]

f l(x∗l, t, α) = 0, (30)

fr(x∗r, t, α) = 0, (31)

∂gla
∂xl

(x∗l, ẋ∗l, λ∗l, t, α)− d

dt
(
∂gla
∂ẋl

(x∗l, ẋ∗l, λ∗l, t, α)) = 0, (32)

∂gra
∂xr

(x∗r, ẋ∗r, λ∗r, t, α)− d

dt
(
∂gra
∂ẋr

(x∗r, ẋ∗r, λ∗r, t, α)) = 0, (33)

where gla and gra are those defined by (25) and (29), respectively.

Notice that although the above results are the same as the results obtained
perviously in [4], the reasoning used here is quite different.

Let us now introduce a fuzzy variational problem constrained by fuzzy differential
equations:

(FDCV P ) Minimize J̃(x̃) :=

∫ tf

t0

g̃(x̃(t), ˜̇x(t), t) dt

Subject to f̃(x̃(t), ˜̇x(t), t) = 0̃,

x̃(t0) = x̃0, x̃(tf ) = x̃f .

Here, g̃ and f̃ assign a fuzzy number to the fuzzy point (x̃(t), ˜̇x(t), t) ∈ F2×R where

x̃(t) and ˜̇x(t) are fuzzy functions of t ∈ [t0, tf ]. We assume that the integrand g̃ and

fuzzy function f̃ have continuous first and second partial derivatives with respect
to all of their arguments.

The reasoning that leads to the equations constitute a set of necessary conditions
for x̃∗ to be a fuzzy relative minimizer of (FDCVP) is the same as that used for
(FCVP). Therefore necessary conditions that must be satisfied by a minimizer of
(FDCVP) can be found as follows:

Theorem 4.3. Let x̃∗ = x̃∗(t) be an admissible fuzzy function, i.e., it is twice
continuously differentiable fuzzy function. Then, in order that x̃∗ give a relative
(local) minimum to the fuzzy functional J̃ in (FDCVP), it is necessary that for all
α ∈ [0, 1], t ∈ [t0, tf ]

f l(x∗l, ẋ∗l, t, α) = 0, (34)

fr(x∗r, ẋ∗r, t, α) = 0, (35)

∂gla
∂xl

(x∗l, ẋ∗l, λ∗l, t, α)− d

dt
(
∂gla
∂ẋl

(x∗l, ẋ∗l, λ∗l, t, α)) = 0, (36)

∂gra
∂xr

(x∗r, ẋ∗r, λ∗r, t, α)− d

dt
(
∂gra
∂ẋr

(x∗r, ẋ∗r, λ∗r, t, α)) = 0, (37)

where

gla(xl, ẋl, λl, t, α) := gl(xl, ẋl, t, α) + λl(t, α)f l(xl, ẋl, t, α), (38)

and

gra(xr, ẋr, λr, t, α) := gr(xr, ẋr, t, α) + λr(t, α)fr(xr, ẋr, t, α). (39)
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Remark 4.4. If we regard the fuzzy vector x̃ = x̃(t) as [x̃
... ũ] in the constraint of

(FDCVP), we then may represent the state equation constraints in fuzzy optimal
control problems defined latter.

5. Fuzzy Optimal Control Problems

In this section, we are interested to apply fuzzy variational approaches to fuzzy
optimal control problems to derive necessary conditions for optimal fuzzy control
which will be referred to as fuzzy Pontryagin’s minimum principle.

Let x̃ = x̃(t) be a fuzzy function of t ∈ [t0, tf ] ⊆ R and belonging to the class
of fuzzy functions with continuous first derivatives with respect to t ∈ [t0, tf ]. The
fuzzy optimal control problem can now be posed:

(FOCP ) Minimize J̃(ũ) :=

∫ tf

t0

g̃(x̃(t), ũ(t), t) dt

Subject to ˜̇x(t) = h̃(x̃(t), ũ(t), t),

x̃(t0) = x̃0, x̃(tf ) = x̃f .

Here, g̃ and h̃ assign a fuzzy number to the fuzzy point (x̃(t), ũ(t), t) ∈ F2×R, where
the fuzzy state x̃(t) and the fuzzy control ũ(t) are fuzzy functions of t belonging to
the specified interval [t0, tf ]. We assume that the integrand g̃ and fuzzy function

h̃ have continuous first and second partial derivatives with respect to all of their
arguments.

Definition 5.1. (Admissible fuzzy state). We say that x̃ = x̃(t) is admissible, if it
satisfies the endpoints conditions and also is twice continuously differentiable with
respect to t ∈ [t0, tf ].

In addition, our definition of an admissible fuzzy control ũ = ũ(t) is that ũ is not
bounded.

Remark that by Definition 5.1, we may cast a (FOCP) into the form of (FDCVP)
regardless any boundary conditions and so it is reasonable to expect that necessary
conditions for minimizer of (FOCP) have to be the same as that of (FDCVP).

In sequel, to gain the fuzzy Pontryagin’s minimum principle as form as the crisp
counterpart, we require to convert the fuzzy process

˜̇x(t) = h̃(x̃(t), ũ(t), t), (40)

into the form

f̃(x̃(t), ũ(t), ˜̇x(t), t) = 0̃, (41)

which is in form of a fuzzy differential equation involved in a (FDCVP).
In view of the above-mentioned conversion, we define

f̃(x̃(t), ũ(t), ˜̇x(t), t) := h̃(x̃(t), ũ(t), t)	 ˜̇x(t). (42)

Theorem 5.2. (Fuzzy Pontryagin’s minimum principle) Let x̃∗ = x̃∗(t) be an
admissible fuzzy state and assume that ũ∗ = ũ∗(t) is an admissible fuzzy control.
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Then, in order that ũ∗ give a fuzzy optimal control to the fuzzy functional J̃ in
(FOCP), it is necessary that for all α ∈ [0, 1], t ∈ [t0, tf ]

ẋ∗l(t, α) =
∂Hl

∂λl
(x∗l(t, α), u∗l(t, α), λ∗l(t, α), t, α), (43)

ẋ∗r(t, α) =
∂Hr

∂λr
(x∗r(t, α), u∗r(t, α), λ∗r(t, α), t, α), (44)

λ̇∗l(t, α) = −∂H
l

∂xl
(x∗l(t, α), u∗l(t, α), λ∗l(t, α), t, α), (45)

λ̇∗r(t, α) = −∂H
r

∂xr
(x∗r(t, α), u∗r(t, α), λ∗r(t, α), t, α), (46)

0 =
∂Hl

∂ul
(x∗l(t, α), u∗l(t, α), λ∗l(t, α), t, α), (47)

0 =
∂Hr

∂ur
(x∗r(t, α), u∗r(t, α), λ∗r(t, α), t, α), (48)

where fuzzy function H̃, called fuzzy Hamiltonian function, is defined by

H̃(x̃(t), ũ(t), λ̃(t), t) := g̃(x̃(t), ũ(t), t) + λ̃(t)h̃(x̃(t), ũ(t), t), (49)

with the α-level set

H̃(x̃(t), ũ(t), λ̃(t), t)[α] = [Hl(xl, ul, λl, t, α), Hr(xr, ur, λr, t, α)]. (50)

Proof. Let us first formulate the following fuzzy augmented functional by adjoining
the constraining relation to J̃ of (FOCP) that yields

J̃a(ũ) :=

∫ tf

t0

g̃a(x̃(t), ũ(t), λ̃(t), ˜̇x(t), t) dt, (51)

where

g̃a(x̃(t), ũ(t), λ̃(t), ˜̇x(t), t) := g̃(x̃(t), ũ(t), t) + λ̃(t)(h̃(x̃(t), ũ(t), t)	 ˜̇x(t)), (52)

and λ̃ is the so-called fuzzy Lagrange multiplier.
On the extremal ũ∗, the variation of J̃a must be zero, that is, δJ̃a(ũ∗) = 0̃. This

admits for all α ∈ [0, 1],

δJ la(u∗l, α) = 0, (53)

and

δJra(u∗r, α) = 0. (54)

In the remaining of the proof we will ignore the similar arguments and thus we
consider only (53).

Now, the variation of J la is determined as

0 = δJ la(u∗l, α)

=

∫ tf

t0

{[∂g
l
a

∂xl
(x∗l, u∗l, λ∗l, ẋ∗l, t, α)− d

dt
(
∂gla
∂ẋl

(x∗l, u∗l, λ∗l, ẋ∗l, t, α))]δxl

+[
∂gla
∂ul

(x∗l, u∗l, λ∗l, ẋ∗l, t, α)]δul + [
∂gla
∂λl

(x∗l, u∗l, λ∗l, ẋ∗l, t, α)]δλl} dt. (55)
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With respect to the fuzzy augmented integrand function g̃a defined in (52), the
latter equation can be written

0 =

∫ tf

t0

{[∂g
l

∂xl
(x∗l, u∗l, t, α) + λ∗l(t, α)(

∂hl

∂xl
(x∗l, u∗l, t, α))− d

dt
(−λ∗l(t, α))]δxl

+[
∂gl

∂ul
(x∗l, u∗l, t, α) + λ∗l(t, α)(

∂hl

∂ul
(x∗l, u∗l, t, α))]δul

+[hl(x∗l, u∗l, t, α)− ẋ∗l(t, α)]δλl} dt. (56)

Since the constraint must be satisfied by the extremal ũ∗, we find that

ẋ∗l(t, α) = hl(x∗l, u∗l, t, α), (57)

and hence the coefficient of δλl in (56) is zero.
In addition, the arbitrary fuzzy Lagrange multiplier λ∗l can be chosen such that

the coefficient of δxl does not appear in the above integral. Thus,

λ̇∗l(t, α) = −[
∂gl

∂xl
(x∗l, u∗l, t, α) + λ∗l(t, α)(

∂hl

∂xl
(x∗l, u∗l, t, α))]. (58)

There exists still a term inside the integral (56) to deal with. Since the equality
(56) must be satisfied, we get

0 =
∂gl

∂ul
(x∗l, u∗l, t, α) + λ∗l(t, α)(

∂hl

∂ul
(x∗l, u∗l, t, α)). (59)

Using the left-hand Hamiltonian function Hl(xl, ul, λl, t, α) defined in (50), the
equations (57)-(59) can be written more compactly as follows:

ẋ∗l(t, α) =
∂Hl

∂λl
(x∗l(t, α), u∗l(t, α), λ∗l(t, α), t, α), (60)

λ̇∗l(t, α) = −
∂Hl

∂xl
(x∗l(t, α), u∗l(t, α), λ∗l(t, α), t, α), (61)

0 =
∂Hl

∂ul
(x∗l(t, α), u∗l(t, α), λ∗l(t, α), t, α), (62)

for all α ∈ [0, 1], t ∈ [t0, tf ].
Again, following the scheme of obtaining (60)-(62) and adapting it to the case

under consideration involving (54), one may show that for all α ∈ [0, 1], t ∈ [t0, tf ]

ẋ∗r(t, α) =
∂Hr

∂λr
(x∗r(t, α), u∗r(t, α), λ∗r(t, α), t, α), (63)

λ̇∗r(t, α) = −∂H
r

∂xr
(x∗r(t, α), u∗r(t, α), λ∗r(t, α), t, α), (64)

0 =
∂Hr

∂ur
(x∗r(t, α), u∗r(t, α), λ∗r(t, α), t, α), (65)

where the right-hand Hamiltonian function Hr(xr, ur, λr, t, α) is defined in (50). �
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6. Generalization

Without restrictions imposed by Remark 4.1, this section is devoted to ex-
tend Theorem 4.2 for the general case where both J la(x̃, λ̃, t, α) and Jra(x̃, λ̃, t, α)
in (19) are considered to be in terms containing xl(t, α), ẋl(t, α), xr(t, α) and
ẋr(t, α). In this case, we may write J la(xl, xr, λl, t, α) and Jra(xl, xr, λr, t, α) in-

stead of J la(x̃, λ̃, t, α) and Jra(x̃, λ̃, t, α), respectively, where xl/r, ẋl/r, λl/r stand for
xl/r(t, α), ẋl/r(t, α), λl/r(t, α).

This assumption makes variations (20) and (21) become

δJ la(xl, δxl, xr, δxr, λl, δλl, t, α) =∫ tf

t0

{[∂g
l

∂xl
(xl, ẋl, xr, ẋr, t, α) + λl(t, α)(

∂f l

∂xl
(xl, xr, t, α))]δxl

+[
∂gl

∂xr
(xl, ẋl, xr, ẋr, t, α) + λl(t, α)(

∂f l

∂xr
(xl, xr, t, α))]δxr

+[
∂gl

∂ẋl
(xl, ẋl, xr, ẋr, t, α)]δẋl + [

∂gl

∂ẋr
(xl, ẋl, xr, ẋr, t, α)]δẋr

+[f l(xl, xr, t, α)]δλl} dt, (66)

and

δJra(xl, δxl, xr, δxr, λl, δλl, t, α) =∫ tf

t0

{[∂g
r

∂xl
(xl, ẋl, xr, ẋr, t, α) + λr(t, α)(

∂fr

∂xl
(xl, xr, t, α))]δxl

+[
∂gr

∂xr
(xl, ẋl, xr, ẋr, t, α) + λr(t, α)(

∂fr

∂xr
(xl, xr, t, α))]δxr

+[
∂gr

∂ẋl
(xl, ẋl, xr, ẋr, t, α)]δẋl + [

∂gr

∂ẋr
(xl, ẋl, xr, ẋr, t, α)]δẋr

+[fr(xl, xr, t, α)]δλr} dt. (67)

Now, we consider only (66). If we integrate by parts the terms containing δẋl and
δẋr and retain only the terms inside the integral of (66), then it results in

δJ la(xl, δxl, xr, δxr, λl, δλl, t, α) =∫ tf

t0

{[∂g
l

∂xl
(xl, ẋl, xr, ẋr, t, α) + λl(t, α)(

∂f l

∂xl
(xl, xr, t, α))

− d

dt
(
∂gl

∂ẋl
(xl, ẋl, xr, ẋr, t, α))]δxl

+[
∂gl

∂xr
(xl, ẋl, xr, ẋr, t, α) + λl(t, α)(

∂f l

∂xr
(xl, xr, t, α))

− d

dt
(
∂gl

∂ẋr
(xl, ẋl, xr, ẋr, t, α))]δxr

+[f l(xl, xr, t, α)]δλl} dt. (68)

Using the reasoning that led to (23) and (26), one can easily obtain for all α ∈
[0, 1], t ∈ [t0, tf ] the following results:

f l(x∗l, x∗r, t, α) = 0, (69)
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and

∂gla
∂xl

(x∗l, ẋ∗l, x∗r, ẋ∗r, λ∗l, t, α)− d

dt
(
∂gla
∂ẋl

(x∗l, ẋ∗l, x∗r, ẋ∗r, λ∗l, t, α)) = 0, (70)

∂gla
∂xr

(x∗l, ẋ∗l, x∗r, ẋ∗r, λ∗l, t, α)− d

dt
(
∂gla
∂ẋr

(x∗l, ẋ∗l, x∗r, ẋ∗r, λ∗l, t, α)) = 0. (71)

Here, gla is defined by

gla(xl, ẋl, xr, ẋr, λl, t, α) := gl(xl, ẋl, xr, ẋr, t, α) + λl(t, α)f l(xl, xr, t, α). (72)

Similar conclusions follow by concerning (67) and hence in general case the gener-
alized form of Theorem 4.2 can be stated as:

Theorem 6.1. Let x̃∗ = x̃∗(t) be an admissible fuzzy function, i.e., it is twice
continuously differentiable fuzzy function. Then, in order that x̃∗ give a relative
(local) minimum to the fuzzy functional J̃ in (FCVP), it is necessary that for all
α ∈ [0, 1], t ∈ [t0, tf ]

f l(x∗l, x∗r, t, α) = 0, (73)

fr(x∗l, x∗r, t, α) = 0, (74)

∂gla
∂xl

(x∗l, ẋ∗l, x∗r, ẋ∗r, λ∗l, t, α)− d

dt
(
∂gla
∂ẋl

(x∗l, ẋ∗l, x∗r, ẋ∗r, λ∗l, t, α)) = 0, (75)

∂gla
∂xr

(x∗l, ẋ∗l, x∗r, ẋ∗r, λ∗l, t, α)− d

dt
(
∂gla
∂ẋr

(x∗l, ẋ∗l, x∗r, ẋ∗r, λ∗l, t, α)) = 0, (76)

∂gra
∂xl

(x∗l, ẋ∗l, x∗r, ẋ∗r, λ∗r, t, α)− d

dt
(
∂gra
∂ẋl

(x∗l, ẋ∗l, x∗r, ẋ∗r, λ∗r, t, α)) = 0, (77)

∂gra
∂xr

(x∗l, ẋ∗l, x∗r, ẋ∗r, λ∗r, t, α)− d

dt
(
∂gra
∂ẋr

(x∗l, ẋ∗l, x∗r, ẋ∗r, λ∗r, t, α)) = 0, (78)

where

gla(xl, ẋl, xr, ẋr, λl, t, α) := gl(xl, ẋl, xr, ẋr, t, α) + λl(t, α)f l(xl, xr, t, α),

gra(xl, ẋl, xr, ẋr, λr, t, α) := gr(xl, ẋl, xr, ẋr, t, α) + λr(t, α)fr(xl, xr, t, α).

7. Illustrative Example

Let us now illustrate the determination of the fuzzy optimal control for the
following (FOCP) by applying the fuzzy Pontryagin’s minimum principle derived
in Theorem 5.2.

Example 7.1. Find the fuzzy control that minimize

J̃(ũ) :=

∫ 1

0

ũ2(t) dt,

subject to

˜̇x(t) = ũ(t)− 〈0, 1, 3〉x̃(t), t ∈ [0, 1],

with boundary conditions

x̃(0) = 1 = 〈1, 1, 1〉, x̃(1) = 0 = 〈0, 0, 0〉.
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Solution. The first step is to form the fuzzy Hamiltonian

H̃(x̃(t), ũ(t), λ̃(t), t) := ũ2(t) + λ̃(t)[ũ(t)− 〈0, 1, 3〉x̃(t)], (79)

and hence the α-level set of H̃ is characterized by

Hl(xl, ul, λl, t, α) = ul
2

(t, α) + λl(t, α)[ul(t, α)− (3− 2α)xl(t, α)], (80)

and

Hr(xr, ur, λr, t, α) = ur
2

(t, α) + λr(t, α)[ur(t, α)− (α)xr(t, α)]. (81)

By applying Theorem 5.2 to (80), we find the necessary conditions for optimality
as follows:

ẋl(t, α) =
∂Hl

∂λl
= ul(t, α)− (3− 2α)xl(t, α), (82)

λ̇l(t, α) = −∂H
l

∂xl
= (3− 2α)λl(t, α), (83)

0 =
∂Hl

∂ul
= 2ul(t, α) + λl(t, α). (84)

We begin with solving differential equation (83)

λ̇l(t, α)− (3− 2α)λl(t, α) = 0.

The above differential equation is linear with constant coefficients, for a fixed α ∈
[0, 1]. Hence, by virtue of the classical differential equation theory, we may solve it
analytically for fixed α ∈ [0, 1] to arrive at

λ∗l(t, α) = k1e
(3−2α)t.

Substituting λ∗l(t, α) into (1) gives

u∗l(t, α) = −k1
2
e(3−2α)t.

If equation (82) is solved for u∗l(t, α), then we obtain

x∗l(t, α) = − k1
4(3− 2α)

e(3−2α)t + k2e
−(3−2α)t. (85)

Constants of integration k1, k2 might be given by the boundary conditions

1 = x∗l(0, α) = k2 −
k1

4(3− 2α)
,

0 = x∗l(1, α) = k2e
−(3−2α) − k1

4(3− 2α)
e(3−2α),

hence,

k1 =
2(3− 2α)e−(3−2α)

sinh(3− 2α)
, k2 = 1 +

e−(3−2α)

2 sinh(3− 2α)
. (86)

Using the constants (86) and applying simple calculations, we obtain for all α ∈
[0, 1], t ∈ [0, 1] that

x∗l(t, α) =
sinh(1− t)(3− 2α)

sinh(3− 2α)
, (87)

and

u∗l(t, α) =
−(3− 2α)e−(1−t)(3−2α)

sinh(3− 2α)
. (88)
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By (87) and (88), it is not hard to verify that x∗l(t, α) and u∗l(t, α) are continuous
increasing functions of α (condition C1 of Lemma 2.1).

Again, following the same arguments as above and considering (81), it is apparent
that

x∗r(t, α) =
sinh(1− t)α

sinhα
, (89)

and

u∗r(t, α) =
−αe−(1−t)α

sinhα
. (90)

By (89) and (90), one can easily show that x∗r(t, α) and u∗r(t, α) are continuous
decreasing functions of α (condition C2 of Lemma 2.1).

Moreover, we observe that for all 0 ≤ t ≤ 1,

x∗l(t, 1) =
sinh(1− t)(3− 2(1))

sinh(3− 2(1))
,

x∗r(t, 1) =
sinh(1− t)(1)

sinh(1)
,

u∗l(t, 1) =
−(3− 2(1))e−(1−t)(3−2(1))

sinh(3− 2(1))
,

u∗r(t, 1) =
−(1)e−(1−t)(1)

sinh(1)
.

Thus, x∗l(t, 1) ≤ x∗r(t, 1) and u∗l(t, 1) ≤ u∗r(t, 1) (condition C3 of Lemma 2.1).
Therefore, the α-level sets of fuzzy numbers: optimal fuzzy state x̃∗ and optimal

fuzzy control ũ∗ are characterized, respectively, by

x̃∗(t)[α] = [x∗l(t, α), x∗r(t, α)]

= [
sinh(1− t)(3− 2α)

sinh(3− 2α)
,

sinh(1− t)α
sinhα

],

and

ũ∗(t)[α] = [u∗l(t, α), u∗r(t, α)]

= [
−(3− 2α)e−(1−t)(3−2α)

sinh(3− 2α)
,
−αe−(1−t)α

sinhα
].

8. Conclusion

In this article, we established the necessary optimality conditions for the fuzzy
optimization problems and the fuzzy Pontryagin’s minimum principle for the fuzzy
optimal control problems using the concepts of differentiability and integrability of
a fuzzy mapping, parameterized by the left and right-hand functions of its α-level
sets, together with the concept of fuzzy variation. By an example, we summarized
and highlighted the main feature of the article.
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