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FUZZY RELATIONAL MATRIX-BASED STABILITY ANALYSIS

FOR FIRST-ORDER FUZZY RELATIONAL DYNAMIC SYSTEMS

A. AGHILI ASHTIANI AND S. K. Y. NIKRAVESH

Abstract. In this paper, two sets of sufficient conditions are obtained to en-
sure the existence and stability of a unique equilibrium point of unforced first-

order fuzzy relational dynamical systems by using two different approaches
which are both based on the fuzzy relational matrix of the model. In the first

approach, the equilibrium point of the system is one of the centers of the re-

lated membership functions. In the second approach, the equilibrium point of
the system is the origin (the center of the middle membership function) and

the behavior of the system, though can be nonlinear, is symmetric around the

origin. The results are approved by numerical examples.

1. Introduction

Fuzzy models of dynamic systems are known to be categorized in three main
groups, the TSK models, the linguistic models, and the fuzzy relational models.
A fuzzy relational model (FRM) can be considered as an extended fuzzy linguistic
model. Indeed, in an FRM, a truth degree is assigned to every rule that can
be constituted. The collection of such degrees is gathered in a matrix which is
representative of the rule base in the model, called the fuzzy relational matrix
(FRX). This matrix is composed with model inputs through an appropriate fuzzy
relational composition. Thus, fuzzy relational modeling provides a more systematic
framework for fuzzy linguistic modeling. See [9] for further information about
FRMs.

Fuzzy relational models have been used in various applications, basically in mod-
eling static and dynamic systems, [1, 4, 10, 11]. The focus in this paper is on the
equilibrium points of fuzzy relational dynamic systems and their stability. A fuzzy
relational dynamic system (FRDS) is indeed an FRM of a dynamic system. The
goal of this paper is to obtain some appropriate conditions to ensure the existence
and stability of a unique equilibrium point of an FRDS. In the area of linguis-
tic fuzzy systems, several different approaches have been taken to the problem of
stability investigation, e.g., frequency domain analysis of fuzzy systems, [13], or
investigating the stability of fuzzy models based on petri-nets, [12]. To have an
overview of several methods of investigating the stability of linguistic fuzzy models,
the reader may refer to [5–8,12].
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Figure 1. The Block Diagram of an Unforced First-Order FRDS

From the structural and methodological viewpoints, this paper mainly follows
the line of [3], where a set of sufficient conditions is obtained for a first-order FRDS
with respect to its FRX. It should be noted that in a first-order FRDS, the fuzzy
relational equation of the FRM can be written as:

b (k + 1) = b (k) ◦R, (1)

where R is a q × q fuzzy relational matrix and b is a row vector.
The paper is organized as follows. After this introduction in Section 1, Section

2 represents the model configuration and components as well as a few preliminary
concepts from [3]. Main results are developed in Section 3, where the stability
issue is addressed by two approaches in two subsections. In the first subsection,
the existence of a unique equilibrium point at the center of a linguistic term and its
asymptotic stability is studied. The result of this approach is indeed an effective
improvement made on the results of [3]. In the second subsection, the focus is on
the origin of a system with symmetric behavior around its origin, and a sufficient
condition for the asymptotic stability of such systems at the origin is obtained by
using the mathematical tools introduced in [2]. Section 4 represents some examples
to verify the proposed sets of sufficient conditions. Finally, the paper is concluded
with a brief summary of results and suggestions in Section 5.

2. Preliminaries

The block diagram of an unforced first-order FRDS is depicted in Figure 1, where
the components types, in this paper, are selected as follows:

• Fuzzifier: standard fuzzifier, see Reminder 2.1.
• Fuzzy Relational Composition: algebraic composition, see Reminder 2.2.
• Defuzzifier: weighted average deffuzifier, see Reminder 2.3.

Reminder 2.1. In [3] the standard fuzzifier is defined as a fuzzifier made up of q
triangular membership functions with the property of sum-normality, i.e., the sum
of the membership function values for every non-fuzzy value is one.

Reminder 2.2. In an FRDS with algebraic or sum-product fuzzy relational com-
position, the fuzzy composition is of the form s-t, the t-conorm is the algebraic sum,
and the t-norm is the algebraic product, i.e., s(a, b) = min(a+ b, 1) and t(a, b) = ab
for a, b ∈ [0, 1].

Reminder 2.3. The output y of a weighted average defuzzifier is calculated as
y =

∑
bici/

∑
bi, where b and c are respectively the input vector and the centers

vector of the defuzzifier.
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Definition 2.4. [3, Definition 3.2] Let Γf be the hyperplane of all q-tuples (x1, ..., xq)
such that: q∑

j=1

xj = 1, (2)

where xi ∈ [0, 1], for i = 1, ..., q. An FRDS described by b(k + 1) = b(k) ◦R has
the property of intraplanarity on Γf , if b(k + 1) ∈ Γf for every b(k) ∈ Γf .

In other words, the FRDS is called intraplanar if Γf is invariant under the sum-
product fuzzy composition.

Definition 2.5. [3, Definition 3.3] A p × q matrix R = [rij ] is called unit-row
matrix if: q∑

j=1

rij = 1 ∀i ∈ {1, . . . , p} . (3)

Lemma 2.6. [3, Lemma 3.4] Let R = [rij ] be a q × q relational matrix and “◦R”
be sum-product fuzzy composition with R, as in b = a◦R. Then the hyperplane Γf

is invariant under “◦R” if and only if R is a unit-row matrix.

Throughout this paper: An FRDS with a standard fuzzifier, an algebraic fuzzy
relational composition, a weighted average defuzzifier, and a unit-row FRX, is called
a FRDS-SAWU for the sake of brevity; “rowi(M)” and “colj(M)” denote respec-
tively the i-th row and the j-th column of a matrix M; ci is the i-th element of the
centers vector, i.e., the center of i-th membership function of the ∨ and ∧ stand
respectively for the max and min functions; ◦

zadeh
and ◦

algebraic
denote respectively

max-min and sum-product fuzzy relational compositions.

3. Main Results

The goal of this section is to provide some assessable FRX-based criterions for
investigating the stability of an equilibrium point of an FRDS-SAWU. Two sets
of sufficient conditions are obtained in this regard which are developed in the two
following subsections.

3.1. First Approach: Convergence to The Center of a Linguistic Term. In
this section, the approach of [3] is directly followed to improve the results therein.

Theorem 3.1. [3, Theorem 3.8] In a first-order FRDS-SAWU, the output (of the
defuzzifier) converges asymptotically globally to cl, if:

1. rll = 1,
2. ril 6= 0, ∀i = 1, . . . , q.

Theorem 3.1 represents a set of sufficient conditions for convergence to the cen-
ter of the l-th linguistic term. In this section, the aim is to alleviate the second
condition.

The general fuzzy relational equation of an unforced first-order FRDS (with s-t
composition) can be written as:

bj (k + 1) = S
i
t (bi (k) , rij) , (4)
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where S
i

denotes the operation of the t-conorm s on several operands, i.e.,
n

S
i=1

λij =

s(λ1j , λ2j , . . . , λnj) for example. This equation means that all elements of the fuzzy
vector in the previous time instant contribute in determining the value of the j-th
element of the fuzzy vector in the current time instant. When the element rij is zero
then there is no direct dependence between the i-th element of the previous fuzzy
vector and the j-th element of the current one, the fact that has been mentioned
in [3]. However, it should be noted that there may be an indirect dependence
between these elements, e.g., j-th element depends on the i′-th one and the i′-th
element depends on the i-th one. In such a case it takes two time instants for the
i-th element to affect the value of j-th element.

Definition 3.2. Regarding (1) or (4):

• There exists a route of length one from the i-th element of b to its j-th
element when bj(k + 1) depends on bi(k).
• More generally, there exists a route of length lpath from the i-th element of

b to its j-th element when bj(k + 1) depends on bi(k + 1− lpath).
• Altogether, there exists a route from the i-th element of b to its j-th element

when there exist a delay index d such that bj(k+1) depends on bi(k+1−d).

Remark 3.3. Obviously, it takes one time instant for the i-th element to affect
the value of the j-th element when there is a route of length one (length-1 route)
from the i-th element to the j-th element.

Definition 3.4. Let R = [rij ] be an n× n FRX. We define the indicator function
of an FRX R as find : [0, 1]→ {0, 1}, such that:

find(x) =

{
0 x = 0
1 x 6= 0

.

An n× n matrix B = [bij ] is called the Boolean matrix of R when bij = find(rij).

Remark 3.5. A value of 1 (0) for the element (i, j) of the Boolean matrix B
indicates the existence (nonexistence) of a route of length 1 in R from the i-th
element to the j-th element.

Lemma 3.6. Let R = [rij ] be an n × n relational matrix with Boolean matrix B.
Then:

a. There exists a route of length two from the i-th element of the fuzzy vector
to its j-th one if and only if:

rowi (B) ◦
zadeh

colj (B) = 1.

b. The number of the routes of length two from the i-th element of the fuzzy
vector to its j-th element (npath) can be calculated as:

npath = row i (B) ◦
algebraic

colj (B) .

Proof. It should be noted that:

a. rowi (B) ◦
zadeh

colj (B) = 1 if and only if maxn
k=1{min{bik, bkj}} = 1, and

this holds if and only if bik = bkj = 1, for some k, 1 6 k 6 n.
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b. rowi (B) ◦
algebraic

colj (B) = npath if and only if
∑n

k=1 bikbkj = npath, and

this holds if and only if there are k1, . . . knpath
such that 1 6 kr 6 n and

bikr
= bkrj = 1, for every 1 6 r 6 npath.

So the result follows. �

Remark 3.7. The product operator in the composition of Lemma 3.6 (part b) can
be replaced by the min operator.

Definition 3.8. Let R = [rij ] be an n × n relational matrix. We call an n × n
matrix, say C = [cij ], the l-route-map of R if cij = 1 when there exists a route of
length l from the i-th element of the fuzzy vector to its j-th one, and cij = 0 when
there is no such route. Furthermore we define l−routes-map as an n × n matrix,
say F = [fij ], such that fij equals the number of the routes of length l from the
i-th element of the fuzzy vector to its j-th one.

Remark 3.9. Let R be the FRX of a first-order FRDS with a fuzzy relational
composition denoted by “◦” and B be the Boolean matrix of R which can be
written as B = find(R). Then:

• B is indeed the 1-route-map of the FRDS.
• The element rij can be used as a criterion to show the efficacy of the i-th

element on the j-th element by the routes of length one; Similarly, The
element (i, j) of R◦R can be used as a criterion to show the efficacy of the
i-th element on the j-th element by the routes of length two; And so on.

• It is very easy to show that find (R ◦R) = B ◦
zadeh

B.

Example 3.10. Consider the following FRX (R). The direct routes (routes
of length one) of the related FRDS are determined after calculating the related
Boolean matrix B.

R =


0.1 0.5 0.3 0 0
0 0.2 0.5 0.2 0
0 0 1 0.1 0.4
0 0 0.8 0.2 0.1
0 0 0 0.3 0.1

 ⇒ B =


1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 1
0 0 0 1 1


Also, the existence and the number of indirect routes of length two are indicated

by calculating 2-route-map and 2-routes-map as follows:

B ◦
zadeh

B =


1 1 1 1 1

0 1 1 1 1
0 0 1 1 1
0 0 1 1 1

0 0 1 1 1

 , B ◦
algebraic

B =


1 2 3 2 1
0 1 3 3 2
0 0 2 3 3
0 0 2 3 3
0 0 1 2 2

 .

Meanwhile, for two classes of fuzzy relational compositions we have:

R ◦
max−min

R =


0.1 0.2 0.5 0.2 0.3
0 0.2 0.5 0.2 0.4
0 0 1 0.3 0.4
0 0 0.8 0.2 0.4
0 0 0.3 0.2 0.1

 ,
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R ◦
sum−prod

R =


0.01 0.15 0.58 0.13 0.12
0 0.04 0.76 0.13 0.22
0 0 1 0.24 0.45
0 0 0.96 0.15 0.35
0 0 0.24 0.09 0.04

 .

For example, consider the element (1,4) of R. From the first element of the fuzzy
vector to its fourth element, it is admitted respectively by the 1-route-map, the
2-route-map, and the 2-routes-map that:

• There is no route of length one.
• There is at least one route of length two.
• There are exactly two routes of length two.

Lemma 3.11. Let R be the FRX of a first-order FRDS and let the l−route-map
and the l−routes-map of R be respectively denoted by Bl

zadeh and Bl
algebraic. Then,

the so-called maps can be calculated as follows.
Bl

zadeh =

l︷ ︸︸ ︷
B ◦

zadeh
· · · ◦

zadeh
B

Bl
algebraic =

l︷ ︸︸ ︷
B ◦

algebraic
· · · ◦

algebraic
B

Proof. The lemma is easily proved by successive use of Lemma 3.6 in matrix form.
�

Definition 3.12. Let R = [rij ] be the FRX of a first-order FRDS. We define the
complete-route-map as an n× n matrix, say P = [pij ], such that pij = 1 if there is
a route (of arbitrary length) from the i-th element of the fuzzy vector to its j-th
element, and pij = 0, otherwise.
Also we define the complete-routes-map as an n × n matrix, say Q = [qij ], where
qij equals the number of the routes from the i-th element of the fuzzy vector to its
j-th element, no matter what the length of the routes are.

Corollary 3.13. For a first-order FRDS, the complete-route-map and the complete-
routes-map are calculated as follows: complete-route-map:

l
∨
i=1

Bi
zadeh,

complete-routes-map:
∑l

i=1 B
i
algebraic,

where Bi
zadeh and Bi

algebraic are calculated as in Lemma 3.11.

Theorem 3.14. For an FRDS-SAWU with an FRX R, the output (of the defuzzi-
fier) converges globally asymptotically to cl if:

1. rll = 1 and rij < 1 for all (i, j) 6= (l, l).
2. All the elements of the l-th column in the complete-route-map are nonzero.

Proof. Since we deal with FRDS-SAWU and rll = 1, then (1) can be rewritten as:

bl(k + 1) =

q∑
i=1

bi(k)ril = bl(k) +

q∑
i=1, i 6=l

bi(k)ril.
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Thus, {bl(k)} is an increasing and bounded sequence and so it is convergent. Indeed,
we have:

bl(k + 1)− bl(k) =

q∑
i=1, i 6=l

bi(k)ril,

and so:

0 = lim
k→∞

(bl(k + 1)− bl(k)) =

q∑
i=1, i 6=l

lim
k→∞

bi(k)ril.

which means:
ril lim

k→∞
bi(k) = 0, ∀i 6= l, (5)

because bi(k) and ril are nonnegative for all i.
By the second condition of the theorem, there is at least one nonzero element in

the l-th column of R, other than rll. Define I := {i : ril 6= 0}. By (5), we conclude
that limk→∞ bi(k) = 0, for every i ∈ I − {l}.

Now, suppose that i ∈ Ic = {i : ril = 0}. By the second condition of the theorem,
there is a route (of unknown length t) from bi(k) to bl(k). Consider there is route
of length one from bi(k) to bi1(k), from bi1(k) to bi2(k), and etc., till finally from
bit−1

(k) to bl(k). Clearly, it−1 ∈ I, so limk→∞ bit−1
(k) = 0 and rit−2it−1

6= 0. Thus,

bit−1
(k + 1) = bit−2

(k)rit−2it−1
+
∑

i 6=it−2

bi(k)riit−1

yields limk→∞ bit−2
(k) = 0, after the operation of limk→∞ on its both sides,

since the terms are nonnegative. By repeating this argument, it is proved that
limk→∞ bi(k) = 0 for all i ∈ Ic.

Therefore, limk→∞ bi(k) = 0, for every i 6= l, and so the result follows. �

3.2. Second Approach: Convergence to the Origin. In this section, a spe-
cial class of dynamic systems is considered in which the behavior (including the
dynamics) of the system is symmetric around the origin and the system is modeled
as a first-order FRDS. An inverted pendulum is a well-known example for globally-
symmetric behavior around the upright position (considered as the origin). There
are also many real-world systems that their behaviors are not globally-symmetric
but can be considered locally-symmetric around a desired equilibrium point which
serves as the local origin. Fuzzy relational modeling can be used in these cases
in a symmetric format, since the fuzzy linguistic modeling is, in essence, a local
modeling scheme.

While the goal of this subsection is the same as of the previous subsection, the
approach of this subsection is different from the previous subsection. The mathe-
matical foundation of the approach of this subsection is based on an special notion
of symmetry for matrices, introduced in [2], which is applied to fuzzy relational
matrices in this paper.

Definition 3.15. [2] Let R be a p× q matrix. Then:

• R is called centrally symmetric (CS), if:

ri,j = rp+1−i,q+1−j ,
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Figure 2. The Membership Functions of an Equally-Spaced

Symmetric Standard Fuzzifier with 5 Linguistic Terms

• R is called centrally skew symmetric (CSS), if:

ri,j = −rp+1−i,q+1−j ,

• R is called row-wise symmetric (RWS), if:

ri,j = rp+1−i,j ,

• R is called row-wise skew symmetric (RWSS), if:

ri,j = −rp+1−i,j ,

• R is called column-wise symmetric (CWS), if:

ri,j = ri,q+1−j ,

• R is called column-wise skew symmetric (CWSS), if:

ri,j = −ri,q+1−j ,

• R is called plus Symmetric (PS), if:

ri,j = rp+1−i,j

= ri,q+1−j

= rp+1−i,q+1−j ,

for all i ∈ {1, . . . , p} and j ∈ {1, . . . , q}.

Remark 3.16. Definition 3.15 is obviously valid for vectors as special cases of
matrices, where p is equal to 1 (row vector) or q is equal to 1 (column vector).

Definition 3.17. A symmetric standard fuzzifier is defined as a standard fuzzifier
(as mentioned in Reminder 2.1) in which the non-fuzzy universe of discourse is a
symmetric interval in R around 0, say [−x, x], and the whole set of membership
functions, when depicted, constitute a symmetric graph about the origin (about
the vertical axis); See Figure 2 for example.

Definition 3.18. A symmetric weighted average defuzzifier (SWAD) is defined as
a weighted average defuzzifier (as mentioned in Reminder 2.3) in which the centers
vector is CSS.

Lemma 3.19. Assume a symmetric weighted average defuzzifier with 2m+ 1 cen-
ters, where m ∈ N. If the (fuzzy) input vector of the defuzzifier (say b) is CS, then,
the (non-fuzzy) output of the defuzzifier (y) equals zero.
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Proof. Let the centers vector and the input vector of the defuzzifier respectively
be:

c =
[
−cm · · · −c1 0 c1 · · · cm

]
,

b =
[
−bm · · · −b1 0 b1 · · · bm

]
,

The result follows easily, since:

y =
−bmcm − · · · − b1c1 + b1c1 + · · ·+ bmcm

bm + · · ·+ b1 + b0 + b1 + · · ·+ bm
= 0.

�
Theorem 3.20. [2, Theorem 2] Let R be a n× n CS matrix which has n distinct

eigenvalues. Then Rk tends to a PS matrix as k grows, if all of the eigenvalues
associated with RWSS eigenvectors are located in the unit circle.

Remark 3.21. In Theorem 3.20, the eigenvectors has been considered to be column
vectors, and accordingly, RWSS eigenvectors have been selected to be dealt with.
However, in this paper, CSS eigenvectors are selected instead. In this manner, it
does not matter for the eigenvectors to be row vector or column vector.

Remark 3.22. The eigenvalues that should be checked in Theorem 3.20 is about
the half of all eigenvalues of R. See [2] for more information. Meanwhile, it is worth
mentioning that the condition of eigenvalues in this theorem is true for most cases
as simulation results admit.

Remark 3.23. The symmetric behavior of a dynamic system leads to a CS FRX
when the system is modeled as a first-order FRDS.

Theorem 3.24. Let q = 2m + 1, where m ∈ N. Consider an FRDS-SAWU in
which:

• The q × q FRX R is CS and has q distinct eigenvalues.
• The standard fuzzifier is symmetric with q linguistic terms.
• The weighted average defuzzifier is symmetric with q centers (the same as

the fuzzifier).

Then, the output (of the defuzzifier) converges globally asymptotically to the origin
if all of the eigenvalues associated with the CSS eigenvectors are located in the unit
circle.

Proof. The fuzzy relational equation of the considered model can be written as
b (k) = b (k − 1) R = b (0) Rk, since the fuzzy relational composition is of sum-
product type and the FRX is a unit-row matrix. Thus, we can write bj (k) =

b (0) colj

(
Rk
)
,∀j = {1, · · · , q}. By Theorem 3.20 and Remark 3.21, Rk tends to

a PS matrix as k approaches ∞. Every PS matrix is CWS too. Therefore,

lim
k→∞

colj

(
Rk
)

= lim
k→∞

colq+1−j

(
Rk
)
,

and so limk→∞ bj (k) = limk→∞ bq+1−j (k), for all j = {1, · · · , q}. Thus, using
Lemma 3.19, the final conclusion is made, i.e., limk→∞ y = 0. �
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4. Examples and Simulation Results

In this section, two examples are provided to validate the proposed sets of suffi-
cient conditions, i.e., Theorem 3.14 and Theorem 3.24.

Example 4.1 (Convergence to the Center of a Linguistic Term). Consider an
FRDS-SAWU described by (1). Suppose the FRX R as:

R =


0.8 0.2 0 0 0
0 0.8 0.2 0 0
0 0 1 0 0
0 0 0.2 0.8 0
0 0 0 0.2 0.8

 .

The conditions of Theorem 3.14 hold for the third linguistic term. Therefore, it
can be concluded that the actual output of the dynamic system certainly converges
to the center of the third membership function from every arbitrary initial point in
the non-fuzzy universe of discourse. This can be observed in Table 1 which shows
the evolution of the output fuzzy vector from an initial state for 100 time steps.

It worth mentioning that in Table 1, the sum of the elements of each row is one,
as expected. This illustrates the fact that the hyperplane (2) is invariant under the
operation “◦R”.

k b(k)

0 1 0 0 0 0

1 0.8 0.2 0 0 0

2 0.64 0.32 0.04 0 0
3 0.512 0.384 0.104 0 0

4 0.4096 0.4096 0.1808 0 0

5 0.3277 0.4096 0.2627 0 0
...

...
...

...
...

...
100 0 0 1 0 0

Table 1. Evolution of the Output Fuzzy Vector

from [1, 0, 0, 0, 0] to [0, 0, 1, 0, 0] for 100 Time Steps (Example 4.1)

Example 4.2 (Convergence to the Origin). Consider an FRDS-SAWU described
by (1). Suppose the FRX R as:

R =


0.3684 0.3684 0.0789 0.0789 0.1053
0.2889 0.2000 0.2444 0.1111 0.1556
0.2167 0.1500 0.2667 0.1500 0.2167
0.1556 0.1111 0.2444 0.2000 0.2889
0.1053 0.0789 0.0789 0.3684 0.3684


According to Theorem 3.24, the eigenvalues associated with CSS eigenvectors

should be checked. The eigenvectors of R (5 column vectors concatenated as a
modal matrix M) and the corresponding eigenvalues (gathered as a vector v) are
as follows.
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M=


0.2279 0.1583 0.1138 0.3514 0.1486
0.1857 0.4047 −0.5903 0.3367 −0.3367
0.1728 −1.1259 0.9531 0 0
0.1857 0.4047 −0.5903 −0.3367 0.3367
0.2279 0.1583 0.1138 −0.3514 −0.1486


v =

(
1.0000 0.0688 −0.0173 0.3909 −0.0389

)
The conditions of Theorem 3.24 are satisfied. Note that one of the eigenval-

ues equals 1 and is not in the unit circle but that eigenvalue is not related to a
CSS eigenvector. Therefore, we expect that the output of the system converges
to the origin from any arbitrary initial condition. Let us, for example, run the
system with initial condition y(0) = −2 which is equivalent to the fuzzy vector[

1 0 0 0 0
]
, according to the fuzzifier specified in Figure 2. Table 2 shows

the non-fuzzy and fuzzy outputs in some instances of time. It can be observed in
this table that the output fuzzy vector b(k) tends to a CS vector (CWS row vector)
and the non-fuzzy output tends to zero.

k y(k) b(k)

0 -2.000 1.0000 0 0 0 0

1 -0.816 0.3684 0.3684 0.0789 0.0789 0.1053
2 -0.318 0.2826 0.2383 0.1678 0.1364 0.1748

3 -0.124 0.2490 0.2059 0.1725 0.1656 0.2070

4 -0.049 0.2361 0.1935 0.1728 0.1778 0.2197
8 -0.001 0.2281 0.1858 0.1728 0.1855 0.2277

9 -0.000 0.2280 0.1857 0.1728 0.1856 0.2279

Table 2. Evolution of the System Output

(Crisp and Fuzzy Outputs) for 10 Time Steps (Example 4.2)

5. Conclusion

In this paper, some sets of sufficient conditions were obtained to conclude the
global asymptotic stability of an equilibrium point of an unforced first-order fuzzy
relational dynamic systems.

First, by introducing the concept of direct and indirect paths, the result of [3]
was improved by obtaining a less conservative set of sufficient conditions. Second,
a new set of sufficient conditions was obtained for dynamic systems with symmetric
behavior about the equilibrium point by using the mathematical results of [2]. The
intraplanarity property, introduced in [3], has been used in both approaches of this
paper.

In view of future works and based on the methods and the results of this paper,
we present some suggestions as follows.

Concerning the analytical derivation of the conditions, the results may be im-
proved by obtaining yet less conservative sets of sufficient conditions (for the FRM
with the configuration of this paper or any other configurations).

In view of possible applications of the proposed conditions, it should be noted
that the derived sets of sufficient conditions might be used as an extra property of
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the FRX of an FRM/FRDS structure, both in plant identification procedures (to
obtain more reliable plant models) and in controller tuning procedures (to obtain
more reliable controllers).

Furthermore, knowing the fact that the results of this paper are derived for first-
order fuzzy relational dynamic systems, an important step ahead is to generalize
the results of this paper to higher-order fuzzy relational dynamic systems [1] which
can handle more complex systems.
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