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FIXED POINTS THEOREMS WITH RESPECT TO

FUZZY W-DISTANCE

N. SHOBKOLAEI, S. M. VAEZPOUR AND S. SEDGHI

Abstract. In this paper, we shall introduce the fuzzy w-distance, then prove a

common fixed point theorem with respect to fuzzy w-distance for two mappings

under the condition of weakly compatible in complete fuzzy metric spaces.

1. Introduction and Preliminaries

There exists considerable literature of fixed point theory dealing with results on
fixed or common fixed points in fuzzy metric space (e.g. [1]-[8], [11]-[13], [18]-[19]).
George and Veeramani [5] modified the concept of fuzzy metric space introduced by
Kramosil and Michalek [10] which is a special case of probabilistic metric space and
proved that the topology introduced by fuzzy metric is Hausdorff. Then Amini and
Saadati [1] considered some important topological properties of fuzzy metric spaces.
The concept of w-distance in generalized spaces, firstly, introduced by Saadati et.al.,
[15], they defined probabilistic w-distance and proved some fixed point theorems.
Also some extension of w-distance are considered see [16] and [2]. In this paper,
using the idea of Saadati et., al., we define fuzzy w-distance and prove a common
fixed point theorem with respect to fuzzy w-distance for two mappings under the
condition of weakly compatible.

For the sake of completeness, we briefly recall some notions from the theory of
fuzzy metric spaces.

Definition 1.1. [17] A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is called a contin-
uous t-norm if ([0, 1], ∗) is an Abelian topological monoid with the unit 1 such that
a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1].

Two typical examples of continuous t-norms are a ∗ b = ab and a ∗ b = min{a, b}.
Definition 1.2. [5] The triple (X,M, ∗) is called a fuzzy metric space if X is
an arbitrary non-empty set, ∗ is a continuous t-norm and M is a fuzzy set on
X2 × [0,∞) satisfying the following conditions, for each x, y, z ∈ X and t, s > 0,

(FM-1) M(x, y, t) > 0,
(FM-2) M(x, y, t) = 1 if and only if x = y,
(FM-3) M(x, y, t) = M(y, x, t),
(FM-4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(FM-5) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.
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Example 1.3. Let (X, d) be a metric space. Denote a ∗ b = ab for all a, b ∈ [0, 1].
For each t ∈ (0,∞), define

M(x, y, t) =
t

t+ d(x, y)

for all x, y ∈ X. Then (X,M, ∗) is a fuzzy metric space.

Example 1.4. Let (X, d) be a metric space and ψ be an increasing and continuous
function from R+ into (0, 1) such that limt−→∞ ψ(t) = 1. Four typical examples

of these functions are ψ(x) =
x

x+ 1
, ψ(x) = sin(

πx

2x+ 1
), ψ(x) = 1 − e−x and

ψ(x) = e
−1
x . Let a ∗ b ≤ ab, for all a, b ∈ [0, 1]. For each t ∈ (0,∞), define

M(x, y, t) = [ψ(t)]
d(x,y)

for all x, y ∈ X. It is easy to see that (X,M, ∗) is a fuzzy metric space.

Proof. (FM-1), (FM-2), (FM-3) and (FM-5) of definition 1.2 are obvious. to prove
(FM-4), let x, y, a ∈ X and t, s > 0. Then it is easy to show that

M(x, y, t+ s) = [ψ(t+ s)]d(x,y)

≥ [ψ(t+ s)]d(x,a)+d(a,y)

= [ψ(t+ s)]d(x,a) . [ψ(t+ s)]d(a,y)

≥ [ψ(t)]d(x,a) ∗ [ψ(s)]d(a,y)

= M(x, a, t) ∗M(a, y, s).

�
Let (X,M, ∗) be a fuzzy metric space. For t > 0, the open ball B(x, r, t) with

center x ∈ X and radius 0 < r < 1 is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}.
If (X,M, ∗) is a fuzzy metric space, let τ be the set of all A ⊂ X with x ∈ A if

and only if there exist t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A. Then τ is a
topology on X (induced by the fuzzy metric M). This topology is Hausdorff and
first countable. A sequence {xn} in X converges to x if and only if M(xn, x, t)→ 1
as n → ∞, for each t > 0. It is called a Cauchy sequence if for each 0 < ε < 1
and t > 0, there exists n0 ∈ N such that M(xn, xm, t) > 1− ε for each n,m ≥ n0.
The fuzzy metric space (X,M, ∗) is said to be complete if every Cauchy sequence
is convergent. A subset A of X is said to be F -bounded if there exists t > 0 and
0 < r < 1 such that M(x, y, t) > 1− r for all x, y ∈ A.

Lemma 1.5. [6] Let (X,M, ∗) be a fuzzy metric space. Then M(x, y, t) is non-
decreasing with respect to t, for all x, y in X.

Definition 1.6. Let (X,M, ∗) be a fuzzy metric space. Then M is said to be
continuous on X2 × (0,∞) if

lim
n→∞

M(xn, yn, tn) = M(x, y, t),

whenever a sequence {(xn, yn, tn)} in X2 × (0,∞) converges to a point (x, y, t) ∈
X2 × (0,∞). i.e.

lim
n→∞

M(xn, x, t) = lim
n→∞

M(yn, y, t) = 1 and lim
n→∞

M(x, y, tn) = M(x, y, t).
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Lemma 1.7. Let (X,M, ∗) be a fuzzy metric space. Then M is a continuous
function on X2 × (0,∞).

Proof. See Proposition 1 of [14]. �

2. Fixed Point Theorems in Fuzzy W-distance

Now, we introduce the concept of fuzzy w-distance and prove many fixed point
theorem in fuzzy metric spaces with fuzzy w-distance which are a nice generalization
of the known results in metric and ultra fuzzy metric spaces.

Definition 2.1. Let (X,M, ∗) be a fuzzy metric space. Then a function S : X ×
X × [0,∞) −→ [0, 1] is called a fuzzy w-distance on X if the following are satisfied.

(1) S(x, y, t+ s) ≥ S(x, z, t) ∗ S(z, y, s) for any x, y, z ∈ X and t, s > 0,

(2) for each x ∈ X and t > 0, S(x, ., t) is upper semicontinuous. That is, if there
exists a sequence {yn} of X such that yn −→ y, then

lim sup
n→∞

S(x, yn, t) ≤ S(x, y, t),

(3) for any 0 < ε < 1, there exists 0 < δ < 1 such that S(z, x, t) ≥ 1 − δ and
S(z, y, s) ≥ 1− δ for all t, s > 0 imply M(x, y, t+ s) ≥ 1− ε.

Let us give some examples of fuzzy w-distance.

Example 2.2. Every fuzzy metric is a fuzzy w-distance.

Proof. Let 0 < ε < 1 be given, we can choose 0 < δ < 1 such that (1− δ)∗ (1− δ) ≥
1− ε. Then if M(z, x, t) ≥ 1− δ and M(z, y, s) ≥ 1− δ, we have

M(x, y, t+ s) ≥ M(z, x, t) ∗M(z, y, s)

≥ (1− δ) ∗ (1− δ)
≥ 1− ε.

�
Example 2.3. Let (X, ||.||) be a normed linear space and (X,M, ∗) be a fuzzy
metric space with M(x, y, t) = t

t+||x−y|| and a ∗ b = a.b for every a, b ∈ [0, 1]. Then

the function S : X × X × [0,∞) −→ [0, 1] defined by S(x, y, t) = t
t+||x||+||y|| for

every x, y ∈ X, t, s > 0 is a fuzzy w-distance on X.

Proof. Let x, y, a ∈ X and t, s > 0. Then it is easy to show that

S(x, y, t+ s) =
t+ s

t+ s+ ||x||+ ||y||

≥ t

t+ ||x||+ ||a||
.

s

s+ ||a||+ ||y||
= S(x, a, t) ∗ S(a, y, s).

(2) obviously hold, to prove (3), let 0 < ε < 1 be given, we can choose 0 < δ < 1
such that (1− δ) ∗ (1− δ) ≥ 1− ε. Then if S(z, x, t) ≥ 1− δ and S(z, y, t) ≥ 1− δ,
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we have

M(x, y, t+ s) =
t+ s

t+ s+ ||x− y||
≥ t

t+ ||x||
.

s

s+ ||y||

≥ t

t+ ||x||+ ||z||
.

s

s+ ||z||+ ||y||
= S(z, x, t).S(z, y, s)

≥ (1− δ).(1− δ) = (1− δ) ∗ (1− δ)
≥ 1− ε.

�By a similar argument we can proof the following examples.

Example 2.4. Let (X, ||.||) be a normed linear space and (X,M, ∗) be a fuzzy
metric space with

M(x, y, t) =

{
1

1+||x−y|| if 0 < t < 1,
t

t+||x−y|| if t ≥ 1,

and a∗b = a.b for every a, b ∈ [0, 1]. Then the function S : X×X× [0,∞) −→ [0, 1]
defined by S(x, y, t) = 1

1+||x||+||y|| for every x, y ∈ X, t > 0 is a fuzzy w-distance on

X.
Proof. Let x, y, a ∈ X and t, s > 0. Then it is easy to show that

S(x, y, t+ s) =
1

1 + ||x||+ ||y||

≥ 1

1 + ||x||+ ||a||
.

1

1 + ||a||+ ||y||
= S(x, a, t) ∗ S(a, y, s).

(2) is obvious. To prove (3), let 0 < ε < 1 be given, we can choose 0 < δ < 1 such
that (1 − δ) ∗ (1 − δ) ≥ 1 − ε. Then if S(z, x, t) ≥ 1 − δ and S(z, y, t) ≥ 1 − δ, we
have 1

1+||x|| ≥ 1 − δ and 1
1+||y|| ≥ 1 − δ. Hence for every t, s > 0 it is easy to see

that

M(x, y, t+ s) ≥ 1

1 + ||x||
.

1

1 + ||y||
≥ (1− δ).(1− δ) = (1− δ) ∗ (1− δ)
≥ 1− ε,

which prove (3). �

Example 2.5. Let (X,M, ∗) be a fuzzy metric space. Let α be a function from X
into [0, 1]. Define S : X ×X × [0,∞) −→ [0, 1] as follows :

S(x, y, t) = α(x) ∗M(x, y, t)

for every x, y ∈ X, t > 0. Then S is a fuzzy w-distance on X.

Proof. Let x, y, a ∈ X and t, s > 0. Then it is easy to show that

S(x, y, t+ s) = α(x) ∗M(x, y, t+ s)

≥ (α(x) ∗ α(a)) ∗ (M(x, a, t) ∗M(a, y, s))

= S(x, a, t) ∗ S(a, y, s).
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(2) is obvious. To prove (3), let 0 < ε < 1 be given, we can choose 0 < δ < 1 such
that (1 − δ) ∗ (1 − δ) ≥ 1 − ε. Then if S(z, x, t) ≥ 1 − δ and S(z, y, s) ≥ 1 − δ, we
have M(z, x, t) ≥ 1− δ and M(z, y, s) ≥ 1− δ. Hence

M(x, y, t+ s) ≥ M(z, x, t) ∗M(z, y, s)

≥ (1− δ) ∗ (1− δ)
≥ 1− ε.

�
The following Lemma plays an important role in the proof of the fixed point

theorems, and variational inequalities.

Lemma 2.6. Let (X,M, ∗) be a fuzzy metric space and let S be a fuzzy w-distance
on X. Let {xn} and {yn} be sequences in X, let {αn(t)} and {βn(t)} be sequences
in [0, 1] converging to 1 for t > 0, and let x, y, z ∈ X, t > 0. Then the following
hold:

(i) If S(xn, y, t) ≥ αn(t) and S(xn, z, t) ≥ βn(t) for any n ∈ N, then y = z. In
particular, if S(x, y, t) = 1 and S(x, z, t) = 1, then y = z,

(ii) if S(xn, yn, t) ≥ αn(t) and S(xn, z, t) ≥ βn(t) for any n ∈ N, then {yn}
converges to z,

(iii) if S(xn, xm, t) ≥ αn(t) for any n,m ∈ N with m > n, then {xn} is a Cauchy
sequence,

(iv) if S(y, xn, t) ≥ αn(t) for any n ∈ N, then {xn} is a Cauchy sequence.

Proof. We prove parts (ii) and (iii), other parts similarly can be proved. Let 0 <
ε < 1 be given. From the definition of fuzzy w-distance, there exists 0 < δ < 1
such that S(u, v, t) ≥ 1− δ and S(u, z, t) ≥ 1− δ imply M(v, z, 2t) ≥ 1− ε. Choose
n0 ∈ N such that αn(t) ≥ 1− δ and βn(t) ≥ 1− δ, for every n ≥ n0. Then we have,
for any n ≥ n0, that S(xn, yn, t) ≥ αn(t) ≥ 1 − δ and S(xn, z, t) ≥ βn(t) ≥ 1 − δ
and hence M(yn, z, 2t) ≥ 1 − ε. This implies that {yn} converges to z. To prove
(iii). Let 0 < ε < 1 be given. As in the proof of (2), choose 0 < δ < 1. Then for
any n,m ≥ n0 + 1,

S(xn0 , xn, t) ≥ αn0(t) ≥ 1− δ and S(xn0 , xm, t) ≥ αn0(t) ≥ 1− δ
and hence M(xn, xm, 2t) ≥ 1− ε. This implies that {xn} is a Cauchy sequence. �

We recall that two maps f and g are said to be weak compatible if they commute
at their coincidence point, that is, fx = gx implies that fgx = gfx.

Definition 2.7. Define Φ ={ϕ : R+ −→ R+|ϕ is an integrable mapping such that,

for each 0 < ε < 1, 0 <
∫ ε
0
ϕ(s)ds < 1 ,

∫ 1

0
ϕ(s)ds = 1}, and

Ψ = {ψ : (0, 1] → (0, 1]|ψ is a continuous and increasing function such that
ψ(a) > a for each a ∈ (0, 1) and lim

n→∞
ψn(a) = 1}.

Theorem 2.8. Let (X,M, ∗) be a complete fuzzy metric space and S be a fuzzy
w-distance. Let f, g be self-mappings on X satisfy the following conditions:

(i)g(X) ⊆ f(X) and f(X) is a closed subset of X,

(ii) the pair (f, g) are weakly compatible,
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(iii) ∫ S(gx,gy,t)

0
ϕ(s)ds ≥ ψ(

∫ S(fx,fy,t)

0
ϕ(s)ds),

for each x, y ∈ X and t > 0, where ϕ ∈ Φ and ψ ∈ Ψ. If

d(t) = inf{S(x, y, t)|x, y ∈ X} > 0

for all t > 0, then f, g have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X. By (i), choose a point x1 in X such that
gx0 = fx1 . In general there exists a sequence {xn} such that, gxn = fxn+1, for
n = 0, 1, 2, · · · . By (iii), we have∫ S(gxn,gxn+m,t)

0
ϕ(s)ds ≥ ψ(

∫ S(fxn,fxn+m,t)

0
ϕ(s)ds)

= ψ(

∫ S(gxn−1,gxn+m−1,t)

0
ϕ(s)ds)

≥ ψ2(

∫ S(fxn−1,fxn+m−1,t)

0
ϕ(s)ds)

...

≥ ψn(

∫ S(gx0,gxm,t)

0
ϕ(s)ds)

≥ ψn(

∫ d(t)

0
ϕ(s)ds).

Since ψ ∈ Ψ by Lemma 2.6, {gxn} is a Cauchy sequence. Since X is complete,
{gxn} converges to some point z ∈ X.

Thus, we have
lim

n→∞
M(fxn, z, t) = lim

n→∞
M(gxn, z, t) = 1.

Since f(X) is closed, there exists u ∈ X such that f(u) = z. We will prove that
gu = z.

We have∫ S(gxn,fu,t)

0
ϕ(s)ds =

∫ S(gxn,z,t)

0
ϕ(s)ds ≥

∫ lim supm→∞ S(gxn,gxm,t)

0
ϕ(s)ds

= lim sup
m→∞

∫ S(gxn,gxn+m,t)

0
ϕ(s)ds

≥ lim sup
m→∞

ψn(

∫ S(gx0,gxm,t)

0
ϕ(s)ds)

≥ ψn(

∫ d(t)

0
ϕ(s)ds).

Hence

lim inf
n→∞

∫ S(gxn,fu,t)

0

ϕ(s)ds = lim inf
n→∞

ψn(

∫ d(t)

0

ϕ(s)ds) = 1.

Therefore

lim
n→∞

∫ S(gxn,fu,t)

0
ϕ(s)ds = lim

n→∞

∫ S(fxn,fu,t)

0
ϕ(s)ds = 1.

On the other hand by (iii) we have,∫ S(gxn,gu,t)

0

ϕ(s)ds ≥ ψ(

∫ S(fxn,fu,t)

0

ϕ(s)ds).
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Since ψ is continuous we have

lim inf
n→∞

∫ S(gxn,gu,t)

0
ϕ(s)ds ≥ ψ(lim inf

n→∞

∫ S(fxn,fu,t)

0
ϕ(s)ds) = 1.

Thus,

lim
n→∞

∫ S(gxn,gu,t)

0
ϕ(s)ds = lim

n→∞

∫ S(gxn,fu,t)

0
ϕ(s)ds = 1.

Hence,
lim
n→∞

S(gxn, fu, t) = lim
n→∞

S(gxn, fu, t) = 1.

By Lemma 2.6,we have gu = fu = z.
Since the pair (f, g) are weakly compatible , we have gfu = fgu. It follows that

ffu = fgu = gfu = ggu. Now, we prove that gu = ggu. If S(gu, ggu, t) 6= 1, then
using condition (iii), we get

∫ S(gu,ggu,t)

0
ϕ(s)ds ≥ ψ(

∫ S(fu,fgu,t)

0
ϕ(s)ds) = ψ(

∫ S(gu,ggu,t)

0
ϕ(s)ds)

>

∫ S(gu,ggu,t)

0
ϕ(s)ds,

which is a contradiction. That is S(gu, ggu, t) = 1. Similarly, if S(gu, gu, t) 6= 1,
then using condition (iii), we get

∫ S(gu,gu,t)

0
ϕ(s)ds ≥ ψ(

∫ S(fu,fu,t)

0
ϕ(s)ds) = ψ(

∫ S(gu,gu,t)

0
ϕ(s)ds)

>

∫ S(gu,gu,t)

0
ϕ(s)ds,

which is a contradiction. That is, S(gu, gu, t) = 1 and by Lemma 2.6, we have
z = gu = ggu = fgu. Thus z is a common fixed point of f and g.

To prove the uniqueness, let y be another common fixed point of f and g.
Then y = fy = gy. If S(z, y, t) 6= 1, then using condition (iii), we have

∫ S(z,y,t)

0
ϕ(s)ds =

∫ S(gz,gy,t)

0
ϕ(s)ds

≥ ψ(

∫ S(fz,fy,t)

0
ϕ(s)ds) = ψ(

∫ S(z,y,t)

0
ϕ(s)ds)

>

∫ S(z,y,t)

0
ϕ(s)ds,

which is a contradiction. It follows that S(z, y, t) = 1. Similarly, it follows that
S(z, z, t) = 1. By Lemma 2.6, we have z = y. This completes the proof. �

Corollary 2.9. Let (X,M, ∗) be a complete fuzzy metric space and S be a fuzzy
w-distance. Let f, g be self-mappings on X satisfying the following conditions:

(i)g(X) ⊆ f(X) and f(X) is a closed subset of X,
(ii) the pair (f, g) are weakly compatible,
(iii) S(gx, gy, t) ≥ ψ(S(fx, fy, t)), for each x, y ∈ X and t > 0, where ψ ∈ Ψ. If

d(t) = inf{S(x, y, t)|x, y ∈ X} > 0

for all t > 0, then f, g have a unique common fixed point in X.

Proof. It is enough to set that ϕ(s) = 1 in Theorem 2.8. �
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Corollary 2.10. Let (X,M, ∗) be a complete fuzzy metric space and S be a fuzzy
w-distance. Let f, g, h be self-mappings on X satisfy the following conditions:

(i) h be one to one continuous mapping which commute with f and g
(ii) hg(X) ⊆ hf(X) and hf(X) is a closed subset of X,
(iii) The pair (hf, hg) are weakly compatible,
(iv) S(hgx, hgy, t) ≥ ψ(S(hfx, hfy, t)), for every x, y ∈ X and t > 0 where

ψ ∈ Ψ.
If

d(t) = inf{S(x, y, t)|x, y ∈ X} > 0

for all t > 0, then f, g, h have a unique common fixed point in X.

Proof. By Corollary 2.9, hf and hg have a unique common fixed point z ∈ X.
Since h is one to one, from hfz = hgz = z, it follows that fz = gz. We claim that
gz = z. If S(z, gz, t) 6= 1, then using condition (iii) and hggz = g(hgz) = gz we
have,

S(z, gz, t) = S(hgz, hggz, t)

≥ ψ(S(hfz, hfgz, t)) = ψ(S(z, fz, t)) = ψ(S(z, gz, t))

> S(z, gz, t)

which is a contradiction.That is S(z, gz, t) = 1. Similarly, if S(z, z, t) 6= 1 then

S(z, z, t) = S(hgz, hgz, t) ≥ ψ(S(hfz, hfz, t)) ≥ ψ(S(z, z, t)) > S(z, z, t),

which is a contradiction. Thus S(z, z, t) = 1. and by Lemma 2.6,we have z = gz =
fz. �

We recall that, self-mapping T has property P if fixed point set F (T ) 6= ø, implies
F (Tn) = F (T ), for each n ∈ N. For more details see [9].

Corollary 2.11. Let (X,M, ∗) be a complete fuzzy metric space and S be a fuzzy
w-distance. Let g be a self-mapping on X satisfy the following conditions:

ı) S(gx, gy, t) ≥ ψ(S(x, y, t)), for every x, y ∈ X and t > 0, where ψ ∈ Ψ. If

d(t) = inf{S(x, y, t)|x, y ∈ X} > 0

for all t > 0, then g have a unique common fixed point in X. Moreover, g has
property P .

Proof. By Corollary 2.9, if set f = I, the identity map, then g has a fixed point.
Therefore, F (gm) 6= ø, for each positive integer m ≥ 1. Fix a positive integer n > 1
and let z ∈ F (gn). We claim that gz = z. If S(z, gz, t) 6= 1, then using (i) we have

S(z, gz, t) = S(gnz, gn+1z, t) ≥ ψn(S(z, gz, t),

which is a contradiction. That is, S(z, gz, t) = 1. Similarly, if S(z, z, t) 6= 1, then

S(z, z, t) = S(gnz, gnz, t) ≥ ψn(S(z, z, t),

which is a contradiction. Thus S(z, z, t) = 1. By Lemma 2.6, we have z = gz.
Therefore, g has property P . �
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Example 2.12. Let (X,M, ∗) be a fuzzy metric space, where X = [0, 1],M(x, y, t) =

e−
|x−y|
t with t-norm defined by a ∗ b = a.b, for all a, b ∈ [0, 1]. Let S(x, y, t) = e−

y
t

for all t > 0 and x, y ∈ X. Define self-maps f and g on X as follows:

gx =
x2

2
, fx = x

for any x ∈ X.
First we show that S is a fuzzy w-distance on X. For all x, y, a ∈ X and t, s > 0,

we have
S(x, y, t+ s) = e−

y
t+s ≥ e− zt .e−

y
s = S(x, z, t) ∗ S(z, y, s).

(2) is obvious. To show (3), let 0 < ε < 1 be given, we can choose 0 < δ = ε < 1.
Then S(z, x, t) ≥ 1− δ and S(z, y, s) ≥ 1− δ. Hence

M(x, y, t+ s) = e−
|x−y|
t+s ≥ e−

y
t ≥ 1− δ = 1− ε.

Also, (f, g) is weakly compatible. If ψ(a) =
√
a, it is easy to see that

S(gx, gy, t) ≥ ψ(S(fx, fy, t)).

It follows that all conditions in Corollary 2.9 are hold, and z = 0 is a unique
common fixed point of f and g.
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