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Abstract. Predicting different behaviors in computer networks is the sub-

ject of many data mining researches. Providing a balanced Intrusion Detec-

tion System (IDS) that directly addresses the trade-off between the ability
to detect new attack types and providing low false detection rate is a funda-

mental challenge. Many of the proposed methods perform well in one of the

two aspects, and concentrate on a subset of system requirements. There are
many non-functional requirements for an applicable and practical IDS. The

process should be online, incremental and adaptive to ever changing behaviors

of normal users and attackers. Moreover providing comprehensive and inter-
active IDS could both, enhance the performance of the system and extend the

knowledge of domain experts.

In this paper, we propose a fuzzy rule-based classification system using
a hierarchical rule learning method. In each stage of the hierarchy, a set of

rules with certain length of antecedent are investigated. A novel rule weighting
method, based on the entropy measure, determines the appropriateness of each

rule. The experimental results on KDD99 intrusion detection dataset show the

effectiveness of the proposed method in tackling the tradeoff between accuracy
and comprehensibility of fuzzy rule-based systems. Although the dimension of

antecedents is not limited, the resultant rule-base contains a small number of

complex rules, which are essential to reach the desired accuracy.

1. Introduction

Intrusion Detection Systems (IDS) are effective security tools that look for known
or potential threats in network traffic and/or audit data recorded by hosts [16] .
Basically, an IDS analyzes information about users behaviors from various sources
such as audit trail, system table, and network usage data [3]. The problem of intru-
sion detection has been studied extensively in computer security, and has received
a lot of attention in machine learning and data mining [7, 32].

There are two major paradigms for intrusion detection: misuse detection and
anomaly detection [8, 43]. The former method, also called signature based detec-
tion, is based on known patterns for malicious activities. This method can establish
a rule-base, by analysing the signature of the known attack types [5, 39]. The latter,
identifies novel attacks that deviate from established statistical patterns of users,
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systems or networks. In spite of their capability to detect unknown attacks, sys-
tems designed for anomaly detection, usually generate high volumes of false alarms
(i.e., matching normal traffic events with attack signatures, or permitting malicious
connections) [47].Therefore, the tradeoff between the ability to detect new attacks
and the ability to generate a low rate of false alarms is the key point to develop an
effective IDS.

According to the latest research literature, many different classification tech-
niques have been applied to the intrusion detection problem [38]. Using data mining
approaches, the patterns of network users activities could be extracted efficiently.
Various techniques have been applied to discover useful knowledge that describes
the users′ behaviours from large audit data sets. Artificial neural networks, induc-
tive and associative rule-based systems, genetic algorithms, clustering and outlier
detection schemes are among widely used techniques for anomaly and misuse de-
tections [41, 33, 20, 44]. Many of these works are proposed only to optimize the
classification accuracy (or overall classification cost) and omits the necessity of
interpretability optimization [57].

In order to increase the intrusion detection rate, a multiple-level tree classifier
was proposed in [59] which contains three-levels of decision tree classification. A
serious shortcoming of this approach, and its further improvements [60], is its high
false alarm rate as well as low detection rate for unknown attacks.

To tackle high false alarm rate, some of the researches suggested to combine
different techniques in hybrid systems [60]. The KDD cup 99 winner fused 5 ×
10 C5 decision trees using cost-sensitive bagged boosting algorithm [46]. This
method has a low false alarm rate but does not perform well in detecting new attack
types. To deal with this problem, Pan et al. [42] proposed a misuse detection
method incorporating different classification abilities of neural networks and the
C4.5 decision trees algorithm for different attack types. Another hybrid system is
proposed by Hwang [24] in which, he tried to combine the advantages of signature
based and anomaly detection systems (i.e., low false positive rate and detecting
unknown attacks).

Each of the above-mentioned works increased the accuracy of the system but
provided a more complex model. In fact, the complexity of the model is a common
drawback for most of the proposed methods. A complex model could not be used
along with domain expert knowledge, which is a major disadvantage in the field of
intrusion detection.

Fuzzy systems based on if-then rules have been successfully used in many appli-
cations areas. Particularly, in the area of network security, fuzzy logic techniques
have been used since 1990’s [44, 23]. Precision and complexity are inversely related.
Fuzzy logic can deal with imprecision and vagueness. Therefore, it is appropriate
for the development of security systems, since many security elements are fuzzy
[34, 50]. Patcha stated that several quantitative parameters that are used in the
context of intrusion detection can potentially be viewed as fuzzy variables [44].
Bridges argued that the security concept is fuzzy: the concept of fuzziness helps to
smooth out the abrupt separation of normal behaviors from abnormal behaviours
[6].
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Many fuzzy rule based classifiers are proposed for intrusion detection. While
usual rule based techniques fail in the case of the KDD 99, major rule based IDS,
namely UCS [51], XCS [13] and XCSR [4], use genetic algorithms for introducing
new rules into the population or tuning rule weights, which is too much time con-
suming and result in a huge rule base. Another state of the art fuzzy rule-based
system is MOGFIDS that is evolved from an agent based evolutionary framework
and can act as a genetic feature selection wrapper [57].

Ozyer et. al. proposed a method based on iterative rule learning using a fuzzy
rule-based genetic classifier [41]. Their approach is mainly composed of two phases.
First, a large number of candidate fuzzy rules (having at most three itemsets as
the length of antecedent) are generated for each class. A genetic algorithm will
try to extract one individual (i.e., rule) for one label iteratively. The antecedent
of each rule is coded as a chromosome and a function of the confidence is used
as the fitness function. During the next stage, boosting mechanism evaluates the
weight of each data item to help the rule extraction mechanism focus more on data
having relatively more weight, i.e., uncovered less by the rules extracted until the
current iteration. The idea behind using the boosting mechanism is to aggregate
multiple hypotheses generated by the same learning algorithm invoked over different
distributions of the training data into a single composite classifier.

In [56] a neuro-fuzzy classifier proposed. Different ANFIS networks are used for
different intrusion classes. They have also used subtractive clustering to determine
the number of rules and initial locations for membership functions. At last a ge-
netic algorithm is used to optimize the system. Obviously, tuning the membership
functions and using a complex decision making engine decrease the interpretability
of the system.

Many learning algorithms use fuzzy model to represent the knowledge obtained.
SLAVE is a GA based learning algorithm to extract a set of fuzzy rules from a set
of examples [17]. This process is developed through an iterative approach in which
a rule is selected each time. The authors further discussed the idea of iterative
generation and selection of rules in [18]. In order to obtain new and different rules,
the rule previously obtained is penalized by eliminating the examples covered by
this rule. This iterative scheme is repeated until the set of rules obtained adequately
represents the examples in the training set, returning the set of rules as the solution
to the problem.

In this paper we propose a fuzzy rule-based classification system to tackle the
tradeoff between accuracy and comprehensibility of intrusion detection systems.
This method is a relatively fast approach to intrusion detection, in which fuzzy
rules are utilized for learning monitored behaviours in a network. A hierarchical
rule generation used in this work to induce desired sets of rules. In each stage
of the hierarchy, a set of rules with certain length of antecedent are investigated.
A simple method is used to reduce total number of rules involved in each stage
of rule generation without resulting in any information loss. Afterwards, a novel
rule weighting scheme is incorporated to adjust decision boundaries resulting in an
appropriate number of high accurate rules. At the end of each stage, we eliminate
correctly classified training instances covered by the selected rules.
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The rest of this paper is organized as follows. In section 2, fuzzy rule-based clas-
sification systems are described to introduce the notation. The proposed algorithm
is applied to KDD99 intrusion detection dataset. The dataset is explained in sec-
tion 3. Entropy based rule weighting is elaborated in section 4. Section 5, discusses
the framework of hierarchical rule generation and selection, called Entropy Based
Hierarchical Fuzzy Rule-Based System (EBHFRBS). In section 6, the experimental
results are presented, and finally conclusions are remarked in section 7.

2. Fuzzy Rule-based Classification Systems

2.1. Fuzzy Logic. A fuzzy rule-based classification system is composed of different
conceptual components [29]. Each rule in the rule-base specifies a subspace of
pattern space using the fuzzy sets in the antecedent part of the rule. Different rule
types have been used for pattern classification problems [11, 62].

Assume that fuzzy linguistic values are defined in the set A = {Afi|1 ≤ f ≤
d, 0 ≤ i < lf}where d denotes the number of dimensions or features, lf is the
number of fuzzy sets for the feature f and Af0 is the don’t care value (i.e. a
rectangular membership function that covers the entire domain of each feature and
can be used as the antecedent fuzzy set corresponding to the “don’t care” condition
[25]).

For a c-class d-dimensional problem, we use the following notation for each rule
Rr (1 ≤ r ≤ m) in the rule-base of size m:

Rr : (x1, ar1) ∧ .... ∧ (xn, ard)
CFr−−−→ kr (1)

where X = [x1, x2, ..., xd]T is the input feature vector, 1 ≤ kr ≤ c is the consequent
class label, CF r is the certainty grade of the fuzzy rule and the antecedent arf ∈ A
is one of the linguistic values of the feature f .

In order to classify a normalized feature vector Xp = [xp1
, xp2

, .., xpd]T , the
degree of compatibility of Xp with each rule is calculated (i.e., using a T -norm to
model the and connectives in the rule antecedent). In the case of using product as
T -norm, the compatibility degree of rule Rr with Xp can be calculated as

µr(Xp) =

d∏
i=1

µri(xpi) (2)

where µri(.) is the membership function of the antecedent fuzzy set ari.
In the case of using single winner reasoning method, the pattern is classified

according to consequent class of winner rule Rw. With the rules of the form (1),
the certainty grade of each rule is also used in finding the winner rule:

w = arg max
i∈{1,2,...,m}

{µi(Xp).CFi} (3)

Fuzzy rule-based system comprehensibility has been taken into account. In our
work it concerns:

1- Linguistic interpretability of fuzzy sets: Usually fuzzy sets represent
linguistic meanings. While only a forward learning procedure is used to
assign consequent part of the rules and the rule weights, no tuning occurs
on simple homogeneous fuzzy sets.
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2- Simplicity of the fuzzy rule-base: A very limited number of rules are se-
lected from candidate rule-pool for final rule-base. In our five class problem,
the rule-base includes a few hundreds of rules.
3- Complexity of fuzzy rules: While it is easy for human users to understand
short rules with only a few number of antecedent conditions, minimizing
rule length is considered. In our method, rules with antecedent length of
more than three are rarely generated.
4- Simplicity of reasoning: The single winner method has tangible benefit
of interpretability.

2.2. Space Partitioning. Fuzzy rule generation methods can be categorized into
two approaches according to their strategies for dividing the input space into fuzzy
subspaces: multidimensional antecedent fuzzy sets and grid-type fuzzy partitioning
[26]. In grid-type fuzzy partitioning, the antecedent part of each fuzzy rule is a
combination of linguistic values, which results in an interpretable fuzzy rule-based
system.

When attribute i has Li linguistic values (including don’t care), the total number

of possible combinations (i.e. total number of rules) is
d∏

i=1

li−1 for a d-dimensional

problem. Thus it is impracticable to test all combinations [27]. Usually the domain
interval of all features are discretized into equal number of fuzzy sets (i.e. ∀i : li = l).
The number of fuzzy if-then rules of maximum antecedent length q is calculated as:

q∑
i=1

dCi × li (4)

where dCi is the number of i-combinations from d elements. This equation im-
plies that investigating the total number of rules with small number of antecedent
conditions is feasible even with large number of features and fuzzy sets.

Usually it is assumed that the set of linguistic values is provided by the domain
experts. This means that although the antecedent tuning may enhance the overall
performance, but from the comprehensibility aspect of view, it is not desirable.
The modification of antecedent fuzzy sets is likely to cause a gap between resulted
membership functions and the understanding of linguistic values.

For continuous features, we have used 6 fuzzy partitions for each dimension of
input vector as illustrated in Figure 1(a). For each symbolic feature, like protocol
types, services and flags, we have defined P fuzzy singleton, where, P is the number
of values that the feature can assume. For example, protocol type feature with three
different symbols TCP, UDP and ICMP is shown in Figure1(b).

According to the normalization method discussed in experiments, for all con-
tinuous features the majority of values are mapped to a small interval around 0.5.
As shown in Figure 2, some features such as 9 have similar values for most of the
patterns which is mapped to 0.5. Therefore a fuzzy set with membership degree
of 1.0 in this point will dominant in the reasoning procedure. On the other hand
some features, such as 6, although spanned over a very large integer range, have
few great values and their value for most of the patterns is mapped to 0.0.
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(a) fuzzy sets for a continuous feature (b) fuzzy sets for a categorical feature

Figure 1. Input Vector Fuzzy Partitioning

3. KDD 99 Dataset

The KDD Cup 99 dataset has been widely used to evaluate performance of intru-
sion detection systems. The KDD99 intrusion detection dataset is based on the 1998
DARPA initiative, which provides designers of intrusion detection systems (IDS)
with a benchmark on which to evaluate different methodologies [22, 14, 36]. Al-
though a noteworthy classifier should have enough flexibility to be well customized
for datasets with various characteristics, but there are many clues about KDD99
intrusion detection dataset that should be very early considered in classifier system
construction, such as fuzzy set partitioning just described in previous section.

The data set has 41 attributes for each connection record and a label indicating
the status of the records as either normal or a specific attack type. These features
had different forms of continuous, discrete, and symbolic, with significantly varying
ranges and class various separablity. Some features are derived features, which are
useful in distinguishing normal connection from attacks. There are four groups
of features: Basic Features, Content Features, Time-based Traffic Features, Host-
based Traffic Features [30].

In the International Knowledge Discovery and Data Mining Competition [31], a
subset (10%) of originally recorded data was prepared for the purpose of training
the classifiers. A test subset was also prepared to evaluate different classification
methods. Some statistics of this dataset is given in Table 1. The training set
contains a total of 22 training attack types. Also there are 17 additional types in
the testing set only. Each attack falls into one of the following categories:

• Denial of Service (DOS): Attacker tries to prevent legitimate users from
using a service.
• Remote to Local (R2L): Attacker tries to gain access to the victim machine

without having an account.
• User to Root (U2R): Attacker has local access to the victim machine and

tries to gain super user privileges.
• Probe: Attacker tries to gain information about the target host.

The signatures of DOS and Probe attacks in the test subset provided by KDD99
are very similar to those present in the training set. However, the types of U2R
and R2L attacks differ significantly between the training and testing data sets
[10]. In the testing set, over 80% U2R attacks and 60% R2L attacks are new to the
training set. The lack of correlation makes these two attacks harder to be identifies.
Literature survey indicates that many intrusion detection systems have very low
detection rates in identifying U2R and R2L attacks [37, 49].
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(a) feature 6 (b) feature 34

(c) feature 9

Figure 2. Distribution of Feature Values in the Training Set

4. Rule Weighting Using Entropy Measure

4.1. Entropy Measure. Entropy measure is one of the most commonly used dis-
cretization measures in the preprocessing phase. Entropy based discretization is a
supervised, top-down splitting technique. It explores class distribution information
in its calculation and determination of split-points. Using this measure, a numer-
ical value could be determined as the split point for which the entropy of the two
resultant intervals is minimized. The procedure could be repeated to arrive to a
hierarchical discretization.

Dataset Normal DOS U2R R2L Probe Total
Original train set (10 % KDD) 97277 391458 52 1126 4107 494020
the training set used in the experiments 2556 372 41 103 242 3314
Test set (Corrected KDD) 60593 229853 70 16347 4166 311029
Whole KDD 972780 3883370 52 1126 41102 4898430

Table 1. Some Statistics of the KDD 99 Dataset

The entropy and information gain measures are also used for attribute selection
in decision tree induction. It is also known as the expected information needed to
classify a tuple in data set. The selected attribute minimizes the information needed
to classify the tuples in the resulting partitions and reflects the least randomness or
“impurity” in these partitions. Such an approach minimizes the expected number
of tests needed to classify a given tuple and guarantees that a simple tree is found.
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C4.5 is the well-known decision tree induction algorithm that uses entropy based
criterion to select best attribute in each node of the tree [48, 54].

Subspace clustering is an extension to attribute subset selection that has shown
its strength at high-dimensional clustering [2, 45]. It can be performed by an
unsupervised process, such as entropy analysis, which is based on the property that
entropy tends to be low for data that contain tight clusters [9]. Yao et al proposed
an entropy based fuzzy clustering method. In their work, an entropy measure is
defined for identifying the number of clusters and their centers [61].

In our proposed method, each fuzzy rule could be considered as a separate classi-
fier that would provide a degree of belongingness for each query point to the class of
its consequent. The information gain theory is applicable to determine the effective
influence or the certainty factor of each rule. In [40] a similar approach is used to
determine the weight of prototypes in a weighted Nearest Neighbor classifier.

The weight of a rule should be degraded if instances in its covering area belong
to various classes. This way, the rule will just decide about a portion of instances
and other rules will be responsible for classifying some of these instances. We would
like this partitioning to result in exact classification of instances. The idea is to
select the weight parameter that will minimize entropy of the instances inside the
decision area of the rule.

The information gain measure proposed by Shannon in a pioneering work on
information theory [53]. For each split point (between two adjacent samples) in a
list of instances, L, the measure is defined as:

Info(L) =
|L1|
|L|
× entropy(L1) +

|L2|
|L|
× entropy(L2) (5)

where L1 is the first and L2 is the second part of the list L.
Choosing the split point with minimum information gain, will result in minimum

amount of expected information still required to correctly classify samples in each
part of the list [21].

Given c classes, the entropy of a list L is defined as:

entropy(L) = −
c∑

l=1

pllog2(pl) (6)

where pl is the probability of class l in L, and could be defined as follows:

pl(L) =
|ηl(L)|
|L|

(7)

where ηl(L) = {(Xi, ci) ∈ L|ci = l} is the set of all instances of class l in a list
L and 1 ≤ l ≤ c. Therefore pl is simply determined by dividing the number of
instances of class l in L by |L|.

The traditional qualitative description of entropy is that it refers to changes in
the status quo of the system and could be interpreted as a measure of pattern
disorder. So it could be used to prefer conditions that cover a large number of
instances of a single class and few instances of other classes. Therefore the splitting
criterion is determined so that the resulting lists are as pure as possible.

Some important points should be noticed about the information gain measure.
First of all, we do not need to consider the entropy of the second part of the list
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(i.e. Lt2). The classification of instances in second part (i.e., instances after the
split point) will later be decided in investigation of other rules. These instances
will probably fall into decision boundary of various rules and their effect will be
considered in other localities. This means that the second term of the information
gain measure could be omitted. Though, considering the entropy of Lt1 is not
adequate. This measure tends to prefer unbalanced split in which one partition is
smaller than the other. Therefore the normalization factor of |Lt1|/|L| is essential.

Based on the list Lt1, not only the consequent label but also the certainty grade
of the rule should be determined. Obviously, one class is in the majority of the list,
which could be used as the consequent label of the rule. To compute the certainty
grade, this class should be considered in relation with the average compatibility
of instances. The main clue is that the probability of observing an instance with
a certain label (i.e., the confidence measure) could be incorporated in the weight
factor. Here we simply define the confidence of a list L as:

confidencel(L) =

∑
X∈L,X∈Class l

µr(X)∑
X∈L

µr(X)
(8)

where l is a class label.

4.2. Rule Learning Procedure. The rule learning procedure includes: selection
of the consequent class for an an-tecedent combination (i.e., candidate rules, in
term of confidence), determination of the certainty degree (based on the entropy
measure in the decision area) and choosing a set of rules for the final rule-base
(according to an evaluation heuristic).

First of all, a set of candidate rules is generated based on available training data
and the algorithm starts with an initial solution:{CFi = 1|i = 1, 2, ...,m}. The
algorithm attempts to improve this solution by adjusting the weight of the rules,
based on the entropy measure.

After rule generation, to tune a fuzzy rule Rr, for each training instance X, a
dissimilarity measure, called score, is computed:

scorer(X) =
1

µr(X)× CFr
(9)

All training instances in the covering area are sorted in ascending order of their
scores in a list denoted as L. Then, the best split point in the list is found in
order to boost classification result. For each split point in the sorted list (i.e.,
between each two consecutive instances that splits the list into two lists L1 and
L2), the entropy measure is calculated, and then, the split point which results in
the minimum entropy value, is selected as the best split point.

The consequent class of the rule Rr, denoted as Kr, is determined based on this
split point and the list L1. We use a common approach for identifying the Kr,
which is expressed as:

kr = arg max
16i6c

{Confidencei(L1)} (10)

Also, the rule’s weight would be updated based on the score of the best split
point and the confidence of the list L1. Assuming Xi and Xj as two consecutive
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instances in the best split point (i.e., Xi as the last instance in L1 and Xj as the
first instance in L2), the weight of rule Rr is:

CFr =
scorer(Xi) + scorer(Xj)

2
× confidenceB(L1) (11)

The rule pruning procedure is based on a rule evaluation measure. Among many
heuristic rule evaluation measures in the literature [28], our measure is based on
soft consistency degree [19] and the rule evaluation proposed in [29] and can be
expressed as:

Γr =
∑

X∈ Class kr

CFr.µr(X)− 2×
∑

X/∈ Class kr

CFr.µr(X)
(12)

The idea is to obtain rules covering the maximum number of examples (com-
pleteness degree) with the minimum number of negative examples (consistency
degree) [19]. It must be noted that the confidence (and consequently the certainty
grade) equation is based on the patterns in L1 and the incorporation of rules is
not considered in the rule weighting step. But the evaluation criterion is based on
classification of patterns in the decision area of each rule.

5. The Proposed Framework

Major fuzzy rule-based systems initially generate all simple rules, i.e. rules with
certain and limited number of antecedents. The important advantage of these
systems is their comprehensibility. To guarantee the interpretability of a fuzzy
system, the inference should be based on simple rules as discussed in section 2.1.

Providing an acceptable performance for KDD IDS dataset, and also in many
real world datasets, is not possible by means of rules with only a few attributes in
the antecedents. On the other hand, considering high dimensional rules is tedious.
The method proposed here, provides a chance of having limited number of rules
with various antecedent lengths.

The proposed architecture, called EBHFRBS, starts with investigation of single
antecedent rules. All rules that cover at least one training instance will be gener-
ated. Then the entropy based procedure will adjust rule weights and consequents.
Afterwards, a rule pruning procedure will remove inappropriate rules. Finally, the
training instances most compatible will remained rules, will be removed, and the
retained subset of instances will be incorporated in the next stage in which rules
with two antecedents are examined.

This way, the rule-base is built in an iterative approach. At each stage, the most
compatible rules with the current distribution of retained instances are selected
for the fuzzy rule-base. The block diagram of the proposed method is depicted in
Figure 3.

Figure 4 shows the overall algorithm in pseudo-code. To describe this algorithm,
assume that for a c-class problem, a set of training examples of the form T =
{Xi|1 6 i 6 n} is given, where Xi = [xi1, xi2, ..., xid]T is a d-dimensional feature
vector. The proposed algorithm starts with one antecedent rules (i.e., stage=1 in
line 5 of the pseudo-code). In each stage, first of all, a set of candidate rules is
generated. Then, for a number of iterations, the rules are investigated to determine
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Figure 3. Context Diagram of the Proposed Method

Figure 4. The Proposed Learning Algorithm

the consequent class and the certainty grade of stage rules (lines 9-15, based on
equations (10) and (11)).

In lines 16-19, the rule evaluation measure (equation (12)) is computed and the
stage rules with Γr less than zero are removed. Finally, in lines 23 and 24, most
compatible training instances are removed from the training set.

In this learning framework, the Instance Selection module eliminates those ex-
amples from the training set that are λ covered by the last stage rules obtained in
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the rule-base. Here we extend the Concept of λ Covering [19] to establish a con-
dition for determining when a set of rules is sufficient to represent a system. Let
RB be a set of rules and RD a set of examples. The subset of RD representing the
examples λ covered by RB is the λ-cut of RD and called the covering parameter
[18].

Induction procedure uses a similar approach (hierarchical based on the same
thresholds) to visit learned rules and conclude the decision making. In order to
classify an input query pattern Q, the degree of compatibility of the pattern with
each rule of the first stage is calculated. If the pattern is λ covered by the winner,
the winner rule classifies the pattern. Otherwise, we try to classify the pattern
using rules of the next stage.

Note that the classification of a pattern not covered by any rule in the rule-base
is rejected. The classification of a pattern Xp requires conflict resolution if two
rules with different consequent classes have the same and maximum value of firing
degree, µ(Xp).CF, in equation (3) [18]. The conflict is solved by selecting the rule
having higher certainty grade. If both rules have the same CF , then we use the
one generated and learned first.

6. Experiments

6.1. Experiment Setup. In the pre-processing phase, First of all, all untrustwor-
thy and redundant patterns (i.e., having missing values and duplicate patterns) are
removed from training set [55]. Then for continuous features, to correct the bias in
favour of large value features, we used mean and standard deviation of each feature.
Each feature value of data point Xp is normalized as:

xpi = (xpi −mean
q

(xqi))/(8× stdev
q

(xqi)) + 0.5 (13)

Various normalization methods may fit different feature vectors. Here we normal-
ized features 5 and 6 with a logarithmic measure. These two features are spanned
over a very large integer range (src-bytes in range [0, 1.3 billion] and dst-bytes in
range [0, 1.3 billion]), but most of their values are mapped to a small range which
is comparable to the scale reckoned for other features. Therefore these two features
are normalized as:

xpi = log(xpi −min
q

(xqi) + 1)/ log(max
q

(xqi)−min
q

(xqi) + 1) (14)

After data normalization, an instance selection technique, explained in [39], was
used to reduce the size of training set to 3314 samples. The details of data dis-
tribution in the selected subset are provided in Table 1. KDD CUP 99 dataset is
extremely imbalanced in the size of classes. Most of instances are in two major
classes, namely normal and DOS, while instances of U2R and R2L attacks are only
5.27 percent of the dataset. A simple fuzzy rule-based classifier (versus our proposed
hierarchical classifier) will generate strong rules (i.e. rules with high firing degrees
for most of training instances) for normal class. These rules decide about most
of the samples in this major class and provide appropriate overall accuracy, but
these rules have an important impact on low detection rate of minor classes. Our
proposed system overcomes this problem by means of hierarchical rule generation,
selection and weighting.
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The fuzzy reasoning is also done in a hierarchical approach. For each query
pattern, first of all, we find the degree of fulfilment (i.e., the firing strength) of
the fuzzy rules with single antecedent. Then we use the λ threshold to stop the
reasoning procedure. The fuzzy rules with two antecedents are involved just if the
firing strength of the winner rule is less than a certain threshold.

6.2. Performance Evaluation. Table 2 gives some statistical details of our ex-
periments with KDD99. The table shows that a small subset of generated rules is
selected in each stage and a subset of instances most compatible with these rules is
removed. Finally, a compact rule-base with 431 rules is generated and used in the
inference which is appropriate for a very complex feature space.

The classification rate of different classes, obtained in each stage, is shown in Ta-
ble 3 and Figure 5. As illustrated in Figure 5, the classification of Normal and DOS
classes reached a satisfactory accuracy faster than minority classes. Although the
detection of U2R and R2L instances is difficult, but the detection accuracy of these
attacks in the fourth stage outperforms major intrusion detection methods, which
are reported in Table 4. This table shows that the proposed method outperforms
all major methods in detection rate of U2R and R2L methods.

Stage 1 2 3 4 Total
total number of rules(antecedent combinations) 246 29,520 2,302,560 131,245,920 133,578,246
number of generated rules 123 6,774 206,517 3,565,691 3,565,691
number of rules in the final rule-base 16 167 183 65 431
number of removed training instances 593 1,496 827 398 3,314

Table 2. The Statistical Details of Learning Stages

Class label Stage 1 Stage 2 Stage 3 Stage 4

Train

Normal 31 84 94 99
DOS 0 33 45 95
U2R 0 0 24 57
R2L 15 19 19 30

Probe 0 20 45 83

Test

Normal 23 69 98 99
DOS 0 28 35 87
U2R 0 0 3 25
R2L 0 0 0 18

Probe 0 14 38 76

Table 3. The Accuracy Results

In Table 4, we compared the performance of the proposed method with vari-
ous methods: simple 1-NN classifier; winner of the KDD99 contest, which used a
decision tree classification algorithm [46]; kernel-miner which is a decision forest
[35]; the fuzzy rule-based genetic classifier proposed by Ozyer [41]; PNrule which
is a rule-based system [1]; XCS [13] and UCS [51] which are the state-of-the-art
evolutionary classifier, and use GA for introducing new rules into the population
[12, 52, 58]; MOGFIDS fuzzy rule-based system that is evolved from an agent based
evolutionary framework and can act as a genetic feature selection wrapper [57].

It should be mentioned that the UCS selects 7779 rules which is in the best case
improved to 510 rules in UCSSE method [51]. Tables 2 and Table 4 show that we
could reach both accuracy and interpretability. Although we need some rules with
four antecedents but they are only 15 percent of the rule-base.

In Table 5, the resultant confusion matrix for test data set is presented. There
is a trade off between detection of major classes and minor classes. Increasing the
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Figure 5. Changes of Accuracy for Each Class in Each Phase

detection rate of minor classes usually cause higher false alarms. In the other words,
increasing the overall accuracy leads to lower error for Normal and DOS classes,
but increasing the detection rate of U2R and R2L leads to lower detection rate for
Normal and DOS classes.

hhhhhhhhhClass Label
Method

1-NN

KDD
contest
winner

kernel
miner Ozyer

PN
rule XCS

UCS
SE

MOG
FIDS EBHFRBS

Normal 99.6 99.4 99.4 95.8 99.5 95.7 99.1 98.4 99.1
DOS 97.3 97.1 97.5 97.4 96.9 49.1 96.7 97.2 86.5
U2R 03.5 13.2 11.8 10.9 06.6 08.5 21.3 15.8 24.6
R2L 00.6 08.4 7.3 06.9 10.7 03.9 2.59 11.0 18.3

Probe 75.0 83.3 84.5 54.1 73.2 93.0 75.4 88.6 76.4

Table 4. Comparison of major methods

Predicted Class

A
c
t
u
a
l
C
la

s
s Normal DOS U2R R2L Probe %Correct
Normal 60048 349 3 6 187 99.1
DOS 29326 198823 0 100 1604 86.5
U2R 147 0 56 4 21 24.6
R2L 13167 2 45 2963 12 18.3

Probe 728 247 0 7 3184 76.4
F.P. 0.42 0.00 0.46 0.04 0.36

Accuracy =85.23% , FP=0.89%

Table 5. Final Results of EBHFRBS on KDD Test Data
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The results show that our method will implicitly consider the higher importance
of instances of minor classes.

IDS is one of the fields that misclassification costs are not the same. Obviously,
failing to detect an intruder is more costly than misclassifying a normal user as
intruder [15]. Indeed, if a normal user′s logon fails due the false-positive prediction
of the IDS, the imposed cost is not more than a further try by the user. On the other
hand, granting permission to an intruder may cause illegal access to information
that can be quite costly [39].

The hierarchical structure of the proposed method provides the chance of gen-
erating and selecting proper rules for various classes in different stages. This way,
implicitly different misclassification costs are considered in the learning process.

7. Conclusion

We proposed a Hierarchical Fuzzy Rule-Based Classification System to detect
intrusions in computer networks. In our method, a new type of fuzzy rule-based
systems is proposed which uses a hierarchical rule generation and an entropy mea-
sure to determine the effective influence of each rule.

This approach generates rules with specific antecedent length, in each itera-
tion, until no suitable rules will be attained. Therefore, rules with appropriate
antecedent length will be generated. In general, it was observed that this approach
could correct the bias toward the majority concepts and also increases the use of
more relevant data samples in each stage, providing for a more robust form of
classification in imbalanced problems.

The experimental results on KDD99 show the effectiveness of the proposed
method in tackling the tradeoff between accuracy and comprehensibility of the
fuzzy-ruled base systems, which is essential for classification of many real world
problems.
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