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FURTHER STUDY ON (L,M)-FUZZY TOPOLOGIES AND

(L,M)-FUZZY NEIGHBORHOOD SYSTEMS

H. ZHAO, S. G. LI AND G. X. CHEN

Abstract. Following the idea of L-fuzzy neighborhood system as introduced

by Fu-Gui Shi, and its generalization to (L,M)-fuzzy neighborhood system, the
relationship between (L,M)-fuzzy topology and (L,M)-fuzzy neighborhood

system will be further studied. As an application of the obtained results, we
will describe the initial structures of (L,M)-fuzzy neighborhood subspaces and

(L,M)-fuzzy topological product spaces.

1. Introduction and Preliminaries

In this paper, based on the idea of (L,M)-fuzzy topological space introduced

by T. Kubiak and A. S̆ostak [6, 7], and the notion of (L,M)-fuzzy neighborhood
system as a generalization of L-fuzzy neighborhood system of Fu-Gui Shi [10], the
relationship between (L,M)-fuzzy topology and (L,M)-fuzzy neighborhood system
will be further studied. As an application of the obtained results, we will describe
the initial structures of (L,M)-fuzzy neighborhood subspaces and (L,M)-fuzzy
topological product spaces.

The following preliminaries will be used throughout this paper, which can be
found in [3, 8].

A complete lattice L is called completely distributive, if one of the following
conditions hold (the second then follows as a consequence [3]):

(CD1) ∧
i∈I

(∨
i∈Ji

ai,j

)
=

∨
f∈

∏
Ji

(∧
i∈I

ai,f(i)

)
,

(CD2) ∨
i∈I

(∧
i∈Ji

ai,j

)
=

∧
f∈

∏
Ji

(∨
i∈I

ai,f(i)

)
,

where for each i ∈ I and j ∈ Ji, ai,j ∈ L and f ∈
∏
Ji means that f is a mapping

f : I →
⋃
Ji such that f(i) ∈ Ji for each i ∈ I.

An element a 6= 0 in a lattice is called coprime if a ≤ b ∨ c implies a ≤ b
or a ≤ c for all b, c ∈ L. Further, a is said to be join irreducible if a = b ∨ c
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implies a = b or a = c for all b, c ∈ L. The set of all coprime elements (resp. join
irreducible elements) of L is denoted by Copr(L) (resp. J(L)). It can be verified
that if L is distributive, then a ∈ L is coprime iff it is join irreducible, which means
Copr(L) = J(L). So, for convenience, we usually use J(L) to stand for the set of all
coprime elements of L if L is distributive. If L is a completely distributive lattice
and x �

∨
t∈T yt, then there must be t? ∈ T such that x � yt? (here x � a means:

K ⊂ L, a ≤
∨
K ⇒ ∃y ∈ K such that x≤y). Some more properties of � can be

found in [8].
In the rest of the paper, L and M always denote Hutton algebras. A Hutton

algebra L, is a completely distributive lattice with order-reversing involution with
the least element 0 and the greatest element 1. Recall that an order-reversing
involution ′ on L is a map (−)′ : L −→ L such that for any a, b ∈ L, the following
conditions hold: (1) a ≤ b implies b′ ≤ a′. (2) a′′ = a. The following properties hold
for any subset {bi : i ∈ I} ∈ L: (1) (

∨
i∈I bi)

′ =
∧
i∈I b

′
i; (2) (

∧
i∈I bi)

′ =
∨
i∈I b

′
i.

We notice that LX , the set of all L-subsets of X, is also a Hutton algebra with
pointwise order. Its smallest element and the largest element are denoted 0X and
1X , respectively. For each A ∈ LX , the L-subset A′ is defined A′(x) = (A(x))

′
for

each x ∈ X. Clearly, J(LX) = {xλ : x ∈ X,λ ∈ J(L)}, where xλ is defined by
xλ(y) = λ if y = x and xλ(y) = 0 otherwise.

Definition 1.1. (Kubiak and S̆ostak [6, 7]) An (L,M)-fuzzy topology on a set X
is a map T : LX −→M such that

(LMFT1)

T (1X) = T (0X) = 1;

(LMFT2)

∀ U, V ∈ LX , T (U ∧ V ) ≥ T (U) ∧ T (V );

(LMFT3)

∀{Uj : j ∈ J} ⊆ LX , T

∨
j∈J

Uj

 > ∧
j∈J
T (Uj).

T (U) can be interpreted as the degree to which U is an open L-set, T ?(U) = T (U ′)
will be called the degree of closedness. The pair (X, T ) is called (L,M)-fuzzy
topological space. A mapping f : X −→ Y from an (L,M)-fuzzy topological space
(X, T1) to another (L,M)-fuzzy topological space (Y, T2) is said to be continuous if
T1(f←(B)) ≥ T2(B) for each B ∈ LY . The category of all (L,M)-fuzzy topological
spaces and their continuous mappings is denoted by (L,M)-FTOP.

The following Definition 1.2 and Lemma 1.3 were introduced by Shi [10] for an
L-fuzzy topology and can be easily transformed to an (L,M)-fuzzy topology as
follows.

Definition 1.2. An (L,M)-fuzzy neighborhood system on a set X is a map N :

LX −→MJ(LX) satisfying the following conditions:
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(LMFN1)

N (1X)(xλ) = 1, N (0X)(xλ) = 0 (∀ xλ ∈ J(LX));

(LMFN2)

N (U)(xλ) = 0 (∀ U ∈ LX ,∀ xλ ∈ J(LX), xλ 6≤ U);

(LMFN3)

N (U ∧ V )(xλ) = N (U)(xλ) ∧N (V )(xλ) (∀ U, V ∈ LX ,∀ xλ ∈ J(LX));

(LMFN4)

N (U)(xλ) =
∨

xλ≤V≤U

∧
yµ�V

N (V )(yµ) (where ∀U ∈ LX , xλ, yµ ∈ J(LX)).

N (U)(xλ) is called the degree to which xλ belongs to the neighborhood of U . The
pair (X,N ) is called (L,M)-fuzzy neighborhood space. A mapping f : X −→ Y
from an (L,M)-fuzzy neighborhood space (X,N1) to another (L,M)-fuzzy neigh-
borhood space (Y,N2) is said to be continuous ifN2(U)(f→(xλ)) ≤ N1(f←(U))(xλ)
for each U ∈ LY and each xλ ∈ J(LX). The category of all (L,M)-fuzzy neighbor-
hood spaces and their continuous mappings is denoted by (L,M)-FNS.

Lemma 1.3. (L,M)-FTOP is isomorphic to (L,M)-FNS.

Proof. Step 1: Define NT : LX −→MJ(LX) by

NT (U)(xλ) =
∨

xλ≤V≤U

T (V ) (∀U ∈ LX ,∀xλ ∈ J(LX)).

Then NT is an (L,M)-fuzzy neighborhood system induced by T .
In fact, (LMFN1) and (LMFN2) are easily obtained.
(LMFN3) If A ≤ B, then by the definition of NT , we have

NT (A)(xλ) ≤ NT (B)(xλ) (∀ A,B ∈ LX ,∀xλ ∈ J(LX)).

Hence

NT (U ∧ V )(xλ) ≤ NT (U)(xλ) ∧NT (V )(xλ) (∀ U, V ∈ LX ,∀xλ ∈ J(LX)).

On the other hand, if a�NT (U)(xλ) ∧NT (V )(xλ), then

a�NT (U)(xλ) =
∨

xλ≤E≤U

T (E), and a�NT (V )(xλ) =
∨

xλ≤G≤V

T (G).

Further, there exist E and G such that

xλ ≤ E ≤ U, xλ ≤ G ≤ V, and a ≤ T (E), a ≤ T (G).

So

xλ ≤ E ∧G ≤ U ∧ V, and a ≤ T (E) ∧ T (G) ≤ T (E ∧G).

Hence

a ≤ T (E ∧G) ≤
∨

xλ≤M≤U∧V

T (M) = NT (U ∧ V )(xλ).



112 H. Zhao, S. G. Li and G. X. Chen

This shows

NT (U ∧ V )(xλ) ≥ NT (U)(xλ) ∧NT (V )(xλ).

(LMFN4) We first show that

NT (U)(xλ) =
∧
µ�λ

NT (U)(xµ). (1)

By the definition of NT , we can easily obtain

NT (U)(xλ) ≤
∧
µ�λ

NT (U)(xµ).

On the other hand, if a �
∧
µ�λ

NT (U)(xµ), then a � NT (U)(xµ) =
∨

xµ≤G≤U
T (G)

for each µ � λ. Further, there exists Gxµ ∈ LX such that xµ ≤ Gxµ ≤ U and
a ≤ T (Gxµ). Assuming E =

∨
µ�λ

Gxµ , we have xλ ≤ E ≤ U and

a ≤
∧
µ�λ

T (Gxµ) ≤ T (
∨
µ�λ

Gxµ) = T (E) ≤
∨

xλ≤V≤U

T (V ) = NT (U)(xλ).

This shows

NT (U)(xλ) ≥
∧
µ�λ

NT (U)(xµ).

Now, let xλ ≤ V ≤ U and µ� λ, then we have

T (V ) ≤
∧
yµ�V

NT (V )(yµ) ≤ NT (V )(xµ) ≤ NT (U)(xµ).

So

NT (U)(xλ) =
∨

xλ≤V≤U

T (V ) ≤
∨

xλ≤V≤U

∧
yµ�V

NT (V )(yµ) ≤ NT (U)(xµ).

Hence

NT (U)(xλ) ≤
∨

xλ≤V≤U

∧
yµ�V

NT (V )(yµ) ≤
∧
µ�λ

NT (U)(xµ) = NT (U)(xλ).

Therefore,

NT (U)(xλ) =
∨

xλ≤V≤U

∧
yµ�V

NT (V )(yµ).

Step 2: Define TN : LX −→M by

TN (U) =
∧
xλ�U

N (U)(xλ) (∀U ∈ LX).

Then TN is an (L,M)-fuzzy topology induced by N .
In fact, (LMFT1) is easily obtained from (LMFN1).
(LMFT2) ∀U, V ∈ LX ,

TN (U ∧ V ) =
∧

xλ�U∧V
N (U ∧ V )(xλ) =

∧
xλ�U∧V

[N (U)(xλ) ∧ N (V )(xλ)]
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≥

( ∧
xλ�U

N (U)(xλ)

)
∧

( ∧
xλ�V

N (V )(xλ)

)
= TN (U) ∧ TN (V ).

(LMFT3) ∀{Ej : j ∈ J} ⊆ LX ,

TN

∨
j∈J

Ej

 =
∧

xλ�
∨
j∈J

Ej

N

∨
j∈J

Ej

 (xλ) ≥
∧
j∈J

∧
xλ�Ej

N (Ej)(xλ) =
∧
j∈J
TN (Ej).

Step 3: We show that

NT N = N .
In fact, ∀U ∈ LX ,∀xλ ∈ J(LX), by (LMFN4), we have

NTN (U)(xλ) =
∨

xλ≤V≤U

TN (V ) =
∨

xλ≤V≤U

∧
yµ�V

N (V )(yµ) = N (U)(xλ).

Hence NTN = N .
Step 4: We show that

T (U) =
∧
xλ�U

NT (U)(xλ) (∀U ∈ LX) and TNT = T .

In fact, for each xλ � U ,

NT (U)(xλ) =
∨

xλ≤V≤U

T (V ) ≥ T (U).

Hence, ∧
xλ�U

NT (U)(xλ) ≥ T (U).

On the other hand, if a �
∧

xλ�U

NT (U)(xλ), then a �NT (U)(xλ) for each xλ � U.

Further, there exists Vxλ ∈ LX such that xλ ≤ Vxλ ≤ U and a ≤ T (Vxλ). Obviously,
U =

∨
xλ�U

Vxλ . So

T (U) = T

( ∨
xλ�U

Vxλ

)
≥

∧
xλ�U

T (Vxλ) ≥ a.

This shows ∧
xλ�U

NT (U)(xλ) ≤ T (U).

Hence

T (U) =
∧
xλ�U

NT (U)(xλ) (∀U ∈ LX).

Now, by the definition of TN , we have

TNT (U) =
∧
xλ�U

NT (U)(xλ) = T (U) (∀U ∈ LX).

Therefore, TNT = T .
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Step 5: If f : (X, T1) −→ (Y, T2) is continuous with respect to (L,M)-fuzzy
topologies T1 and T2, then

T1(f←(U)) ≥ T2(U) (∀U ∈ LY ).

Hence

NT2(U) (f→(xλ)) =
∨

f→(xλ)≤V≤U

T2(V ) ≤
∨

xλ≤f←(V )≤f←(U)

T1(f←(V ))

≤ NT1(f←(U))(xλ).

Therefore f : (X,NT1) −→ (Y,NT2) is continuous with respect to (L,M)-fuzzy
neighborhood systems NT1 and NT2 .

Step 6: If f : (X,N1) −→ (Y,N2) is continuous with respect to (L,M)-fuzzy
neighborhood systems N1 and N1, then

N2(V ) (f→(xλ)) ≤ N1(f←(V ))(xλ) (∀V ∈ LY ,∀xλ ∈ J(LX)).

Hence

TN2
(V ) =

∧
yµ�V

N2(V )(yµ) ≤
∧

f→(xλ)�V

N2(V )(f→(xλ)) =
∧

xλ�f←(V )

N2(V )(f→(xλ)

≤
∧

xλ�f←(V )

N1(f←(V ))(xλ) = TN1
(f←(V )).

Therefore f : (X, TN1
) −→ (Y, TN2

) is continuous with respect to (L,M)-fuzzy
topologies TN1 and TN2 .

�

2. Further Study on (L,M)-fuzzy Topologies and (L,M)-fuzzy
Neighborhood Systems

Theorem 2.1. Let X be a nonempty set, let (Y, TY ) be an (L,M)-fuzzy topological

space, and let f : X −→ Y be a mapping. Define N : LX −→MJ(LX) as follows:

N (A)(xλ) = NTY ([f→(A′)]′) (f→(xλ)).

Then N is an (L,M)-fuzzy neighborhood system on X.

Proof. (LMFN1–LMFN2). N (1X)(xλ) = NTY (1Y )(f→(xλ)) = 1. xλ � A, then

f→(xλ) � [f→(A′)]
′
. In fact, if we have f→(xλ) ≤ [f→(A′)]

′
, thus

xλ ≤ f←[f→(xλ)] ≤ f←([f→(A′)]
′
) = [f←f→(A′)]

′
,

so (xλ)′ ≥ f←f→(A′) ≥ A′. Hence xλ ≤ A, which is a contradiction. Therefore,

N (0X)(xλ) = NTY ([f→(1X)]
′
)(f→(xλ)) = 0

and

N (A)(xλ) = NTY ([f→(A′)]
′
)(f→(xλ)) = 0 (∀ xλ � A).

(LMFN3) For each A = A1 ∧A2, we have

f→(A′) = f→(A′1 ∨A′2) = f→(A′1) ∨ f→(A′2).
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Hence
N (A1 ∧A2)(xλ) = NTY ([f→((A1 ∧A2)′)]

′
)(f→(xλ))

= NTY ([f→(A′1) ∨ f→(A′2)]
′
)(f→(xλ))

= NTY ([f→(A′1)]
′
)(f→(xλ)) ∧NTY ([f→(A′2)]

′
)(f→(xλ))

= N (A1)(xλ) ∧N (A2)(xλ).

Therefore, N (A1 ∧A2)(xλ) = N (A1)(xλ) ∧N (A2)(xλ).

(LMFN4) Step 1: We show that

N (A)(xλ) =
∨

B∈LY
{NTY (B)(f→(xλ)) | f←(B) ≤ A}.

If f←(B) ≤ A, then A′ ≤ f←(B′) and f→(A′) ≤ B′, so A′ ≤ f←(B′) and B ≤
(f→(A′))′. Hence

N (A)(xλ) = NTY ([f→(A′)]
′
)(f→(xλ)) ≥ NTY (B)(f→(xλ)).

Therefore,

N (A)(xλ) ≥
∨

B∈LY
{NTY (B)(f→(xλ)) | f←(B) ≤ A}.

On the other hand, let B = (f→(A′))′, we have f←(B) = (f←f→(A′))′, thus

(f←(B))′ = f←f→(A′) ≥ A′,
so f←(B) ≤ A. Hence

N (A)(xλ) = NTY ([f→(A′)]
′
)(f→(xλ))

= NTY (B)(f→(xλ)) ≤
∨

B∈LY
{NTY (B)(f→(xλ)) | f←(B) ≤ A}.

Step 2: We show that

N (A)(xλ) =
∨

xλ≤V≤A

∧
yµ/V

N (V )(yµ).

By Step 1, let a /N (A)(xλ). Then there exists B ∈ LY satisfying f←(B) ≤ A such
that a /NTY (B)(f→(xλ)), since

NTY (B)(f→(xλ)) =
∨

f→(xλ)≤V≤B

∧
zt/V

NTY (V )(zt).

So there exists V ∈ LY satisfying f→(xλ) ≤ V ≤ B such that a /NTY (V )(zt) for
each zt / V. Let U = f←(V ), then xλ ≤ U ≤ A for all yµ / U . By Step 1, we have

a /NTY (V )(f→(yµ)) ≤ N (U)(yµ).

Hence N (A)(xλ) ≤
∨

xλ≤V≤A

∧
yµ/V

N (V )(yµ).

On the other hand, let b ∈ M and
∨

xλ≤V≤A

∧
yµ/V

N (V )(yµ) � b. Then there

exists a ∈ α(b) (where α(b) is the largest maximal set of b (see [12])) such that∨
xλ≤V≤A

∧
yµ/V

N (V )(yµ) � a. Further, there exists V ∈ LY such that xλ ≤ V ≤
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A and
∧

yµ/V

N (V )(yµ) � a, thus N (V )(yµ) � a (∀yµ / V ), and, in particular,

N (V )(xγ) � a (∀γ / λ).
By Step 1, we have

N (V )(xγ) =
∨

D∈LY
{NTY (D)(f→(xγ)) | f←(D) ≤ V }.

There exists D ∈ LY such that f←(D) ≤ V and NTY (D)(f→(xγ)) � a, and
therefore f←(D) ≤ A. By Lemma 1.3 , we have

NTY (D)(f→(xλ)) =
∧

f→(xγ)�f→(xλ)

NTY (D)(f→(xγ)) � b.

By Step 1, we have N (A)(xλ) � b. Hence N (A)(xλ) ≥
∨

xλ≤V≤A

∧
h/V

N (V )(h). �

Theorem 2.2. Let N , TY and f be defined as in Theorem 2.1 and define a mapping
f←(TY ) : LX −→M by

f←(TY )(A) =
∧
xλ/A

N (A)(xλ) (∀A ∈ LX).

Then
(1) f←(TY ) is the weakest (L,M)-fuzzy topology on X such that f is continuous.
(2) If (Z, TZ) is an (L,M)-fuzzy topological space and g : (Z, TZ) −→ (X, f←(TY ))

is a map, then g is continuous iff f ◦ g is continuous.

Proof. (1) First, by Lemma 1.3 , we know that f←(TY ) = TN is an (L,M)-fuzzy
topology on X. Second, we show that f is continuous, i.e., TN (f←(A)) ≥ TY (A)
for each A ∈ LY . In fact, by Lemma 1.3, we can obtain

TN (f←(A)) =
∧

xλ/f←(A)

N (f←(A))(xλ) =
∧

xλ/f←(A)

NTY ([f→(f←(A′))]′)(f→(xλ))

≥
∧

xλ/f←(A)

NTY (A)(f→(xλ)) =
∧

f→(xλ)/f→f←(A)

NTY (A)(f→(xλ))

≥
∧

f→(xλ)/A

NTY (A)(f→(xλ)) = TY (A).

Hence f is continuous.
Now, let TX be an (L,M)-fuzzy topology on X such that f is continuous, and

let A ∈ LX . If B = (f→(A′))′, then f←(B) ≤ A. We only need to show that
TX(A) ≥ TN (A) (∀A ∈ LX). In fact, since f : (X, TX) −→ (Y, TY ) is continuous,
we have that f : (X,NTX ) −→ (Y,NTY ) is continuous, and then for all A ∈ LX , we
have

NTX (A)(xλ) ≥ NTX (f←(B))(xλ) ≥ NTY (B)(f→(xλ) = N (A)(xλ).

For any A ∈ LX , we have

TX(A) = TNTX (A) =
∧
xλ/A

NTX (A)(xλ) ≥
∧
xλ/A

N (A)(xλ) = TN (A).
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So TX ≥ TN . Hence TN is the weakest (L,M)-fuzzy topology on X such that f is
continuous.

(2) If g is continuous, then f ◦g is continuous. Now, suppose f ◦g is continuous.
we need to show that TZ(g←(A)) ≥ TN (A) (∀A ∈ LX). By Lemma 1.3, we only
need to show that

NTZ (g←(A))(zλ) ≥ NTN (A)(g→(zλ)) = N (A)(g→(zλ)) (∀zλ ∈ J(LZ),∀A ∈ LX).

In fact, for a /N (A)(g→(zλ)), there exists f←(B) ≤ A such that

a /NTY (B)(f→(g→(zλ))).

Hence

a /NTY (B)(f→(g→(zλ))) ≤ NTZ (g←(f←(B)))(zλ) ≤ NTZ (g←(A))(zλ).

Therefore, NTZ (g←(A))(zλ) ≥ N (A)(g→(zλ)). �

Theorem 2.3. Let X be a nonempty set, let {(Xi, Ti)}i∈I be a collection of (L,M)-
fuzzy topological space and let fj : X −→ Xj be a mapping for each j ∈ I. Define

N : LX −→MJ(LX) by

N (A)(xλ) =
∨

J⊆Ifinite

∧
j∈J
NTj (Aj)(f→j (xλ)) |

∧
j∈J

f←j (Aj) ≤ A

 ,

where I is an index set. Then
(1) N is an (L,M)-fuzzy neighborhood system on X.
(2) Define a mapping TN : LX −→M as follows:

TN (A) =
∧
xλ/A

N (A)(xλ).

Then TN is the weakest (L,M)-fuzzy topology on X such that each fj is continuous
for each j ∈ I, and TN =

∨
j∈I

f←j (Ti).

(3) If (Z, TZ) is an (L,M)-fuzzy topological space and g : (Z, TZ) −→ (X, TN )
a function, then g is continuous if and only if fj ◦ g (j ∈ I) is continuous.

Proof. (1) (LMFN1)–(LMFN2) are easily obtained.
(LMFN3) If A ≤ B, then we can easily obtain N (A)(xλ) ≤ N (B)(xλ). Hence

N (A ∧B)(xλ) ≤ N (A)(xλ) ∧N (B)(xλ).

On the other hand, suppose that a / N (A)(xλ) ∧ N (B)(xλ). There exist finite
subsets J1, J2 of I, Aj ∈ LXj (∀j ∈ J1), Bj ∈ LXj (∀j ∈ J2) such that∧

j∈J1

f←j (Aj) ≤ A,
∧
j∈J2

f←j (Bj) ≤ B,

a /
∧
j∈J1

NTj (Aj)(f→j (xλ)), and a /
∧
j∈J2

NTj (Bj)(f→j (xλ)).
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Let J = J1 ∪ J2. Taking Aj = 1 (∀j ∈ J − J1), we may suppose that J = J1,
Taking Bj = 1 (∀j ∈ J − J2), we may suppose that J = J2. Let Cj = Aj ∧ Bj for
every j ∈ J . Then

∧
j∈J

f←j (Cj) ≤ A ∧B and a ≤
∧
j∈J
N (Cj)(f

→
j (xλ)). Therefore

N (A ∧B)(xλ) ≥ N (A)(xλ) ∧N (B)(xλ).

(LMFN4) Suppose that a /N (A)(xλ). Then there exists a finite subset J of I
and Aj ∈ LXj (∀j ∈ J) such that∧

j∈J
f←j (Aj) ≤ A, a /NTj (Aj)(f→j (xλ)) (∀j ∈ J).

Since

NTj (Aj)(f→j (xλ)) =
∨

f→j (xλ)≤Bj≤Aj

∧
yµj/Bj

NTj (Bj)(yµj),

there exists f→j (xλ) ≤ Bj ≤ Aj such that a /
∧

yµj/Bj

NTj (Bj)(yµj) . Let

B =
∧
j∈J

f←j (Bj),

then xλ ≤ B ≤ A. For all yµ / B, we have

a /
∧

yµj/Bj

NTj (Bj)(yµj) ≤
∧
j∈J
NTj (Bj)(f→j (yµ)) ≤ N (B)(yµ).

Hence

N (A)(xλ) ≤
∨

xλ≤B≤A

∧
yµ/B

N (B)(yµ).

On the other hand, suppose that b ∈M and∨
xλ≤B≤A

∧
yµ/B

N (B)(yµ) � b.

Then there exists a ∈ α(b) such that∨
xλ≤B≤A

∧
yµ/B

N (B)(yµ) � a.

Further, there exists B ∈ LX such that xλ ≤ B ≤ A and
∧

yµ/B

N (B)(yµ) � a.

Hence N (B)(yµ) � a for any yµ / B. In particular, N (B)(xγ) � a for each γ / λ
(this is because xγ �xλ ≤ B =⇒ xγ �B). By the definition of N , there exist finite
subsets J1 of I, Bj ∈ LXj (∀j ∈ J1) such that

∧
j∈J1

f←j (Bj) ≤ B (thus we have∧
j∈J1

f←j (Bj) ≤ A) and
∧
j∈J1
NTj (Bj)(f→j (xγ)) � a. By (1), we can obtain

∧
j∈J1

NTj (Bj)(f
→
j (xλ)) =

∧
j∈J1

∧
γ/λ

NTj (Bj)(f
→
j (xγ)) =

∧
γ/λ

∧
j∈J1

NTj (Bj)(f
→
j (xγ)) � b.



Further Study on (L,M)-fuzzy Topologies and (L,M)-fuzzy Neighborhood Systems 119

By the definition of N , since
∧
j∈J1

f←j (Bj) ≤ A, we have N (A)(xλ) � b. This shows

∨
xλ≤B≤A

∧
g/B

N (B)(yµ) ≤ N (A)(xλ).

(2) By Lemma 1.3, it is obvious that TN is an (L,M)−fuzzy topology on X. In
order to prove that fj : (X, TN ) −→ (Xj , Tj) is continuous, i.e.,

TN (f←j (Aj)) ≥ Tj(Aj) = TNTj (Aj) (∀Aj ∈ LXj ,∀j ∈ I),

we need to prove that fj : (X,N ) −→ (Xj ,NTj ) is continuous. In fact, ∀xλ ∈
J(LX), Aj ∈ LXj , by the definition of N ,

N (f←j (Aj))(xλ) ≥ NTj (Aj)(f→j (xλ)).

By Theorem 2.2, we have TN ≥ f←j (Tj) (∀j ∈ I).
Hence

TN ≥ T ? =
∨
j∈I

f←j (Tj).

On the other hand, suppose that for every xλ ∈ J(LX), Aj ∈ LXj and every
finite subset J ⊆ I and

∧
j∈J

f←j (Aj) ≤ A. We have that

NT ?(A)(xλ) ≥ NT ?(
∧
j∈J

f←j (Aj))(xλ)

=
∧
j∈J
NT ?(f←j (Aj))(xλ)

≥
∧
j∈J
NTj (Aj)(f→j (xλ)).

By the definition of N , we have NT ? ≥ N . Further, by Lemma 1.3, we have

T ? = TNT ? ≥ TN .

Therefore TN =
∨
j∈I

f←j (Tj).

Now, since fj : (X, TN ) −→ (Xj , Tj) is continuous, suppose that δ is an (L,M)−fuzzy
topology on X such that fj : (X, δ) −→ (Xj , Tj) is continuous for each j ∈ I.
By Theorem 2.2, we have δ ≥ f←j (Tj) for each j ∈ I, and therefore δ ≥ T ? =∨
j∈I

f←j (Tj).

(3) Necessity is straightforward. Suppose that fj ◦g is continuous for each j ∈ I.
We show that g : (Z,NTZ ) −→ (X,N ) is continuous i.e.

NTZ (g←(A))(xλ) ≥ N (A)(g→(xλ)) (∀xλ ∈ J(LX),∀A ∈ LX).

In fact, suppose that a /N (A)(g→(xλ)). Then there exists a finite subset J of I
such that

∧
j∈J

f←j (Aj) ≤ A and a /
∧
j∈J
NTj (Aj)((fj ◦ g)→(xλ)). If B =

∧
j∈J

f←j (Aj),
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then g←(B) ≤ g←(A) and

a /
∧
j∈J
NTj (Aj)(fj ◦ g)→(xλ))

≤
∧
j∈J
NTZ ((fj ◦ g)←(Aj))(xλ)

= NTZ (g←(
∧
j∈J

f←j (Aj))(xλ)

= NTZ (g←(B))(xλ) ≤ NTZ (g←(A))(xλ).

�

3. Subspaces and Product Spaces

Theorem 3.1. Let (Y,NY ) be an (L,M)-fuzzy neighborhood system, let X be a
subset of Y , and let idY |X : X −→ Y be its respective embedding. Define N|X :

LX −→MJ(LX) as follows:

N|X(A)(xλ) = NTNY ([(idY |X)→(A′)]′) ((idY |X)→(xλ))

= NY ([(idY |X)→(A′)]′) (xλ).

Then N|X is an (L,M)-fuzzy neighborhood system on X.

Proof. The proof of Theorem 3.1 is easily obtained from Theorem 2.1. �

Definition 3.2. If N|X be defined as in Theorem 3.1, then the pair (X,N|X) is
called a subspace of (Y,NY ).

Theorem 3.3. N|X(A) =
∨
{NY (D)(xλ) | D|X = A} (∀A ∈ LX).

Proof. Let [(idY |X)→(A′)]′ = C, we have C|X = A. By Theorem 3.1,

N|X(A)(xλ) = NY ([(idY |X)→(A′)]′) (xλ) = NY (C)(xλ)

≤
∨
{NY (D)(xλ) | D|X = A}.

On the other hand, by the proof of Theorem 2.1(see (LMFN4)) and Theorem
3.1,

N|X(A)(xλ) =
∨
{NTNY (B)(xλ) | (idY |X)←(B) ≤ A}

=
∨
{NY (B)(xλ) | (idY |X)←(B) ≤ A} ≥

∨
{NY (D)(xλ) | D|X = A}.

�

Definition 3.4. For any set X, let {(Xj , Tj)}j∈I be a family of (L,M)-FTOP-
objects, let X =

∏
j∈I

Xj , and let pj : X −→ Xj be the j-th projection. The

product (L,M)-fuzzy topology on X, denoted by
∏
j∈I
Tj , is the weakest (L,M)-

fuzzy topology on X such that pj is continuous. The pair (X,
∏
j∈I
Tj) is called the

product space of {(Xj , Tj)}j∈I .
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Theorem 3.5. (1) If T =
∏
j∈I
Tj, then T =

∨
j∈I

p←j (Tj).

(2) If (Y, TY ) is an (L,M)-fuzzy topological space, then a mapping g : Y −→ X
is continuous if and only if pj ◦ g (∀j ∈ I) is continuous.

(3) ∀xλ ∈ J(LX), ∀A ∈ LX and every index set I, we have

NT (A)(xλ) =
∨

J⊆Ifinite

∧
j∈J
NTj (Aj)(p→j (xλ)) |

∧
j∈J

p←j (Aj) ≤ A

 .

(4) If J is a finite subset of I and A =
∏
j∈I

Aj, and Aj = 1 when j 6∈ J , then

NT (A)(xλ) =
∧
j∈I
NT (Aj)(p

→
j (xλ)), T (A) =

∧
j∈J
Tj(Aj).

Proof. By N = NTN and Theorem 2.3, we can easily obtain (1)–(3).
(4) We first show that

NT (A)(xλ) =
∧
j∈I
NT (Aj)(p

→
j (xλ)).

It is obvious when A = 1X or A = 0X . Without loss of generality, we assume
A 6= 1X and A 6= 0X . We also assume that Aj 6= 1 for each j ∈ J (if not , then we
have NT (Aj)(p

→
j (xλ)) = 1). By the definition of NT , it is obvious that

NT (A)(xλ) ≥
∧
j∈J
NTj (Aj)(p→j (xλ)).

On the other hand, let J1 be a finite subset of I, and let Bj ∈ LXj (∀j ∈ J1)
be such that B =

∧
j∈J1

p←j (Bj) ≤ A. By A =
∏
j∈I

Aj =
∧
j∈J

p←j (Aj), we have J ⊆ J1

and Bj ≤ Aj (∀j ∈ J) . Hence,∧
j∈J1

NTj (Bj)(p→j (xλ)) ≤
∧
j∈J
NTj (Bj)(p→j (xλ))

≤
∧
j∈J
NTj (Aj)(p→j (xλ))

(by the definition of NT ) ≤ NT (A)(xλ).

Therefore, NT (A)(xλ) =
∧
j∈J
NTj (Aj)(p→j (xλ)). (2)

Now, since pj : (X, T ) −→ (Xj , Tj) (∀j ∈ J) is continuous, we have

T (A) = T (
∧
j∈J

p←j (Aj)) ≥
∧
j∈J
T (p←j (Aj)) ≥

∧
j∈J
Tj(Aj).

In order to prove T (A) =
∧
j∈J
Tj(Aj), we need to show that T (A) ≤

∧
j∈J
Tj(Aj).

If T (A) 6≤
∧
j∈J
Tj(Aj), then there exists j0 ∈ J such that T (A) � Tj0(Aj0). By
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Lemma 1.3, we can obtain

T (A) =
∧
xλ/A

NT (A)(xλ) and Tj0(Aj0) =
∧

yµj0
/Aj0

NTj0 (Aj0)(yµj0).

Hence NT (A)(xλ) � Tj0(Aj0) for each xλ / A. Further, there exists yµj0 / Aj0 such

that NT (A)(xλ) � NTj0 (Aj0)(yµj0). However, by (2), we have

NT (A)(xλ) =
∧
j∈J
NTj (Aj)(p→j (xλ)) ≤ NTj0 (Aj0)(yµj0),

which is a contradiction. �

4. Conclusions

In this paper, the relationship between (L,M)-fuzzy topology and (L,M)-fuzzy
neighborhood system is further studied, and the initial structures of (L,M)-fuzzy
neighborhood subspaces and (L,M)-fuzzy topological product spaces are given.
Similarly, we can also give the initial structures of (L,M)-fuzzy topological sub-
spaces and (L,M)-fuzzy neighborhood product spaces.

The construction of initial structures in the category of (L,M)-fuzzy topological
spaces through those in the category of (L,M)-fuzzy neighborhood systems really
looks rather interesting; the fact that the two categories are isomorphic, however,
enables researchers to substitute one of them with the other, to find a solution of a
complicated problem.

The related topic of (L,M)-fuzzy topological spaces will be studied further in our
subsequent papers (e.g. (L,M)-fuzzy topological groups and (L,M)-fuzzy topolog-
ical vector spaces), involving, possibly, product of the latter.
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[4] U. Höhle and A. P. S̆ostak, Axiomatic foundations of fixed basis fuzzy topology, Chapter 3, In:
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[6] T. Kubiak, A. S̆ostak, A fuzzification of the category of M-valued L-topological spaces, Ap-

plied General Topology, 5 (2004), 137–154.



Further Study on (L,M)-fuzzy Topologies and (L,M)-fuzzy Neighborhood Systems 123

[7] T. Kubiak, A. S̆ostak, Foundations of the theory of (L,M)-fuzzy topological spaces, Abstracts
of the 30th Linz Seminar on Fuzzy Set Theory (U. Bodenhofer, B. De Baets, E. P. Klement,

and S. Saminger-Platz, eds.), Johannes Kepler Universität, Linz, (2009), 70–73.

[8] Y. M. Liu and M. K. Luo, Fuzzy Topology, World Scientific Publishing, Singapore, 1997.
[9] S. E. Rodabaugh, Categorical Foundations of Variable-Basis Fuzzy Topology, Mathematics

of Fuzzy Sets: Logic, Topology, and Measure Theory (U. Höhle, S. E. Rodabaugh eds.), The

Handbooks of Fuzzy Sets Series, Dordrecht: Kluwer Academic Publishers, Boston, Dordrecht,
London, 3 (1999), 273–88.

[10] F. G. Shi, L-fuzzy interiors and L-fuzzy closures, Fuzzy Sets and Systems, 160 (2009), 1218-
1232.

[11] F. G. Shi, Regularity and normality of (L,M)-Fuzzy topological spaces, Fuzzy Sets and Sys-
tems, 182 (2011), 37–52.

[12] G. J. Wang, Theory of topological molecular lattices, Fuzzy Sets and Systems, 47 (1992),

351–376.

[13] H. Zhao, X. J. Zhong and S. G. Li, Reciprocally determining of L-fuzzy neighborhood systems,
L-fuzzy interior systems and L-fuzzy closure operators, Journal of Shaanxi Normal University

(Natural Science Edition), in Chinese, 38 (1) (2010), 16–19.

Hu Zhao∗, College of Mathematics and Information Science, Shaanxi Normal Uni-

versity, Xi’an, 710062, P. R. China and School of Science, Xian Polytechnic University,
Xian 710048, P.R .China

E-mail address: zhaohu2007@yeah.net

Sheng-gang Li, College of Mathematics and Information Science, Shaanxi Normal

University, Xi’an, 710062, P. R. China

E-mail address: shenggangli@yahoo.com.cn

Gui-xiu Chen, College of Mathematics and Information Science, Shaanxi Normal

University, Xi’an, 710062, P. R. China
E-mail address: cgx0510@yahoo.com.cn

*Corresponding author


