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FUZZY INNER PRODUCT AND FUZZY NORM

OF HYPERSPACES

R. AMERI

Abstract. We introduce and study fuzzy (co-)inner product and fuzzy (co-

)norm of hyperspaces. In this regard by considering the notion of hyperspaces,
as a generalization of vector spaces, first we will introduce the notion of fuzzy

(co-)inner product in hyperspaces and will apply it to formulate the notions of

fuzzy (co-)norm and fuzzy (co-)orthogonality in hyperspaces. In particular, we
will prove that to every fuzzy hyperspace there is an associated unique fuzzy

inner product in a natural way.

1. Introduction

Hyperstructure theory was born in 1934, when Marty defined hypergroups, began
to analyse their properties and applied them to groups, and rational algebraic
functions [14]. Now they are widely studied from theoretical point of view and for
their applications to many subjects of pure and applied mathematics (for example
see [1]-[10], [23], [24]). In 1990, M.S. Tallini introduced the notion of hypervector
spaces(or hyperspace) [23] and studied the basic properties and applied them to
geometry (for more see [24]-[26]).

Following the introduction of fuzzy set by L. A. Zadeh in 1965 ([31]), he developed
it’s theory which can be found in mathematics and other applied subjects. Recently,
fuzzy set theory has been developed in the context of hyperalgebraic structure
theory (for example see [1-7], [10-12], [15-16]).

In [14], [17] and [19-20] notions of fuzzy fields and fuzzy vector spaces were
introduced and studied. The author in [1-7] introduced the notions of fuzzy hyper
subspaces, fuzzy balanced and fuzzy convex sets, fuzzy dimension and fuzzy basis
of fuzzy hyperspaces as a generalization of fuzzy subspaces. Also in [7] the author
introduced the notion of norm in fuzzy hyperspaces, which we will develope it in
this paper. Here we introduce fuzzy inner product, fuzzy co-inner product, fuzzy
norm and fuzzy co-norm of fuzzy hyperspaces. In this regards, first we introduce the
notion of fuzzy (co-) inner product, then we apply it to formulate fuzzy (co-)norm
and fuzzy normality in hyperspaces and finally, we investigate the basic properties
of these notions.
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2. Preliminaries

In this section we gather all definitions and properties which we require in (resp.
fuzzy ) hyperspaces and fuzzy subsets, and set the notions.

Let H be a nonempty set. By P∗(H) we mean the family of all nonempty subsets
of H.

A map . : H ×H −→ P∗(H) is called a hyperoperation or join operation.
The join operation is extended to nonempty subsets of H in a natural way, where

A.B or AB is given by

AB =
⋃
{ab | a ∈ A and b ∈ B}.

A hypergroup is a structure (H, .) that satisfies two axioms,
(Reproduction) aH = H = Ha, for all a ∈ H;
(Associativity) a(bc) = (ab)c., for all a, b, c ∈ H.
Let H be a hypergroup and K a nonempty subset of H. Then K is a subhyper-

group of H if it is a hypergroup with respect to the hyperoperation ”.” restricted
to K.

Hence it is clear that a nonempty subset K of H is a subhypergroup if and only
if aK = Ka = K, for all a ∈ K, under the hyperoperation on H.

Definition 2.1. [13] Let K be a field and (V,+) be an abelian group. We define
a hypervector space over K as a quadruple (V,+, ◦,K), where ◦ is a mapping

◦ : K × V −→ P∗(V )

such that the following conditions are satisfied:
(1) ∀a ∈ K,∀x, y ∈ V, a ◦ (x+ y) ⊆ a ◦ x+ a ◦ y ( right distributivity )
(2) ∀a, b ∈ K,∀x ∈ V, (a+ b) ◦ x ⊆ a ◦ x+ b ◦ y ( left distributivity )
(3) ∀a, b ∈ K,∀x ∈ V, a ◦ (b ◦ x) = (ab) ◦ x,
(4) ∀a ∈ K,∀x ∈ V, a ◦ (−x) = −a ◦ x,
(5) ∀x ∈ V, x ∈ 1 ◦ x.
For simplicity of notation sometimes we write ax instead of a ◦ x.

Remark 2.2. (i) In the right of (1) and (2) the sum is in the sense of Frobenius,
that is, we consider the set of all the sums of elements of a ◦x and a ◦ y. Moreover,
the left member of (3) means the set-theoretical union of all the sets a ◦ y, where y
runs over the set b ◦ x.

(ii) We say that (V,+, ◦,K) is strongly left distributive iff

∀a ∈ K,∀x, y ∈ V, a ◦ (x+ y) = a ◦ x+ a ◦ y,
and anti distributive, iff

∀a ∈ K,∀x, y ∈ V, a ◦ (x+ y) ⊇ a ◦ x+ a ◦ y,
In a similar way we define the strongly right distributive law.

(iii) Let Ω = 0 ◦ 0, where 0 is the zero of (V,+). In [26] it is shown that if V is
either strongly right or left distributive, then Ω is a subgroup of (V,+).
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Proposition 2.3. [26] Let V be a strongly left distributive hypervector space over
a field K. Then the following hold:

(1) Ω is a subgroup of of (V,+).
(2) ∀a ∈ K, a ◦ 0 = Ω = a ◦ Ω.
(3) ∀x ∈ V, 0 ◦ x ⊇ Ω is a subhypergroup of (V,+).
(4) ∀x ∈ V, 0 ◦ x is a subhypergroup of (V,+).

Definition 2.4. [1] Let V be a hyperspace over a field K and ν be a fuzzy subfield
of K. A fuzzy subset µV of V is said to be a fuzzy hyperspace of V over the fuzzy
field νK if, for all x, y ∈ V , and all a ∈ K, the following conditions are satisfied:

(i) µV (x+ y) ≥ µV (x) ∧ µV (y);
(ii) µV (−x) ≥ µV (x);

(iii)
∧

y∈a◦x
µV (y) ≥ µV (x) ∧ νK(a);

(iv) νK(1) ≥ µV (0);
where the operation

∧
denotes the infimum of the values in the unite interval [0, 1].

We say that µV is a fuzzy hyperspace over the fuzzy field νK . Hereafter except
for ambiguous cases we shall drop the subscripts on µ and ν.

Remark 2.5. (i) In Definition 3.1 if we consider ν = χK , the characteristic function
of K, then µ is a fuzzy hyperspace.

(ii) In the sequel, unless otherwise specified, we always assume that V is a
hyperspace over the field K.

Dually the notion of an anti fuzzy hyperspace can be defined as follows:

Definition 2.6. A fuzzy subset µ of V is said to be an anti-fuzzy hyperspace of V
over ν, if for all x, y ∈ V and a ∈ K, the following conditions are satisfied:

(i) µ(x+ y) ≤ max{µ(x), µ(y)};
(ii) supz∈a◦xµ(z) ≤ max{ν(a), µ(x)}.

Proposition 2.7. If µV is a fuzzy hyperspace over the fuzzy field νK , then
(i) ν(0) ≥ µ(0);
(ii) µ(0) ≥ µ(x), ∀x ∈ V ;
(iii) ν(0) ≥ µ(x), ∀x ∈ V.

Proof. The proof is an immediate consequence of Definition 2.1. �

Proposition 2.8. [1] Let V be a strongly left distributive hyperspace over a field
K and νK be a fuzzy field. Let µ ∈ FS(V ). Then µV is a fuzzy hyperspace over νK
iff

(i)
∧

z∈α◦x+β◦y

µ(z) ≥ ((ν(α) ∧ µ(x))
∧

(ν(β) ∧ µ(y)), ∀x, y ∈ V,∀α, β ∈ K;

(ii) ν(1) ≥ µ(x), ∀x ∈ V.

Definition 2.9. For a fuzzy subset µ of A, the level subset µt is defined by

µt = {x ∈ A : µ(x) ≥ t}, t ∈ [0, 1].

We denote the set of all fuzzy subsets of X by FS(X).
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3. Fuzzy (co-)inner Product of Hyperspaces

Throughout this note we assume that V is a hyperspace over the field K.

Definition 3.1. A fuzzy subset ν of a field K is called a fuzzy subfield if ∀x, y ∈ K,
the following conditions are satisfied:

(1) ν(x+ y) ≥ min{ν(x), ν(y)};
(2) ν(−x) ≥ ν(x);
(3) ν(xy) ≥ min{ν(x), ν(y)};
(4) ν(x−1) ≥ ν(x);
(5) ν(0) = 1 = ν(1).

Proposition 3.2. [22] A fuzzy subset ν of a field K is a fuzzy subfield of K if and
only if νt is a subfield of K for every t ∈ [0, ν(0)].

Definition 3.3. Let V be a hyperspace over a field K and ν be a fuzzy subfield of
K. A fuzzy subset µ of V is said to be a fuzzy hyperspace of V with respect to ν,
if for all x, y ∈ V and a ∈ K, the following conditions are satisfied:

(i) µ(x+ y) ≥ min{µ(x), µ(y)};
(ii) infz∈axµ(z) ≥ min{ν(a), µ(x)};
(iii) µ(0) = 1.

In the above definition if we set ν = χF , the characteristic function of F , then
we say that µ is a fuzzy hyperspace of V .

Proposition 3.4. [22] Let ν be a fuzzy subfield of K. Then a fuzzy subset µ of
V is a fuzzy hyperspace of V if and only if µt is a subhyperspace of V over νt, for
every t ∈ [0, 1].

Proposition 3.5. [22] A fuzzy subset ν of a field K is a fuzzy subfield of K if and
only if νt is a subfield of K for every t ∈ [0, ν(0)].

Lemma 3.6. Let µ be a fuzzy hyperspace of V . Then the following statements are
satisfies:

(i) µ(0) ≥ µ(x),∀x ∈ V ;
(ii) µ(x− y) = µ(0) =⇒ µ(x) = µ(y);
(iii) if µ has inf-property, then infz∈aoxµ(z) = µ(x),∀a ∈ K\{0};(we say that µ

has inf-property if for every non-empty subset S of V infx∈Sµ(x) = µ(a), for some
a ∈ S);

(iv) if µ(x) > µ(y), then µ(x+ y) = µ(v);
(v)µ(x) = µ(0),∀x ∈ Ω.

Proof. (i) Since −x ∈ (−1)ox, then from Definition 3.3 we have µ(−x) ≥ µ(x). On
the other hand, by Definition 2.1 (4) we have x ∈ (−1)o(−x), then µ(x) ≥ µ(−x).
Thus µ(x) = µ(−x), and hence µ(0) = µ(x− x) ≥ µ(x), by Definition 3.3.

(ii) µ(x − y) ≥ min(µ(x), µ(−x)) = (µ(x), µ(x)) = µ(x). But Definition 3.1
and inf-property of µ imply that µ(z0) = infz∈aoxµ(z) ≥ µ(x), where µ(z0) =
infz∈aoxµ(z). On the other hand, we have x ∈ 1ox = a−1o(aox), thus x ∈ a−1oz,
for some z ∈ aox. Then µ(x) ≥ µ(z) ≥ µ(z0), and so µ(z0) = µ(x).

(iv) this is easy.
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(v)x ∈ Ω = 0o0 implies that µ(x) ≥ µ(0) by Definition 3.3 (ii), and hence by
Lemma 3.6 (i), the equality holds. �

Corollary 3.7. [1] Let V be strongly left distributive. A fuzzy subset µ of V is a
fuzzy hyperspace if and only if, ∀x, y ∈ V,∀a, b ∈ K,

infz∈aox+boyµ(z) ≥ min(µ(x), µ(y)).

Theorem 3.8. Let µ ∈ FS(V ). Then µ is a fuzzy hyperspace of V , if and only if
µt is a subhyperspace of V , for every t ∈ Imµ.

Proof. Let µ be a fuzzy hyperspace. Let t ∈ Imµ and x, y ∈ µt. Then

µ(x− y) ≥ min(µ(x), µ(y)) ≥ t,
that is, x− y ∈ V . Also for a ∈ K and x ∈ V we have infz∈aoxµ(z) ≥ µ(x), that

is aox ⊆ µt. Thus µt is a subhyperspace of V .
Conversely, let µt be a subhyperspace, for every t ∈ Im(µ). Let x1, x2 ∈ V, a ∈ K

and t = min(µ(x1), µ(x2)). Then x, y ∈ µt, and hence x1 − x2 ∈ µt and aox1 ⊆ µt.
Thus µ(x1 − x2) ≥ min(µ(x1), µ(x2)) and infz∈aox1

µ(z) ≥ µ(x1). Therefore µ is a
fuzzy hyperspace. �

Example 3.9. (1) In (R2,+) we define the product times a scalar in R by setting:

∀P ∈ R2,∀a ∈ R :

{
a ◦ P = line OP , P 6= 0
a ◦ 0 = {0}

where 0 = (0, 0). It is easy to see that (R2,+, ◦,R) is a strongly left distributive
hypervector space. Now define the fuzzy subset µ on R2 as follows: µ(0, 0) =
1, µ((0, y)) = 1/2,∀y ∈ R∗ = R \ {0}, µ((x, o)) = 1/3 and µ(x, y) = 0, otherwise.
Then µ is a fuzzy hyperspace of R2, since the only level subsets of µ are µ1 =
{(0, 0)}, µ1/2 = {(x, 0)|x ∈ R}, µ1/2 = {(0, y)|y ∈ R}µ1/3 = R2, which are clearly

subhyperspaces of R2. Thus by Theorem 3.9 µ is a fuzzy hyperspace.

(2) Let V1 ⊂ V2 ⊂ ... ⊂ Vn ⊂ ... be a strictly increasing sequence of sub-
hyperspaces of V and {ti}ni=1 be a strictly decreasing sequence in [0, 1]. Define µ
on V as follows:

µ(x) = ti if x ∈ Vi\Vi−1, where ti−1 < ti, i = 1, 2, ... and µ(x) = 0, ifx ∈ V \∪∞i=1Vi.

It is easy to verify that µti+1
⊆ µti and the only level subhyperspaces of V are V ,

and µti = Vi, i = 1, 2, .... Then by Theorem 3.9 µ is a fuzzy hyperspace of V .

(3) Let V = V0 ⊃ V1 ⊃ ... ⊃ Vi ⊃ ... be a strictly increasing sequence of
subhyperspaces of V and {ti}n1 be an increasing sequence in [0, 1]. Define fuzzy
subset µ on V by µ(x) = ti−1, if x ∈ Vi−1\Vi where

ti−1 < ti, i = 1, 2, 3, ... and µ(x) = 1if x ∈ ∩∞i Vi.
Again by Theorem 3.9 µ is a fuzzy hyperspace of V .

Definition 3.10. Let ν be a fuzzy subfield of K. A fuzzy subset µ of V × V is
called a fuzzy inner product hyperspace if ∀x, y, z ∈ V and ∀a ∈ K, the following
conditions hold:



130 R. Ameri

(i) µ(x+ y, z) ≥ min{µ(x, z), µ(y, z)};
(ii) inft∈a◦xµ(t, y) ≥ min{ν(a), µ(x, y)};
(iii) µ(x, y) = µ(y, x);
where x is the conjugate of x.

Definition 3.11. Let ν be a fuzzy subfield of K and µ be a fuzzy inner product
hyperspace in V . Then the fuzzy subset ‖ . ‖ of V is called a fuzzy norm function
in V if ∀x, y ∈ V and a ∈ K, the following conditions are satisfied:

(i) ‖ x ‖≤‖ 0 ‖;
(ii) infz∈aox ‖ z ‖≥ min{µ(x, z), ν(a), ‖ x ‖};
(ii) ‖ x+ y ‖≥ min{µ(x, y), µ(y, x), ‖ x ‖, ‖ y ‖}.

Remark 3.12. The condition (iii) in Definition 3.9 of a fuzzy inner product hy-
perspace is meaningless, since it is stated in terms of conjugate of an element and
conjugation, in general is undefined in an arbitrary field. Similarly, the condition
(ii) in Definition 3.10 is meaningful only if the conjugate is defined in the field K.
Therefore in view of the foregoing discussion we modify the above definitions as
follow.

Definition 3.13. (modified version of Definition 3.10). Let ν be a fuzzy subfield
of K. A fuzzy subset θ of V × V is called a fuzzy inner product hyperspace with
respect to ν if ∀x, y, z ∈ V and ∀a ∈ K, the following conditions hold:

(i) θ(x+ y, z) ≥ min{θ(x, z), θ(y, z)};
(ii) inft∈aoxθ(t, y) ≥ min{ν(a), θ(x, y)};
(iii) θ(x, y) = θ(y, x).

The number θ(x, y) is called the inner product of elements x, y.

Definition 3.14. (modified version of Definition 3.11 ) Let ν be a fuzzy subfield
of K and µ be a fuzzy inner product hyperspace in V . Then the fuzzy subset ‖ . ‖
of V is called a fuzzy norm function in V if ∀x, y ∈ V and a ∈ K, the following
conditions are satisfied:

(i) ‖ x ‖≤‖ 0 ‖;
(ii) infz∈aox ‖ z ‖≥ min{µ(x, z), ν(a), ‖ x ‖};
(iii) ‖ x+ y ‖≥ min{µ(x, y), µ(y, x), ‖ x ‖, ‖ y ‖}.

Henceforth the terms ”fuzzy inner product hyperspace”, and ”fuzzy norm” will
be referred to in the sense of Definitions 3.13 and 3.14, respectively.

Proposition 3.15. Let ν be a fuzzy subfield of K and θ be a fuzzy inner product
hyperspace in V . Then
∀x, y,∈ V and ∀a ∈ K the following statements are satisfied:

(i) θ(0, y) ≥ θ(x, y);
(ii) θ(x, 0) ≥ θ(x, y);
(iii) θ(0, 0) ≥ θ(x, y),
(iv) infz∈a◦xθ(x, z) ≥ min{ν(a), θ(x, y)};and
(v)θ(x, y + z) ≥ min{θ(x, y), θ(y, z)}.
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Proof. (i) θ(0, y) = θ(x − x, y) ≥ min{θ(x, y), θ(−x, y), by Definition 3.13 (i).
Also by Definition 2.1 (5), we have −x ∈ 1o(−x) = (−1)ox. Thus θ(−x, y) ≥
min{ν(−1), θ(x, y)} = θ(x, y), by Definitions 3.1 and 3.13.

(ii) θ(x, 0) = θ(, x) ≥ θ(x, y), by (i).
(iii) θ(0, 0) ≥ θ(0, y) ≥ θ(x, y),, by(i).
(iv) infz∈aoxθ(x, z) = infz∈aoxθ(z, x) ≥ min{ν(a), θ(x, z)},, by Definition 3.14.
(v) θ(x+ y, z) = θ(y + z, x) ≥ min{θ(y, x), θ(z, x)} = {θ(x, y), θ(x, z)}. �

Definition 3.16. Let θ be a fuzzy inner product hyperspace in V and let x, y ∈ V .
Then the element x is said to be orthogonal to y if θ(x, y) = 0.

Proposition 3.17. Let µ be a fuzzy hyperspace of V with respect to a fuzzy subfield
ν of K. Let θ be a fuzzy subset in V × V defined by θ(x, y) = min{µ(x), µ(y)}.
Then
∀x, y ∈ V and ∀a ∈ K the following statements are satisfied:
(i) θ(x, y) = θ(y, x);
(ii) θ(x+ y, z) ≥ min{θ(x, z), θ(y, z)};
(iii) inft∈aoxθ(t, y) ≥ min{ν(a), θ(x, y)};
(iv) θ(0, 0) ≥ max{θ(0, y), θ(x, 0)} ≥ θ(x, y).

Proof. (i) is an immediate consequence of definition θ.

(ii)
θ(x+ y, z) = min{µ(x+ y), µ(z)},

≥ min{min{µ(x), µ(y)}, µ(z)},
= min{µ(x), µ(y), µ(z)},
= min{min{µ(x), µ(z)},min{µ(y), µ(z)}},
= min{θ(x, z), θ(y, z)}.

(iii)
inft∈aoxθ(t, y) = inft∈aox{µ(t), µ(y)},

= min{inft∈aoxµ(t), µ(y)},
≥ min{min{ν(a), µ(x)}, µ(y)}},
= min{ν(a), θ(x, y)}.

For (iv)

θ(x, 0) = min{µ(x), µ(0)} = µ(x), since µ(0) ≥ µ(x),

≥ min{µ(x), µ(y)} = θ(x, y) (1)

Similarly, we conclude that

θ(0, x) ≥ θ(x, y) (2)

Now, if we take x = 0 in (1) and y = 0 in (2), we obtain

θ(0, 0) ≥ max{θ(0, y), θ(x, 0)},
which complete the proof. �
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Remark 3.18. From parts (i)− (iii) of the above proposition it follows that θ is a
fuzzy inner product hyperspace in V with respect to the fuzzy subfield ν. Thus with
every fuzzy linear subhyperspace of V a unique fuzzy inner product hyperspace in
V is associated in a natural way.

Proposition 3.19. Let µ be a fuzzy hyperspace of V with respect to a fuzzy subfield
ν of K. Let θ be a fuzzy subset in V × V defined by θ(x, y) = min{µ(x), µ(y)}.
Then
∀x, y,∈ V and ∀a ∈ K the following statements are satisfied:

(i) θ(x, y) = θ(y, x);
(ii) θ(x+ y, z) ≥ min{θ(x, z), θ(y, z)};
(iii) inft∈aoxθ(t, y) ≥ min{ν(a), θ(x, y)};
(iv) θ(0, 0) ≥ max{θ(0, y), θ(x, 0)} ≥ θ(x, y).

Proof. (i) is an immediate consequence of definition θ. (ii),

θ(x+ y, z) = min{µ(x+ y), µ(z)},
≥ min{min{µ(x), µ(y)}, µ(z)},
= min{µ(x), µ(y), µ(z)},
= min{min{µ(x), µ(z)},min{µ(y), µ(z)}},
= min{θ(x, z), θ(y, z)}.

For (iii)

inft∈aoxθ(t, y) = inft∈aox{µ(t), µ(y)},
= min{inft∈aox{min{ν(a), µ(y)}},
≥ min{min{ν(a), µ(x)}, µ(y)}},
= min{ν(a), θ(x, y)}.

For (iv)

θ(x, 0) = min{µ(x), µ(0)} = µ(x), since µ(0) ≥ µ(x),

≥ min{µ(x), µ(y)} = θ(x, y) (3)

Similarly, we conclude that

θ(0, x) ≥ θ(x, y) (4)

Now, if we taking x = 0 in (1) and y = 0 in (2), we obtain

θ(0, 0) ≥ max{θ(0, y), θ(x, 0)},

which complete the proof. �

Remark 3.20. From parts (i)− (iii) of the above proposition it follows that θ is
a fuzzy inner product hyperspace in V with respect to the fuzzy subfield ν. Thus
with every fuzzy linear subhyperspace of V there is associated a unique fuzzy inner
product hyperspace in V in a natural way.
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Example 3.21. Consider Example 3.9(1), and define ν as the χR. Define θ(x, y) =
min{µ(x), µ(y)}. Then by Proposition 3.18, θ is a fuzzy inner product on the
hyperspace R2 in Example 3.9.

4. Fuzzy co-inner product, Fuzzy co-norm and Fuzzy co-orthogonality

In this section we formulate the dual notions of fuzzy inner product, fuzzy co-
norm and fuzzy co-orthogonality in hyperspaces.

Definition 4.1. Let ν be a fuzzy subfield of F . A fuzzy subset θ of V ×V is said to
be a fuzzy co-inner product hyperspace in V with respect to ν if ∀x, y,∈ V,∀a ∈ F
the following conditions hold:

(i) θ(x+ y, z) ≤ max θ(x, z), θ(y, z),

(ii) supz∈a◦xθ(z, y) ≤ min{ν(a), θ(x, y)}, and

(iii) θ(x, y) = θ(y, x).

Henceforth, the value θ(x, y) is referred to as a co-inner product of the elements
x, y.

Definition 4.2. Let θ be a fuzzy co-inner product hyperspace in V with respect
to a fuzzy subfield ν of F . A fuzzy co-norm function, denoted by ‖ . ‖, is a fuzzy
subset of V satisfying ∀x, y ∈ V and ∀a ∈ F the following conditions:

(i) ‖ x ‖ ≥ ‖ 0 ‖;
(ii) supy∈a◦x‖ z ‖ ≤ min{ν(a), ‖ x ‖};
(iii) ‖ x+ y ‖ ≤ max{‖ x ‖, ‖ y ‖}.

Proposition 4.3. Let θ be a fuzzy co-inner product hyperspace in V with respect
to a fuzzy subfield ν of F and let µ(x) = θ(x, x) ∀x ∈ V . Then the following
statements are equivalent:

(i) µ(x) ≥ µ(0);
(ii) supy∈a◦x µ(x) ≤ min{ν(a), µ(x)} and

(iii) µ(x+ y) ≤ max{µ(x), µ(y), θ(x, y)}.

Proof. (i) Since supy∈a◦x µ(x) ≤ min{ν(a), µ(x)}, takeing a = 0, we obtain θ(0, y) ≤
min{(ν(0), θ(x, y)} = θ(x, y), since ν(0) = 1. Similarly, interchanging the role of x
and y we obtain θ(x, 0) ≤ θ(x, y). Also,

µ(0) = θ(0, 0)

≤ θ(0 ◦ x, 0)

≤ min{ν(0), θ(x, 0))

= θ(x, 0)

≤ θ(x, x)

= µ(x).

For (ii),

supz∈a◦xµ(z) = supz∈a◦xθ(z, z)

≤ min{ν(a), θ(x, z)}
= min{ν(a),min{ν(a), θ(x, x)}}
= min{ν(a), θ(x, x)}
= min{ν(a), µ(x)}.
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For (iii),

µ(x+ y) = θ(x+ y, x+ y)

≤ max{θ(x, x+ y), θ(y, x)},max{θ(x, y), θ(y, x)},maxθ(x, y), θ(y, y)}
= {θ(x, x), θ(y, y), θ(x, y)}
= max{µ(x), µ(y), θ(x, y)}.

�
Remark 4.4. From Proposition 4.3 it is clear that µ is a fuzzy co-norm and is
referred to as the ”fuzzy co-norm” induced by the fuzzy co-inner product space θ.

Definition 4.5. Let θ be a fuzzy co-inner product in V with respect to a fuzzy
subfield ν of F . Then x, y ∈ V are said to be co-orthogonal, if θ(x, y) = 0.

Obviously, co-orthogonality is a symmetric relation.
For every nonempty subset A of V , we define the fuzzy co-orthogonal complement

of A, denoted A⊥, by
A⊥ = {x ∈ V |θ(a, x) = 0∀a ∈ A}.

Proposition 4.6. Let V be a hyperspace and A ⊆ B, then

(i) B⊥ ⊆ A⊥;
(ii) A⊥ is a subhyperspace of V .

Proof. (i) It is routine. To prove (ii), suppose that x, y ∈ A⊥, c ∈ K,
θ(x, a) = 0 and

0 ≤ θ(x+ y, a) ≤ max{θ(x, a), θ(y, a)} = 0.

Hence x+ y ∈ A⊥. Again
0 ≤ infz∈c◦xθ(z, , a) ≥ min{ν(c), θ(x, a)} = 0

and so c ◦ x ⊆ A⊥
Thus A⊥ is a sub-hyperspace of V . �

In the following we show that in any fuzzy hyperspace the fuzzy co-inner product
exists.

Proposition 4.7. Let µ be a fuzzy hyperspace of V with respect to the constant
fuzzy subfield ν(a) = 1∀a ∈ K. Define the fuzzy subset η : V × V −→ [0, 1] by
η(x, y) = min{1 − µ(x), 1 − µ(y)}. Then for every x, y, z ∈ V and a ∈ K the
following hold:

(i) η(x+ y, z) ≤ max{η(x, z), η(y, z)};
(ii) supz∈a◦xη(z, y) ≤ η(x, y);
(iii) η(x, 0) = η(0, 0) = 0;
(iv) η(x, 0) = 1− µ(x), ∀x ∈ V.

Proof. (i),

η(x+ y, z) = min{1− µ(x+ y), 1− µ(z)}
≤ min{max{1− µ(x), 1− µ(y)}, 1− µ(z)}
= maxmin{1− µ(x), 1− µ(z)},min{1− µ(y), 1− µ(z)}
= max{η(x, z), η(y, z)}
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(ii)
supz∈a◦xη(z, y) = supz∈a◦xη(z, y)

= supz∈a◦xmin{1− µ(z), 1− µ(y)}
= min{1− supz∈a◦xµ(z), 1− µ(y)}
≤ min{1− µ(x), 1− µ(y)}
= η(x, z)

(iii) Obvious. (iv) η(x, 0) = min{1 − µ(x), 1 − µ(0)} = min{1 − µ(x), 0} = 1 −
µ(x). �

The next results is an immediate consequences of Definition 4.6, Proposition 4.7
and Proposition 4.8.

Proposition 4.8. Let µ be a fuzzy hyperspace of V with respect to the constant
fuzzy subfield ν(x) = 1∀ x ∈ V . Let η be the fuzzy co-inner product hyperspace of
V induced by µ. Then the following are satisfied:

(i) {0}⊥ = V .
(ii) Let U = {x ∈ V |µ(x) = µ(0) = 1}, in case µ 6= χV , where χV denotes the

characteristic function of V .

Proposition 4.9. Let θ and η be two fuzzy hyperspaces of V with respect to fuzzy
subfield ν, then θ ∪ η is also a fuzzy co-inner product hyperspace in V with respect
to the fuzzy subfield ν.
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