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CATEGORICALLY-ALGEBRAIC TOPOLOGY AND ITS
APPLICATIONS

S. A. SOLOVYOV

ABSTRACT. This paper introduces a new approach to topology, based on cat-
egory theory and universal algebra, and called categorically-algebraic (catalg)
topology. It incorporates the most important settings of lattice-valued topol-
ogy, including poslat topology of S. E. Rodabaugh, (L, M)-fuzzy topology of
T. Kubiak and A. Sostak, and M-fuzzy topology on L-fuzzy sets of C. Guido.
Moreover, its respective categories of topological structures are topological over
their ground categories. The theory also extends the notion of topological sys-
tem of S. Vickers (and its numerous many-valued modifications of J. T. Den-
niston, A. Melton and S. E. Rodabaugh), and shows that the categories of
catalg topological structures are isomorphic to coreflective subcategories of
the categories of catalg topological systems. This extension initiates a new
approach to soft topology, induced by the concept of soft set of D. Molodtsov,
and currently pursued by various researchers.

1. Introduction

The notion of L-fuzzy set introduced by L. A. Zadeh [107] and J. A. Goguen [41]
gave a rigid mathematical description of a new kind of uncertainty — fuzziness.
Many researchers turned to fuzzification of well-known notions, producing new
frameworks and often not minding the already existing ones. Nowadays, a working
mathematician is confronted with a wide range of fuzzy (also called many-valued
or lattice-valued) theories, dealing with almost every aspect of mathematics, but
having no convenient common ground. A good example is the field of lattice-valued
topology. Inspired by classical topology, it was started by C. L. Chang [14], and
continued by J. A. Goguen [42] and R. Lowen [66], every author developing his own
ideas, the only common point being the setting of fized-basis, in which the theory
is built over an arbitrary but always fixed lattice. This link was soon broken by
B. Hutton [54], who introduced variable-basis setting, which employed various lat-
tices in one theory. The idea was brought to its completion by S. E. Rodabaugh [82],
who called his framework point-set lattice-theoretic (poslat) topology [83], thereby
underlining its dependance on sets and lattices. Relying on category theory, it
provided a common ground for many of the existing lattice-valued approaches to
topology [84, 86]. Based on the algebraic structure of semi-quantale though, poslat
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theories are not available by definition of settings, which employ other algebras like,
e.g., closure spaces [5] do.

There exists a different approach to fuzzy topology, initiated by U. Héhle [50],
taken up independently by T. Kubiak [60] and A. Sostak [105], and resulting in the
theory of (L, M)-fuzzy topological spaces [61]. Tts variable-basis poslat modification
proposed by J. T. Denniston, A. Melton and S. E. Rodabaugh [22] incorporates the
poslat topology of the above paragraph, making another step towards unification of
the existing many-valued topological frameworks. A modification of (L, M)-fuzzy
topology, introduced by C. Guido [45] and called M -fuzzy topology on an L-fuzzy
set, has no direct counterpart in the setting of [22] at the moment.

The above remarks show a certain success in fighting the diversification of the
existing topological theories, suggesting poslat topology as the uniting force. On a
closer inspection however, it appears that the approach, based on category theory,
provides the standard category-theoretic tools as the only way of intercommuni-
cation between different topological settings. To compare, categorical algebra in
the sense of F. W. Lawvere [62] (the most recent developments are conveniently
provided in [2]) defines explicitly the notions of algebraic theory and algebraic the-
ory morphism. Moreover, recently M. Demirci [18] introduced generalized topology,
motivated by the idea of generalized lattice-valued set of N. Nakajima [75], and his
approach has not yet been accommodated inside the poslat setting.

Working in the field of lattice-valued topology and inspired by the above discus-
sion, we decided to introduce a new topological framework, which would incorporate
the above-mentioned poslat topological theories and their missed setting of closure
spaces, M-fuzzy topological L-fuzzy spaces of C. Guido and generalized topology of
M. Demirci. Moreover, by analogy with categorical algebra of F. W. Lawvere, we
define explicitly the notion of topological theory and topological theory morphism,
having two goals in mind:

(1) Construct a common setting for the majority of available (lattice-valued)
topological theories.
(2) Provide means of interaction between different topological theories.

It is the main purpose of this paper to address the first goal. The proposed
approach is based on category theory and universal algebra and thus is called
categorically-algebraic (catalg) topology (cf. poslat topology of [83]). The frame-
work extends categorical topology of S. E. Rodabaugh [86] (relying on categorical
fuzzy topology of P. Eklund [30]), bringing more algebra in play. A particular in-
stance of the new approach, called retractive lattice-valued topology and motivated
by the above-mentioned framework of C. Guido, provides one of the most general
settings for doing lattice-valued topology available at the moment. The new theory
uses the same machinery for both crisp and many-valued topology (both are par-
ticular instances of catalg topological theories), erasing the border between them.
At the bottom of the new framework lies the observation that the majority of the
existing topological settings rely on two bedrocks: a ground category, and a variety
of algebras (where algebras can have a class of not necessarily finite operations as
in, e.g., [8, 80]), which underlies the respective topological structures (in the case
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of classical topological spaces, the category Set of sets and the variety Frm of
frames [56], respectively). These bedrocks determine the properties of the theory,
and, therefore, are the main source of distinction between different settings. Being
aware of the importance of the ground category, S. E. Rodabaugh tried to con-
struct a supercategory for all possible varieties of algebraic structures underlying
topological theories, which resulted in the concept of semi-quantale. Instead of
providing a supercategory, we consider topological theories based in an arbitrary
variety of algebras. To obtain a particular topological setting then, one takes the
variety in question, which is easily determined by the underlying algebras of the
respective topological structures. For example, poslat topology of S. E. Rodabaugh
is built over the variety of semi-quantales, the theory of closure spaces is based
on the variety of closure semilattices, whereas the above-mentioned (L, M)-fuzzy
topology and its extension of C. Guido rely on lattice-valued frames [99] (which
is a particular instance of our extension of the theory of lattice-valued universal
algebra of A. Di Nola and G. Gerla [24]). On the other hand, generalized topology
of M. Demirci, while using the variety of semi-quantales, employs different ground
category (stated clearly in this paper). Moreover, motivated by the fact that every
variety is itself a category, we show that certain functors between ground categories
and varieties, linked by a natural transformation, provide a way of interaction
(translation of results) between different topological theories.

An important advantage of a common framework for doing topology is the pos-
sibility to obtain results pertaining to every incorporated setting. For example, this
paper shows that every catalg topological theory gives rise to a category of topolog-
ical structures, which is topological over its ground category. As a consequence, we
obtain the well-known fact that the categories Top of topological spaces and Cls
of closure spaces are topological. More generally, every poslat topological theory
over semi-quantales provides a topological category, and that includes the results
of S. E. Rodabaugh [86] and J. T. Denniston et al. [22].

To show some applications of the new setting, we consider, firstly, the theory of
pointfree topology, initiated by D. Papert and S. Papert [77], C. Ehresmann [29],
J. R. Isbell [55], and given a coherent statement by P. T. Johnstone [56]. In the
manuscript, we employ the setting of S. Vickers [106], who introduced the notion
of topological system as a common framework for both topological spaces and their
underlying algebraic structures — frames (also locales), which are the cornerstone
of pointfree topology. The concept of topological system has already attracted the
attention of several researchers as a possible extension of the theory of many-valued
topology [19, 20, 22, 23, 33, 46, 47, 98, 101]. The catalg theory incorporates the
notion, providing a common ground for all its lattice-valued extensions, and gen-
eralizes the most essential part of the results of S. Vickers, namely, the fact that
the category of topological spaces is isomorphic to a full coreflective subcategory
of the category of topological systems. As a consequence, we not only obtain the
original result of S. Vickers, but also its extension of J. T. Denniston et al. [19],
the equivalence between the categories of state property systems and closure spaces
of D. Aerts et al. [4, 5] as well as the functor of C. Guido [46], which is a gener-
alization of the hypergraph functors of the fuzzy community [51, 59, 81] (see [100]
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for the respective results). Moreover, recent results show a close relation between
topological systems of S. Vickers and attachments of C. Guido [34, 48].

The second application of the proposed catalg topological setting deals with the
currently popular approach to uncertainty in mathematics, which is based on the
theory of soft sets of D. Molodtsov [71], and which incorporates (as claimed by
its author) the (L-)fuzzy approach of L. A. Zadeh and J. A. Goguen. Successfully
continued by P. K. Maji et al. [68], the theory initiated “softening” of mathematics.
Of particular interest appears to be the area of soft algebra, rapidly progressing at
the moment and providing soft versions of the well-known algebraic structures,
e.g., soft group [6], soft ring [65], soft semiring [32], etc. Moreover, M. Shabir and
M. Naz [93] have recently started the theory of soft topology, which was immediately
taken up in [13, 53, 70] (and partly in [78]). The setting of catalg topological systems
of the previous paragraph gives rise to a different approach to soft topology, which
bears much analogy with the machinery of soft algebra, and which is outlined in
this manuscript in full detail. Moreover, catalg topological systems motivated a new
and a more rigid setting for the soft set theory itself introduced recently in [104].

With the number of topological approaches incorporated in the catalg setting
and listed in this paper, as well as with some of its applications (mentioned above),
we hope to stimulate the interested researchers to develop a unification of modern
(lattice-valued) topological settings. It is the purpose of this manuscript to suggest
one of the possible approaches. However, there are (at least) two other potential
candidates for that role, namely, monadic topology of W. Géahler [35, 38] (recently, in
collaboration with P. Eklund et al. [31]) and (T, V')-categories of M. M. Clementino,
D. Hofmann and W. Tholen [15]. Both are based in a particular extension of
the categorical notion of monad [9] (and, therefore, being more demanding than
catalg topology), the former called partially ordered monad, whereas the latter
called lax extension of monad. Both employ modifications of complete lattices,
the former being motivated by the setting of fuzzy filters [36, 37] (and, therefore,
lattice-valued topology), the latter being induced by the category Q-Rel of sets
(as objects) and @-valued binary relations (as morphisms), where @ is a unital
quantale [90] (thereby, extending the category Rel of sets and binary relations, but
never mentioning explicitly any relationship to lattice-valued sets). Moreover, it
can be shown that a particular extension of the monadic approach of W. Gahler
provides a setting isomorphic to that of (T, V')-categories [92], so, essentially, one
has only one concurrent setting. We will not comment further on the relationships
between catalg topology and (T, V')-categories, apart from the remark that while
the latter incorporate almost all the algebraic information of topological structures
in the categorical notion of monad (apart from that, which is stored in quantales),
we use explicitly the concept of variety of universal algebra for that purpose.

In conclusion of this section, we will mention that [103] has recently shown that
a concrete category is fibre-small and topological if and only if it is concretely iso-
morphic to a subcategory of a category of catalg topological structures, which is
definable by topological co-axioms. In other words, every fibre-small topological
category (and these include most of the categories for (lattice-valued) topology)
is incorporated into the theory of catalg topology. The explicit description of the
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required topological co-axioms though could be quite complicated in each concrete
case, which stimulated us to elaborate in this paper the inclusion of several impor-
tant (lattice-valued) topological settings into catalg topology in full detail.

The paper uses the tools of category theory and universal algebra, relying more
on the former. The necessary categorical background can be found in [1, 49, 67, 69].
For the notions of universal algebra, we recommend [11, 16, 43, 80]. Although we
tried to make the paper as much self-contained as possible, some details are still
omitted and left for the self-study of the reader.

2. Basic Concepts of Categorically-algebraic Topology

This section introduces basic concepts of categorically-algebraic (catalg) topology
and constitutes the core of the paper. The reader should be aware that some parts
of the framework have already appeared in the previous manuscripts of the author
under the name of variety-based topology. By our opinion, the latter term does not
properly reflect the underlying theories of the approach and thus, the current paper
will stick to catalg denotation. Some internal concepts of the setting still bear the
term “variety-based” in their names, to underline that they are motivated by the
general structure of varieties. On the whole, we suggest referring the topological
stuff based on the category Set of sets and maps as variety-based topology, reserving
the term categorically-algebraic for more general ground categories.

The new approach was motivated by the point-set lattice-theoretic (poslat) topol-
ogy, introduced by S. E. Rodabaugh [83] and developed (in strikingly different ways)
by P. Eklund, C. Guido, U. Hohle, T. Kubiak, A. Sostak and the initiator himself
[30, 45, 52, 60, 61, 84]. The main advantage of the new setting is the fact that
catalg framework ultimately removes the border between traditional and lattice-
valued developments, producing a theory which brings forward algebraic essence
of the whole (not only many-valued) topology. The close relation to the induced
poslat setting is underlined by the abbreviation “catalg”, which also brings to light
the difference in the two theories.

2.1. Algebraical and Categorical Preliminaries. This subsection provides
those algebraic and categorical preliminaries, which are essential for the under-
standing of the paper. An experienced reader can easily skip the developments,
consulting the subsection for the notations used throughout the paper only.

The cornerstone of the approach is the notion of (universal, general or abstract)
algebra, which is thought of as a set with a family of operations defined on it,
satisfying certain identities, e.g., semigroup, monoid, group and also (that is more
important) complete lattice, frame, quantale. In case of finitary algebras, i.e., those
induced by a set of finitary operations, there are two popular ways to describe their
families [11, 16, 43]. The first, algebraic one, uses the concept of variety — a class of
algebras closed under homomorphic images, subalgebras and direct products. The
second, model-theoretic one, is based on the notion of equational class — providing
a set of identities (equations) and taking precisely those algebras which satisfy all
of them. The well-known HSP-theorem of G. Birkhoff [10] says that varieties and
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equational classes coincide. Motivated by the algebraic structures used in many-
valued topology (where unions are represented as joins), this paper includes infini-
tary cases as well, extending the algebraic approach of varieties to cover its needs
(in the way [8, 80] do), and leaving aside the infinitary model-theoretic machineries
of equationally-definable class [69] and equational category [64, 91].

Definition 2.1.

(1) Let © = (na)rea be a (possibly proper or empty) class of cardinal num-
bers. An Q-algebra is a pair (A, (wi)rea), comprising a set A and a family
A

of maps A™ 24 (called ny-ary primitive operations on A). An -
homomorphism (A, (W) aen) = (B, (wP)ren) is a map A % B such that
the diagram

@A
A — T o BT

A B
WA \L lwx

A——B
©

commutes for every A € A. Alg(Q) is the construct of -algebras and
Q-homomorphisms.

(2) Let M (resp. &) be the class of Q-homomorphisms with injective (resp.
surjective) underlying maps. A wariety of Q-algebras is a full subcategory
of Alg(f) closed under the formation of products, M-subobjects (subal-
gebras) and £-quotients (homomorphic images). The objects (resp. mor-
phisms) of a variety are called algebras (resp. homomorphisms).

(3) Given a variety A, a reduct of A is a pair (|| — ||, B), where B is a variety
such that Qp C Qa (where Q4 and Qp stand for the classes of primitive

operations of the varieties A and B, respectively) and A u> Bis a

concrete functor. The pair (A, || — ||) is called an extension of B.

Every concrete category of this paper is supposed to be equipped with the under-
lying functor | — | to its respective ground category, the latter mentioned explicitly
in every case. Also a comment is due to item (2) of Definition 2.1, i.e., the author of
this paper is unaware of any result that every monomorphism (resp. epimorphism)
in the category Alg(Q) has an injective (resp. surjective) underlying map.

The new concepts can be illustrated by several examples, all of which (except
the last one) are popular in many-valued topology [46, 86, 88], since their induced
categories of lattice-valued structures are topological over their ground categories.
The last item in the list was motivated by closure spaces and their interrelationships
with state property systems [4, 5], introduced as the basic mathematical structure
in the Geneva-Brussels approach to foundations of physics (the respective variety-
based modification of the notion has already been considered in [100]).

Definition 2.2.

(1) Given = € {\/, A}, a E-semilattice is a partially ordered set, which has
arbitrary Z. CSLat(E) is the variety of E-semilattices. To give the reader
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more intuition, we notice that, e.g., the variety CSLat(\/) is concretely
isomorphic to the category of Eilenberg-Moore algebras for the powerset
monad on the category Set of sets and maps [1, Example 20.5(3)], and,

therefore, its objects can be represented as pairs (X, P(X) l) X), where
X is aset, P(X) is the powerset of X, whereas \/ is a map, which assigns to
every S € P(X) its join \/ S. On the other hand, following [8, Section 4(3)],
we can replace the above-mentioned map \/ with a (class-indexed) family

of (in general, infinitary) operations X" L> X, one for every cardinal
number x, where \/,. maps an element of X* (which determines a subset
of X with cardinality less or equal than k) to its join. It follows then that
the morphisms of the category CSLat(\/) are exactly the homomorphisms
in the sense of Definition 2.1 w.r.t. the above family of operations. Similar
strategy is employed in every item of this definition (its explicit description,
however, is left to the reader).

(2) A semi-quantale (s-quantale) is a \/-semilattice equipped with a binary
operation ® (multiplication). SQuant is the variety of s-quantales.

(3) An s-quantale is called DeMorgan provided that it is equipped with an
order-reversing involution (—)’. DmSQuant is the variety of DeMorgan
s-quantales.

(4) An s-quantale is called unital (us-quantale) provided that its multiplication
has the unit 1. USQuant is the variety of us-quantales.

(5) A quantale is an s-quantale whose multiplication is associative and dis-
tributes across \/ from both sides. Quant is the variety of quantales.

(6) A quasi-frame (g-frame) is an s-quantale whose multiplication is A. QFrm
is the variety of g-frames.

(7) A semi-frame (s-frame) is a unital q-frame. SFrm is the variety of s-frames.

(8) A frame is an s-frame which is a quantale. Frm is the variety of frames.

(9) A closure semilattice (c-semilattice) is a /\-semilattice, with the singled out
bottom element L. CSL is the variety of c-semilattices.

Notice that the categories QFrm and SFrm (the former is due to C. Guido
and the latter is due to S. E. Rodabaugh), having essentially the same objects
(complete lattices), differ on morphisms and thus, are different. Also notice that
CSLat(\/) is a reduct of SQuant, SQuant is a reduct of USQuant and Dm-
SQuant, USQuant is a reduct of SFrm, UQuant is a reduct of Frm, CSLat(\)
is a reduct of CSL.

Before moving forward, some remarks are due on the many-valued framework
employed in the paper. We extend first the concept of lattice-valued set to that of
algebraic set as follows.

Definition 2.3. Let X be a set and let A be an algebra of some variety A. An
(A-)algebraic set in X is a map X = |A|.

The underlying idea of the new setting is simple and is based on a straightforward
algebraization of the classical frameworks of L. A. Zadeh [107] and J. A. Goguen [41],
which can be easily restored through an appropriate variety. Despite that the theory
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of algebraic sets is a good research area (the choice of set-theoretic operations is
much richer), this paper will not develop the topic off the bounds of its interest.
A word is due to the notations employed throughout the manuscript. Arbitrary
varieties are denoted A, B, C (sometimes with indices), with S reserved for their
subcategories (or the subcategories of their dual categories). The categorical dual of
a variety A is denoted A°?  whose objects (resp. morphisms) are called A°P-algebras
(resp. A°P-homomorphisms). Other categories will employ similar notation for
their duals. Following [56], the dual of Frm is denoted Loc, whose objects are
called locales. Given an op-algebra A, Sa stands for the subcategory of A°? with

the only morphism the identity A 14, A, To underline the variety, which contains
the algebra A, we use the notation Sﬁ. To distinguish maps (or, more generally,
morphisms) and homomorphisms, the former are denoted f,g,h («, 3,7 in case of
algebraic sets), reserving ¢, 1, ¢ for the latter. Given an A-homomorphism ¢, its
respective A°? one is denoted ¢°P and vice versa.

2.2. Categorically-algebraic Powerset Theories. Having the required categori-
cally-algebraic preliminaries in hand, we proceed to the second crucial notion of our
approach, which is a mixture of powerset theories of [86, Definition 3.5] (see also
[85, 88]) and topological theories of [1, Exercise 22B].

Definition 2.4. A wvariety-based backward powerset theory (vbp-theory) in a cat-

egory X (the ground category of the theory) is a functor X Py A to the dual
category of a variety A.

The intuition for the new concept comes from the so-called image and preim-
age operators [86], well-known to every working mathematician. Recall that a

set map X i> Y extends to the respective powersets in two ways: P(X) f—)

PY), f7(S) = {f(x)|z € S} (image operator) and P(Y) EANN P(X), f<(T) =

{z| f(x) € T} (preimage operator). The latter map admits a more general set-
ting (recall that Set stands for the category of sets and maps; also notice that
Lemma 2.5 is an immediate consequence of Lemmas 2.9, 2.10).

Lemma 2.5. Given a variety A, every subcategory S of A°P induces a functor
Set xS —>(7) A°P which is given by ((X1, A1) —>(f’<p) (X2, A49)) = A{(I 4>((f’90) )
A, where (f,¢)* (@) = ¢ 0o f.

Proof. To show that A§(2 % A{(I is an A-homomorphism, notice that given
A€ Ap and (a)n, € (Ag("‘)”*, for every x1 € X1, it follows that

(f,0) @ (@) (@1) = 9% 0 (Wi ((as)ny)) o fla1) =
6 0 (Wi ({0 f(21))my)) = Wi (9 0 01 0 F(1))my)

A (9 (@) @1))an) = @30 (2 0) ™ (@))n) ().

To show that the functor preserves composition, notice that given Set x S-
morphisms (X7, 4;) e, (X2, A2) and (Xa, A3) Low), (X3, As), for every a €
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AR (f, ) o(g,9) (a) = (f. ) (¥Poaog) = pPorp®Poaogo f = (Pop)To
aogo f=(gofiop) (a)=((g9,%)o(f,¢) (a) U

Notice that in general the codomain of the functor of Lemma 2.5 is not S, since
the latter category is not necessarily closed under coproducts in A°?. Also notice
that the definition of the functor in question is much dependant on, firstly, the
closure of A under products in its respective category Alg(2), and, secondly, on
A being a full subcategory of the category Alg().

Following the already accepted powerset operator notations, the functor Set x
Sa L A°? (called fized-basis approach, whereas all other cases are referred to
as variable-basis approach) is denoted (—)% , omitting the identity morphism 14 in
its definition. The functor of Lemma 2.5 incorporates the majority of approaches
to powersets in lattice-valued mathematics. The next example underlines their
abundance, and thereby shows the fruitfulness of the common unifying framework.

Example 2.6.
(1) Set x Sg =0, CBAIlg’, where CBAlg is the variety of complete
Boolean algebras (complete, complemented, distributive lattices) and 2 =
{1, T}, provides the above-mentioned preimage operator.
(2) Set x Sy i) DmLoc, where I = [0,1] is the unit interval, provides
the fixed-basis fuzzy approach of L. A. Zadeh [107].
Gi=(-)p

(3) Set x S, — = Loc gives the fixed-basis L-fuzzy approach of J. A. Go-
guen [41]. The setting has been changed to Set x Sy, G=Ci, UQuant?
in [42].
Sa=(2)%

(4) Set x S, ————=» A provides the variety-based setting of [97], which
unites the three above-mentioned items into one fixed-basis approach.
RS: N\
(5) Set x S % DmLoc gives the variable-basis poslat approach of

S_(_\+
S. E. Rodabaugh [82], generalized to Set x S Ra=)7, USQuant in [86]

and reduced to Set x Loc == Loc in [22, 23].

(6) Set x FuzLat % FuzLat provides the variable-basis approach of
P. Eklund [30] (motivated by those of S. E. Rodabaugh [82] and B. Hut-
ton [54]), where FuzLat is the dual of the variety HUT of completely
distributive DeMorgan frames also called Hutton algebras [84].

S_/_\+
(7) Set x S SR=()T, por provides the variety-based setting of [96], which

unites the previous two items into one variable-basis approach.

To include the setting of M. Demirci [18], based on generalized fuzzy sets of
N. Nakajima [75], a more general ground category is needed. We extend the already
introduced notations as follows: a product of a family (A,).ex of algebras of a
variety A is denoted AX and considered as the set of choice functions X = | A,
i.e., maps X = (J,cy |As| such that a(z) € [4,] for every z € X.
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Definition 2.7. Let X be a set and let A = (A;)zex be a family of algebras of
some variety A. A generalized (A-)algebraic set in X is a choice function X = |A|.

Definition 2.7 incorporates the respective approach of N. Nakajima [75] through
the variety Frm of frames (called complete Heyting algebras in [75]) and also the
case of Definition 2.3 through constant families (namely, A, = A for every = € X).
Moreover, the respective change of the ground category, to obtain a new powerset
theory, is now straightforward.

Definition 2.8. Given a subcategory S of a variety A, Set ® S is the category,
given by the following data.

OBJECTS: are pairs (X,.A), where X is a set, and A = (A;)zex is a family of
S-algebras.

(f @)

MORPHISMS: (X, A) —— (Y, B) comprise a map X LY and a family & =

(¢x)zex of S-homomorphisms A4, RN By (z)-

COMPOSITION OF MORPHISMS: (X, A4) —% e, (Y,B) and (Y,B) —= GLIN (Z,C) is
defined by (97\11) © (f,(I)) = (gofa\lloq)) (gofa (wf (z) o@:v):vEX)'
IDENTITY: on (X,A) is given by (X, A) Ul =04, )eex) (X, A).

The category of Definition 2.8 has already appeared in [101] (in connection with
non-commutative topology of C. J. Mulvey and J. W. Pelletier [73, 74]), where
some of its properties were investigated. In particular, it is easy to see that the
new category extends the product category Set x S.

Lemma 2.9. Given a subcategory S of a variety A°P, there is a (non-full) em-

bedding Set x S =Set ®'S, which is defined by E(X,A) — e, (Y,B)) =
f.(#)a
(X, (A)sex) O (V. (B) o).

This paper will use the extension of the functor of Lemma 2.5 to the new setting,
which will provide an immediate incorporation of the above-mentioned framework
of M. Demirci. For the sake of convenience, we introduce an additional notation:
given sets S and I, (s;); stands for a family of element of S indexed by I.

Lemma 2.10. Given a variety A, every subcategory S of AP induces a functor
Set®S Ly AP given by (X, A) —= ), (V,B))< = AX W27, BY | where

((f; @)™ (a))(x) = 3P o ao f(x).

Proof. To show that BY ——)> AX is a homomorphism, notice that given A\ € A

and a; € BY for every i € ny, it follows that ((f, @)“(wfy(@i)m)))( ) = %P o

@8 (a)an)) 0 1(0) = 2 0wl (a0 F@))ns) = (g2 0 50 f())s) =
W (@) (@) (@))ny) = (@ (2 D) (@))ny)) ().

To show that (—)¢ preserves composition, notice that given Set ® S-morphisms
(X, A) — U, v,B), (Y,B) —= o), (Z,C) and a € CZ, it follows that (((g,¥) o
(1, 8))(@)(@) = (g0 £, 7 0 D) (a))(z) = P 0 6, 0aogo fz) = ¢ o
((9: W) (a)) o f(z) = ((f, @) o (9, ) (a))(x). O
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An important meta-mathematical consequence of this generalized framework is
the fact that inside it, the variable-basis setting of S. E. Rodabaugh becomes “single-
basis”, i.e., employs constant families of lattices. To distinguish between the two
variable-basis settings, we call the extended one multi-basis approach.

Example 2.11.

(1) Set ® SQuant“” i) SQuant? provides the multi-basis approach of

M. Demirci [18].
S@S: N\
(2) Set®S Sa =, por provides the variety-based setting of [101].

The reader should pay attention to the fact that Lemmas 2.5, 2.10 deal with a
generalization of the preimage operator, leaving the image one aside. The reason is
that the current many-valued analogues of the latter map are \/-dependant (e.g.,
have the form of (f3(a))(y) = V(,)=, a(z) in the fixed-basis case), whereas a
general algebra may lack even a partial order.

2.3. Categorically-algebraic Topological Theories. The powerset theories in
hand, we are ready to introduce our next concept, which is a modification of compos-
ite topological theories of [102]. The crucial change is that they no longer coincide
with the powerset theories of the previous subsection (before moving forward, the
reader is advised to recall the construction of product of categories [49]).

Definition 2.12. Let X be a category and let T; = ((P;, (|| — ||+, B:)))ier be a set-

indexed family, where for every i € I, X EiN A?" is a vbp-theory in the category
X and (|| = ||;,Bi) is a reduct of A;. A composite variety-based topological theory

Tr= — ?pOPi
(cvt-theory) in X induced by Tt is the functor X Lr=I=lToR) [I,c; B;”, defined
by commutativity of the diagram

X r A%
J
T ll—ljp
\
H BOI) - 9 BOP
i€l 1 1T J

j
for every j € I, where II; is the respective projection functor.

The reader could notice that the new concept is never used in the poslat set-
ting of S. E. Rodabaugh, whose framework passes from powerset theories directly
to topological theories, which, unlike the setting of this paper, are categories of
topological structures. Studying various examples though we have arrived at the
conclusion that one more level of abstraction was needed. The idea stems from the
observation that the algebraic structure employed by powerset theories is usually
richer than that used by topology. For instance, given a set X, the powerset P(X)
of X is a complete Boolean algebra, and a topology 7 on X is just a frame, which,
however, employs occasionally some algebraic operations of its scope, e.g., infini-
tary intersections and complementation of sets. The case of closure spaces [4, 5]
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mentioned in introduction provides another good example based on c-semilattices
(Definition 2.2). This necessitates dropping off a part of unused algebraic structure,
on one hand, and preserving it for the future, on the other, resulting in an additional
stage between powerset theories and their induced topological structures.

Since a cvt-theory T is completely determined by its respective family 77, we
will often use the notation ((P;,B;))ics instead of T;. A cvt-theory induced by a
singleton family will be denoted 7. Moreover, we will employ the shorter T; for
| = |77 o P;. A special remark is due to the empty families of powerset theories (one,
for every ground category X). In this case, the product category [],.; B” trans-
forms into a singleton terminal category T = 0:\5, with the respective topological

theory being the unique functor X NG

2.4. Categorically-algebraic Topological Structures. All preliminaries in their
places, we introduce catalg topology (the use of the standard image operator in the
definition of continuity is motivated by purely aesthetic reasons and can be avoided).

Definition 2.13. Let T be a cvt-theory in a category X. CTop(77) is the category,
concrete over X, given by the following data.

OBJECTS: (composite variety-based topological spaces or Tr-spaces) are pairs
(X, (1i)ier), where X is an X-object, and 7; is a subalgebra of T;(X) for
every i € I (()ier is called composite variety-based topology or Tr-topology
on X).

MORPHISMS: (X, (73)ier) ER (Y, (0;)icr) are X-morphisms X Ly v such that
(T £)")7 (0;) C 7; for every i € I (composite variety-based continuity or
Tt -continuity).

For the sake of simplicity, CTop(7) is denoted Top(T"). Moreover, it is precisely
the setting of Definition 2.13, which is called in this paper categorically-algebraic
topology. If the ground category X has the form Set®S (Lemma 2.10), the resulting
framework is called variety-based topology. The new concept was motivated by the
multitude of approaches to topological structures in lattice-valued mathematics.
Our purpose was to provide a common unifying framework, suitable for exploring
interrelations between different topological settings. The composite machinery was
inspired by the wish to include bitopological theories of S. E. Rodabaugh [87] and
T. Kubiak [60]. The next example shows the fruitfulness of the setting.

Example 2.14.

(1) Top((P,Frm)) is isomorphic to the classical category Top of topological
spaces and continuous maps.

(2) Top((P,CSL)) is isomorphic to the category Cls of closure spaces and
continuous maps studied by D. Aerts et al. [4, 5].

(3) CTop(((P,Frm));cq1,2y) is isomorphic to the category BiTop of bitopolo-
gical spaces and bicontinous maps of J. C. Kelly [58].

(4) Top((Z,Frm)) is isomorphic to the category I-Top of fixed-basis fuzzy
topological spaces introduced by C. L. Chang [14].
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(5) Top((G2, UQuant)) is isomorphic to the category L-Top of fixed-basis L-
fuzzy topological spaces of J. A. Goguen [42].

(6) Top((R$, USQuant)) is isomorphic to the category S-Top;, i € {1,2} for
variable-basis poslat topology of S. E. Rodabaugh [82, 86]. Top((R3,Loc))
is isomorphic to a somewhat simplified category Loc-Top of J. T. Dennis-
ton, A. Melton and S. E. Rodabaugh [19, 20, 22, 23].

(7) CTop(((’Rf’L,Frm))ie{l,g}) is isomorphic to the category L-BiTop of fi-
xed-basis L-bitopological spaces of T. Kubiak [60].

(8) CTop(((’Rg’L,USQuant))ie{Lg}) is isomorphic to the category L-BiTop
of fixed-basis L-bitopological spaces of S. E. Rodabaugh [87].

(9) Top((€,Frm)) is isomorphic to the category FUZZ for variable-basis pos-
lat topology of P. Eklund [30] (motivated by those of S. E. Rodabaugh [82]
and B. Hutton [54]).

(10) Top((S3*,A)) (resp. Top((S§,A))) is isomorphic to the fixed- (resp.
variable-) basis category A-Top (resp. S-Top) used in the approach to
variety-based topology of [97] (resp. [96]).

(11) Top((D,SQuant)) is isomorphic to the category CGTop for multi-basis
topology of M. Demirci [18].

(12) Top((S$®, A°?)) is isomorphic to the category S-GTop, which was used
in the approach to variety-based topologies of [101].

Example 2.14 illustrates our claim that the catalg framework ultimately erases
the border between traditional and many-valued approaches. Indeed, the frame-
work of powerset theories never distinguishes between the two settings, both being
based on essentially the same functor, whose employed algebras come from the same
variety. Moreover, in case of an arbitrary variety of algebras, the notion of crispness
needs an additional clarification, since the classical case of the two-element Boolean
algebra 2 = {L, T} relies not only on the number of elements in the algebra, but
also on its certain properties in the variety CBAlg of complete Boolean algebras,
e.g., on the facts that it is an initial object [1, Examples 7.2(7)] and also a cosep-
arator [1, Examples 7.18(7)]. As a counterexample, one can mention the category
Grp of groups, whose two-element objects share none of the properties.

At the end of this subsection, we would like to notice that the machinery of
catalg topology can be employed even in a setting, which (at least, seemingly) has
nothing to do with many-valued mathematics.

Example 2.15. The category A-Top of Example 2.14(10) is precisely the category
A fSet(A) of affine sets over A of Y. Diers [26, Definition 2.1] (see also [25, 27]).

We notice that the category A-Top is a kind of simplification of the category
A fSet(A). This simplification stems from our use of one-sorted algebras for the
algebraic background of the catalg machinery, while Y. Diers employs many-sorted
ones, or algebras w.r.t. wvarietal theories in the sense of F. E. J. Linton [64] and
also algebraic theories of F. W. Lawvere [62]. However, the case of variable-basis as
well as more general ground categories in the sense of Definition 2.4 of this paper
are never studied in his framework. The motivations of the two settings are also
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quite different, since Y. Diers is interested in a generalization of sets equipped with
a geometrical structure (geometrical sets), mentioning (crisp) topological spaces
as one of the examples [26, Example 10.10], whereas our main concern lies in the
construction of a convenient common setting for different fuzzifications of topology.

Having introduced the concept of catalg topology, we proceed to a more elaborate
approach to the topic.

3. Lattice-valued Categorically-algebraic Topology

Among the examples of the previous section, the reader can find many settings
of lattice-valued topology, with one significant exception, i.e., the theory of (L, M)-
fuzzy topologies of T. Kubiak, A. Sostak [61] and its extension of C. Guido [45] is
not incorporated in the approach. Being the second most influential framework in
many-valued topology, the setting needs an accommodation in every new unifying
theory (J. T. Denniston et al. [22] have already done the job for poslat topologies).
It is the main purpose of this section to complete the task. Some elements of the
required theory have already been presented in [99], being based in the powerset
theory S§ of Example 2.6(7) and, therefore, relying on the ground category Set x S.
This paper extends the setting to an arbitrary ground category X, streamlining the
results and removing some superfluous requirements on the way. Strikingly enough,
it appears that the new theory restores the framework of many-valuedness, which
vanished completely in the previous section.

3.1. Elements of Lattice-valued Algebra. To push the theory in the right di-
rection, we need some additional notions related to the already introduced varieties
of algebras, namely, the concept of lattice-valued algebra. The notion has already
appeared in [99], motivated by the concept of fuzzy group of A. Rosenfeld [89] and
its later generalization of J. M. Anthony and H. Sherwood [7]. The underlying
machinery goes in line with the general procedure of J. N. Mordeson and D. S. Ma-
lik [72] (also notice the use of the fact that every \/-semilattice is actually a complete
lattice, i.e., has arbitrary A).

Definition 3.1. Let A, L be varieties, let (|| — ||, CSLat(\/)) be a reduct of L
and let S be a subcategory of L. An (A,S)-algebra is a triple (A, u, L), where
A is an A-algebra, L is an S-algebra and |A| £ |L| is a map such that for ev-
ery A € A and every (a;)n, € A™, it follows that A, wu(a;) < pw((ai)ny))-

An (A, S)-homomorphism (A1, p1,L1) (o), (Ag, o, Lo) is an A x S-morphism

(A1, L) M) (As, Lo), which satisfies the following lax diagram

Ay L Ao
MI\L < iuz
L L
(| L] T [ Lal],

meaning 1 o pi(a) < ps o @(a) for every a € A;. S-A is the category of (A, S)-
algebras and (A, S)-homomorphisms, concrete over the category A x S.
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It is important to underline that A. Di Nola and G. Gerla [24] have already
introduced their category C(7) as a “general approach to the theory of fuzzy alge-
bras”. When looking into its respective definition in [24], however, one can easily
see that C(7) is isomorphic to the subcategory CLat-Alg(Q2)~ of CLat-Alg(12)
(where CLat is the variety of complete lattices), with the same objects and whose

morphisms (Ayq, p1, L1) M) (Ag, o, Lo) satisfy the identity @ o u; = pg o .
Moreover, [24] started developing the theory of lattice-valued universal algebra,
some results of which can be easily extended to our approach. In view of the
topological nature of this paper, we will only notice that the category S-A of Defi-
nition 3.1 provides a more appropriate fuzzification of universal algebra, fuzzifying
not only algebras, but also (and that is more important in category theory) their
respective homomorphisms.

The reader should also be aware of the fact that the approach of Definition 3.1
is based in the category Set(CSLat(\/)) of lattice-valued sets, introduced in [95].
In particular, the already obtained results show that S-A is indeed a category
(closure under composition). One can even consider S-A as a concrete category
over Set(CSLat(\/)), which though being off the topic of the current paper, will be
postponed till the subsequent study of the properties of the category S-A in [104].
However, one simple result (the proof is thus omitted) can be stated immediately.

Lemma 3.2. Every L-algebra L gives a (non-full) embedding A S;-A,

which is defined by Er, (41 RN Asg) = (A1,T,L) M (Aa,T,L), where A; ; L

is the constant map with value T.

Notice that we can not take an arbitrary element b € L and use the map b
in Lemma 3.2, since all nullary operations (which actually are elements of the
respective algebra) should be mapped to T.

3.2. Lattice-valued Categorically-algebraic Topological Structures. Hav-
ing introduced lattice-valued varieties, we are ready to define the notion of lattice-
valued categorically-algebraic topology. In the first step, we generalize slightly the
already introduced cvt-theories (Definition 2.12).

Definition 3.3. Let 77 be a cvt-theory in a category X, let (L;);cr be a family of
extensions of the variety CSLat(\/), and let S; be a subcategory of L;” for every
i € I. An Lj-valued cvt-theory in X induced by Ty and (S;)iey is the pair (T7,L;),
where Ly is the product category [, S:.

For the sake of simplicity, the category IL; induced by a single category S will be
denoted L, identifying the latter two categories. With the notations for cvt-theories
in mind, an L;-valued cvt-theory (77, L) will be often denoted ((P;, B;, S;”))icr, in
order to underline its building blocks. The reader should also pay attention to the
fact that we allow not just different underlying lattices (variable-basis framework
of S. E. Rodabaugh), but actually different varieties for these lattices to come from.

Definition 3.4. Let (T7,L;) be an L;-valued cvt-theory in a category X. Then
L;CTop(T7y) is the category, concrete over X x Ly, which is given by the next data.
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OBJECTS: (Lj-valued Tr-spaces) are triples (X, (T;)ier, (L;)icr), with X an
X-object, (L;)ier an Lr-object, and T;(X) Ty Lia (B;, S{")-algebra for
every i € I ((T;)ier is called Ly-valued Tr-topology on X).

W dien), (Y, (8:)ier, (M;)icr) are morp-

hisms of the category X x Ly (X, (L;)ier) LEASOUSIN (Y, (M;);cr) such that

(Ty(X), Ty, Ly) LLON (T;(Y), 8, M;) is an (S{P-B;)*"-morphism (mean-
ing ¥ 08; < T; 0 (Tif)) for every i € I (Lr-valued Ty-continuity).

MORPHISMS: (X, (Ti)ier, (Li)ier)

For the sake of simplicity, LCTop(T) is denoted LTop(T). The main purpose of

the new approach is to incorporate the topological framework of U. Hohle, T. Ku-
biak and A. Sostak, that is done in the next example. The new framework also
includes the catalg topology of the previous section as a specific subcase.

Example 3.5.

(1) LTop((SZ% .., SFrm, STPCL%)) where CLat is the variety of complete
lattices and CDCLat is its subcategory of completely distributive lattices,
provides a categorical accommodation of the theory of (L,M)-fuzzy topo-
logical spaces of T. Kubiak and A. Sostak [61]. To give the reader more
intuition, we recall from [61] the definitions of the main building blocks of
their theory.

An (L, M)-fuzzy topological space is a tuple ((X, L), T, M), which is also
denoted (X,T), and where X is a set, L is a complete lattice, M is a
completely distributive lattice, whereas LX I Misa map (called (L, M)-
fuzzy topology on X), which satisfies the following three requirements:

(a) T(L)=T(T)=T (recall the notations for constant maps of Lemma 3.2);
() T(a) AT(B) < T(a A\ B) for every a, B € LX;
(¢) Nier T(a) < T(V ay) for every subset {o |i € I} C L.

An (L, M)-fuzzy continuous map (X1,71) i> (X2,T3) is a map X, i> X
with To(a) < Ty 0 fi (a) for every v € LX2 (cf. the functor of Lemma 2.5).

It is easy to see that (L, M )-fuzzy topology is an instance of lattice-valued
frames in the sense of Definition 3.1. Moreover, (L, M)-fuzzy continuity is
based on a homomorphism of lattice-valued frames.

(2) LTop((Rs3, Frm, Frm)) is isomorphic to the category Loc-F>Top of (lat-
tice-valued)-fuzzy topological spaces of J. T. Denniston et al. [22], which
provides a variable-basis extension of the above-mentioned approach of
T. Kubiak and A. Sostak. More precisely, the frames (notice the change in
the varieties employed) L and M are no more fixed, the respective fuzzy con-

tinuous morphisms (not maps) ((X1, L1), My,71) Uet), (X2, Ls), Ms,T5)

comprising a map Xj ER X5 and frame homomorphisms Lo ﬁ) Ly,
My AN M, such that ¥ o To(a) < Ty o (f, ) () for every a € L2
(3) LTop((P, Frm, SPMFr™)) provides the approach of U. Hohle [50].
(4) L;CTop((T1,Ly)), with S; = SZCSLat(V) for every i € I, is isomorphic to
the category CTop(77) introduced in Definition 2.13.
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In view of Example 3.5, it is worthwhile to underline that the approach of T. Ku-
biak and A. Sostak (started by U. Hohle) provides an inherently many-valued frame-
work for topological structures (requires lattice-valued catalg topology), whereas
the setting of S. E. Rodabaugh and his collaborators (started by C. L. Chang,
J. A. Goguen and R. Lowen) essentially does not deviate from the classical crisp
machinery (can be incorporated into catalg topology). The conclusion looks even
more striking, on recalling that the latter framework currently dominates all others
in many-valued topology, having numerous papers, studying its developments, un-
der its belt. Motivated by the above observation, we suggest to call the framework of
U. Hohle, T. Kubiak and A. Sostak truly lattice-valued topology, reserving the stan-
dard lattice-valued topology for J. T. Denniston, A. Melton and S. E. Rodabaugh.
The reader could notice that it is precisely the new approach to lattice-valued topol-
ogy, which enabled us to draw such an important conclusion. Further advantages
of the proposed setting will be seen throughout the paper.

3.3. Retractive lattice-valued Categorically-algebraic Topological Struc-
tures. An attentive reader will recall from introduction that there exists an ex-
tension of the theory of (L, M)-fuzzy topology in the form of M-fuzzy topology on
an L-fuzzy set of C. Guido [45]. Being less developed and, therefore, less popular,
his theory subsumes the approach of T. Kubiak and A. Sostak as a particular sub-
case. The cornerstone of the proposed generalization is the employment of a more
sophisticated powerset operator the topology is based upon [17, 44]. Despite the
innovations in the underlying machinery, the approach of C. Guido can be easily
incorporated into the lattice-valued catalg framework. To begin with, we introduce
the notion of retractive algebra w.r.t. a given algebra of some variety.

Definition 3.6. Let A be an algebra of a variety A. A subset R C A is called a
retractive algebra w.r.t. A provided that R is an A-algebra (but not necessarily a

subalgebra of A), and there is an A-homomorphism A £1, R, which is a retraction

in Set with a right inverse the inclusion |R| 2> |A| (|¢r|oer = Lig))-

An immediate and simple example of the new notion is suggested by the devel-
opments of C. Guido [45].

Example 3.7. Given a frame A, every element a € A provides a retractive algebra
w.r.t. Ain the form of the lower set | a = {b € A|b < a}, which is a frame, but (in
general) not a subframe of A (the top element T does not necessarily belong to the
set in question). The respective map A ﬂw a is given by ¢,(b) = a A b, which is
a frame homomorphism due to the distributivity property of frames, namely, the

fact that a A (\/ S) = V,cg(a A s) for every subset S C A.

The necessary preliminaries in hand, we proceed to a generalization of the topo-
logical setting of Definition 3.4. This step has never been done before by either
S. E. Rodabaugh himself, or any of his collaborators.

We begin with the construction of the ground category for the new topological
setting, which (as the reader will see) differs significantly from that of Definition 3.4.
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Definition 3.8. Let 77 be a cvt-theory in a category X. CRetX(T7) is the cate-
gory, concrete over the category X, which is given by the following data.

OBJECTS: are pairs (X, (R;, ¥R, )icr), where X is an X-object, whereas for
every i € I, R; is a retractive algebra w.r.t. T;(X) and T;(X) 2y Ry s
its corresponding retraction.

MORPHISMS: (X, (R, ¥R, )icI) EN (Y, (S;, ¢s,)icr) are X-morphisms X Ly

such that for every ¢ € I, the following diagram (in which | — | stands for
the forgetful functor to the category Set) commutes
(T:£)°"|
(V)] IT3(X)]

WSil ll@ai

|Sile—e5 > T — gy 1 )I*W| | Bi

IR, ol(Tif)"|oes,

and, therefore, by the surjectivity of pg,, |S;] |R;| is a

B;-homomorphism.

To convince the reader that Definition 3.8 provides a category, we will verify the
closure of its morphisms under composition. Given two CRetX(T)-morphisms

(XV7 (Rh@Ri)ieI) i) (K (Sh@si)iel) EN (Z, (Ui;SDUi)iEI)7 it follows that PR, ©
(Ti(go [))* oeu, o pu, = R, o (T; ) o (Tig)™ o ev, o pu, = ¢r, o (/)" oes, o
ps,0(Tig)" oey, ooy, = ¢r, o (Tif )" oes, 0ps, 0 (Tig)™ = g, o(Tif)” o(Tig)” =
¢r, o (Ti(go f)) for every i € I. We underline that without any condition on the
morphisms involved, we are unable to show the desired closure under composition.

For the sake of simplicity, CRetX(T) is denoted RetX(T). It is almost straight-
forward that the category CRetX(T7) provides an (in general, strict) extension of
the category X, i.e., the following (easy, and thus, the proof is omitted) result holds.

Lemma 3.9. There exists a full embedding ) QU CRetX(Ty) defined by the

formula B(X L V) = (X, (Tu(X), 11,(x))ier) 2 (Y, (Ti(Y), 1p, o) ict)-

In general, there is no relation between the categories CRetX(7;) and CTop(T7)
(recall Definition 2.13), since the objects of the former need not provide subalgebras
of T;(X), and the objects of the latter need not give retracts of T;(X).

The new category in hand, we define its respective topological structures.

Definition 3.10. Let (T7,1L;) be an L;-valued cvt-theory in a category X. Then
L;CRTop(T7) is the category, concrete over the product category CRetX (T7) xL;,
which is defined by the following data.

OBJECTS: (Lj-valued Tr-retractive spaces or Lj-valued Ty-r-spaces) are quin-
tuples (X, (R, ¥R, )ier, (Ti)ier, (Li)ier), in which (X, (Ri,¢r,)icr) is a
CRetX(Ty)-object, (L;);er is an Lr-object, and R; T L; is a (B, S;")-
algebra for every i € I ((T;)ier is called Ly-valued Ty-retractive topology or
L;-valued Tr-r-topology on X).
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£y (¥i)i
MORPHISMS: (X, (R;, @R, )icr, (Ti)ier, (Li)ier) o Wiien), (Y, (Si, ¢s,)icrs

(8:)icr, (M;)icr) are those CRetX(T7) x Ly-morphisms (X, (R;, ¥R, )icI,

(Li)ier) LDy (8, s )ier, (Mi)ier) for which for every i € I,
(eFFoT; fop' abi) o
(RiaThL'L) % (Si,Si,Mi) is an (Sgp—Bi) p—morphisrn (H_q—

valued Tr-retractive continuity or Ly-valued T-r-continuity).

To convince the reader that Definition 3.10 provides a category, we will verify

again the closure under composition. For every two Lj-valued Tj-r-continuous
. (f,(¥i)ier)

morphisms (X, (Ry, ¢r, )ier; (Ti)ier, (Li)ier) —————= (Y, (Si, ¢s,)iers (8i)ier,

(M;)ier) Lo @sen), (Z,(Us, eu,)ier, Wi)ier, (Ni)ier), it follows that (¢; o ;) o

U; = P 0 977 o U; < ¥ 08; 05, 0 (Ti9)" o ey, < Tiopr, o (T;f) oes; 0 s, 0
(T;9)" oey, =T;0pr, o (T;f)" o (T;9)" oey, = T;0pr, o (Ti(go f))? oey, (the
machinery depends heavily on the morphism condition of Definition 3.8).

For the sake of simplicity, the category LCRTop(T') will be denoted LRTop(T).
Using Lemma 3.9, we can show that the new category provides an (in general
proper) extension of the category L;CTop(T7).

Lemma 3.11. There exists a full embedding ILICTop(TI)(LLICRTop(TI)

defined by the formula B(X,(Ti)icr, (Li)ier) LU0 (v, (8 ier, (Mi)ier)) =
(fs(¥i)ier)

(X, (Ty(X), Lpyx))iers (Tiers (Li)ier) ———% (Y, (Ti(Y), 1ryv))iers (Si)ier,

(M;)icr), which, taken together with the embedding of Lemma 8.9, makes the fol-

lowing diagram commute (recall that | — | stands for the forgetful functor to the
ground category)

L;CTop(T;) 2~ L,CRTop(T7)

- |-

5
X x ]L] Ex1i, CRetX(TI) X L[.
As a consequence, L;CTop(77) can be considered as a concrete subcategory of
L;CRTop(T}). The next example justifies the fruitfulness of the new notion. Start
with a simple preliminary lemma.

Lemma 3.12. For a given map X EN Y, a frame L and L-sets o € LX, B € LY,
the following are equivalent:

(1) ¢prao fi cegopis =piaof;

(2) a<Bof.
Proof. Straightforward computations show that (1) can be rewritten as a A (8 o
HA(yof)=aAn(yof) for every v € LY, which, in its turn, is a restatement of
aA(yof) < Bofforevery y € LY (1), which is clearly implied by (2). On the

other hand, the constant map Y L Lin (f) impliesa =a AT < fBo f. O
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Example 3.13. By Lemma 3.12, we get that the full subcategory FT¢ of the cat-
egory LRTop((S% .., SFrm, STP L)) (recall the notations of Example 3.5(1)),
comprising all objects of the form ((X, L), (} o, ¢1a), T, M), where « is an element
of the L-powerset L~ (recall the developments of Example 3.7), is isomorphic to the
category A(L, M)-TOP of M-fuzzy topological L-fuzzy spaces of C. Guido [45].
Notice the crucial difference from the setting of (L, M )-fuzzy topology of T. Kubiak

and A. Sostak (recall Example 3.5(1)), i.e., the employment of a map | « M (in

which | « is a subset of LX) instead of a map L* T M , which takes its origin in
the standard crisp construction of a subspace of a given topological space.

Lemma 3.11 shows that the approach of C. Guido provides an extension of the
setting of T. Kubiak and A. Sostak, which, however, is neglected at the moment.
It is one of the goals of this paper, to draw the attention of the reader to the
promising research area, which (following Lemma 3.11) provides one of the most
general approaches to lattice-valued topology available at the moment.

It is also important to notice that even in the crisp case, the retractive ap-
proach provides a convenient framework for doing non-standard topology, e.g., for
exploring the properties of semi-open sets of N. Levine [63] and their different mod-
ifications (for instance, semi-0-open sets of [12]), which are closed under arbitrary
set-theoretic unions, but fail to be closed under finite set-theoretic intersections,
and, therefore, do not give rise to subalgebras of their respective powerset algebras.

4. Lattice-valued Topology is Topological

Every new topological theory needs to show some good properties of its develop-
ments, in order to convince the researcher of a real usefulness of its provided tools.
While working in categorical topology, a promising beginning could be the fact
that the induced category of topological structures is topological over its ground
category. The result is a folklore [1] for the category Top of topological spaces and
continuous maps. Moreover, much study on the topic has been done by S. E. Rod-
abaugh, who showed that his poslat approach always provides a topological category
[86], developing the theory of s-quantales (Definition 2.2(2)) for the purpose. In
collaboration with J. T. Denniston and A. Melton, the result was extended for the
category Loc-F>Top [22], which is a variable-basis accommodation of the theory
of (L, M)-fuzzy topological spaces of T. Kubiak and A. Sostak. On the other hand,
in [102], we have shown that the category CTop(77) is topological over its ground
category X, thereby incorporating all the respective results on lattice-valued topol-
ogy. It is the purpose of this section to do the job for the retractive lattice-valued
topology (see the naming convention in the previous section), or, in other words,
to show that the category L;CRTop(77) is topological over its ground category
CRetX(T7) x L;. This result has yet no analogue in the fuzzy literature, apart
from [45], where C. Guido shows that his category A(L, M )-TOP of M-fuzzy topo-
logical L-fuzzy spaces (which, following Example 3.13, is a particular subcategory
of some of the categories of the form L;CRTop(77)) is topological over its ground
category.
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For the sake of simplicity, we begin with the category LRTop(T), extending
the result afterwards in a straightforward way to the more complicated composite
framework (the reader should recall our notation | — | for the underlying functors
of concrete categories, which will be used in this section).

The proof of the desired property will follow the standard path of subbasic con-
tinuity. The reader may be well aware of the important result of classical topology,
stating that continuity of a map can be checked on the elements of a subbase (for
a full discussion of the categorical role of subbase in topology see [84]). The result
can be readily extended to our current setting. We begin with a simple lemma.

Lemma 4.1. Let (X,(R,¢r),L) be a RetX(T) x L-object and let (T;)icr be a
family of L-valued T-r-topologies on (X, (R, pr),L). Then \;c;T; is an L-valued
T-r-topology on (X, (R, ¢r), L), where for every a € R, (N\;c; Ti)(a) = N\;e; Ti(a).

Proof. Given A € Ag and a; € R for every j € ny, one has, A\, ((A;e; Ti)(az)) =
/\iel /\jEn)\ Ti(aj) < /\iel Ti(w§(<aj>m)) = (/\ie] ‘Ti)(w?«aﬁnx))- 0

Notice that the case of the empty family is included as well, producing the topol-
ogy T = T. Lemma 4.1 shows that given a RetX(T") x L-object (X, (R, ¢r), L), its
fibre Fb(X,(R,¢Rr),L) = {T|(X,(R,¢Rr),T,L) € LRTop(T)} is a /\-semilattice,
and that provides an opening for the definition of the concept of subbase.

Definition 4.2. Let (X, (R, ¢r),L) be a RetX(T) x L-object and let B 2> L
be a map. Setting (S) = A{T € Fb(X,(R,¢r),L)|S < T} provides an L-valued
T-r-space (X, (R, ¢r), (S), L), in which S is called a subbase of (S).

Definition 4.2 is a direct generalization of the notion of lattice-valued subbase of
[84, Definition 3.2.9] and its various poslat modifications. The main purpose of the
new definition is contained in the following result.

Proposition 4.3 (Subbasic continuity). Let (X1, (R, ¢r, ), T1, L1), (X2, (Re, ¢R,);
T, La) be L-valued T-r-spaces such that To=(S) and, moreover, let |(X1, (R1, ¥R, ),

T, L)l Y2 |(Xa, (Ra, 0, ), T2, La)| be @ RetX(T) x L-morphism. Then (f,4)
is L-valued T-r-continuous iff ||[°P|| o S < T1 0 pr, o (Tf)? oer,.

Proof. The necessity follows from the definition of L-valued T-r-continuity in Def-
inition 3.10. To show the sufficiency, notice that there exists a /\-preserving map

op |+
I L1]| LN || L2]| (the so-called right adjoint to ||1°P|| in the sense of partially or-

dered sets [40, Section 0-3]) such that 1), < ||| o[|¢°P|| and [|4°P| o [[4°P || <
Ly, y- Thus, the condition of the theorem implies S < [|¢)°P||" 0T 0@k, o(T'f)* oer, .
We show that ||4°P||" o Ty o g, o (T'f)? o eg, is an L-valued T-r-topology on
(X2, (R2,¢R,), L2). Given A € Ag and a; € Ry for every i € nx, e, (07" 0
T 00m, 0 () 0eny(a)) = [ (Aien, Tr 00, o (TN 00y (@) < (167" o
Tl(wfl(<¢R1 o (Tf)op O €R, (ai)>n,\)) = ||’(/}Op||}_o‘j'10(‘pRlO(Tf)()poeRz (w§2(<a’i>n/\))'
The result implies, (S) < [[¢°P||" o Ty 0 pr, o (Tf)? o er, and thus, [|9°P| o Ty =
147l 0 (S) <[9P [0 [¥P|I" 0 Tro @R, o (Tf)? oer, < Tiopr, o(Tf)* oer,. O
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Proposition 4.3 provides the announced analogue of the classical result on subba-
sic continuity, which is done in a much more general framework than usual. It also
extends a part of [84, Theorem 3.2.13] as well as the respective subbasic machinery
of [22]. Having done with the subbasic stuff, we proceed to the next preliminary
result on amnesticity [1] of the category LRTop(T).

Lemma 4.4. The category LRTop(T) is amnestic.

(1x,1r)
bk itataN ‘

Proof. If both |(X, (R, ¢r),T1,L)] (X, (R,¢R),T2,L)| and |(X, (R, ¢r),

T, L)| xle), (X, (R,¢Rr),T1,L)| are L-valued T-r-continuous, then T = ||1.] o
To<Tropgro (TlX)Op oer = TJ7 implies To < T7 and similarly, T3 < Ts. U

All preliminaries in their places, the desired result is ready to state.

Theorem 4.5. LRTop(T) is topological over RetX(T) x L.

Proof. By [1, Proposition 21.5], it is enough to show that every | — |-structured
source has an initial lift. Suppose £ = ((X, (R, ¢r), L) Yipa), (X5, (Riy ¢R,), Ti,
L;)|)ier is an | — |-structured source. Define a map R 5L by S(a) = \/{||¥"| o

Ti(a)|a = or o (Tf;)" o er,(a;) for some i € I and some a; € R;} and let T =
(S). One obtains an L-valued T-r-topological space (X, (R, ¢r),T,L) such that
(X, (R,¢r), T, L)| Yiti), |(Xs, (Ris©R;), Tiy Li)| is L-valued T-r-continuous for
every i € I. Indeed, for a fixed i € I and some a; € R;, Topgro (Tf;)? cer,(a;) >
VAIE5PI o Ti(ag) [or o (Tfi)™ © er,(ai) = @r o (Tf;)* o er,(a;) for some j €
I and some a; € R;} > |47 o Ti(a;). Altogether, we have built a lift £ =
(X, (R, or), T, L) L% (X, (R, m,), Ti, Li))ier of £. The only thing left is
verification of its initiality.

Let £ = (X', (R, or), T, L") L2 (X, (Ri, ¢om,), T Li))ier be a source in

LRTop(T) and let |(X', (R', or ), T, L) L% |(X, (R, o), T, L)| be a RetX(T') x
L-morphism such that the triangle

|(X/7 (Rla CPR')aT/a L/)|

" % (0]
|(X, (R, ¢Rr),T,L)]| TG |(Xi, (Ri, or, ), Ti, Li)|

commutes for every i € I. By Proposition 4.3, L-valued T-r-continuity of (h, ¢)
will follow from the inequality ||¢°P|| oS < T' o g o (Th)” o e and that is now
the thing to show. Given a € R such that a = pg o (T'f;)” o eg,(a;) for some
i € I, ]| o [[9"]] o Ti(as) = |95 || 0 Tilai) < T o prr o (Tf])* o ep,(a;) =
T'opp o(Th)?o(Tf;)* oer,(a;) = T opr o(Th)* oeropro(Tf;)* oer,(a;) =
T'op o (Th)™ oer(a). It follows that [|¢°P[|o S(a) = ||| (V{[|"[l 0 Ti(a:) |a =
or o (Tfi) o er,(a;) for some i € I and some a; € R;}) = V{||¢°P] o ||%] o
Ti(a;)|a = pro(Tf;) oer,(a;) for some i € I and some a; € R;} < \/{T' oppr o
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(Th)? o er(a)|a = ¢r o (Tfi)" o er,(a;) for some i € I and some a; € R;} <
T" 0 pri o (Th)* o er(a). O

Theorem 4.5 gives rise to one of the main results of the manuscript.
Corollary 4.6. L;CRTop(T7}) is topological over CRetX(T) x L;.
Proof. Follows by the application of Theorem 4.5 to every vt-theory T;. O

Moreover, we can easily show now that every category of the form IL;CTop(T7)
is also topological over its respective ground category. Start with the preliminary
result concerning the simplified category LTop(T).

Corollary 4.7. LTop(T) is topological over X x L.

Proof. By [1, Proposition 21.30], it is enough to show that the full subcategory
E~(LTop(T)) of the category LRTop(T'), induced by the full embedding of Lem-
ma 3.11, is initially closed in LRTop(7). Indeed, given an | — |-structured source

firbi
L= ((X,(T(X), 1¢x)), L) L2 (X, (T(X0), 1px,))s Tir Li))ier the construc-

tion of Theorem 4.5 provides alift £ = (X, (T'(X), lrxy), T, L) Yowa), (X, (T(Xy),
1r(x,)), Ti» Li))ier of £, which clearly lies in E~ (LTop(T)). O

Corollary 4.7 extends [84, Theorem 3.3.9] and its various modifications as well
as the above-mentioned proof of topologicity of the category Loc-F>Top in [22].
Moreover, it gives rise to a more general result on the composite setting.

Corollary 4.8. L;CTop(Ty) is topological over X X Lj.
Proof. Follows by the application of Corollary 4.7 to every vt-theory T;. (]

In particular, all categories of Example 3.5 (which include nearly all approaches
to many-valued topology) are topological over their ground categories. Moreover,
Theorem 4.5 gives rise to the well-known (see, e.g., D. Dikranjan et al. [28]) result
on the nature of the category Cls of closure spaces (Example 2.14(2)).

Corollary 4.9. The construct Cls is topological.

Meta-mathematically restated, we are doing topology when working in the cate-
gory LyCTop(T). Moreover, the result immediately justifies the claim of S. E. Rod-
abaugh [86] on the importance of the structure of s-quantale in lattice-valued topol-
ogy. Indeed, the variety USQuant provides that lattice-theoretic minimum, which
preserves the flavor of classical topology (arbitrary unions and finite intersections).
Our variety, CSL does the job for closure spaces. The discussion raises a challenging
and far-reaching problem.

Problem 4.10. For each type of topological structures, find the variety with the
minimum conditions on its algebras, to retain the main properties of this struc-
ture (characterizing variety) (the respective category of lattice-valued catalg spaces
(characterizing category) is then topological over its ground category).

Having justified the claim on topological nature of the new theory, in the next
section, we provide an important application of the new setting to the concept of
topological system of S. Vickers [106].
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5. Lattice-valued Categorically-algebraic Pointfree Topology

Up to now, our developed framework was illustrated by examples of either classi-
cal or many-valued topological structures. The real push for the new theory came,
however, from the quarters of pointfree topology. Its history began in 1959, when
D. Papert and S. Papert constructed an adjunction between the category Top of
topological spaces and the dual of the variety Frm of frames [77], based in the
functor, taking a topological space to its topology and a continuous map to its
generated preimage operator on the topologies in question. A more succinct de-
scription of the adjunction was given by J. Isbell [55], who introduced the name
locale for the objects of Frm®”, suggesting their category Loc as a substitute for
Top. A coherent statement to locale theory was given by P. T. Johnstone [56].
In the next step, S. Vickers [106] used the logic of finite observations to introduce
the notion of topological system, to get a single framework in which to treat both
spaces and locales. He presented the category TopSys of topological systems and
showed that the category Loc (resp. Top) is isomorphic to the (resp. co)reflective
subcategory of TopSys. These crucial properties were based in the localification
(resp. spatialization) procedure for systems, which provided a way to obtain a
locale (resp. topological space) from a given topological system.

Recently, topological systems became of interest for the fuzzy community. Sev-
eral researchers tried to extend their related results to lattice-valued framework.
The most important attempts belong to J. T. Denniston, S. E. Rodabaugh [23]
and C. Guido [46]. The drawback of these approaches, however, were significant
difficulties (especially in [23]) encountered in the extension of the classical results.
The main problem originated in the attempt to embed the category of lattice-
valued (that means generalized) topological spaces and their underlying algebraic
structures (which, in general, are no more locales) into the classical category of
topological systems. The solution was found by J. T. Denniston, A. Melton and
S. E. Rodabaugh [19] in the concept of lattice-valued topological system. Even this
improvement never stimulated them to provide an extension of the localification
(resp. spatialization) procedure of S. Vickers, while C. Guido has developed his re-
sults to extend the classical membership relation “€” to many-valued context [46].

To address the above deficiencies, we started the theory of categorically-algebraic
topological systems. The cornerstone was laid in [98], where the notion of variety-
based topological system was introduced together with an extension of the spatial-
ization procedure of S. Vickers. Later on, it appeared that the extension of topolog-
ical systems included a notion from theoretical physics, i.e., the already mentioned
state property systems of D. Aerts [3]. It soon became clear that his equivalence
between the categories of state property systems and closure spaces [4, 5] is a con-
sequence of our generalized spatialization procedure (the topic is discussed in full
detail in [100]).

The above-mentioned results based on a restricted setting of the functor of
Lemma 2.5, we introduced in [101] a more general approach based on vbp-theories,


http://www.sid.ir

Categorically-algebraic Topology and Its Applications 81

making no distinction though between powerset and topological theories. The pur-
pose of this section is to develop the new theory in its full generality. The needed
machinery given in the previous section, we proceed to the new notion immediately.

Definition 5.1. Let (T7,L;) be an L;-valued cvt-theory in a category X. Then
L;CTopSys(T7) is the category, concrete over X x ([[.; (S{P-B;)”), which is

given by the following data.
OBJECTS: (Lj-valued composite variety-based topological systems or Ly-valued

Tr-systems) are the triples (X, (k;)ier, ((Ai, i, Li))ier) such that X is an
X-object, ((As, pi, Li))icr is a [T;e; (S7P-B;)”-object, whereas T;(X) =5
A; is a B{P-morphism for every i € I ((k;);er is called L;-valued composite
variety-based satisfaction relation or Lr-valued Ty-satisfaction relation on
(X, ((Ais i, Li))ier))-

MORPHISMS: (X, (K;)ier, ((Ai, i, Li))ier) (Y, (vi)ier, ((Bi, vi,
M;));er) are those morphisms (X, ((As, 15, Li))ier) Ullewti)en), Y, ((Bi,
vi, M;))icr) of the product category X x ([T, (Si¥-B;)?), for which, for
every ¢ € I, the diagram

iel

(f:((pishi))ier)

i€l

T; f

Ty(X) Ty (Y)
commutes (L;-valued composite variety-based continuity or Lr-valued T;-

continuity).

For convenience sake, the category LCTopSys(T') is denoted LTopSys(T'). The
main purpose of the new developments is to provide an analogue of the structure
of S. Vickers, suitable for application in the framework of lattice-valued catalg
topology. As shows the following example, the presented approach incorporates all
(known to the author) many-valued generalizations of the concept.

Example 5.2.
(1) LTopSys((P, Frm, SSSLat(\/))) is isomorphic to the category TopSys of
classical topological systems of S. Vickers [106]. To give more intuition to
the reader, we recall the basic definitions from [106].

A topological system is a triple (X, k, A), where X is a set, A is a frame,
whereas A = ||P(X)|| is a frame homomorphism, with || — || standing for
the reduct to the variety Frm of frames (recall that the powerset of a set
has the structure of a complete Boolean algebra).

A topological system morphism (also called a continuous map) (X1, k1,
Aq) M) (X2, ka2, Ag) comprises a set map X i> X, and a frame homo-
op
morphism As RN A, making the following diagram commute

op
A2 i Al

P ———F= IP(XDI.
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It is easy to see that the translation of the above diagram into the lan-
guage of the category Loc (namely, reversing all the involved arrows) pro-
vides an analogue of the diagram of Definition 5.1.

(2) The category LTopSys((R3, Frm, SSSLat(V))) is isomorphic to the cate-
gory Loc-TopSys of lattice-valued topological systems of J. T. Dennis-
ton et al. [22, 19, 20].

(3) The category LTopSys((S5X, Set, SSSLat(V))) is isomorphic to the cate-
gory Chu(Set, K) of Chu spaces over a set K of V. Pratt [79] (Chu spaces
are called contexts in formal concept analysis [39]).

(4) The category Chu(Set,2) provides the category IntSys of interchange sys-
tems of J. T. Denniston et al. [20, 21].

Some remarks are due to the term “Lj-valued Tr-satisfaction relation” of Def-
inition 5.1. In the classical setting of S. Vickers [106] (which is slightly different
from the above-mentioned one), a topological system is a triple (X, A, =), where
X is aset, A is a frame and = C X X A is a relation called satisfaction relation on
(X, A), which fulfills certain conditions. In [106, Section 5.6], S. Vickers introduced
an alternative definition of systems through the frame map A = P(X) given by
k(a) = {x € X |z =a}. The definition was extended to the powerset theory Rs in
J. T. Denniston et al. [19] and was taken up by us in [101] and in this manuscript
as being more suitable for the catalg developments.

It was already said that the catalg approach to topological systems incorpo-
rates state property systems of D. Aerts [3]. The following definition extends the
approach to the lattice-valued setting.

Definition 5.3. L;CSP(Ty) is the full subcategory of L;CTopSys(T;), com-
prising all L;-valued Ty-systems (X, (k;)ier, ((As, i Li))ier) (Lr-valued compos-
ite variety-based state property systems or Lr-valued Ty-sp-systems) such that the

op
homomorphism A; AN T;(X) is injective for every i € I.

For the sake of simplicity, LCSP(T") is denoted LSP(T"). The main reason for
introducing the new definition was the desire to obtain another fruitful example
for the new theory, which resulted in an additional representation of the concept of
lattice-valued closure space [100].

Example 5.4. The category L;SP((P, CSL, SSSLat(V))) is isomorphic to the cat-
egory SP of state property systems of D. Aerts [3].

5.1. Lattice-valued Categorically-algebraic Soft Topology. The theory of
catalg topology has another and (probably) more interesting application, motivated
by the concept of soft set. Introduced by D. Molodtsov [71], to reduce the difficulties
experienced by the existing mathematical approaches to uncertainty, the new theory
almost immediately started the process of softening of mathematics, which included
the construction of soft analogues of various mathematical structures. In due time,
the notions of soft group [6], soft ring [65], soft semiring [32], soft BCK/BCI-
algebra [57], etc. appeared in the literature, extending basic properties of the
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classical concepts. The approach can be easily generalized to the notion of soft
algebra as follows (see [104] for the detailed study of the topic).

Definition 5.5. Let A ba a variety, let A be an A-algebra and let X be a set. A

soft (A-)algebra over A is a triple (A, Ik, X'), where X I, P(A) is a map such that
I-(x) is a subalgebra of A for every z € X.

A topologically-minded reader will ask immediately about the theory of soft
topology. It appears that there exists a straightforward way to apply Definition 5.5
and get the notion of soft topological space.

Definition 5.6. Let (X, 7) be a topological space and let L be a frame. A soft

topological space over L is a triple ((X,7),lIF, L), where L %, 7 is a frame homo-
morphism.

The reader could see that Definition 5.6 is a particular case of L-fuzzy locales
of [108, Definition 1.1]. More precisely, while D. Zhang and Y.-M. Liu build their

concept over an arbitrary frame A (getting thus a frame homomorphism L LN A),
we use the frames, which are given by the topologies of topological spaces.

Notice that unlike Definition 5.5, we use a frame L instead of another set, thereby
simplifying the definition. The reason for the choice is our wish to incorporate the
lattice-valued developments of this paper into soft topology, that is done explicitly
in Example 5.8. To achieve the goal, we use the extended notion of topological
system to develop the concept of Definition 5.6 in a more general way, e.g., replacing
topological spaces and frames with their lattice-valued catalg analogues.

Definition 5.7. Let (T7,L;) be an L;-valued cvt-theory in a category X. Then
L;CSoftTop(T}) is the category, concrete over LyCTop(T7) x ([;c; (SP-B:)™),
which is given by the following data.

el

OBJECTS: (soft ILj-valued Tr-spaces or s-Ly-valued Tr-spaces) are those triples
(X, (Ta)ier, (Li)ier), ((kiy wi))ier, ((Bi, vi, M;))ier), for which (X, (T;)ser,
(Li)ier) is an Ly-valued Tr-space, ((Bi, vi, M;))icr is an object of the prod-

uct category [[;c; (S7-B;)”, and (T;(X), T;, L;) AGLIN (Bj, v, M;) is an
(S¢P-B;)P-morphism for every i € I (((ki,¢:))icr is called soft Lj-valued
Tr-topology or s-Li-valued Tr-topology on ((X, (T:)icr, (Li)ier), ((Bi, vi,
M;))ier))-

MORPHISMS:

((f(bi)ier),((&i,0:))ier)
(X, (Ti)ier, (Li)ier), ((kis i))ier, ((Bs, vi, M5) )ier) < Qe

(Y. (8i)iers (Ni)ier), ((tis ¥i))ier, ((Ci, 04, Oi) )icr)
are L;CTop(T7) x ([1;c; (S77-B;)”)-morphisms
((f(¢i)ier),((§i,0:))ier)

(X, (T)iers (Li)ier), (B, vi, M;))ier)
(Y, (8i)ier, (Ni)ier), ((Ci, 04, 0i))ier)
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such that for every i € I, the following diagram

(X)) — Ty
C

(
B; B
commutes (soft Lr-valued Tr-continuity or s-ILy-valued Tr-continuity).

The reader should be aware that M. Shabir and M. Naz [93] have already initiated
the theory of soft topology in a quite obvious way: a soft topology on a set is a
family of soft sets over it, which is closed under finite intersections and arbitrary
unions. Moreover, F.-G. Shi and B. Pang [94] have recently shown redundancy of
(even fuzzy) soft topological spaces. Our approach to soft topology though is more
sophisticated, and it is one of the aims of this paper to start the development of
the new theory. The next example shows that the new framework incorporates the
lattice-valued categorically-algebraic topology of Definition 3.4 (an attentive reader
will easily notice that we just take L = 7 in Definition 5.6).

Example 5.8. The (non-full) subcategory FT of the category L;CSoftTop(T7),
which comprises all objects ((X, (T;)ier, (Li)icr), ((11,(x), 11,))ier, (T3(X), Ts,
L;))ier) together with all morphisms

(X, (Ti)ier, (Li)ier), (L1, (x), 1L,))ier,
fi(@i)ier),((Ts f,9i))i
((E(X)771,LZ))Z€[) (( ( ) EI) (( ) EI)

(Y, (8i)ier, (M;)ier),
((Lgyvys 1ag,))ier (Ti(Y), 84, My))icr),
is isomorphic to the category L;CTop(T7).

On the other hand, we are still unable to provide a similar incorporation of the
extended framework of C. Guido presented in Definition 3.10. This motivates the
second open problem of this paper.

Problem 5.9. Is it possible to include the framework of Definition 3.10 into the
soft topology?

To convince the reader even more of the usefulness of the catalg topology, in the
next section, we are going to provide a relation between Lj-valued T7-spaces and
L;-valued T7-systems.

6. Topological Systems Versus Topological Spaces

At the beginning of the previous section, we have mentioned that it is not the
notion of topological system itself that provides the main significance of their the-
ory, but the possibility of embedding both the category of topological spaces and
the category of their underlying algebraic structures (locales) into the category of
topological systems. Moreover, each embedding essentially provides a (co)reflective
subcategory. It is the purpose of the current section to extend half of the result to
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the lattice-valued catalg setting, i.e., to obtain the respective lattice-valued catalg
spatialization procedure and its right adjoint functor.

We begin with the case of the singleton topological theories, extending the
achievements later on to the more sophisticated composite setting.

Proposition 6.1. There is a full embedding LTop(T) &, LTopSys(T), given

) (T,
by G((X1771’L1) M (X2a727L2)) = (Xla1T(X1)7(T(X1)7T15L1)) M

(XQa lT(Xz)v (T(XQ)v Ta, L2))

Proof. The only (not so serious) challenge is verification of fullness. Given an

L-valued T-continuous morphism G(X1, 77, L1) M) G(X2,T9, Ly), commuta-

tivity of the diagram

Tf
T(X1) T(X2)
lrxy llT(Xz)
T(X1) T(X>)
implies T'f = ¢, and that was to be shown. O

The reader should be aware that Proposition 6.1 generalizes the respective result
of [101] and the embedding of [19, Theorem 64]. Moreover, the embedding in ques-
tion is not concrete, since the employed categories have different ground categories,
namely, X x LL for LTop(T) and X x (L°?-B)? for LTopSys(T).

The next step is more complicated. Firstly, recall from [86] that glven a set

L

map X —> Y and a \/-semilattice L, there is the L-image operator LX £ LY
(fr7(@)(y) =V j(4)=y @(z). Secondly, recall from [40, Definition 1-2.8] that a lat—
tice L is called completely distributive provided that it is complete and for every fam-

ily {ajr|j € J ke K(j)}in L, the identity /\geJ \/keK () Wik = \/feM /\jGJajvf(j)
holds, where M is the set of choice maps defined on J with f(j) € K(j).

Proposition 6.2. If the underlying lattices of L are completely distributive, then

there is a functor LTopSys(T) < LTop(T), Spat((X1. k1, (B, s, L1)) *- s

(X, iz, (Ba, 2, L2))) = (X1, (5)7, (1), L1) L2 (X, (58) 7, (112), Lo).

Proof. It will be enough to verify correctness of the functor on both objects and
morphisms. To see that (X;, (k5”)7 (1i), Li) is an L-valued T-system notice that
given A € Ag and b; € T(XZ-) for j € ny,

A ()7 =NV wme) T\ A w6) <

JENX Jenx kP (a;)=b; fEM jeny
\ mi@F () <\ (BT (1) (K @X (F()nn)) =
feM feM
\ ((57) 2 (i) @y FP (67 0 F(G)Ina)) = V(7)) @y TP (b )ny ) <
feMm feMm

(KT (1)) (@i T (0 V),
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where (1) uses the assumption on complete distributivity.
To check correctness on morphisms, we show laxity of the following diagram
(Tf)°F
T(X:) ————T(X1)
(n?@@ﬁi < lm;’%a (u1)

[l L2l [ L]l

1P|
Given by € T(Xs), we get (]| o (k3")Z, (12)) (b2) = [V por (0 sy H2(a2)) =

1)

Vg? (az)=b, [0 [] 0 p2(a2) (< V ig? (az)=b, 11 © 9P (a2) =/ Sz, where (11) uses the
fact that ||| o pge < p1 o ¢°?. On the other hand, (k7")7 (1) o (Tf)*(b2) =
Vowor (a)=(T)r (by) P1(a1) = V S1. Lastly, given az € S, kol (az) = b implies
(T)P(b2) = (Tf) o kg (az) = k¥ o ¢?P(az) and, therefore, ¢°P(az) € S1. It
follows that S C S7, which implies \/ S2 < '\/ S1, and that was to be shown. O

After two preliminary propositions, the main result of this section can be stated
as the following theorem.

Theorem 6.3. The functor Spat is a right-adjoint-left-inverse to the functor G.

Proof. For the first claim, we show that every L-valued T-system (X, s, (B, u, L))
has a G-co-universal arrow, i.e., an L-valued T-continuous morphism G Spat(X, &,
(B,u, L)) = (X, k, (B, u, L)) such that for every L-valued T-continuous morphism
G(Y,8, M) (f:(e:9))

phism (Y, 8, M) % Spat(X, k, (B, 1, L)) making the following triangle commute:

(X, K, (B, u, L)), there is a unique L-valued T-continuous mor-

G(Y,8, M)

I
C0.6) (> (e:9))
Y

G Spat(X, x, (B, , L)) ————— (X, k, (B, i, L)).

In the first step, define the required morphism e by G Spat(X, «, (B, u, L)) =

o (1x,(k,11))
(X’ K, (B’ 1y L)) = (Xa 1T(X)v (T(X)’ (H p)f)(/i)’ L))) % (Xv R, (B’ 122 L))
To show that ¢ is L-valued T-continuous, notice that commutativity of the diagram

1r(x)

T(X)——2 o 7(x)

leaves the laxity of the diagram

op

A—"" S p(x)
#l < l(ﬂop)f’(u)
L L.
|2 ———— I
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as the only point unverified. The desired result how ever is the consequence of
the fact that given a € A, (k)7 (1))(5P(a)) = V pon(p)=pon(a) #(b) = pla) =
po1zll(a).

In the second step, we consider an IL-valued T-continuous morphism (Y, 17y,

(T(Y),8,M)) LD (X 4 (B, p, L)) and define (Y,8, M) ‘2% Spat(X, , (B,

w, L)) = (Y,8, M) U, (X, (k°?)7 (1), L). To show that the morphism is L-
valued T-continuous, we notice that given b € T(X), it follows that [[¢°P| o

()7 (1) (B) = 11071V oy 1)) = Voo ay s 161 0 1(0) € Vomgays T 0

(@) W oy T (TF)F 0 KP(0) =V on o T 0 (TF)7(B) < To (TF) ™ (b),

where (1) uses the fact that (B, u, L) 97, (T'(Y),8, M) is a (B, S°?)-homomor-

phism and (ft) relies on commutativity of the diagram in Definition 5.1.
In the third step, we show commutativity of the above-mentioned triangle. Veri-

fication is simple, since £0G(g, ) = (1x, (k, 1)) o(f, (T'£,9)) = (. (roT f,¢))) L
(f, (p,1)), where (11 T) employs the fact that (f, (¢,1)) is L-valued T-continuous.

In the forth (and the last) step, we show uniqueness of (g, ¢). Suppose there ex-
ists another L-valued T-continuous morphism (¢’, ¢’), making the above-mentioned
triangle commute. It follows that (f,(p,¢)) = €0 G(¢',¢') = (Ix,(k,1L)) o
(9',(Tg',¢') = (¢, (ko Tg', ¢")) implying (¢',¢") = (f,%).

The only challenge of the last claim on Spat G = lprop(r) is the identity on
objects and that follows from the fact that given an L-valued T-space (X,T, L),
Spat G(X, T, L) = (X7((1T(X))I7(‘I))7L) = (X,T.L). U

Corollary 6.4. The category LTop(T) is isomorphic to a full coreflective subcat-
egory of the category LTopSys(T).

The reader should pay attention to the important fact that our previous ap-
proaches of [98, 101] allowed to get a stronger result in the sense that the category
of topological spaces appeared to be a (regular mono)-coreflective subcategory of
the category of topological systems. The current extended framework does not have
the property, since, in general, L-valued T-satisfaction relation x on (X, (B, u, L))

need not provide a surjective homomorphism B LN o (X) and, therefore, € in
Theorem 6.3 need not be a monomorphism. Turning back to the composite setting,
we can formulate the concluding result of this section.

Theorem 6.5.

(1) There exists a full embedding LICTop(TI)CgLICTopSys(TI) de-
fined by the formula

,(Yi)ier
G((X, (Ti)ier, (Li)iey) LW2ien),

(X, (Lrex))ier, (T(X), Ti, Li)ier)
(Y, (Areyy)ier, (T(Y), 8i, Mi))ier)-

Y, (8i)icr, (M;)ier)) =
(f,((Tfabi))ier)
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(2) Suppose that the underlying lattices of Ly are completely distributive. Then
Spat

there exists a functor LyCTopSys(T7) — L;CTop(T;) defined by

(f:((pis¥i))ier)
Spat (X, (#:)ier, (B, i» Li) )ier) ~———5 (Y, (ti)ier, (Ciy vy Mi))ier)) =
b
(X, ()2 () iers (Badien) 2 (¥, (830, () iers (Maien).
(3) The functor Spat; is a right-adjoint-left-inverse to the functor Gy.
(4) The category LyCTop(Ty) is isomorphic to a full coreflective subcategory
of the category Ly CTopSys(T7).

Theorem 6.5 is a lattice-valued catalg analogue of the spatialization procedure of
S. Vickers [106, Theorem 5.3.4], restoring a significant part of the classical setting.

7. Conclusion

Motivated by the diversity of approaches to many-valued topology currently
available in the literature, in this paper, we introduced a new topological framework,
which incorporated in itself the most important many-valued topological settings
(including poslat topology of S. E. Rodabaugh, (L, M)-fuzzy topology of T. Kubiak
and A. Sostak, and M-fuzzy topological L-fuzzy spaces of C. Guido) as well as
the classical theory of closure spaces. As a consequence, it appeared that the
framework of S. E. Rodabaugh actually does not differ much from the classical
crisp approach, in the sense that his categorically-algebraic machinery follows the
path of the standard crisp one. On the other hand, the theories of T. Kubiak,
A. Sostak and C. Guido deviate significantly from the classical setting, providing
an inherently many-valued framework. Based on these observations, we proposed
to call their settings truly lattice-valued topology, reserving the term lattice-valued
topology for the approach of S. E. Rodabaugh. As the main achievement, we showed
that all the categories of topological structures generated by truly lattice-valued
topology are topological over their ground categories, thereby incorporating both
the classical and many-valued results on the topic.

The new framework was also relevant to pointfree topology through a generaliza-
tion of topological systems of S. Vickers. In particular, we have extended his system
spatialization procedure, which made a topological space from a topological system.
Such an extension provides an important step in the theory of generalized topo-
logical systems, namely, it shows that the crucial property of the original concept
(a convenient extension of topological spaces) still holds in the generalized setting.
However, it is precisely the system framework of this paper, which shows many
potential applications of their theory to non-topological areas (e.g., to the field of
state property systems of D. Aerts et al. [4, 5]). There still exists another part of
the classical theory though which is never touched in this paper, i.e., the localifica-
tion procedure, which gives the machinery for converting a topological system into
a locale. Thus, we can postulate the third open problem of this manuscript.

Problem 7.1. What will be the localification procedure for lattice-valued catalg
topological systems?
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The paper also provided the catalg approach to topology of C. Guido, which
clearly appeared to extend the more known and already much cited topological
setting of T. Kubiak and A. Sostak. The main drawback of the framework of
C. Guido is its relative unpopularity among the researchers. It is one of the aims
of the current paper, to promote the theory. In particular, we showed that the
retractive topology of Definition 3.8, motivated by the above-mentioned setting of
C. Guido, is one of the most general approaches to lattice-valued topology currently
available in the fuzzy community. Moreover, its respective categories are topological
over their ground categories (Corollary 4.6). In view of this result, the next problem
(or, better, research proposal) springs into mind immediately.

Problem 7.2. Develop the theory of retractive lattice-valued topology up to the
extent of its currently more popular poslat and (L, M)-fuzzy analogues. In partic-
ular, study the properties of the category L; CRTop(T7) of L;-valued T-retractive
spaces, which is introduced in Definition 3.10.

The paper has also introduced an alternative approach to soft topology motivated
by the well-known concept of soft set of D. Molodtsov, thereby starting a completely
new approach to topological structures. This induces the next, certainly non-trivial
and, moreover, far-reaching, problem.

Problem 7.3. Develop the theory of soft topology. In particular, explore the
properties of the category IL;CSoftTop(7T;) of Definition 5.7.

The above concept of soft topology was motivated by the notion of soft algebra of
Definition 5.5. On the other hand, Definition 3.1 introduced the concept of lattice-
valued algebra. Comparing the two notions, the categorically-minded reader will
miss soft algebra homomorphisms. The next definition fills the gap. For the sake of
convenience, we reverse the notation for soft algebras from (4, -, X) to (X, -, A).

Definition 7.4. Let A ba a variety and let (X7,llF, Ay), (Xa,llF2, A2) be soft
A-algebras. A soft (A-)algebra homomorphism (X1,IF1, A1) 25 (Xa, ko, As)

is a Set x A-morphism (X7, A;) e, (X2, Ag), which satisfies the following lax
diagram
f

X14 >)(2

”hi < ikg

P(41) ——=—P(A2),

meaning ¢~ oll-(z) C llkyof(x) for every € X;. SoftA is the category of soft
A-algebras and soft A-algebra homomorphisms, concrete over the category Set x A.

The reader should notice that the inducing concepts of soft group, soft ring,
soft semiring, etc. use commutativity of the diagram of Definition 7.4. Our main
motivation for the extension of the notion of homomorphism is the following easy
but rather important result.
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Lemma 7.5. Given a variety A and an extension L of the variety CSLat(\/), ev-

ery subcategory S of L gives the functor S-A 'y SoftA with F((Aq, p1,L1) M)

(As, 12, L)) = (L1 |, 1, Ay) L2 (Do) kg, Ag), where |Li 255 P(A4y), -4(b) =

{a € A;|b < pi(a)}. The functor F is faithful, but not dense. If the underlying
functor of L is an embedding, then F is an embedding.

Proof. Correctness of the functor on objects follows from Definition 3.1. Cor-
rectness on morphisms is the consequence of the fact that given b; € Ly and
ag € ¢ ollF1(b1), as = ¢(a1) for some a; € lF1(b1) and thus, by < pi(ar). It
follows that 1(b1) < ¥ o py(ar) < po o @(ar), implying as = ¢(aq) € llk2 0th(by).

The functor F is clearly faithful. The non-density claim is the consequence of
the fact that given an algebra A, the soft algebra (&, I, A) is isomorphic to no
object from the image of F'.

For the embedding property, notice that given two (A, S)-algebras (41, 1, L1)
and (As, p12, Lo) such that F(Ay, p1, L1) = F(Az, pa, La), it follows that A; = A =
Ag, |L1] = X = |L2| and llF; = lIF = lIF5. In general, one cannot proceed farther,
but the condition of the lemma gives L1 = L = Ly. Then py(a) = \V/{b € L|a €
()} = p2(a) (use the representation theorem for fuzzy sets of, e.g., [76]). O

Notice that the requirement on the variety L of Lemma 7.5 almost never holds,
since essentially it replaces the category L with a subcategory of the category Set,
i.e., makes one to deal with sets instead of algebras. Still, it follows from the
lemma that the theory of soft algebras provides a certain extension of the theory
of lattice-valued algebras, motivating the last open problem of this paper.

Problem 7.6. What are the properties of the functor of Lemma 7.57 In particular,
is it (co)adjoint?

All the open problems posed in this manuscript will be addressed in our further
research on the topic.
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