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DISTINCT FUZZY SUBGROUPS OF A DIHEDRAL GROUP OF

ORDER 2pqrs FOR DISTINCT PRIMES p, q, r AND s

O. NDIWENI AND B. B. MAKAMBA

Abstract. In this paper we classify fuzzy subgroups of the dihedral group
Dpqrs for distinct primes p, q, r and s. This follows similar work we have done

on distinct fuzzy subgroups of some dihedral groups. We present formulae

for the number of (i) distinct maximal chains of subgroups, (ii) distinct fuzzy
subgroups and (iii) non-isomorphic classes of fuzzy subgroups under our cho-

sen equivalence and isomorphism. Some results presented here hold for any
dihedral group of order 2n where n is a product of any number of distinct

primes.

1. Introduction

In [4] we studied the classification of fuzzy subgroups of the dihedral groups
Dpqr for distinct primes p, q and r, and any positive integer n. We presented
formulae for the number of distinct maximal chains, distinct fuzzy subgroups and
non-isomorphic classes, of fuzzy subgroups, under our chosen notions of equivalence
and isomorphism. Our main objective is to classify fuzzy subgroups of any dihedral
group Dn. As mentioned in [4], this is a difficult task that requires a number of
stages. Thus first we look at several types of dihedral groups, and fix a number of
primes. Consequently we will present a number of papers that should lead to the
main result.
In this paper we study the classification of fuzzy subgroups of Dpqrs for distinct
primes p, q, r and s. We present formulae for the number of maximal chains of
subgroups and the number of distinct fuzzy subgroups. The equivalence we use in
this paper is the same as the one used in [4].
There are other notions of equivalence in literature, as mentioned in [4]. Our version
of equivalence is stronger than the one studied by Volf [9], Branimir and Tepavcevic
[1] and Tarnaucenu and Bentea [8]. Further, our equivalence is a special case of the
S*-equivalence relation introduced by Degang et al [2]. So computing the number
of distinct fuzzy subgroups of any finite group using the Murali and Makamba defi-
nition [3], which is the one used in this paper, yields more distinct fuzzy subgroups
than when using the definition of Degang et al [2].
Apart from the classification of fuzzy subgroups according to equivalence, we also
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discuss a classification according to isomorphism. This necessitates looking at iso-
morphic maximal chains, under a suitable isomorphism, so as to enumerate non-
isomorphic fuzzy subgroups of the group. Indeed, as mentioned also in [4], iso-
morphism cuts across groups, whereas equivalence is confined to a chosen group.
Our notion of equivalence is a special case of our isomorphism. Special cases tend
to yield more exciting results than general cases. So we use both equivalence and
isomorphism, but with more emphasis on equivalence. For more information on
isomorphic chains and lattices, see [5] and [6]. A detailed demonstration of our
counting techniques for equivalence classes is given in the form of Example 3.4 of
[4].

The rest of the paper is organised as follows: Section 2 presents a few basic
concepts necessary for our discussion on classification, so that the paper is self-
contained. Section 3 discusses maximal chains of subgroups of the dihedral group
Dpqrs, and these will be used in the classification of fuzzy subgroups. Section
4 discusses distinct fuzzy subgroups of G = Dpqrs and formulae are presented
for the number of distinct fuzzy subgroups. Section 5 is a shorter discussion on
non-isomorphic classes of fuzzy subgroups of Dpqrs. Section 6 presents concluding
remarks.

2. Preliminaries

A fuzzy subset µ : G −→ [0, 1] of a group G is a fuzzy subgroup of G if µ(xy) ≥
min{µ(x), µ(y)}, ∀x, y ∈ G and µ(x−1) = µ(x), ∀x ∈ G, [7]. Clearly for the identity
element e ∈ G, µ(x) ≤ µ(e) ∀x ∈ G.
Throughout this paper we assume µ(e) = 1 for any fuzzy subgroup µ of a group
G. We say a fuzzy subgroup µ is equivalent to a fuzzy subgroup ν, written µ ∼ ν,
if (i) ∀x, y ∈ G, µ(x) > µ(y) ⇐⇒ ν(x) > ν(y) and (ii) µ(x) = 0 ⇐⇒ ν(x) = 0, [3].
Two fuzzy subgroups µ and ν are said to be distinct iff [µ] 6= [ν] where [µ] and [ν]
are the resulting equivalence classes containing µ and ν respectively.
The support of µ is defined as supp µ = {x ∈ G : µ(x) > 0}.
An increasing chain of a finite number of subgroups of G starting with the trivial
subgroup {e} and ending up with G is called a flag on G.
In this paper, a subgroup (component) that distinguishes a maximal chain from
other maximal chains is referred to as a distinguishing factor. If a maximal chain
is distinguished by two or more subgroups, such subgroups may also be called
distinguishing factors, [4]. In this paper, whenever we use the term maximal chain,
we mean a maximal chain of subgroups of G.
Now we recall the following facts for comparison and use in this paper:

Proposition 2.1. [3] The number of distinct fuzzy subgroups represented by a
maximal chain (flag) of length n is 2n − 1 .

Proposition 2.2. The number of maximal chains of Dpq is equal to 2! + 1!(p +
q) + 2!(pq), and the number of distinct fuzzy subgroups of Dpq is

24 − 1 + 23(1 + p+ q + pq) + 22(pq)

.

(1)
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Proposition 2.3. [4] The number of maximal chains of Dpqr is equal to 3!+2!(p+
q + r) + 2(pq + pr + qr) + 3!(pqr), and the number of distinct fuzzy subgroups of
Dpqr is

25 − 1 + 4× 24 + 23 + (24 + 23)[p+ q + r + pq + pr + qr]

+(24 + 23 × 4 + 22)pqr

= 25 − 1 + 24(4 + p+ q + r + pq + pr + qr + pqr)

+23(1 + p+ q + r + pq + pr + qr + 4pqr) + 22pqr (2)

The following two propositions are easy to prove:

Proposition 2.4. In an ascending maximal chain of subgroups of G = Dp1p2...pn ,
a dihedral subgroup of G can only be followed by a dihedral subgroup.

Proposition 2.5. The length of each maximal chain of subgroups of G = Dp1p2...pn

is n+ 2, where all the pi are distinct primes.

From the above proposition, it is clear that any maximal chain of subgroups of
Dpqrs has length 4 + 2 = 6.

Definition 2.6. A maximal chain of subgroups of G is called cyclic if all its proper
subgroups are cyclic.

Definition 2.7. (a) A maximal chain of subgroups of G = Dp1p2...pn =< a, b :
ap1p2···pn = e = b2 = (ab)2 > for n ≥ 2, is d− cyclic if (i) it has a cyclic subgroup
< ak >, k > 1 and (ii) it has exactly one non-trivial proper dihedral subgroup,
where all the pi are distinct primes.
(b) A maximal chain of subgroups of G = Dp1p2...pn =< a, b : ap1p2···pn = e = b2 =
(ab)2 > for n ≥ 2, is 2d − cyclic if (i) it has a cyclic subgroup < ak >, k > 1 and
(ii) it has exactly two non-trivial proper dihedral subgroups, where all the pi are
distinct primes.
(c) A maximal chain of subgroups of G = Dp1p2...pn

=< a, b : ap1p2···pn = e = b2 =
(ab)2 > for n ≥ 2, is 3d − cyclic if (i) it has a cyclic subgroup < ak >, k > 1 and
(ii) it has exactly three non-trivial proper dihedral subgroups, where all the pi are
distinct primes.
(d) A maximal chain of subgroups of G = Dp1p2...pn =< a, b : ap1p2···pn = e = b2 =
(ab)2 > for n ≥ 2, is b− cyclic if it has exactly one non-trivial proper subgroup of
the form < akb >, for k ≥ 0, where all the pi are distinct primes.

In [5] and [6], versions of fuzzy isomorphism and isomorphism of finite chains
are presented. In this paper we use the following definitions:

Definition 2.8. [3]. Let µ and ν be two fuzzy subgroups of G and G1 respectively.
We say µ is fuzzy isomorphic to ν, denoted µ ∼= ν, iff there exists an isomorphism
f : G → G1 such that for x, y ∈ G, µ(x) > µ(y) ⇐⇒ ν(f(x)) > ν(f(y)) and
µ(x) = 0⇐⇒ ν(f(x)) = 0.

Definition 2.9. Two or more maximal chains are isomorphic if their lengths are
equal and their corresponding components (subgroups) are isomorphic subgroups.
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3. Maximal Chains of the Dihedral Group Dpqrs

In this section we study and compute the number of maximal chains of G =
Dpqrs, for distinct primes p, q, r and s. We also make some generalisations for the
case G = Dp1p2···pn , for distinct primes pi and any positive integer n.

Proposition 3.1. Let G = Dp1p2···pn =< a, b : ap1p2···pn = e = b2 = (ab)2 >,
n ≥ 2. Then the number of cyclic maximal chains of G is n!, where the pi are
distinct primes.

Proof. Apply induction on n. For n = 2, G = Dp1p2
has the cyclic maximal chains

{e} ⊂< ap1 >⊂< a >⊂ Dp1p2
and {e} ⊂< ap2 >⊂< a >⊂ Dp1p2

. It is clear that
all other maximal chains are non-cyclic. Thus there are 2! cyclic maximal chains
for G.
Assume now that the proposition is true for n = k > 2. Thus Dp1p2···pk

has
k! cyclic maximal chains. We show that G = Dp1p2···pkpk+1

has (k + 1)! cyclic
maximal chains. All cyclic maximal chains of Dp1p2···pkpk+1

must have the maximal
subgroup < a > of Dp1p2···pkpk+1

as a component. Consider the cyclic maximal
chain < e >⊂< ap1p2···pk >⊂< ap1p2···pk−1 >⊂ · · · ⊂< ap1 >⊂< a >⊂ G · · · (1) of
G = Dp1p2···pkpk+1

.
In this chain (1), p1p2 · · · pk−1 can be replaced by any product of k−1 primes from
{p1, p2, · · · , pk}. The chain < e >⊂< ap1p2···pk−1 >⊂ · · · ⊂< ap1 >⊂< a >⊂
Dp1p2···pk

is a maximal chain in Dp1p2···pk
, and by assumption, there are k! cyclic

maximal chains in Dp1p2···pk
, thus there are k! cyclic maximal chains corresponding

to < ap1p2···pk > in the group Dp1p2···pkpk+1
. The primes in p1p2 · · · pk can be varied

in k + 1 ways by replacing each one of them by pk+1, including nil replacement,
giving k + 1 maximal dihedral subgroups of Dp1p2···pkpk+1

, including Dp1p2···pk
. By

the multiplication principle, there are (k+ 1)k! = (k+ 1)! cyclic maximal chains of
Dp1p2···pkpk+1

. �

Corollary 3.2. The number of cyclic maximal chains of G = Dpqrs =< a, b :
apqrs = e = b2 = (ab)2 > is 4! = 24, where p, q, r and s are distinct primes.

Proposition 3.3. The number of d-cyclic maximal chains of subgroups of
G = Dp1p2···pn =< a, b : ap1p2···pn = e = b2 = (ab)2 > is

(n− 1)![p1 + p2 + · · ·+ pn], n ≥ 2

.

(3)

Proof. Apply induction on n. For n = 2, G = Dp1p2
. Consider the d-cyclic maxi-

mal chain {e} ⊂< ap1 >⊂ Db
p2
⊂ Dp1p2

where Db
p2

=< ap1 , b : ap1p2 = e = b2 =

(ab)2 >. There are p1 d-cyclic maximal chains having < ap1 > as a component,
obtained by replacing b with akb in Db

p2
. Similarly swopping the roles of the two

primes yields p2 d-cyclic maximal chains. Hence there are (p1 + p2) d-cyclic maxi-
mal chains.
Now assume the proposition is true for k > 2. Consider G = Dp1p2···pk+1

. Then

Db
p1p2···pk

=

< ak+1, b : (ak+1)
p1p2···pk = e = b2 = (ak+1b)

2
> is a proper maximal dihedral sub-

group of G having (k−1)![p1+p2+ · · ·+pk] d-cyclic maximal chains by assumption.
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There are k+1 proper maximal dihedral subgroups of G obtained by replacing each
pi by pk+1 in p1p2 · · · pk, including nil replacement. For example Dp1p2···pk−1pk+1

is
a proper maximal dihedral subgroup of G having (k−1)![p1+p2+ · · ·+pk−1+pk+1]
d-cyclic maximal chains by assumption. So each pi appears k times (in the maximal
chain formulae obtained by replacing pi by pk+1) for each i = 1, 2, · · · , k + 1 since
each pj in p1p2 · · · pk must be removed once and at the same time pk+1 is introduced.
Hence the total number of maximal chains is k(k− 1)![p1 + p2 + · · ·+ pk + pk+1] =
k![p1 + p2 + · · ·+ pk + pk+1]. This completes the proof. �

Corollary 3.4. The number of d-cyclic maximal chains of subgroups of G =
Dpqrs =< a, b : apqrs = e = b2 = (ab)2 > is

3![p+ q + r + s]

.

(4)

Proposition 3.5. The number of 2d-cyclic maximal chains of subgroups of G =
Dp1p2···pn =< a, b : ap1p2···pn = e = b2 = (ab)2 > is

2(n− 2)![p1p2 + p1p3 + · · ·+ p1pn + p2p3 + p2p4 + · · ·+ p2pn + · · ·+ pn−1pn]

= 2(n− 2)!
∑
i<j

pipj , i, j ∈ {1, 2, · · · , n}, n > 2. (5)

Proof. Apply induction on n. For n = 3, G = Dp1p2p3 . Now consider the 2d-cyclic
chain {e} ⊂< ap1p2 >⊂ Db

p2
⊂ Db

p1p2
⊂ Dp1p2p3

where Db
p2

=< ap1p3 , b : ap1p2p3 =

e = b2 = (ab)2 > and Db
p1p2

=< ap3 , b : ap1p2p3 = e = b2 = (ab)2 >. Since b in

Db
p1p2

may be replaced by < akb > for k = 1, 2, · · · , p1p2 − 1, and p2 and p1 may
be swopped, it follows that there are p1p2 × 2 maximal chains having < ap1p2 >
as a component. Similarly swopping the roles of the three primes yields a further
2(p1p3 + p2p3) 2d-cyclic maximal chains. Hence there are 2(p1p2 + p1p3 + p2p3)
2d-cyclic maximal chains for G = Dp1p2p3

.
Now assume the proposition is true for k > 3. Consider G = Dp1p2···pk+1

. Then

Db
p1p2···pk

is a proper dihedral subgroup of G giving rise to 2(k−2)![p1p2+p1p3+· · ·+
p1pn+p2p3+p2p4+· · ·+p2pn+· · ·+pk−1pk] = 2(k−2)!

∑
i<j pipj , i, j ∈ {1, 2, · · · , k},

2d-cyclic maximal chains by assumption. There are k+ 1 proper maximal dihedral
subgroups of G obtained by replacing each pi by pk+1 in p1p2 · · · pk. For example
Dp1p2···pk−1pk+1

is a proper maximal dihedral subgroup of G having 2(k−2)![p1p2 +
· · ·+p1pk+1+· · ·+pk−1pk+1] = 2(k−2)!

∑
i<j pipj , i, j ∈ {1, 2, · · · , k−1, k+1}, 2d-

cyclic maximal chains by assumption. So each pi appears k times (in the maximal
chain formulae obtained by replacing pi by pk+1) for each i = 1, 2, · · · , k + 1 since
each pj in p1p2 · · · pk must be removed once and at the same time pk+1 is introduced.
Hence, by counting, the total number of maximal chains is 2(k − 1)(k − 2)![p1p2 +
p1p3+· · ·+p1pk+1+p2p3+· · ·+p2pk+1+· · ·+pkpk+1] = 2(k+1−2)!

∑
i<j pipj , i, j ∈

{1, 2, · · · , k+ 1} since each pipj can appear only k− 1 times from the replacements
of both pi and pj by pk+1 (at different times). This completes the proof. �
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Corollary 3.6. The number of 2d-cyclic maximal chains of subgroups of G =
Dpqrs =< a, b : apqrs = e = b2 = (ab)2 > is

4[pq + pr + ps+ qr + qs+ rs] (6)

It is now compelling to have

Proposition 3.7. The number of md-cyclic maximal chains of subgroups of G =
Dp1p2···pn =< a, b : ap1p2···pn = e = b2 = (ab)2 > is

2(n−m)!
∑

k1<k2<···<km

[pk1
pk2
· · · pkm

],

ki ∈ {1, 2, · · · , n},m > 1, i ∈ {1, 2, · · · ,m} (7)

It is cumbersome to give a detailed proof of this proposition, however, the proof
follows a pattern similar to the proofs of the above propositions.

Proposition 3.8. The number of b-cyclic maximal chains of subgroups of G =
Dp1p2···pn

=< a, b : ap1p2···pn = e = b2 = (ab)2 > is

n![p1p2p3 · · · pn]. (8)

Proof. All non-trivial subgroups in a b-cyclic maximal chain, other than the sub-
group < akb >, are dihedral. Fix < b > and look at all maximal chains involving
< b >. These are all the maximal chains involving Db

pi
, i = 1, 2, · · · , n. Fix i, and

look at all maximal chains involving Db
pi

. By counting, there are (n− 1)! maximal

chains having Db
pi

as a component. Varying i from 1 to n, gives n(n − 1)! = n!
maximal chains corresponding to < b >. Now there are p1p2p3 · · · pn subgroups of

the form < akb >, corresponding to the subgroups Dakb
pi

which can be used in the

place of Db
pi

. Thus the total number of maximal chains is n![p1p2p3 · · · pn]. �

Theorem 3.9. The number of maximal chains of subgroups of G = Dp1p2···pn
=<

a, b : ap1p2···pn = e = b2 = (ab)2 >, is equal to

n! + (n− 1)!

n∑
i=1

[pi] + 2(n− 2)!
∑
i<j

[pipj ] + 2(n− 3)!
∑

i<j<k

[pipjpk] + · · ·+

2(n− 3)!
∑

i1<i2<···<in−3

[pi1pi2 · · · pin−3 ] + 2(n− 2)!
∑

i1<i2<···<in−2

[pi1pi2 · · · pin−2 ]

+(n− 1)!
∑

i1<i2<···<in−1

[pi1pi2 · · · pin−1 ] + n![p1p2p3 · · · pn]. (9)

Proof. This result is a combination of the above propositions. �

Corollary 3.10. The number of maximal chains of subgroups of G = Dpqrs, is
equal to

4! + 3![p+ q + r + s] + 4[pq + pr + ps+ qr + qs+ rs]

+3![pqr + pqs+ prs+ qrs] + 4!(pqrs). (10)
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As a verification of the above theorem, we computed manually and laboriously
the number of maximal chains of Dpqrst for distinct primes p, q, r, s, t and this
agrees with the number given by Theorem 3.9, viz 5! + 4![p+ q+ r+ s+ t] + 12[pq+
pr + ps+ pt+ qr + qs+ qt+ rs+ rt+ st] + 12[pqr + pqs+ pqt+ prs+ prt+ pst+
qrs+ qrt+ qst+ rst] + 4!(pqrs+ pqrt+ pqst+ prst+ qrst) + 5!(pqrst).

4. Fuzzy Subgroups of the Dihedral Group G = Dpqrs

In this section we compute the number of distinct fuzzy subgroups of G = Dpqrs

in stages. First we compute the number of distinct fuzzy subgroups represented by
the cyclic maximal chains. We list the 4! maximal chains:

< e >⊂< apqr >⊂< apq >⊂< ap >⊂< a >⊂ G · · · (1)
< e >⊂< apqr >⊂< apq >⊂< aq >⊂< a >⊂ G · · · (2)
< e >⊂< apqr >⊂< apr >⊂< ap >⊂< a >⊂ G · · · (3)
< e >⊂< apqr >⊂< apr >⊂< ar >⊂< a >⊂ G · · · (4)
< e >⊂< apqr >⊂< aqr >⊂< aq >⊂< a >⊂ G · · · (5)
< e >⊂< apqr >⊂< aqr >⊂< ar >⊂< a >⊂ G · · · (6)
< e >⊂< apqs >⊂< apq >⊂< ap >⊂< a >⊂ G · · · (7)
< e >⊂< apqs >⊂< apq >⊂< aq >⊂< a >⊂ G · · · (8)
< e >⊂< apqs >⊂< aps >⊂< ap >⊂< a >⊂ G · · · (9)
< e >⊂< apqs >⊂< aps >⊂< as >⊂< a >⊂ G · · · (10)
< e >⊂< apqs >⊂< aqs >⊂< aq >⊂< a >⊂ G · · · (11)
< e >⊂< apqs >⊂< aqs >⊂< as >⊂< a >⊂ G · · · (12)
< e >⊂< aprs >⊂< apr >⊂< ap >⊂< a >⊂ G · · · (13)
< e >⊂< aprs >⊂< apr >⊂< ar >⊂< a >⊂ G · · · (14)
< e >⊂< aprs >⊂< aps >⊂< ap >⊂< a >⊂ G · · · (15)
< e >⊂< aprs >⊂< aps >⊂< as >⊂< a >⊂ G · · · (16)
< e >⊂< aprs >⊂< ars >⊂< ar >⊂< a >⊂ G · · · (17)
< e >⊂< aprs >⊂< ars >⊂< as >⊂< a >⊂ G · · · (18)
< e >⊂< aqrs >⊂< aqr >⊂< ar >⊂< a >⊂ G · · · (19)
< e >⊂< aqrs >⊂< aqr >⊂< aq >⊂< a >⊂ G · · · (20)
< e >⊂< aqrs >⊂< ars >⊂< ar >⊂< a >⊂ G · · · (21)
< e >⊂< aqrs >⊂< ars >⊂< as >⊂< a >⊂ G · · · (22)
< e >⊂< aqrs >⊂< aqs >⊂< aq >⊂< a >⊂ G · · · (23)
< e >⊂< aqrs >⊂< aqs >⊂< as >⊂< a >⊂ G · · · (24)

Starting from the top, chain (1) gives 26 − 1 distinct fuzzy subgroups by Propo-
sition 2.1 [3]. In the next discussion we use the counting technique discussed in
our previous papers and extensively exploited in [4]. Each of the chains (2) - (5),
(7), (9) - (11), (13), (17), (19) gives 25 distinct fuzzy subgroups since they are
distinguished by < aq >, < apr >, < ar >, < aqr >, < apqs >, < aps >, < as >,
< aqs >, < aprs >, < ars >, < aqrs > respectively. Each of the chains (6), (8),
(12), (14) - (16), (18), (20) - (23) gives 24 distinct fuzzy subgroups since each can
only have a pair of distinguishing factors. For example (6) cannot have a single
distinguishing factor but can be distinguished by (< aqr >, < ar >). Chain (24)
can only have a triple of disinguishing factors (< aqrs >, < aqs >,< as >) since
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all the single and pairs of components have been used elsewhere as distinguishing
factors, thus it yields 23 distinct fuzzy subgroups. Hence the cyclic chains yield
26 − 1 + 25 × 11 + 24 × 11 + 23 distinct fuzzy subgroups.

We note that the listing of maximal chains is cumbersome and takes up too
much space. Hence, from now on, in each cluster of isomorphic maximal chains,
we list only one representative. Since we have already dealt with cyclic maximal
chains, next we consider d-cyclic maximal chains. We obtain these from the cyclic
chains by replacing < a > by a dihedral subgroup, for example Db

qrs =< aqrs, b :

(aqrs)p = e = b2 = (aqrsb)2 >. Thus we obtain the following d-cyclic chain:
< e >⊂< apqr >⊂< apq >⊂< ap >⊂ Db

qrs ⊂ G · · · (1)
There are p − 1 maximal chains isomorphic to this chain, obtained by replacing b
in Db

qrs by ab, a2b, · · · , ap−1b, respectively.

Replacing Db
qrs in the above argument by Db

prs, we may have < e >⊂< apqr >⊂<
apq >⊂< aq >⊂ Db

prs ⊂ G · · · (2), yielding q isomorphic maximal chains. Continu-
ing the process, we obtain the following d-cyclic non-isomorphic maximal chains

< e >⊂< apqr >⊂< apr >⊂< ap >⊂ Db
qrs ⊂ G · · · (3)

< e >⊂< apqr >⊂< apr >⊂< ar >⊂ Db
pqs ⊂ G · · · (4)

< e >⊂< apqr >⊂< aqr >⊂< aq >⊂ Db
prs ⊂ G · · · (5)

< e >⊂< apqr >⊂< aqr >⊂< ar >⊂ Db
pqs ⊂ G · · · (6)

< e >⊂< apqs >⊂< apq >⊂< ap >⊂ Db
qrs ⊂ G · · · (7)

< e >⊂< apqs >⊂< apq >⊂< aq >⊂ Db
prs ⊂ G · · · (8)

< e >⊂< apqs >⊂< aps >⊂< ap >⊂ Db
qrs ⊂ G · · · (9)

< e >⊂< apqs >⊂< aps >⊂< as >⊂ Db
pqr ⊂ G · · · (10)

< e >⊂< apqs >⊂< aqs >⊂< aq >⊂ Db
prs ⊂ G · · · (11)

< e >⊂< apqs >⊂< aqs >⊂< as >⊂ Db
pqr ⊂ G · · · (12)

< e >⊂< aprs >⊂< apr >⊂< ap >⊂ Db
qrs ⊂ G · · · (13)

< e >⊂< aprs >⊂< apr >⊂< ar >⊂ Db
pqs ⊂ G · · · (14)

< e >⊂< aprs >⊂< aps >⊂< ap >⊂ Db
qrs ⊂ G · · · (15)

< e >⊂< aprs >⊂< aps >⊂< as >⊂ Db
pqr ⊂ G · · · (16)

< e >⊂< aprs >⊂< ars >⊂< ar >⊂ Db
pqs ⊂ G · · · (17)

< e >⊂< aprs >⊂< ars >⊂< as >⊂ Db
pqr ⊂ G · · · (18)

< e >⊂< aqrs >⊂< aqr >⊂< ar >⊂ Db
pqs ⊂ G · · · (19)

< e >⊂< aqrs >⊂< aqr >⊂< aq >⊂ Db
prs ⊂ G · · · (20)

< e >⊂< aqrs >⊂< ars >⊂< ar >⊂ Db
pqs ⊂ G · · · (21)

< e >⊂< aqrs >⊂< ars >⊂< as >⊂ Db
pqr ⊂ G · · · (22)

< e >⊂< aqrs >⊂< aqs >⊂< aq >⊂ Db
prs ⊂ G · · · (23)

< e >⊂< aqrs >⊂< aqs >⊂< as >⊂ Db
pqr ⊂ G · · · (24)

Each of the chains represented by chains (1), (2) and (4) is distinguished by a single
dihedral group, thus each yields 25 distinct fuzzy subgroups. Using pairs and triples
of distinguishing factors for the other maximal chains listed above, we establish that
the number of distinct fuzzy subgroups resulting from d-cyclic maximal chains is
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25(p+ q + r + s) + 24(4p+ 4q + 4r + 4s) + 23(p+ q + r + s).

Next we consider the 2d-cyclic maximal chains. This is done by replacing < ak >,
k prime, with a dihedral subgroup in the d-cyclic chains. Thus for example in (1)
we replace < ap > by Db

rs to obtain the 2d-cyclic maximal chain
< e >⊂< apqr >⊂< apq >⊂ Db

rs ⊂ Db
qrs ⊂ G · · · (1)

As before, we replace b in Db
rs by ab, a2b, · · · , apq−1b, respectively, to obtain pq

isomorphic maximal chains. Continuing the process, by replacing rs in Db
rs and/or

qrs in Db
qrs, we obtain the following non-isomorphic 2d-cyclic maximal chains

< e >⊂< apqr >⊂< apq >⊂ Db
rs ⊂ Db

prs ⊂ G · · · (2)

< e >⊂< apqr >⊂< apr >⊂ Db
qs ⊂ Db

qrs ⊂ G · · · (3)

< e >⊂< apqr >⊂< apr >⊂ Db
qs ⊂ Db

pqs ⊂ G · · · (4)

< e >⊂< apqr >⊂< aqr >⊂ Db
ps ⊂ Db

prs ⊂ G · · · (5)

< e >⊂< apqr >⊂< aqr >⊂ Db
ps ⊂ Db

pqs ⊂ G · · · (6)

< e >⊂< apqs >⊂< apq >⊂ Db
rs ⊂ Db

qrs ⊂ G · · · (7)

< e >⊂< apqs >⊂< apq >⊂ Db
rs ⊂ Db

prs ⊂ G · · · (8)

< e >⊂< apqs >⊂< aps >⊂ Db
qr ⊂ Db

qrs ⊂ G · · · (9)

< e >⊂< apqs >⊂< aps >⊂ Db
qr ⊂ Db

pqr ⊂ G · · · (10)

< e >⊂< apqs >⊂< aqs >⊂ Db
pr ⊂ Db

prs ⊂ G · · · (11)

< e >⊂< apqs >⊂< aqs >⊂ Db
pr ⊂ Db

pqr ⊂ G · · · (12)

< e >⊂< aprs >⊂< apr >⊂ Db
qs ⊂ Db

qrs ⊂ G · · · (13)

< e >⊂< aprs >⊂< apr >⊂ Db
qs ⊂ Db

pqs ⊂ G · · · (14)

< e >⊂< aprs >⊂< aps >⊂ Db
qr ⊂ Db

qrs ⊂ G · · · (15)

< e >⊂< aprs >⊂< aps >⊂ Db
qr ⊂ Db

pqr ⊂ G · · · (16)

< e >⊂< aprs >⊂< ars >⊂ Db
pq ⊂ Db

pqs ⊂ G · · · (17)

< e >⊂< aprs >⊂< ars >⊂ Db
pq ⊂ Db

pqr ⊂ G · · · (18)

< e >⊂< aqrs >⊂< aqr >⊂ Db
ps ⊂ Db

pqs ⊂ G · · · (19)

< e >⊂< aqrs >⊂< aqr >⊂ Db
ps ⊂ Db

prs ⊂ G · · · (20)

< e >⊂< aqrs >⊂< ars >⊂ Db
pq ⊂ Db

pqs ⊂ G · · · (21)

< e >⊂< aqrs >⊂< ars >⊂ Db
pq ⊂ Db

pqr ⊂ G · · · (22)

< e >⊂< aqrs >⊂< aqs >⊂ Db
pr ⊂ Db

prs ⊂ G · · · (23)

< e >⊂< aqrs >⊂< aqs >⊂ Db
pr ⊂ Db

pqr ⊂ G · · · (24)

Using singles, pairs and triples of distinguishing factors, we establish that the num-
ber of distinct fuzzy subgroups corresponding to 2d-cyclic maximal chains is 25(pq+
qs+ps+qs+pr+rs)+24(2pq+2pr+2qr+2ps+2qs+2rs)+23(pq+pr+qr+ps+rs+qs).

Next we consider the 3d-cyclic maximal chains ofG. We replace< akt >, k, t prime,
with a dihedral subgroup in the 2d-cyclic chains. Thus for example in (1) we replace
< apq > by Db

s. Continuing as in the case of 2d-cyclic maximal chains, we obtain
the following 3d-cyclic non-isomorphic maximal chains:

< e >⊂< apqr >⊂ Db
s ⊂ Db

rs ⊂ Db
qrs ⊂ G · · · (1)

< e >⊂< apqr >⊂ Db
s ⊂ Db

rs ⊂ Db
prs ⊂ G · · · (2)
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< e >⊂< apqr >⊂ Db
s ⊂ Db

qs ⊂ Db
qrs ⊂ G · · · (3)

< e >⊂< apqr >⊂ Db
s ⊂ Db

qs ⊂ Db
pqs ⊂ G · · · (4)

< e >⊂< apqr >⊂ Db
s ⊂ Db

ps ⊂ Db
prs ⊂ G · · · (5)

< e >⊂< apqr >⊂ Db
s ⊂ Db

ps ⊂ Db
pqs ⊂ G · · · (6)

< e >⊂< apqs >⊂ Db
r ⊂ Db

rs ⊂ Db
qrs ⊂ G · · · (7)

< e >⊂< apqs >⊂ Db
r ⊂ Db

rs ⊂ Db
prs ⊂ G · · · (8)

< e >⊂< apqs >⊂ Db
r ⊂ Db

qr ⊂ Db
qrs ⊂ G · · · (9)

< e >⊂< apqs >⊂ Db
r ⊂ Db

qr ⊂ Db
pqr ⊂ G · · · (10)

< e >⊂< apqs >⊂ Db
r ⊂ Db

pr ⊂ Db
prs ⊂ G · · · (11)

< e >⊂< apqs >⊂ Db
r ⊂ Db

pr ⊂ Db
pqr ⊂ G · · · (12)

< e >⊂< aprs >⊂ Db
q ⊂ Db

qs ⊂ Db
qrs ⊂ G · · · (13)

< e >⊂< aprs >⊂ Db
q ⊂ Db

qs ⊂ Db
pqs ⊂ G · · · (14)

< e >⊂< aprs >⊂ Db
q ⊂ Db

qr ⊂ Db
qrs ⊂ G · · · (15)

< e >⊂< aprs >⊂ Db
q ⊂ Db

qr ⊂ Db
pqr ⊂ G · · · (16)

< e >⊂< aprs >⊂ Db
q ⊂ Db

pq ⊂ Db
pqs ⊂ G · · · (17)

< e >⊂< aprs >⊂ Db
q ⊂ Db

pq ⊂ Db
pqr ⊂ G · · · (18)

< e >⊂< aqrs >⊂ Db
p ⊂ Db

ps ⊂ Db
pqs ⊂ G · · · (19)

< e >⊂< aqrs >⊂ Db
p ⊂ Db

ps ⊂ Db
prs ⊂ G · · · (20)

< e >⊂< aqrs >⊂ Db
p ⊂ Db

pq ⊂ Db
pqs ⊂ G · · · (21)

< e >⊂< aqrs >⊂ Db
p ⊂ Db

pq ⊂ Db
pqr ⊂ G · · · (22)

< e >⊂< aqrs >⊂ Db
p ⊂ Db

pr ⊂ Db
prs ⊂ G · · · (23)

< e >⊂< aqrs >⊂ Db
p ⊂ Db

pr ⊂ Db
pqr ⊂ G · · · (24)

Using single, double and triple distinguishing factors, we establish that the number
of distinct fuzzy subgroups corresponding to 3d-cyclic maximal chains is 25(pqr +
pqs+ prs+ qrs) + 24(4pqr + 4pqs+ 4prs+ 4qrs) + 23(pqr + pqs+ prs+ qrs).

Finally, we consider the b-cyclic maximal chains. In the 3d-cyclic maximal
chains, we replace a cyclic subgroup such as < aqrs > with < b >, < ab >, <
a2b >, · · · , < apqrs−1b >, respectively. We list only the non-isomorphic b-cyclic
maximal chains as follows:

< e >⊂< b >⊂ Db
s ⊂ Db

rs ⊂ Db
qrs ⊂ G · · · (1)

< e >⊂< b >⊂ Db
s ⊂ Db

rs ⊂ Db
prs ⊂ G · · · (2)

< e >⊂< b >⊂ Db
s ⊂ Db

qs ⊂ Db
qrs ⊂ G · · · (3)

< e >⊂< b >⊂ Db
s ⊂ Db

qs ⊂ Db
pqs ⊂ G · · · (4)

< e >⊂< b >⊂ Db
s ⊂ Db

ps ⊂ Db
prs ⊂ G · · · (5)

< e >⊂< b >⊂ Db
s ⊂ Db

ps ⊂ Db
pqs ⊂ G · · · (6)

< e >⊂< b >⊂ Db
r ⊂ Db

rs ⊂ Db
qrs ⊂ G · · · (7)

< e >⊂< b >⊂ Db
r ⊂ Db

rs ⊂ Db
prs ⊂ G · · · (8)

< e >⊂< b >⊂ Db
r ⊂ Db

qr ⊂ Db
qrs ⊂ G · · · (9)

< e >⊂< b >⊂ Db
r ⊂ Db

qr ⊂ Db
pqr ⊂ G · · · (10)

< e >⊂< b >⊂ Db
r ⊂ Db

pr ⊂ Db
prs ⊂ G · · · (11)

Archive of SID

www.SID.ir

http://www.sid.ir


Distinct Fuzzy Subgroups of a Dihedral Group of Order 2pqrs for Distinct Primes p, q, r and s147

< e >⊂< b >⊂ Db
r ⊂ Db

pr ⊂ Db
pqr ⊂ G · · · (12)

< e >⊂< b >⊂ Db
q ⊂ Db

qs ⊂ Db
qrs ⊂ G · · · (13)

< e >⊂< b >⊂ Db
q ⊂ Db

qs ⊂ Db
pqs ⊂ G · · · (14)

< e >⊂< b >⊂ Db
q ⊂ Db

qr ⊂ Db
qrs ⊂ G · · · (15)

< e >⊂< b >⊂ Db
q ⊂ Db

qr ⊂ Db
pqr ⊂ G · · · (16)

< e >⊂< b >⊂ Db
q ⊂ Db

pq ⊂ Db
pqs ⊂ G · · · (17)

< e >⊂< b >⊂ Db
q ⊂ Db

pq ⊂ Db
pqr ⊂ G · · · (18)

< e >⊂< b >⊂ Db
p ⊂ Db

ps ⊂ Db
pqs ⊂ G · · · (19)

< e >⊂< b >⊂ Db
p ⊂ Db

ps ⊂ Db
prs ⊂ G · · · (20)

< e >⊂< b >⊂ Db
p ⊂ Db

pq ⊂ Db
pqs ⊂ G · · · (21)

< e >⊂< b >⊂ Db
p ⊂ Db

pq ⊂ Db
pqr ⊂ G · · · (22)

< e >⊂< b >⊂ Db
p ⊂ Db

pr ⊂ Db
prs ⊂ G · · · (23)

< e >⊂< b >⊂ Db
p ⊂ Db

pr ⊂ Db
pqr ⊂ G · · · (24)

Using single, double and triple distinguishing factors, we establish that the number
of distinct fuzzy subgroups corresponding to b-cyclic maximal chains is 25(pqrs) +
24(11× pqrs) + 23(12× pqrs).

Thus the total number of distinct fuzzy subgroups is 26−1+25×11+24×11+23

+ [25(p+q+r+s)+24(4p+4q+4r+4s)+23(p+q+r+s)] + [25(pq+qs+ps+qs+
pr+ rs) + 24(2pq+ 2pr+ 2qr+ 2ps+ 2qs+ 2rs) + 23(pq+ pr+ qr+ ps+ rs+ qs)] +
[25(pqr+pqs+prs+qrs)+24(4pqr+4pqs+4prs+4qrs)+23(pqr+pqs+prs+qrs)]
+ [25(pqrs) + 24(11× pqrs) + 23(12× pqrs)]. Hence we have proved

Theorem 4.1. The number of distinct fuzzy subgroups of G = Dpqrs for distinct
primes p, q, r and s is equal to

26 − 1 + 25[11 + (p+ q + r + s)

+(pq + qs+ ps+ qs+ pr + rs) + (pqr + pqs+ prs+ qrs) + pqrs]

+24[11 + (4p+ 4q + 4r + 4s) + (2pq + 2pr + 2qr + 2ps+ 2qs+ 2rs)

+(4pqr + 4pqs+ 4prs+ 4qrs) + 11pqrs]

+23[1 + (p+ q + r + s) + (pq + pr + qr + ps+ rs+ qs)

+(pqr + pqs+ prs+ qrs) + 12pqrs]

.

(11)

Remark 4.2. In the above theorem, adding all the coefficients of powers of 2, viz.
26, 25, 24 and 23, gives the number of maximal chains of subgroups of G. The sum
of those coefficients not depending on p, q, r and s, viz. 1, 11, 11 and 1, is equal to
the number of cyclic maximal chains of G.

5. Non-isomorphic Chains and Classes of Fuzzy Subgroups of Dpqrs

In this section we use the notions of isomorphic maximal chains and isomorphic
fuzzy subgroups, given in the definitions 2.9 and 2.8 respectively, to classify fuzzy
subgroups of Dpqrs. We count the number of non-isomorphic fuzzy subgroups using
the number of non-isomorphic maximal chains of subgroups of Dpqrs. Since in the
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previous section we listed only the non-isomorphic maximal chains, it is easy to ob-
serve that there 24 non-isomorphic md-cyclic maximal chains for each m = 1, 2, 3,
and that this is also the number of cyclic maximal chains and also the number of
non-isomorphic b-cyclic maximal chains. For the d-cyclic chains, we collapsed all
isomorphic chains into one, thus the cluster of chains represented by (i) is collapsed
into the chain i for each i = 1, 2, · · · , 24.
In the formula 25(p+q+r+s)+24(4p+4q+4r+4s)+23(p+q+r+s) for the number of
distinct fuzzy subgroups arising from the d-cyclic chains, the numbers p, q, r, s re-
flect the number of chains that are isomorphic in a cluster (i) of chains. For instance
p+4p+p shows that there are 6 clusters of chains, each with p maximal chains. Since
these isomorphic chains have now been collapsed, it follows that each p now collapses
to 1. Thus p+4p+p becomes 1+4+1 = 6. Similarly for the other primes. Therefore
the number of non-isomorphic fuzzy subgroups arising from the d-cyclic maximal
chains is 25(1+1+1+1)+24(4+4+4+4)+23(1+1+1+1) = 25(4)+24(16)+23(4).
Next we look at the 2d-cyclic non-isomorphic maximal chains. As in the d-cyclic
case, in the formula 25(pq+qs+ps+qs+pr+rs)+24(2pq+2pr+2qr+2ps+2qs+2rs)+
23(pq+pr+qr+ps+rs+qs) for the number of distinct fuzzy subgroups arising from
the 2d-cyclic chains, each of the numbers pq, pr, ps, qr, qs, rs reflects the number of
maximal chains that are isomorphic in a cluster (i) of chains. Since these isomorphic
chains have now been collapsed, it follows that each of these six numbers collapses
to 1. Thus the number of non-isomorphic fuzzy subgroups for the 2d-cyclic maximal
chains is 25(1+1+1+1+1+1)+24(2+2+2+2+2+2)+23(1+1+1+1+1+1) =
25(6) + 24(12) + 23(6).
Next we consider the 3d-cyclic maximal chains, and since the pattern is now clear,
the formula 25(pqr+pqs+prs+qrs)+24(4pqr+4pqs+4prs+4qrs)+23(pqr+pqs+
prs+qrs) for the number of distinct fuzzy subgroups arising from 3d-cyclic maximal
chains gives 25(1+1+1+1)+24(4+4+4+4)+23(1+1+1+1) = 25(4)+24(16)+23(4)
non-isomorphic fuzzy subgroups.
Finally, we consider the b-cyclic non-isomorphic maximal chains. These are the
numbered b-cyclic chains listed in the previous section.
From the formula 25(pqrs) + 24(11× pqrs) + 23(12× pqrs) for distinct fuzzy sub-
groups arising from b-cyclic maximal chains, the number of non-isomorphic fuzzy
subgroups for the b-cyclic maximal chains is 25(1) + 24(11) + 23(12).
So the total number of non-isomorphic fuzzy subgroups of Dpqrs is 26−1+25×11+
24×11+23 + 25(4)+24(16)+23(4) + 25(6)+24(12)+23(6) + 25(4)+24(16)+23(4)
+ 25(1) + 24(11) + 23(12) = 26− 1 + 25(11 + 4 + 6 + 4 + 1) + 24(11 + 16 + 12 + 16 +
11) + 23(1 + 4 + 6 + 4 + 12). Thus we have proved

Theorem 5.1. The number of non-isomorphic fuzzy subgroups of G = Dpqrs is

26 − 1 + 25(26) + 24(66) + 23(27) (12)

Observe that this number depends only on the number of primes in Dpqrs and
not on the specific primes. Also it seems clear that the sum of the coefficients of the
powers of 2 is the number of non-isomorphic maximal chains. Finally the following
proposition is easily established.
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Proposition 5.2. The number of non-isomorphic maximal chains of subgroups of
Dpqrs is 5! = 5× 4!.

Hence we have

Conjecture. The number of non-isomorphic maximal chains of subgroups of
Dp1p2···pn is (n+ 1)! where all the pi are distinct primes.

6. Conclusion

(1) By not simplifying further some of the results and formulae in this work, we
hope to start a pattern that may lead to the classification of fuzzy subgroups of
the dihedral group Dp1p2...pn where the pi are distinct primes, and thereafter the
general dihedral group Dn for any positive integer n.

(2) We have successfully presented some general results for the number of max-
imal chains of the group Dp1p2...pn

.
(3) It is still not easy to conjecture the number of distinct fuzzy subgroups of

Dp1p2...pn . However, the number of non-isomorphic fuzzy subgroups of Dp1p2...pn is
becoming clearer and it will be taken up in another paper.
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