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UNIFORM CONNECTEDNESS AND UNIFORM LOCAL
CONNECTEDNESS FOR LATTICE-VALUED UNIFORM
CONVERGENCE SPACES

G. JAGER

ABSTRACT. We apply Preuf’ concept of E-connectedness to the categories of
lattice-valued uniform convergence spaces and of lattice-valued uniform spaces.
A space is uniformly E-connected if the only uniformly continuous mappings
from the space to a space in the class E are the constant mappings. We de-
velop the basic theory for E-connected sets, including the product. theorem.
Furthermore, we define and study uniform local E-connectedness; generaliz-
ing a classical definition from the theory of uniform convergence spaces to the
lattice-valued case. In particular it is shown that if the underlying lattice is
completely distributive, the quotient space of a uniformly locally E-connected
space and products of locally uniformly E-connected spaces are locally uni-
formly E-connected.

1. Introduction

Connectedness was first defined by G. Cantor in [2]. In the more modern setting
of metric spaces, it can be expressed as follows. A metric space (X, d) is connected
if for all € > 0 and all z,y € X there are finitely many points x = tq,t2,....t, = ¥y
such that d(tg,txy+1) < € forall kK = 1,2,...,n — 1. This notion bears nowadays
the name well-chainedness or chain-connectedness. It was shown later, that for
bounded, closed subsets, this definition is equivalent to the requirement that the
space cannot be separated into two non-empty, disjoint closed subsets. The latter
characterization does not need a metric and was subsequently considered as the
“proper” definition of ‘connectedness in topology, see e.g. [8]. Cantor’s concept
reappeared after the introduction of uniform spaces. A uniform space (X,U) is
well-chained if forall x,y € X and all U € U, there is a natural number n such that
(x,y) € U™, seee.g. [22]. It was shown in [19] that a uniform space is well-chained
if and only if each uniformly continuous mapping from (X,U) into the discrete
two-point uniform space is constant. (The latter is called uniform connectedness
in [19].) It is well-known that, similarly, a topological space is connected if each
continuous mapping into the discrete two-point topological space is constant. These
characterizations were subsequently generalized by Preuf [20, 21] and the concept
of E-connectedness. A (uniform, resp. topological) space X is E-connected if, for
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each (uniform, resp. topological) space E in E, the only (continuous resp. uniformly
continuous) mappings from X to E are the constant ones.

In the realm of (uniform) convergence spaces, Vainio [23, 24, 25] developed the
theory of connectedness along Preuf}’ lines. He also introduced a notion of local
connectedness [24]. Also Géahler [5] contributed to the theory. For uniform con-
vergence spaces, Kneis [18] generalized Cantor’s connectedness in order to prove a
fixed point theorem, generalizing a similar result by Taylor [22] from uniform spaces
to uniform convergence spaces.

In this paper, we use Preuf3’ concept of E-connectedness and apply it to lattice-
valued uniform convergence spaces. We develop the basic theory for uniformly
[E-connected sets. Further, we define a suitable notion of uniform local E-connected-
ness, generalizing Vainio’s approach [24] to the lattice-valued case.

The paper is organised as follows. In the second section, we provide the necessary
notation, definitions and results on lattices, lattice-valued sets and lattice-valued
filters needed later on. Section 3 collects the definitions and results regarding
lattice-valued uniform convergence spaces and lattice-valued limit spaces. Section
4 discusses the concepts of uniform E-connectedness and Section 5 then collects
the results about uniformly E-connected sets. Section 6 is devoted to uniform local
E-connectedness and in the last section, we finally draw some conclusions.

2. Preliminaries

We counsider in this paper frames, i.e..complete lattices L (with bottom element L
and top element T) for which the infinite distributive law \/ ;. ;(aAB;) = anV ¢ ; B;
holds for all o, 8 € L (j € J). In a frame L, we can define an implication operator
by a = 8=V{y€eL : aAy < g} This implication is then right-adjoint to
the meet operation, i.e. we have § < a — [ iff a A§ < 5. A complete lattice L is
completely distributive if the following distributive laws are true.

coy \ | Nasi) = AN | Voo |

jes\iel; fell e, I \deJ
€2y A|{Vei| = V [Awro
jet \iel; fell e, I \deJ

It is well known that, in a complete lattice, (CD1) and (CD2) are equivalent. In
any complete lattice we can define the wedge-below relation o <1 S if for all subsets
D C L such that 8 < \/ D there is 6 € D such that « < §. Then a < 8 whenever
a<f and a< \/jEJ B; iff @ <1; for some ¢ € J. In a completely distributive lattice
we have o = \/{f : B <a} for any o € L. An element o € L in a lattice is called
prime if 8 A~y < a implies § < aor v < a.

For notions from category theory, we refer to the textbook [1].

For a frame L and a set X, we denote the set of all L-sets a,b,c,... : X — L
by L¥X. We define, for « € L and A C X, the L-set a4 by as(x) = a if z € A and
aa(x) = L else. In particular, we denote the constant L-set with value o € L by
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ax and T 4 is the characteristic function of A C X. The operations and the order
are extended pointwisely from L to LX. For a € L* we define [a > 1] ={zr € X :
a(z) > L}

For a,b € LX*X we define a=! € L¥*X by a=!(z,y) = a(y,z) and aob € LX*X
by aob(z,y) =V, cx(al(z,z) Ab(z,y)), for all (z,y) € X x X, see [12]. Then, for
ABCX XX, (Ta) ' =Ty with A7t ={(2,9) : (y,2) € A} and Tpo T =
T aop, where Ao B = {(x,y) : thereis z € X s.t. (z,2) € A, (z,y) € B}. Further,
we denote Ay = {(z,z) : z € X}.

A mapping F : LX — L is called a stratified L-filter on X [9] if (LF1) F(Tx) =
T and F(Lyx) = 1, (LF2) F(a) < F(b) whenever a < b, (LF3) F(a) A F(b) <
F(aAb) and (LFs) F(ax) > a for all a,b € LX and all « € L. A typical example
is, for € X, the point L-filter [x] defined by [z](a) = a(x) for'all a € LX. We
denote the set of all stratified L-filters on X by F; (X) and order it by F <@ if for
all a € LX we have F(a) < G(a). For a family of stratified L-filters F; (i € .J), the
infimum in the order is given by (A;c; Fi)(a) = N;ey Fi(a) for all a € L. The
supremum, however, only exists if F;, (a1) A Fi,(az2) A o AF;, (an) = L whenever
ai Nag A ... Na, = Lx. In this case the supremum is given by (\/,.; Fi)(a) =
VA{Fi, (a1) A Fiy(ag) Ao AF (an) @ a1 AaglA ... Aay, <'a}, see [9]. Consider
now a mapping f : X — Y. For F € F;(X) then f(F) € Fi(Y) is defined
by F(F)(b) = F(f< (b)) with f<(b) = bo fforb e LX, [9]. For G € Fi(Y) we
define f<(G)(a) = V{G(b) : f<(b) < a}. If G(b) = L whenever f<(b) = Lx,
then f<(G) € Fi(X), see [10]. We will need the following two examples later.
Firstly, if M C X we define ip; : M — X, ip(x) = 2. In case of existence,
we denote, for F € Fj(X), Fu = i5;(F): Secondly, for sets X; (i € J), we
denote the projections p; : [[;c; Xi ==X, and define the stratified L-product
filter [T;c; Fi = Ve pi (Fi),'see [3,10]. The following result follows directly from
the definition.

Lemma 2.1. Let F; € F;(X;) foric J. Then, for U C [[,c; X,
H}—i(TU) = \/{/\ Fi(Tu,) : H U; CU and only finitely many U; # X;}.
icJ icJ icJ

We denote stratified L-filters on X x X by ®,¥,.... In [12] we defined the
following constructions. For ®, ¥ € F3 (X x X) we define ®~! € F7(X x X) by
®~1a) = ®(a"t) for all @ € LX*X. We further define ® o ¥ : LX*X — [ by
QoTla) =V{®b)AT(c) : boc<a}. Then ®o¥ € F; (X x X) if and only if
boc=Llxxx implies ®(b) A ¥(c) = L. In this case we also say that ® o U exists.
Lastly, we denote [Ax] = A c ¢ [(z, )]

Lemma 2.2. Let L € L be prime and let a,b € LX and BC X. Ifaob < Tp
then T[a>L] o T[b>L] <Tg.

Proof. The proof is easy and left for the reader. O

Corollary 2.3. Let L € L be prime, let &, ¥ € Fi(X x X) and let BC X x X.
Then ®o¥(Tp) =V{®(Tc)A¥(Tp) : CoD C B}.
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Lemma 2.4. Let ¥ € F3 (X x X) and let z € X. We define ¥(x) : LX — L by
U(z)(a) = V{¥([) : ¥(,x) <a}. Then V(x) € Fi(X) if and only if U(¢p) = L
whenever ¥(-,x) = Lx.

Proof. We omit the straightforward proof and only mention that the condition is
used to ensure ¥(z)(Ly)= L. O

We note that if ¥ < [Ax], then ¢(-,z) = Lx implies U(¢) < A cx¥(y,y) <
¢(x,xz) = L. Hence, in this case, ¥(z) € Fj (X).

Lemma 2.5. Let &,V € F} (X x X), F € F}(X) and let € X and ®(z), U(z) €
Fi(X). The following hold.

(1) If ® < VU, then &(x) < U(z).

(2) (®AT)(z) < D(x) AT(z).

(3) [Ax](z) = [].

(4) ¥ =V(x) x [z].

(5) (F x [a])(x) < F.

Proof. (1) and (2) are easy and left for the reader.

) &
(3) We have [Ax](z)(a) = V{Ayex o(y,y) = ¢(2) < a} < V{g(z
#(-,z) < a} < a(x) = [z](a). On the other hand, fora € LX, we define ¢, (u,v
if v # 2 and ¢q(u,v) = a(u) if v = x. Then(ba(7 )—aandhence[ 1(z)
Nyex a(y,y) = ¢a(z,z) = alz) = [z](a).

(4) For ¢ € LX*% we have ¢(-/x) X Tg,3 < ¢ and hence ¥(z) x [z](v) =
V{U(z)(c) Aa](d) = cxd < @}z V{¥(¢) Nd(z) = ¢(,2) xd < ¢} >
V() A Tipy(w) = ¥(¢). For the converse inequality, we note that ¢ x d < 1) and
(-, x) < ¢ implies ¢(-, ) xd < 1. Hence it follows with (LFs) that if ¢ x d < 1,
then W(z)(c) Ad(z) < V{¥ (oA (d(z))x) = o(,2) < c} < V{¥(oA(d(x))x) :
¢ A (d(@))x <P} <W(Y). Hence (V(z) x [2])(¢) = V{¥(x)(c) Af](d) = exd <
P} < U(Y).

(5) If ¢(-,z) < a then if ¢ x d < ¢ we have, for all y € X, that c(y) A d(x
¢(y, ¥) < a(y). Henge it follows (F x [z])(¢) < {F(cA(d(z))x) : eAld(z))x <
F(a) and therefore (F x [z])(z)(a) = V{(F x [z])(¢) : ¢(-,x) < a} < F(a).

x)

-
>

)
(@

)
a}

OIAIA

We will later need a further construction. We describe the situation. Let X
be sets (i € J). We denote the projections m; : [[;c,;(X; x X;) — X; x Xj,
((zi,v:)) — (,95), the mapping v : [[,c ;(Xs x X;) — [L;c; Xi x [[;c; Xi de-
fined by v((zs,¥:)) = ((xi), (y:)) and the product of the projections p; : [[;c; Xi —
Xjapj Xpj: HiEJXi XHieJXi — Xj XXj. Then (pj ij)OI/ =T; for allj eJ.
For U; € F;(X; x X;), (i € J) we define

QU =v(J[w:) e Fi([] X < [] X0
ieJ icJ icJ icJ

Following Géhler [5], we call Q.. ; U; the stratified relation product L-filter of
the \Ifi (Z S J)

i€
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Proposition 2.6. Let ¥; € F}(X; x X;) fori € J and X = [] Let
O c Fi(X x X). Then

(1) (pj X pj)(@yc s Vi) = V5

(2) ®16J((pz X pz)(q))) < (I)

(3) QieslAx] <A, X

Proof. (1) We use (p; xpj)ov = ;. Then (p; xp;)(Q,c; Vi) = 7 ([Lics Vi) > ;.

(2) It is not difficult to show that for a € LX*X and a; € L¥n*Xin . .a, €
LXm*Xin we have (pj, X pj,)* (a1) A .. A(pj, X ;) (an) < a whenever 75 (a1) A
AT o) < V@) oo oy 9 x ) (D)(0) = V(03 % py)lan) o
(Pj. X pj, )" (an)) = w5 (a) Ao Ams(an) < v (a)} <

(3) For a € LX*X and a1 € LXn*¥Xi1 .. .a, € L JnXXJ'n, ifms (a1) Ao A
5, (an) (@i, 2:)) = a1 (g, 25,) A ... /\an(%na%n) < v(a) (@) = al(@), (1),
then /\Ih €X;, al(le?xh)/\“'/\/\mjn EXjn a’ﬂ(xjn7xjn) < /\(mi)eX a(<xi)7 (xl)) Hence,
RicsAx](a) = V{[Ax, [(a) A AAx; Han) : Cmfi(@n) Ao A msi(an) <

(@)} < A@yex ol(@i), (1)) = [Ax](a). O

zEJ

3. Lattice-valued Uniform Convergence Spaces and Lattice-valued
Limit Spaces

Let X # 0. A mapping A : F3 (X x X) — Lis called a stratified L-uniform
convergence structure and the pair (X, A) a stratified L-uniform convergence space
[3, 12] if for all z € X and all &, U'e Fj(X X X),

(UC1) A[(z,2)) =T Vo € X;

( ) <V = A(D) <AD);

(UC3) A(®) < A(DL);

(UC4) A(P) ANA(D) < AP AT);

(UC5) A(®) AA(T) < A(®o ) whenever ® o U exists.

A mapping f/: (X,A) — (X',A), where (X,A),(X’,A’) are stratified L-
uniform convergence spaces, is called uniformly continuousiff A(®) < A'((fx f)(®))
for all ® € Fj(X x X). The category SL-UCS has as objects the stratified
L-uniform convergence spaces and as morphisms the uniformly continuous map-
pings. Then SL-UCS is a well-fibred topological construct and has natural func-
tion spaces, i.e. SL-UCS is Cartesian closed [12]. In particular, constant mappings
are uniformly continuous. We describe the initial constructions. Let (f; : X —
(Xi,Ai))ier be a source. Define for ® € Fj (X x X) the initial stratified L-uniform
convergence structure on X by A(®) = A,.; Ai((fi x fi)(®)). In particular, we can
define subspaces and product spaces.

o Subspace: Let (X,A) € |SL-UCS| and let T C X and iy : T — X be the
embedding mapping defined by ir(z) = x for x € T. Then the subspace
(T, Alr) is defined by Alp(®) = A((ix X ip)(P)) for & € Fi(T x T).

e Product space: Let (X;,A;) € |[SL-UCS| for alli € J and let X = [[,.; X;
be the Cartesian product and consider the projections p; : X — X. Then
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the product space (X, 7-A) is defined by m-A(®) = A, ; Ai((ps x pi)(®)) for

all & € F (X x X).
Subspaces and product spaces are well behaved. Let T; C X; and (X;, A;) € |SL-

UCS]| for alli € J. We denote X = [],.; X; and T' =[], ; T; and the projections
pj : X — X; and ¢; : T — 7T} and the embeddings iy : T — X and i7; :
T; — Xj. Then we have (p; x p;) o (ir X ir) = (i1, X i1;) o (¢; X q;). It follows
that if we denote the product structure on X w.r.t. the projections p; by m-A; and
the product structure on T w.r.t. the projections ¢; and the spaces (T;, Alr,) by
7m-(Al7,), then we have m-(A|r,) = (7-A;)|r. Moreover, we have the following result.
Lemma 3.1. Let (X;,A;) € |SL-UCS| for alli € J and let (z;) € J],c; Xs be
fized. Define the slice )Z'j ={(zi) € [Ty Xi + @ = 2¥i # j} = [lic, T with

T, ={z} ifi#j and Tj = X;. Then (Xj,ﬂ—A|§j) is isomorphic to (X;, A;).

Proof. We use the notations from above and define h : )Z'j — X, by h((2;)) = z;.
Then h = p; o1 %, is uniformly continuous. Clearly & is a‘bijection and its inverse is
defined by h=!(z;) = (z;) with @; = z; for i # j. Then gzoh ' (x;) = z; for i # j,
i.e. gjoh~! is a constant mapping for i # j. For i = j, we have quh’l(a:j) = xj,i.e.
it is the identity mapping. Hence all compositions g;oh~! are uniformly continuous
and therefore also A~! is uniformly continuous. O

In SL-UCS, also final structures exist. They are, however, complicated and we
will use only quotient spaces later. Let (X, A) € |SL-UCS| and let f: X — X’
be a surjective mapping. We define the following stratified L-uniform convergence
structure Ay on X'. Let ® € F; (X' x X’). Then

Ap(®) = \ L\ M) Aee AM@rn) =\ (F X ) (@r1)o- -0 (f X [) (P, ) < D'}
k=1 k=1

Lemma 3.2. Let (X,A) € |SL-UCS| andlet f : X — X' be a surjective mapping.
Then (X',Ay) € |SL-=UCS| and for a further mapping g : (X',Ay) — (Y, Ay) we
have that g is uniformly continuous if and only if g o f is uniformly continuous.
Proof. We first show, that (X', Ay) € |SL-UCS|. The axioms (UC1) and (UC2)
are easy. (UC3) follows from ((f x £)(®))~! = (f x £)(®~1) and (UC3) for (X, A).
(UC4) is again clear by construction and (UC5) follows as © < ® and T < ¥
implies @ 0o T < ® o ¥. It is furthermore clear that f : (X,A) — (X', Ay) is
uniformly continuous. Let now g : (X', A;) — (Y, Ay) be a mapping such that
g o f is uniformly continuous. Then, for &' € F7 (X' x X’) we have

Ap@) = VI AM@1) A AN(@pery)
k=1
N\ (F X F)(@r1) o0 (f X £)(Ppn,) < @'}
k=1
< VAN Ay (9 x 9)((F X H(@x1) Ao Ay (9 % 9)((F X F)(@kny)))
k=1

N\ X ) (@ra) o0 (f X f)(Prny) < '

k=1
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With Uy, = (f X f)(q)k:l) then

VAN Ay (9% 9(Wr) A Ay ((9 X 9)(Tgny.)

Ap(@) <
k=1
/\ \I/k10~'~0\11knk S(I)/}
k=1
< VIA Mg x)Tr) A Ay ((9 X 9)(Whn,))
k=1
A\ (9% 9)(Tr1) o0 (g x 9)(Tn,) < (9% 9)()}
k=1
< Ay ((g % 9)(®).
Therefore g is uniformly continuous. O

Hence, Ay is the final structure and (X', Ay) is the guotient space for the sink
f:(X,A) — X',

For (X,A) € |SL-UCS| we define the stratified L-entourage filter by Ny (a) =
/\<I>€]-'Z(X><X)(A(q)) — ®(a)), see [12]. We further define, for av' € L, the stratified

a-level L-entourage filter by No(a) = A\ (g)>q s sce [14].

Lemma 3.3. [12] A mapping f : (X,A) — (X', ') satisfies Npy» < (f x f)(Na)
whenever it is uniformly continuous.

In [12] we defined the discrete stratified L-uniform convergence structure on X,
As, by As(®) = T if @ > A [(w,2)] for some finite set A C X and As(®) = L
else. It is not difficult to see that in case that X is a finite set, then As(®) = T if
® > [Ax] and As(P) = Lielse.

We further consider the following stratified L-uniform convergence structure,
which we shall call the strong discrete stratified L-uniform convergence structure

M@= A\ ([Ax](a) = @(a)).
acLX*xX

Whenever X = {0, 1}, then we denote [A] = [Ayg 13] for simplicity.

A pair (X,U) of a non-void set X and a stratified L-filter Y € F7 (X x X) is called
a stratified L-uniform space [6, 7] if U satisfies the following axioms (LU1) U < [Ax],
(LU2) U <UL and (LU3) U <UolU. A mapping f: (X,U) — (X', U’) is called
uniformly continuous if U' < (f x f)(U). The category SL-UNIF has as objects the
stratified L-uniform spaces and as morphisms the uniformly continuous mappings.
This category can be embedded into SL-UC'S by defining, for (X,U) € |SL-UNIF],
the stratified L-uniform convergence structure Ay by Ay(®) = A, cpxxx(U(a) —
®(a)). Then a mapping f : (X,U) — (X',U’) is uniformly continuous if and only
if f:(X,Ay) — (X', Ay) is uniformly continuous. SL-UNIF is then isomorphic
to a reflective subcategory of SL-UCS, see [3]. We define Uy = A5, (3)>4 ©- Then
AyUs) > v cf. [14]).

A pair (X,lim) of a non-void set X and a mapping lim : F5 (X) — L¥ is called
a stratified L-limit space, if the axioms (LC1) lim[z](z) = T; (LC2) lim F < lim G
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whenever 7 < G and (LC3) VF,G € F3(X) : lmF AlimG < limF A G are
satisfied, [10]. A mapping f : X — X’ between the stratified L-limit spaces
(X,lim), (X’,lim’) is called continuous if and only if for all F € F;(X) and all
r € X we have lim F(z) < lim’ f(F)(f(x)). The category of all stratified L-limit
spaces with the continuous mappings as morphisms is denoted by SL-LIM. The
category SL-LIM is topological and Cartesian closed [11].

In [13] we defined the following two separation azioms in SL-LIM. We call
(X,lim) € |SL-LIM| a T1-space if for all z,y € X, x = y whenever lim[y](xz) = T
and we call (X,lim) a T2-space if for all F € F;(X), x = y whenever lim F(x) =
lim F(y) =T.

Let (X,A) € |[SL-UCS|. Then (X,lim(A)) € |SL-LIM]|, where the limit map
lim(A) : F3(X) — LY is defined by lim(A)F(z) = A(F x [z]), see [12]. Further-
more, if f: (X,A) — (X’,A’) is uniformly continuous then f : (X;lim(A)) —
(X', lim(A")) is continuous. Hence we can define a functor H : SL-UCS —
SL-LIM. This functor preserves initial constructions.

Lemma 3.4. [12] Let (f; : X — (X;, Ai))ier be a sourcein SL-UC'S and let A be
the initial SL-UC'S structure on X. Then lim(A) is the initial SL-LIM structure
with respect to the source (f; : X — (X, im (A7) )ier-

In particular, for subspaces (A, A|4) of (X, A)-we have lim(A]4) = lim(A)|4 and
for product spaces (] ];c; Xi, ™ — A) we have lim(m —~ A) = 7 — lim(A;).

For a stratified L-uniform space (X,U) and z € X we define the stratified L-
neighbourhood filter of x, N € F3(X)yby Nj = U(x) [6, 7] and with this the
limit map Hm(U)F(z) = A,cpx (Ng(a)— F(a)). Then (X,limy) € |SL-LIM|
and, moreover, lim(U) = lim(Ay), see [3, 12].

We further call (X, A) € |SL-UCS| a T1-space (resp. a T2-space) if (X, lim(A))
is a T1-space (resp. is a T2-space).. It was shown in [16] that if L is a complete
Boolean algebra, then (X;A)is.a T2-space if and only if it is a T1-space.

In [17] we defined, for (X,lim) € |SL-LIM]|, the T-closure of A C X, A= A,
by z € A if there is'F € F; (X) such that lim F(z) = T and F(T4) = T. In [15] a
subset A C X is called T-closed if for F € F;(X), limF(z) =T and F(T4) =T
implies x € A. It is then not difficult to show that A is T-closed if and only if
A C A. Tt was shown in [15] that in a T2-space, one-point sets {z} are T-closed.
Hence, for a complete Boolean algebra L, in T1l-spaces (X, A), the one-point sets
are T-closed.

Proposition 3.5. [17] Let (X,1im™), (Y,lim") € |SL-LIM| and let AC M C X,
BCY andlet f: X — Y be continuous.

(1) aM=4n M, where AM is the T-closure of A in the subspace (M,lim |ps).
(2) If lim < lim’, then th - th,

(8) If B is T-closed, then f* (B) is T-closed.

Proposition 3.6. [17] Let (X;,lim;) € |SL-LIM)| for all i € j and let (z;) €
[I;c; Xi be fized. Define

A= A((z:)) = {(y:) € HXZ' : x5 #y; for at most finitely many j € J}.
ieJ
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—r—lim

Then A =[lcs Xi-

Let E be a class of stratified L-limit spaces. A space (X,lim) € |SL-LIM| is
called E-connected [17] if, for any (E,limg) € E, a continuous mapping f : X — E
is constant. A subset A C X is called E-connected if the subspace (A4,lim|4) is
E-connected.

Proposition 3.7. [17] Let (X,lim), (X’ lim"), (X;,lim;) € |SL-LIM]|, (i € J).
Then

(1) If E is a class of T2-spaces and A C X is E-connected, then so is A;

(2) If A;A; € X (i € J) are E-connected and AN A; # O for all i € J, then
AU, Ai is E-connected.

(3) If E is a class of T2-spaces and all A; C X; are E-connected, then so is [[,.; As
(as a subset of the product space).

(4) If A C X is E-connected and f: X — X' is uniformly continuous, then f(A)
is E-connected.

For F € Fi(X), a set B of subsets of X is called ad-base of F [17] if for
F(Ty) > 6 there is B € B, B C U such that F(Tg) > 4. A space (X,lim) € |SL-
LIM] is called locally E-connected [17] if for all aw€ L, if lim F(z) > «, there is
G < F A [z] with limG(z) > o and with a d-base of E-connected sets, whenever
L<é<a.

4. Uniform E-connectedness

Let E be a class of stratified L-uniform convergence spaces (E, Ag) which con-
tains a space with at least two points.

Definition 4.1. A space (XyA) € |SL-UCS| is called uniformly E-connected if,
for any (F,Ag) € E, everyuniformly continuous mapping f : (X,A) — (E,Ag)
is constant.

In particular, we call (X, A) uniformly connected if it is uniformly E-connected for
E = {({0,1}, As) } and strongly uniformly connected if it is uniformly E-connected
for E = {({0, 1}, A3)}.

Clearly, a strongly uniformly connected space (X, A) is uniformly connected.
The converse is not true in general, as the following example shows.

Example 4.2. Let L = {L,a, T} with L < a < T. We show that ({0,1},A}) is
uniformly connected. There are two non-constant mappings f : {0,1} — {0,1},
namely f = ido1) and f =1 —id,1). We will show that both are not uniformly
continuous as mappings f : ({0,1}),A3) — ({0,1}, As). For f = idyg 1y, consider
the stratified L-filter

T if a = T{O,l}

w ) oa ifa0)=T,a(l)#T
Fila) = a ifa(0) =« '
L ifa(0)=1

see [11]. It was shown in [4] that AS(F* x F*) > A cp01 ([(0,0)](a) — (F* x
F*)(a)) > a. However, As(F*xF*) = L, because F*xF* # [A] = [(0,0)]A[(1,1)].
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T ifx=y
a ifz#y
but (F* x F*)(a) < a, see [4]. Hence f = idg 1} is not uniformly continuous.

For f =1 —idgo,1} we define, for a € L0} g* = f<(a) and with this F, €
F3$({0,1}) by Fi(a) = F*(a*). Then A (F, x Fi) > a but As((f x f)(Fe x Fi)) =
As(F* x F*) = L. Hence f =1 —idgg 1} is not uniformly continuous too and the
only continuous mappings are the constant ones. Therefore ({0, 1}, A§) is uniformly
connected. As clearly the identity mapping f = idgo,1y : ({0, 1}, A3) — ({0, 1}, A3)
is uniformly continuous, ({0,1}, A}) is not strongly uniformly connected.

This can be seen using a(z,y) = . Then [(0,0)] A[(1,D)](a) =T

For a class of stratified L-uniform convergence spaces, E, we denote L(E) =
{(E,lim(Ag)) : (E,Ap) € E}.

Lemma 4.3. Let (X,A) € |SL-UCS|. If (X,lim(A)) is L(E)-connected, then
(X, A) is uniformly E-connected.

Lemma 4.4. Let E be a class of stratified L-uniform convergence spaces which
contains a space (E,limg) with |E| > 2. If (X, A) is uniformly E-connected, then
it s uniformly connected.

Proof. Let f:(X,A) — ({0,1}, As) be uniformly continuous and let (E,Ag) € E
with 2,y € E, © # y. We define h : {0,1} — E by h(0) = x and h(1) = y. We
show that h is uniformly continuous. Let As(®) = T. Then ® > [A] and hence
(h x h)(®) > (h x h)[A]. For a € LE*E we then have (h x h)([A])(a) = [A]((h x
R)“ () = (h x h)* (@)(0,0) A (h x WF@)(1,1) = a(h(0), h(0)) A a(h(1), h(1)) =
a(z, x) Aaly,y) = [(z, x)](a) Ay, y)l(a): Hence (b x h)(®) > [(z, z)] A [(y,y)] and
we conclude Ag((h x h)(®)) > Ap([(z,2))A As([(y,y)]) = T. Consequently h is
uniformly continuous and therefore h o f is also uniformly continuous and hence
constant. As h is not constant, then f must be so. O

Uniform E-connectedness often also entails strong uniform connectedness. How-
ever, we need a stronger assumption on the class E.

Lemma 4.5. Let E beca class of stratified L-uniform convergence spaces which
contains a space (B,limg) with |[E| > 2 and Ap < Aj p. If (X,A) is uniformly
E-connected, then it is strongly uniformly connected.

Proof. Let f: (X,;A) — ({0,1}, A}) be uniformly continuous and let (E,Ag) € E
with z,y € E, x # y. Again we define h : {0,1} — FE by h(0) = z and
h(1) = y. We show that i is (A3, Ag)-uniformly continuous. Then Ag((hxh)(®)) >
N p((h % B)(@)) = Ayepees(Bel@) — (b x B)(@)(). For a € LEXE we
have [Ag|(a) < [(z,2)] A [(y,9)l(a) = a(z,z) Aaly,y) = (h x h)7(a)(0,0) A
(h x B~ (a)(1,1) = [(0,0)] A [(L1))((h x h)(a)) = [Al((h x h)* (a)). Hence
/\aeLExE([AE]( a) = (h x h)(®)(a)) > Naerxs([Al((h x h)(a) — ©((h x
h)<(a))) > Nperioirxon ([A](b) = ®(b)) = A3(®). Hence, together with h, also
h o f is uniformly continuous and therefore constant. As h is not constant, then f
must be so. (]

Strong uniform connectedness can be characterized by a “chaining condition”.
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Theorem 4.6. A space (X,A) € |[SL-UCS| is strongly uniformly connected if and
only if for all z,y € X and all N C X x X with Na(Ty) = T there is a natural
number n such that (z,y) € N™.

Proof. Let first (X, A) be strongly uniformly connected and assume that there is
(p,q) € X x X and N C X x X with My(Tn) =T but (p,q) ¢ N" for all natural
numbers n. We define A = { € X : (p,x) € N™ for some natural number n}
and B = X\ A As T = Na(Tn) < [(p,p)|(Tn) we see that (p,p) € N and
hence A is non-empty. Clearly ¢ ¢ A, i.e. B is non-empty. We define the mapping
f: X —{0,1} by f(z) =0if z € A and f(z) =11if z € B. For (z,y) € N then,
ifv € Aalsoy € Aand if z € B then also y € B. Hence N C (A x A)U (B x B)
and, because T = Na(Tn) < Na(T(axayuBxn)), we conclude A(®) < &(Ty) <
(T (axayu(pxp)) for all ® € F5 (X x X). Furthermore, for a € L0101,

a(0,0) if (z,y) € Ax A
(Fx /T (a) A Taxayusxs) (@, y) = { a(l,1) if (myy) € B x B
4 else
Hence (f x f)“(a) AT axayusxB) = [Al(a) ATy and therefore, by stratification,
(fx £)(@)(a) > [Al(a) AD(T n) > [A](a) AA(D), As a € LIO A0} wag arbitrary,
we conclude A(®) < Asepionyxon ([Al(a) = (X [)(®)(a) = AF((f x [)(®)).
Hence, f is uniformly continuous and not constant, a contradiction.

Let now = # y and let f : (X,A) — ({0,1},A3) be uniformly continuous.
Then [A] = Nas < (f x f)(Na). Therefore, T = [A[(Ta) < Na(Trxpe(a))
and there is a natural number, n, such-that (z,y) € ((f x f)*(A))", i.e. there are
T = X0, &1,y Ty = y such that (xg, 2rr1) € (f X )(A) for k=0,1,2,....,n — 1.
This means that (f(xg), f(zr+1)) € Ayie. f(zr) = f(xpyr) for k=0,1,2,...,n—1.
Hence f(z) = f(y) and f is constant. O

For a class E of stratified L-uniform spaces, we call (X,U) € |SL-UNIF| uni-
formly E-connected. if, for-any (E,Ug) € E, a uniformly continuous mapping f :
(X,U) — (E,Ug) is constant. If we denote A(E) = {(F,Ay,)) : (E,Ug) € E},
then a stratified L-uniform space (X,) is uniformly E-connected if and only if
(X, Ay)) is uniformly A(E)-connected. For E = {({0, 1}, [A])}, we call a uniformly
E-connected stratified L-uniform space uniformly connected. Hence (X,U) € |SL-
UNIF] is uniformly connected if and only if (X, Ay) is strongly uniformly con-
nected. We obtain as a direct consequence of Theorem 4.6 the following character-
ization.

Theorem 4.7. A space (X,U) € |SL-UNIF| is uniformly connected if and only
if for allz,y € X and all N C X x X withU(Ty) =T there is a natural number
n such that (z,y) € N™.

For L = {0,1}, a uniform space that satisfies the condition of the above theorem
is called well-chained [22].

5. Properties of Uniformly E-connected Subsets

In the sequel, let E be a class of stratified L-uniform convergence spaces which
contains a space (E, A¥) with at least two points. We call A C X, where (X,A) €
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|SL-UCS)|, uniformly E-connected (in (X, A)) if the subspace (A, A|4) is uniformly
E-connected. Uniform E-connectedness of A C X then becomes an absolute prop-
erty, i.e. for A C B C X we have that A is uniformly E-connected in (B, A|p) iff A
is uniformly E-connected in (X, A).

Lemma 5.1. Let (X,A%),(Y,AY) € |[SL-UCS| and let f : (X,A%) — (Y,AY)
be uniformly continuous. If A C X is uniformly E-connected, then B = f(A) is
uniformly E-connected.

Proof. For ® € F§(A x A) we have AX|4(®) = AX((ia x ia)(®)) < AY((f x f)o
(ta X 14)(®)). As (f x f)o(ia xia) = (ip xip)o (f x f) we obtain (f x f)o
(iaxia)(®) = (ip xig)o(f x f)(®), and therefore AX|4(®) < AY|5((f % f)(®)).
Hence, we may assume A = X, B=Y = f(X) and f : X — ¥ surjective. Let
now (E,AP) € E and h : (Y,AY) — (E,AF) be uniformly continuous. Then
hof:(X,A%) — (E,AF) is uniformly continuous and hence constant: As f is
surjective, then also h must be constant. O

Lemma 5.2. Let E be a class of T2-spaces, (X,A) € |[SL=UCS| and let A C X be
uniformly E-connected. Then also A = th(A)
Proof. Let (E,A¥) € E and f : (A, Algy) — (E,AF) be uniformly continuous.
Then also f|a : (4,Al4) — (E,AF) is uniformly continuous and hence constant,
ie. fla(A) = f(A) = {e} with some e € E. As (E,lim(A%)) is a T2-space, {e}
is T-closed and hence M = f* ({e}) is T-closed.in (A4, lim(A)|5) = (4, lim(A|7)).
We note that A C M C A. Hence A=MNACMNA= MNE e,
M = A. Therefore f(A) = f(M) = {e} and [ is constant. O

Lemma 5.3. Let (X,A)€ |SL-UCS| and let A;, A C X be uniformly E-connected
(i€l)with ANA; #0 for‘alli € T. - Then AU, Ai is uniformly E-connected.

Proof. Let (E,limE) € E and let f : AUU,;c; Ai — E be uniformly continuous.
Then all restrictions f|a : A — F and f|a, : A; — E are uniformly continuous
and hence constant. As AN A; # 0 for all i € I, all function values must be the
same. (]

1§ uniformly E-connected.

icl

Lemma 5.3 allows the definition of maximal uniformly E-connected subsets of
X.

Definition 5.4. Let (X,A) € |SL-UCS| and C C X be uniformly E-connected.
C is called a uniform E-component of X if C' = B whenever C C B C X and B is
uniformly E-connected.

It follows immediately from Lemma 5.3 that the uniform E-components form a
partition of X.

Lemma 5.5. Let E be a class of T2-spaces and let (X,A) € |[SL-UCS|. If C is a
uniform E-component of X, then C is T-closed.

Proof. With C also C is uniformly E-connected. C' C C and the maximality of C
implies C' = C and hence C' is T-closed. O
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We finally state the important product theorem.

Theorem 5.6. Let E be a class of T2-spaces and let (X;, A;)ics be a family in
|SL-UCS|. Then the product space (][;c; Xi, m-A) is uniformly E-connected if and
only if all (X;, \;) are uniformly E-connected.

Proof. Using Lemma 3.1, Lemma 5.2 and Proposition 3.7, the proof of Theorem
5.8 in [17] can be copied word-by-word. O

6. Uniform Local E-connectedness

In the sequel, let E be a class of stratified L-limit spaces. For § € L, a set of
subsets B C P(X x X) is called a §-base of & € F{(X x X) if forall U C X x X
with ®(Ty) > § there is B € B such that B C U and ®(Tp) > ¢. For a subset
B C X x X and z € X we denote B(z) ={y € X : (y,z) €B}. It isnot difficult
to see that then Tp(-,7) = T p(q)-

Definition 6.1. We call (X, A) € |SL-UCS)| uniformly locally E-connected if for all
a€ L, forall® € Fi(X xX) with A(®) > athereis ¥ € F; (X xX), ¥ < DPA[A],
A(¥) > « with a d-base B such that for all x € X the sets. B(x) with B € B are
E-connected (in (X, lim(A))), whenever L < ¢ < ai.

For L = {0,1} this definition is slightly stronger than the definition of uniform
local connectedness in Vanio [24]. In [24] it is only demanded that ¥ < ®. Our
stronger requirement ¥ < ® A [A] comes in handy lateron.

A stratified L-uniform space (X,U) is called uniformly locally E-connected if
(X, Ay) is uniformly locally E-connected.

Proposition 6.2. Let (X,U).€ |[SL-UNTF|. Then (X,U) is uniformly locally E-
connected if and only if forcall « € L, U, has a §-base B such that the sets B(x)
with B € B are E-connected for all x € X, whenever 1. < § < a.

Proof. Let first (X,U) be uniformly locally E-connected. Then Ay (U,) > «. Hence
there is U < U, ANJA] < U, with Ay (¥) > a and a d-base B such that the sets B(x)
with B € B are E-connected for all x € X whenever L < § < a. From A(¥) > «
we conclude that ¥ >/, and hence ¥ = U, has a d-base as desired whenever
1l <dé<a.

For the converse, let Ay (P) > . Then ® > U, and as always U, < [A], we have
Uy < D AJA)As Ay (U,) > a the claim follows if we choose U = U,,. O

Proposition 6.3. If (X,A) € |SL-UCS]| is uniformly locally E-connected, then
(X,lim(A)) is locally E-connected.

Proof. Let a € L, F € F;(X) and let x € X such that lim(A)F(x) > a. Then
A(F x [z]) > a. Hence there is U € F7 (X x X) such that U < (F x [z]) A [A],
A(¥) > aand, if 1 < § < a, ¥ has a §-base B with B(z) E-connected for all
xz € X and all B € B. Then ¥(z) € F;(X). From Lemma 2.5 we conclude
that U(z) < F A [z]. We show that ¥(z) has a d-base of E-connected sets. If
U C X such that \IJ(.T)(TU) > 5, then \IJ(TUX{“,) = (\I'(x) X [Z‘])(TU X T{w}) >
U(z)(Tu)Alx](Tzy) > 0. Hence thereis B € B, B C U x{z} such that ¥(Tp) > 4.
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Clearly B(x) € U and ¥(z)(Tp(y)) > ¥(Tp) > 0 because Tr(,x) = Tpg).
Therefore B(z) = {B(z) : B € B} is the required d-base for ¥(z). d

Proposition 6.4. Let (X,A), (X',A) € |[SL-UCS| and let f : (X,A) — (X', A)
be a uniform isomorphism (i.e. f is bijective and both f and f~' are uniformly
continuous). If (X, A) is uniformly locally B-connected, then so is (X', \).

Proof. Let o« € L and & € Fi (X' x X') and A'(®’) > «. Then, by uniform
continuity of f=1, A((f~! x f~1)(®')) > . Hence there is ¥ < (f~! x f~1)(®') A
[Ax] with A(¥) > « which has, for L < § < a, a d-base B such that for all
x € X and all B € B, B(z) is E-connected. By uniform continuity of f, then
N((f % F)(0) > aand (f x £)(®) < (F x (% [-)@®) AL % FIAx)] =
D A[Ax/]. We show that (f x f)(¥) has a §-base B’ with B’(2’) E-connected for all
' € X"and all B € B'. Let (f x f)(¥)(Ty) > 0. Then W(T (p-1,r-1ywy) = 0 and
hence thereis B C (f~'x f~1)(U) with ¥(T ) > §, B(z) E-connected forall z € X.
It follows that B’ = (f x f)(B) C U and (f x f)( )(T(fxf B> ¥(Tp) > 0.
For 2’ € X’ we have that (f x f)(B)(z") = f(B(f~(a’))) is E-connected, as f
is continuous as a mapping from (X,lim(A)) to (X, lim(A’)) and B(f~1(z")) is
E-connected. g

We now look at the behaviour of uniform local E-connectedness with respect to
quotient spaces and product spaces. First we need two lemmas.

Lemma 6.5. Let (X,lim) € |[SL-LIM| and let A/B C X x X with Ax C A. If
B(z) and A(z) are E-connected for all z € X, then (Ao B)(x) is E-connected.

Proof. This proof goes back to Vainio [24], It is not difficult to show that (A o
B)(z) = U,ep) A?). As Ax C'A, we moreover conlcude B(z) C (A o B)(z)
and hence (A o B)(z) = Ugep(,)(A(2) U B(z)). Again, as Ax € A, we conclude
that A(z) N B(z) # 0 and hence A(z) U B(z) is E-connected for all z € B(z).
Consequently also (40 B)() =U,cp(,) A(2) is E-connected. O

Lemma 6.6. Let BC X x X, x € X and let f : X — Y be a mapping. Then
(f x HB)f(2) = Uspo)=f) f(B(2)). Moreover, if Ax C B, then f(z) €
f(B(z)) whenever f(z)= f(z).

Proof. Let first y € f(B(z)) and f(z) = f(z).

(b,2) € B and f(b) = y. Hence (y, f(z)) = (f(b

(f < [)B)(f(x)). Conversely, let y € (fx f)(B)(f(x)). Then (y, f(z)) € (fx f)(B).
Hence there is (a,b) € B such that f(a) = y and f(b) = f(x). We conclude
a € B(b) and, consequently, y = f(a) € f(B(b)). From f(b) = f(z) we conclude

Y €U p)=f) [(B(2)). O
Theorem 6.7. Let the lattice L be completely distributive and let L € L be prime.

Let (X,A) € |[SL-UCS]| be uniformly locally E-connected and let f : X — X' be
surjective. Then the quotient space (X', Ay) is uniformly locally E-connected.

Then there is b € X such that
), f(2)) € (f x [)(B), ie.y €

Proof. Let v € L and let A¢(®’) > a. Let 3 <. Then there are @517 " ¢£nk (k=

1,2, ..,m) with Aj" (f % f)(®7)) 0o (f x f)(®}, ) < & such that A"} A(®},)A
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A A(fbfnk) > . For each @gl there is \Ilgl < @fl A [Ax] such that A(\Ilfl) >p
and which has, for L < § < 8, a d-base By; such that B(z) is E-connected for each
2 € X and each B € By, In particular, (f x f)(¥2) < (f x /)([Ax]) = [Ax/],
as f is surjective. We define W% = A" (f x f)(\Ilfl) oo (fx f)(\Ilfnk) Then
VA < & A[Ax/] and Ap(¥P) > B, as f is uniformly continuous.

We show that W7 also has, for 1. < § < a, a 6-base B with B(z’) E-connected
for all 2/ € X' and all B € B. Let U(Tpg) > 4. Then (f x f)(UF,)(Tg) =
‘I’gl(T(fxf)%(B)) >dforall k =1,...,mand [ = 1,...,n,. Hence there are sets
C’,fl C (f x /) (B) with \Ilgl('l'okl) > ¢§. From [Ax] > \I!fl we conclude that
Ax C C,fl and, by the surjectivity of f, then Ax, C (f x f)(C,’fl) C B. Hence
6 < (F x N o (f x DL T(rxncnn) © 0 T(xhicn,) = (F %
f)(\Iffl)@ —o(fx f)(qunk)(T(f><f)(Cm)o~~o(fxf)(Cknk))- By Lémma 6.5 and Lemma
6.6, the sets ((f X f)(Cr1)o---o(f X f)(Cgn,))(z") are E-connected for all 2’ € X’
and, as all these sets contain Ay as a subset, so are D(z’) =(lJy =y (f x £)(Cr1) o
w00 (f X [)(Crn,)))(2') and TP (T ps) > 6.

We define now ¥ = \/,_, WP, This stratified Z-filter exists and is < ® A [Ax].
Moreover, A (W) > Ap(VP) > B for all B<a, and hence A ;(¥) > a. We show that
for 1L < § < o, ¥ has a d-base B with B(z’) E-connected for all 2’ € X’ and all
B € B. Let ¥(Tp) > dr>7. Then there are 37, ..., 8% e and B, ...,B? C X' x X'
such that BYN...N B! C B and \IIB;I(TBT)/\.../\\IJWL (Tpn) > n. We have seen above
that each ¥4 has a suitable n-base and hence there are C’? C Bi’, ..., O C B such
that \Ilﬁil('l'c?) > 1), ., WP (T n) 2> . and ©F (), ..., Cll(2') are E-connected for
all 2’ € X'. Again, Axs C CY, ..., O, We define Cy =, 15 CY, ... C, = U, 45 C1-
Then, for [ = 1,...,n we haye \I/'Bln(TCl) > n for all n <9, ie. \I/BLU(TCL) > 4 and
Ci(z") is E-connected for all @’ € X’."The set C = C; U...UC,, C B satisfies that
C(z') is E-connected for all ¢’ € X' and ¥(T¢) > U (To ) A .. AT (Te,) > 0.
Hence ¥ has a -base as desired and (X', Ay) is uniformly locally E-connected. [

Theorem 6.8. Let the lattice L be completely distributive and let E be a class of
T2-spaces. Let (X;,0q) € |SL-UCS)| for all i € J. If all (X;, ;) are uniformly
locally E-connected and all but finitely many (X;,lim(A;)) are E-connected, then
the productspace ([ [;c ; Xi, ™ — A) is uniformly locally E-connected.

Proof. We denote X = [],.; X;. Let o € L and let ® € F}(X x X) such that
m — A(®) > a. Then, for all i € J, A;((pi x pi)(P)) > «a and hence, for each
i € J, there is ¥; € Fi(X;) with ¥; < (p; x p;)(®) A [Ax,] and A;(¥;) > « which
has, for L < § < a, a d-base B; such that B;(x;) is E-connected for each B; € B;
and each x; € X;. We define ¥ = Q),.;¥; € F7 (X x X). Then 7 — A(V) =
Nics Nil(pi X pi)(Qies Vi) = Niey Ai(Vi) 2 a and ¥ < Q) ;((pi X pi) (D)) < @
and ¥ < @, ;[Ax,] < [Ax], ie. ¥ < & A[Ax]. We show that, for L < 4§ < a,
U has a d-base B with B((x;)) E-connected for all B € B and all (x;) € X. Let
U(Tp) > dandlet n<1d. We may assume n > L. Then [],. ; ¥4(T,«py)>nand by
Lemma 2.1 there are U;' C X; x X;, U]' # X; x X; for only finitely many ¢ € J with
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[Lic,; U S v (B) and Ay ¥i(Tyn) > n. Hence, for all i € J, W;(Tyn) > 1 and
there are sets B]' C U] such that BZ’ (z;) is E-connected for all z; € X;. We may
assume that for all but finitely many i € J, B} = X; x X;. Moreover we have Ax, C
B} for all i € J. It is not difficult to show that [],.; B/ (x;) = v([],c; BY)((x:))
and, as E consists of T2-spaces, these sets are E-connected. Moreover, we have
V(ILies BY) Cv([lic, Uf') € v(v™(B)) € B and we have ®,; ¥i(v(Tyy,_, 81)) =
[Lcs¥i(Tr,_, B7) = Nies %ilTpr) = 0. From Ay, C B/ we conclude that
Ax C v([I;c; B])- Hence, if we define B = J, ;5 v(I[;c; BY), then B((z;)) =
Uyas V(T Lics B!)((x;)) is E-connected. As ¥(Tpg) > 5 for all n < §, we obtain
U(Tp) > 0 and the proof is complete. O

7. Conclusions

We extended in this paper Preuf3’ E-connectedness to stratified L-uniform con-
vergence spaces and studied a suitable definition of uniform local E-connectedness
for such spaces, generalizing a definition and results from Vainio [24]. The preser-
vation of local E-connectedness under products (even for L = {0,1}) has not been
shown before.

In the theory of classical uniform convergence spaces there is a further connect-
edness notion that plays a role in fixed point theorems, see Kneis [18]. Generalizing
a definition from [18] we call a stratified L-uniform convergence space well-chained
if for all z,y € X there is ®,, € F7(X x X) such that for N C X x X, there is a
natural number n with (z,y) € N whenever A(®,,) < &,,(Ty). For L = {0,1}
this definition coincides with the definition given by Kneis [18]. In SL-UNIF, then
(X,U) is well-chained if and only if it is strongly uniformly connected. In general,
we only have that a well-chained space (X,A) € |SL-UCS| is strongly uniformly
connected. This can be seen with Theorem 4.6. It would be interesting to know if
the class WC' of well-chained uniform convergence spaces coincides with the class
UCE of uniformly E-connected spaces for a suitable class E. The following result
sheds some light inte.this question. We call a space (X, A) totally unchained if the
only well-chained sets A C X (i.e. well-chained subspaces (A, A|4)) are one-point
sets. For instance, the space ({0,1}, A3) is totally unchained.

Lemma 7.1. We have WC C UCE if and only if all spaces in E are totally
unchained.

Proof. Let WC C UCE and let (E,Ag) € E and A C E be well-chained. Then the
inclusion mapping i4 : A — FE is uniformly continuous and hence constant, i.e.
A is a one-point set. Conversely, let (X, A) be well-chained and let f: (X, A) —
(E, Ag) be uniformly continuous. It is not difficult to see that then f(X) C F is
well-chained too and hence, by assumption, f(X) = {a}, i.e. f is constant. a
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