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UNIFORM CONNECTEDNESS AND UNIFORM LOCAL

CONNECTEDNESS FOR LATTICE-VALUED UNIFORM

CONVERGENCE SPACES

G. JÄGER

Abstract. We apply Preuß’ concept of E-connectedness to the categories of

lattice-valued uniform convergence spaces and of lattice-valued uniform spaces.
A space is uniformly E-connected if the only uniformly continuous mappings

from the space to a space in the class E are the constant mappings. We de-
velop the basic theory for E-connected sets, including the product theorem.

Furthermore, we define and study uniform local E-connectedness, generaliz-

ing a classical definition from the theory of uniform convergence spaces to the
lattice-valued case. In particular it is shown that if the underlying lattice is

completely distributive, the quotient space of a uniformly locally E-connected

space and products of locally uniformly E-connected spaces are locally uni-
formly E-connected.

1. Introduction

Connectedness was first defined by G. Cantor in [2]. In the more modern setting
of metric spaces, it can be expressed as follows. A metric space (X, d) is connected
if for all ε > 0 and all x, y ∈ X there are finitely many points x = t1, t2, ..., tn = y
such that d(tk, tk+1) ≤ ε for all k = 1, 2, ..., n − 1. This notion bears nowadays
the name well-chainedness or chain-connectedness. It was shown later, that for
bounded, closed subsets, this definition is equivalent to the requirement that the
space cannot be separated into two non-empty, disjoint closed subsets. The latter
characterization does not need a metric and was subsequently considered as the
“proper” definition of connectedness in topology, see e.g. [8]. Cantor’s concept
reappeared after the introduction of uniform spaces. A uniform space (X,U) is
well-chained if for all x, y ∈ X and all U ∈ U , there is a natural number n such that
(x, y) ∈ Un, see e.g. [22]. It was shown in [19] that a uniform space is well-chained
if and only if each uniformly continuous mapping from (X,U) into the discrete
two-point uniform space is constant. (The latter is called uniform connectedness
in [19].) It is well-known that, similarly, a topological space is connected if each
continuous mapping into the discrete two-point topological space is constant. These
characterizations were subsequently generalized by Preuß [20, 21] and the concept
of E-connectedness. A (uniform, resp. topological) space X is E-connected if, for
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96 G. Jäger

each (uniform, resp. topological) space E in E, the only (continuous resp. uniformly
continuous) mappings from X to E are the constant ones.

In the realm of (uniform) convergence spaces, Vainio [23, 24, 25] developed the
theory of connectedness along Preuß’ lines. He also introduced a notion of local
connectedness [24]. Also Gähler [5] contributed to the theory. For uniform con-
vergence spaces, Kneis [18] generalized Cantor’s connectedness in order to prove a
fixed point theorem, generalizing a similar result by Taylor [22] from uniform spaces
to uniform convergence spaces.

In this paper, we use Preuß’ concept of E-connectedness and apply it to lattice-
valued uniform convergence spaces. We develop the basic theory for uniformly
E-connected sets. Further, we define a suitable notion of uniform local E-connected-
ness, generalizing Vainio’s approach [24] to the lattice-valued case.

The paper is organised as follows. In the second section, we provide the necessary
notation, definitions and results on lattices, lattice-valued sets and lattice-valued
filters needed later on. Section 3 collects the definitions and results regarding
lattice-valued uniform convergence spaces and lattice-valued limit spaces. Section
4 discusses the concepts of uniform E-connectedness and Section 5 then collects
the results about uniformly E-connected sets. Section 6 is devoted to uniform local
E-connectedness and in the last section, we finally draw some conclusions.

2. Preliminaries

We consider in this paper frames, i.e. complete lattices L (with bottom element ⊥
and top element>) for which the infinite distributive law

∨
j∈J(α∧βj) = α∧

∨
j∈J βj

holds for all α, βj ∈ L (j ∈ J). In a frame L, we can define an implication operator
by α → β =

∨
{γ ∈ L : α ∧ γ ≤ β}. This implication is then right-adjoint to

the meet operation, i.e. we have δ ≤ α → β iff α ∧ δ ≤ β. A complete lattice L is
completely distributive if the following distributive laws are true.

(CD1)
∨
j∈J

∧
i∈Ij

αji

 =
∧

f∈
∏
j∈J Ij

∨
j∈J

αjf(j)

 ,

(CD2)
∧
j∈J

∨
i∈Ij

αji

 =
∨

f∈
∏
j∈J Ij

∧
j∈J

αjf(j)

 .

It is well known that, in a complete lattice, (CD1) and (CD2) are equivalent. In
any complete lattice we can define the wedge-below relation α� β if for all subsets
D ⊆ L such that β ≤

∨
D there is δ ∈ D such that α ≤ δ. Then α ≤ β whenever

α�β and α�
∨
j∈J βj iff α�βi for some i ∈ J . In a completely distributive lattice

we have α =
∨
{β : β � α} for any α ∈ L. An element α ∈ L in a lattice is called

prime if β ∧ γ ≤ α implies β ≤ α or γ ≤ α.
For notions from category theory, we refer to the textbook [1].
For a frame L and a set X, we denote the set of all L-sets a, b, c, ... : X −→ L

by LX . We define, for α ∈ L and A ⊆ X, the L-set αA by αA(x) = α if x ∈ A and
αA(x) = ⊥ else. In particular, we denote the constant L-set with value α ∈ L by
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αX and >A is the characteristic function of A ⊆ X. The operations and the order
are extended pointwisely from L to LX . For a ∈ LX we define [a > ⊥] = {x ∈ X :
a(x) > ⊥}.

For a, b ∈ LX×X we define a−1 ∈ LX×X by a−1(x, y) = a(y, x) and a◦b ∈ LX×X
by a ◦ b(x, y) =

∨
z∈X(a(x, z) ∧ b(z, y)), for all (x, y) ∈ X ×X, see [12]. Then, for

A,B ⊆ X ×X, (>A)−1 = >A−1 with A−1 = {(x, y) : (y, x) ∈ A} and >A ◦ >B =
>A◦B , where A ◦B = {(x, y) : there is z ∈ X s.t. (x, z) ∈ A, (z, y) ∈ B}. Further,
we denote ∆X = {(x, x) : x ∈ X}.

A mapping F : LX −→ L is called a stratified L-filter on X [9] if (LF1) F(>X) =
> and F(⊥X) = ⊥, (LF2) F(a) ≤ F(b) whenever a ≤ b, (LF3) F(a) ∧ F(b) ≤
F(a ∧ b) and (LFs) F(αX) ≥ α for all a, b ∈ LX and all α ∈ L. A typical example
is, for x ∈ X, the point L-filter [x] defined by [x](a) = a(x) for all a ∈ LX . We
denote the set of all stratified L-filters on X by FsL(X) and order it by F ≤ G if for
all a ∈ LX we have F(a) ≤ G(a). For a family of stratified L-filters Fi (i ∈ J), the
infimum in the order is given by (

∧
i∈J Fi)(a) =

∧
i∈J Fi(a) for all a ∈ LX . The

supremum, however, only exists if Fi1(a1) ∧ Fi2(a2) ∧ ... ∧ Fin(an) = ⊥ whenever
a1 ∧ a2 ∧ ... ∧ an = ⊥X . In this case the supremum is given by (

∨
i∈J Fi)(a) =∨

{Fi1(a1) ∧ Fi2(a2) ∧ ... ∧ Fin(an) : a1 ∧ a2 ∧ ... ∧ an ≤ a}, see [9]. Consider
now a mapping f : X −→ Y . For F ∈ FsL(X) then f(F) ∈ FsL(Y ) is defined
by f(F)(b) = F(f←(b)) with f←(b) = b ◦ f for b ∈ LX , [9]. For G ∈ FsL(Y ) we
define f←(G)(a) =

∨
{G(b) : f←(b) ≤ a}. If G(b) = ⊥ whenever f←(b) = ⊥X ,

then f←(G) ∈ FsL(X), see [10]. We will need the following two examples later.
Firstly, if M ⊆ X we define iM : M −→ X, iM (x) = x. In case of existence,
we denote, for F ∈ FsL(X), FM = i←M (F). Secondly, for sets Xi (i ∈ J), we
denote the projections pj :

∏
i∈J Xi −→ Xj and define the stratified L-product

filter
∏
i∈J Fi =

∨
i∈J p

←
i (Fi), see [3, 10]. The following result follows directly from

the definition.

Lemma 2.1. Let Fi ∈ FsL(Xi) for i ∈ J . Then, for U ⊆
∏
i∈J Xi,∏

i∈J
Fi(>U ) =

∨
{
∧
i∈J
Fi(>Ui) :

∏
i∈J

Ui ⊆ U and only finitely many Ui 6= Xi}.

We denote stratified L-filters on X × X by Φ,Ψ, .... In [12] we defined the
following constructions. For Φ,Ψ ∈ FsL(X × X) we define Φ−1 ∈ FsL(X × X) by
Φ−1(a) = Φ(a−1) for all a ∈ LX×X . We further define Φ ◦ Ψ : LX×X −→ L by
Φ ◦ Ψ(a) =

∨
{Φ(b) ∧ Ψ(c) : b ◦ c ≤ a}. Then Φ ◦ Ψ ∈ FsL(X ×X) if and only if

b ◦ c = ⊥X×X implies Φ(b) ∧Ψ(c) = ⊥. In this case we also say that Φ ◦Ψ exists.
Lastly, we denote [∆X ] =

∧
x∈X [(x, x)].

Lemma 2.2. Let ⊥ ∈ L be prime and let a, b ∈ LX and B ⊆ X. If a ◦ b ≤ >B
then >[a>⊥] ◦ >[b>⊥] ≤ >B.

Proof. The proof is easy and left for the reader. �

Corollary 2.3. Let ⊥ ∈ L be prime, let Φ,Ψ ∈ FsL(X ×X) and let B ⊆ X ×X.
Then Φ ◦Ψ(>B) =

∨
{Φ(>C) ∧Ψ(>D) : C ◦D ⊆ B}.
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98 G. Jäger

Lemma 2.4. Let Ψ ∈ FsL(X ×X) and let x ∈ X. We define Ψ(x) : LX −→ L by
Ψ(x)(a) =

∨
{Ψ(ψ) : ψ(·, x) ≤ a}. Then Ψ(x) ∈ FsL(X) if and only if Ψ(ψ) = ⊥

whenever ψ(·, x) = ⊥X .

Proof. We omit the straightforward proof and only mention that the condition is
used to ensure Ψ(x)(⊥X) = ⊥. �

We note that if Ψ ≤ [∆X ], then ψ(·, x) = ⊥X implies Ψ(ψ) ≤
∧
y∈X ψ(y, y) ≤

ψ(x, x) = ⊥. Hence, in this case, Ψ(x) ∈ FsL(X).

Lemma 2.5. Let Φ,Ψ ∈ FsL(X ×X), F ∈ FsL(X) and let x ∈ X and Φ(x),Ψ(x) ∈
FsL(X). The following hold.
(1) If Φ ≤ Ψ, then Φ(x) ≤ Ψ(x).
(2) (Φ ∧Ψ)(x) ≤ Φ(x) ∧Ψ(x).
(3) [∆X ](x) = [x].
(4) Ψ = Ψ(x)× [x].
(5) (F × [x])(x) ≤ F .

Proof. (1) and (2) are easy and left for the reader.

(3) We have [∆X ](x)(a) =
∨
{
∧
y∈X φ(y, y) : φ(·, x) ≤ a} ≤

∨
{φ(x, x) :

φ(·, x) ≤ a} ≤ a(x) = [x](a). On the other hand, for a ∈ LX , we define φa(u, v) = >
if v 6= x and φa(u, v) = a(u) if v = x. Then φa(·, x) = a and hence [∆](x)(a) ≥∧
y∈X φa(y, y) = φa(x, x) = a(x) = [x](a).

(4) For φ ∈ LX×X we have φ(·, x) × >{x} ≤ φ and hence Ψ(x) × [x](ψ) =∨
{Ψ(x)(c) ∧ [x](d) : c × d ≤ ψ} ≥

∨
{Ψ(φ) ∧ d(x) : φ(·, x) × d ≤ ψ} ≥

Ψ(ψ) ∧ >{x}(x) = Ψ(ψ). For the converse inequality, we note that c × d ≤ ψ and
φ(·, x) ≤ c implies φ(·, x) × d ≤ ψ. Hence it follows with (LFs) that if c × d ≤ ψ,
then Ψ(x)(c) ∧ d(x) ≤

∨
{Ψ(φ ∧ (d(x))X) : φ(·, x) ≤ c} ≤

∨
{Ψ(φ ∧ (d(x))X) :

φ ∧ (d(x))X ≤ ψ} ≤ Ψ(ψ). Hence (Ψ(x)× [x])(ψ) =
∨
{Ψ(x)(c) ∧ [x](d) : c× d ≤

ψ} ≤ Ψ(ψ).

(5) If φ(·, x) ≤ a then if c × d ≤ φ we have, for all y ∈ X, that c(y) ∧ d(x) ≤
φ(y, x) ≤ a(y). Hence it follows (F×[x])(φ) ≤ {F(c∧(d(x))X) : c∧(d(x))X ≤ a} ≤
F(a) and therefore (F × [x])(x)(a) =

∨
{(F × [x])(φ) : φ(·, x) ≤ a} ≤ F(a). �

We will later need a further construction. We describe the situation. Let Xi

be sets (i ∈ J). We denote the projections πj :
∏
i∈J(Xi × Xi) −→ Xj × Xj ,

((xi, yi)) 7−→ (xj , yj), the mapping ν :
∏
i∈J(Xi ×Xi) −→

∏
i∈J Xi ×

∏
i∈J Xi de-

fined by ν((xi, yi)) = ((xi), (yi)) and the product of the projections pj :
∏
i∈J Xi −→

Xj , pj×pj :
∏
i∈J Xi×

∏
i∈J Xi −→ Xj×Xj . Then (pj×pj)◦ν = πj for all j ∈ J .

For Ψi ∈ FsL(Xi ×Xi), (i ∈ J) we define⊗
i∈J

Ψi = ν(
∏
i∈J

Ψi) ∈ FsL(
∏
i∈J

Xi ×
∏
i∈J

Xi).

Following Gähler [5], we call
⊗

i∈J Ψi the stratified relation product L-filter of
the Ψi (i ∈ J).
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Proposition 2.6. Let Ψi ∈ FsL(Xi × Xi) for i ∈ J and X =
∏
i∈J Xi. Let

Φ ∈ FsL(X ×X). Then
(1) (pj × pj)(

⊗
i∈J Ψi) ≥ Ψj;

(2)
⊗

i∈J((pi × pi)(Φ)) ≤ Φ;
(3)

⊗
i∈J [∆Xi ] ≤ [∆∏

i∈J Xi
].

Proof. (1) We use (pj×pj)◦ν = πj . Then (pj×pj)(
⊗

i∈J Ψi) = πj(
∏
i∈J Ψi) ≥ Ψj .

(2) It is not difficult to show that for a ∈ LX×X and a1 ∈ LXj1×Xj1 ,...,an ∈
LXjn×Xjn we have (pj1 × pj1)←(a1)∧ ...∧ (pjn × pjn)←(an) ≤ a whenever π←j1 (a1)∧
...∧π←jn(an) ≤ ν←(a). Hence ν(

∏
i∈J(pi×pi)(Φ))(a) =

∨
{Φ((pj1×pj1)←(a1)∧ ...∧

(pjn × pjn)←(an)) : π←j1 (a1) ∧ ... ∧ π←jn(an) ≤ ν←(a)} ≤ Φ.

(3) For a ∈ LX×X and a1 ∈ LXj1×Xj1 ,...,an ∈ LXjn×Xjn , if π←j1 (a1) ∧ ... ∧
π←jn(an)((xi, xi)) = a1(xj1 , xj1)∧ ...∧ an(xjn , xjn) ≤ ν←(a)((xi, xi)) = a((xi), (xi)),
then

∧
xj1∈Xj1

a1(xj1 , xj1)∧...∧
∧
xjn∈Xjn

an(xjn , xjn) ≤
∧

(xi)∈X a((xi), (xi)). Hence,⊗
i∈J [∆Xi ](a) =

∨
{[∆Xj1

](a1) ∧ ... ∧ [∆Xjn
](an) : π←j1 (a1) ∧ ... ∧ π←jn(an) ≤

ν←(a)} ≤
∧

(xi)∈X a((xi), (xi)) = [∆X ](a). �

3. Lattice-valued Uniform Convergence Spaces and Lattice-valued
Limit Spaces

Let X 6= ∅. A mapping Λ : FsL(X × X) −→ L is called a stratified L-uniform
convergence structure and the pair (X,Λ) a stratified L-uniform convergence space
[3, 12] if for all x ∈ X and all Φ,Ψ ∈ FsL(X ×X),

(UC1) Λ([(x, x)]) = > ∀x ∈ X;
(UC2) Φ ≤ Ψ =⇒ Λ(Φ) ≤ Λ(Ψ);
(UC3) Λ(Φ) ≤ Λ(Φ−1);
(UC4) Λ(Φ) ∧ Λ(Ψ) ≤ Λ(Φ ∧Ψ);
(UC5) Λ(Φ) ∧ Λ(Ψ) ≤ Λ(Φ ◦Ψ) whenever Φ ◦Ψ exists.

A mapping f : (X,Λ) −→ (X ′,Λ′), where (X,Λ), (X ′,Λ′) are stratified L-
uniform convergence spaces, is called uniformly continuous iff Λ(Φ) ≤ Λ′((f×f)(Φ))
for all Φ ∈ FsL(X × X). The category SL-UCS has as objects the stratified
L-uniform convergence spaces and as morphisms the uniformly continuous map-
pings. Then SL-UCS is a well-fibred topological construct and has natural func-
tion spaces, i.e. SL-UCS is Cartesian closed [12]. In particular, constant mappings
are uniformly continuous. We describe the initial constructions. Let (fi : X −→
(Xi,Λi))i∈I be a source. Define for Φ ∈ FsL(X ×X) the initial stratified L-uniform
convergence structure on X by Λ(Φ) =

∧
i∈I Λi((fi× fi)(Φ)). In particular, we can

define subspaces and product spaces.

• Subspace: Let (X,Λ) ∈ |SL-UCS| and let T ⊆ X and iT : T −→ X be the
embedding mapping defined by iT (x) = x for x ∈ T . Then the subspace
(T,Λ|T ) is defined by Λ|T (Φ) = Λ((iT × iT )(Φ)) for Φ ∈ FsL(T × T ).

• Product space: Let (Xi,Λi) ∈ |SL-UCS| for all i ∈ J and let X =
∏
i∈J Xi

be the Cartesian product and consider the projections pj : X −→ Xj . Then
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100 G. Jäger

the product space (X,π-Λ) is defined by π-Λ(Φ) =
∧
i∈J Λi((pi×pi)(Φ)) for

all Φ ∈ FsL(X ×X).
Subspaces and product spaces are well behaved. Let Ti ⊆ Xi and (Xi,Λi) ∈ |SL-
UCS| for all i ∈ J . We denote X =

∏
i∈J Xi and T =

∏
i∈J Ti and the projections

pj : X −→ Xj and qj : T −→ Tj and the embeddings iT : T −→ X and iTj :
Tj −→ Xj . Then we have (pj × pj) ◦ (iT × iT ) = (iTj × iTj ) ◦ (qj × qj). It follows
that if we denote the product structure on X w.r.t. the projections pj by π-Λi and
the product structure on T w.r.t. the projections qj and the spaces (Ti,Λ|Ti) by
π-(Λ|Ti), then we have π-(Λ|Ti) = (π-Λi)|T . Moreover, we have the following result.

Lemma 3.1. Let (Xi,Λi) ∈ |SL-UCS| for all i ∈ J and let (zi) ∈
∏
i∈J Xi be

fixed. Define the slice X̃j = {(xi) ∈
∏
i∈J Xi : xi = zi∀i 6= j} =

∏
i∈J Ti with

Ti = {zi} if i 6= j and Tj = Xj. Then (X̃j , π-Λ|X̃j ) is isomorphic to (Xj ,Λj).

Proof. We use the notations from above and define h : X̃j −→ Xj by h((xi)) = xj .
Then h = pj ◦ iX̃j is uniformly continuous. Clearly h is a bijection and its inverse is

defined by h−1(xj) = (xi) with xi = zi for i 6= j. Then qi ◦ h−1(xj) = zi for i 6= j,
i.e. qi◦h−1 is a constant mapping for i 6= j. For i = j, we have qj ◦h−1(xj) = xj , i.e.
it is the identity mapping. Hence all compositions qi ◦h−1 are uniformly continuous
and therefore also h−1 is uniformly continuous. �

In SL-UCS, also final structures exist. They are, however, complicated and we
will use only quotient spaces later. Let (X,Λ) ∈ |SL-UCS| and let f : X −→ X ′

be a surjective mapping. We define the following stratified L-uniform convergence
structure Λf on X ′. Let Φ′ ∈ FsL(X ′ ×X ′). Then

Λf (Φ′) =
∨
{
m∧
k=1

Λ(Φk1)∧...∧Λ(Φknk) :

m∧
k=1

(f×f)(Φk1)◦· · ·◦(f×f)(Φknk) ≤ Φ′}.

Lemma 3.2. Let (X,Λ) ∈ |SL-UCS| and let f : X −→ X ′ be a surjective mapping.
Then (X ′,Λf ) ∈ |SL-UCS| and for a further mapping g : (X ′,Λf ) −→ (Y,ΛY ) we
have that g is uniformly continuous if and only if g ◦ f is uniformly continuous.

Proof. We first show, that (X ′,Λf ) ∈ |SL-UCS|. The axioms (UC1) and (UC2)
are easy. (UC3) follows from ((f × f)(Φ))−1 = (f × f)(Φ−1) and (UC3) for (X,Λ).
(UC4) is again clear by construction and (UC5) follows as Θ ≤ Φ and Υ ≤ Ψ
implies Θ ◦ Υ ≤ Φ ◦ Ψ. It is furthermore clear that f : (X,Λ) −→ (X ′,Λf ) is
uniformly continuous. Let now g : (X ′,Λf ) −→ (Y,ΛY ) be a mapping such that
g ◦ f is uniformly continuous. Then, for Φ′ ∈ FsL(X ′ ×X ′) we have

Λf (Φ′) =
∨
{

m∧
k=1

Λ(Φk1) ∧ ... ∧ Λ(Φknk ) :

m∧
k=1

(f × f)(Φk1) ◦ · · · ◦ (f × f)(Φknk ) ≤ Φ′}

≤
∨
{

m∧
k=1

ΛY ((g × g)((f × f)(Φk1))) ∧ ... ∧ ΛY ((g × g)((f × f)(Φknk ))) :

m∧
k=1

(f × f)(Φk1) ◦ · · · ◦ (f × f)(Φknk ) ≤ Φ′}.
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With Ψkl = (f × f)(Φkl) then

Λf (Φ′) ≤
∨
{

m∧
k=1

ΛY ((g × g)(Ψk1)) ∧ ... ∧ ΛY ((g × g)(Ψknk )) :

m∧
k=1

Ψk1 ◦ · · · ◦Ψknk ≤ Φ′}

≤
∨
{

m∧
k=1

ΛY ((g × g)(Ψk1)) ∧ ... ∧ ΛY ((g × g)(Ψknk )) :

m∧
k=1

(g × g)(Ψk1) ◦ · · · ◦ (g × g)(Ψknk ) ≤ (g × g)(Φ′)}

≤ ΛY ((g × g)(Φ′).

Therefore g is uniformly continuous. �

Hence, Λf is the final structure and (X ′,Λf ) is the quotient space for the sink
f : (X,Λ) −→ X ′.

For (X,Λ) ∈ |SL-UCS| we define the stratified L-entourage filter by NΛ(a) =∧
Φ∈FsL(X×X)(Λ(Φ) → Φ(a)), see [12]. We further define, for α ∈ L, the stratified

α-level L-entourage filter by Nα(a) =
∧

Λ(Φ)≥α Φ, see [14].

Lemma 3.3. [12] A mapping f : (X,Λ) −→ (X ′,Λ′) satisfies NΛ′ ≤ (f × f)(NΛ)
whenever it is uniformly continuous.

In [12] we defined the discrete stratified L-uniform convergence structure on X,
Λδ, by Λδ(Φ) = > if Φ ≥

∧
x∈A[(x, x)] for some finite set A ⊆ X and Λδ(Φ) = ⊥

else. It is not difficult to see that in case that X is a finite set, then Λδ(Φ) = > if
Φ ≥ [∆X ] and Λδ(Φ) = ⊥ else.

We further consider the following stratified L-uniform convergence structure,
which we shall call the strong discrete stratified L-uniform convergence structure

Λsδ(Φ) =
∧

a∈LX×X
([∆X ](a)→ Φ(a)).

Whenever X = {0, 1}, then we denote [∆] = [∆{0,1}] for simplicity.
A pair (X,U) of a non-void set X and a stratified L-filter U ∈ FsL(X×X) is called

a stratified L-uniform space [6, 7] if U satisfies the following axioms (LU1) U ≤ [∆X ],
(LU2) U ≤ U−1 and (LU3) U ≤ U ◦ U . A mapping f : (X,U) −→ (X ′,U ′) is called
uniformly continuous if U ′ ≤ (f×f)(U). The category SL-UNIF has as objects the
stratified L-uniform spaces and as morphisms the uniformly continuous mappings.
This category can be embedded into SL-UCS by defining, for (X,U) ∈ |SL-UNIF |,
the stratified L-uniform convergence structure ΛU by ΛU (Φ) =

∧
a∈LX×X (U(a) →

Φ(a)). Then a mapping f : (X,U) −→ (X ′,U ′) is uniformly continuous if and only
if f : (X,ΛU ) −→ (X ′,ΛU ′) is uniformly continuous. SL-UNIF is then isomorphic
to a reflective subcategory of SL-UCS, see [3]. We define Uα =

∧
ΛU (Φ)≥α Φ. Then

ΛU (Uα) ≥ α, cf. [14].
A pair (X, lim) of a non-void set X and a mapping lim : FsL(X) −→ LX is called

a stratified L-limit space, if the axioms (LC1) lim[x](x) = >; (LC2) limF ≤ limG
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102 G. Jäger

whenever F ≤ G and (LC3) ∀F ,G ∈ FsL(X) : limF ∧ limG ≤ limF ∧ G are
satisfied, [10]. A mapping f : X −→ X ′ between the stratified L-limit spaces
(X, lim), (X ′, lim′) is called continuous if and only if for all F ∈ FsL(X) and all
x ∈ X we have limF(x) ≤ lim′ f(F)(f(x)). The category of all stratified L-limit
spaces with the continuous mappings as morphisms is denoted by SL-LIM . The
category SL-LIM is topological and Cartesian closed [11].

In [13] we defined the following two separation axioms in SL-LIM . We call
(X, lim) ∈ |SL-LIM | a T1-space if for all x, y ∈ X, x = y whenever lim[y](x) = >
and we call (X, lim) a T2-space if for all F ∈ FsL(X), x = y whenever limF(x) =
limF(y) = >.

Let (X,Λ) ∈ |SL-UCS|. Then (X, lim(Λ)) ∈ |SL-LIM |, where the limit map
lim(Λ) : FsL(X) −→ LX is defined by lim(Λ)F(x) = Λ(F × [x]), see [12]. Further-
more, if f : (X,Λ) −→ (X ′,Λ′) is uniformly continuous then f : (X, lim(Λ)) −→
(X ′, lim(Λ′)) is continuous. Hence we can define a functor H : SL-UCS −→
SL-LIM . This functor preserves initial constructions.

Lemma 3.4. [12] Let (fi : X −→ (Xi,Λi))i∈I be a source in SL-UCS and let Λ be
the initial SL-UCS structure on X. Then lim(Λ) is the initial SL-LIM structure
with respect to the source (fi : X −→ (Xi, lim(Λi)))i∈I .

In particular, for subspaces (A,Λ|A) of (X,Λ) we have lim(Λ|A) = lim(Λ)|A and
for product spaces (

∏
i∈J Xi, π − Λ) we have lim(π − Λ) = π − lim(Λi).

For a stratified L-uniform space (X,U) and x ∈ X we define the stratified L-
neighbourhood filter of x, N x

U ∈ FsL(X), by N x
U = U(x) [6, 7] and with this the

limit map lim(U)F(x) =
∧
a∈LX (N x

U (a) → F(a)). Then (X, limU ) ∈ |SL-LIM |
and, moreover, lim(U) = lim(ΛU ), see [3, 12].

We further call (X,Λ) ∈ |SL-UCS| a T1-space (resp. a T2-space) if (X, lim(Λ))
is a T1-space (resp. is a T2-space). It was shown in [16] that if L is a complete
Boolean algebra, then (X,Λ) is a T2-space if and only if it is a T1-space.

In [17] we defined, for (X, lim) ∈ |SL-LIM |, the >-closure of A ⊆ X, A
lim

= A,
by x ∈ A if there is F ∈ FsL(X) such that limF(x) = > and F(>A) = >. In [15] a
subset A ⊆ X is called >-closed if for F ∈ FsL(X), limF(x) = > and F(>A) = >
implies x ∈ A. It is then not difficult to show that A is >-closed if and only if
A ⊆ A. It was shown in [15] that in a T2-space, one-point sets {x} are >-closed.
Hence, for a complete Boolean algebra L, in T1-spaces (X,Λ), the one-point sets
are >-closed.

Proposition 3.5. [17] Let (X, limX), (Y, limY ) ∈ |SL-LIM | and let A ⊆M ⊆ X,
B ⊆ Y and let f : X −→ Y be continuous.

(1) A
M

= A ∩M , where A
M

is the >-closure of A in the subspace (M, lim |M ).

(2) If lim ≤ lim′, then A
lim′ ⊆ Alim

.
(3) If B is >-closed, then f←(B) is >-closed.

Proposition 3.6. [17] Let (Xi, limi) ∈ |SL-LIM | for all i ∈ j and let (xi) ∈∏
i∈J Xi be fixed. Define

A = A((xi)) = {(yi) ∈
∏
i∈J

Xi : xj 6= yj for at most finitely many j ∈ J}.
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Then A
π−lim

=
∏
i∈J Xi.

Let E be a class of stratified L-limit spaces. A space (X, lim) ∈ |SL-LIM | is
called E-connected [17] if, for any (E, limE) ∈ E, a continuous mapping f : X −→ E
is constant. A subset A ⊆ X is called E-connected if the subspace (A, lim |A) is
E-connected.

Proposition 3.7. [17] Let (X, lim), (X ′, lim′), (Xi, limi) ∈ |SL-LIM |, (i ∈ J).
Then
(1) If E is a class of T2-spaces and A ⊆ X is E-connected, then so is A;
(2) If A,Ai ⊆ X (i ∈ J) are E-connected and A ∩ Ai 6= ∅ for all i ∈ J , then
A ∪

⋃
i∈J Ai is E-connected.

(3) If E is a class of T2-spaces and all Ai ⊆ Xi are E-connected, then so is
∏
i∈J Ai

(as a subset of the product space).
(4) If A ⊆ X is E-connected and f : X −→ X ′ is uniformly continuous, then f(A)
is E-connected.

For F ∈ FsL(X), a set B of subsets of X is called a δ-base of F [17] if for
F(>U ) ≥ δ there is B ∈ B, B ⊆ U such that F(>B) ≥ δ. A space (X, lim) ∈ |SL-
LIM | is called locally E-connected [17] if for all α ∈ L, if limF(x) ≥ α, there is
G ≤ F ∧ [x] with limG(x) ≥ α and with a δ-base of E-connected sets, whenever
⊥ < δ ≤ α.

4. Uniform E-connectedness

Let E be a class of stratified L-uniform convergence spaces (E,ΛE) which con-
tains a space with at least two points.

Definition 4.1. A space (X,Λ) ∈ |SL-UCS| is called uniformly E-connected if,
for any (E,ΛE) ∈ E, every uniformly continuous mapping f : (X,Λ) −→ (E,ΛE)
is constant.

In particular, we call (X,Λ) uniformly connected if it is uniformly E-connected for
E = {({0, 1},Λδ)} and strongly uniformly connected if it is uniformly E-connected
for E = {({0, 1},Λsδ)}.

Clearly, a strongly uniformly connected space (X,Λ) is uniformly connected.
The converse is not true in general, as the following example shows.

Example 4.2. Let L = {⊥, α,>} with ⊥ < α < >. We show that ({0, 1},Λsδ) is
uniformly connected. There are two non-constant mappings f : {0, 1} −→ {0, 1},
namely f = id{0,1} and f = 1− id{0,1}. We will show that both are not uniformly
continuous as mappings f : ({0, 1}),Λsδ) −→ ({0, 1},Λδ). For f = id{0,1}, consider
the stratified L-filter

F∗(a) =


> if a = >{0,1}
α if a(0) = >, a(1) 6= >
α if a(0) = α
⊥ if a(0) = ⊥

,

see [11]. It was shown in [4] that Λsδ(F∗ × F∗) ≥
∧
a∈L{0,1}([(0, 0)](a) → (F∗ ×

F∗)(a)) ≥ α. However, Λδ(F∗×F∗) = ⊥, because F∗×F∗ 6≥ [∆] = [(0, 0)]∧[(1, 1)].
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104 G. Jäger

This can be seen using a(x, y) =

{
> if x = y
α if x 6= y

. Then [(0, 0)] ∧ [(1, 1)](a) = >

but (F∗ ×F∗)(a) ≤ α, see [4]. Hence f = id{0,1} is not uniformly continuous.

For f = 1 − id{0,1} we define, for a ∈ L{0,1}, a∗ = f←(a) and with this F∗ ∈
FsL({0, 1}) by F∗(a) = F∗(a∗). Then Λsδ(F∗×F∗) ≥ α but Λδ((f × f)(F∗×F∗)) =
Λδ(F∗ × F∗) = ⊥. Hence f = 1− id{0,1} is not uniformly continuous too and the
only continuous mappings are the constant ones. Therefore ({0, 1},Λsδ) is uniformly
connected. As clearly the identity mapping f = id{0,1} : ({0, 1},Λsδ) −→ ({0, 1},Λsδ)
is uniformly continuous, ({0, 1},Λsδ) is not strongly uniformly connected.

For a class of stratified L-uniform convergence spaces, E, we denote L(E) =
{(E, lim(ΛE)) : (E,ΛE) ∈ E}.

Lemma 4.3. Let (X,Λ) ∈ |SL-UCS|. If (X, lim(Λ)) is L(E)-connected, then
(X,Λ) is uniformly E-connected.

Lemma 4.4. Let E be a class of stratified L-uniform convergence spaces which
contains a space (E, limE) with |E| ≥ 2. If (X,Λ) is uniformly E-connected, then
it is uniformly connected.

Proof. Let f : (X,Λ) −→ ({0, 1},Λδ) be uniformly continuous and let (E,ΛE) ∈ E
with x, y ∈ E, x 6= y. We define h : {0, 1} −→ E by h(0) = x and h(1) = y. We
show that h is uniformly continuous. Let Λδ(Φ) = >. Then Φ ≥ [∆] and hence
(h × h)(Φ) ≥ (h × h)[∆]. For a ∈ LE×E we then have (h × h)([∆])(a) = [∆]((h ×
h)←(a)) = (h × h)←(a)(0, 0) ∧ (h × h)←(a)(1, 1) = a(h(0), h(0)) ∧ a(h(1), h(1)) =
a(x, x) ∧ a(y, y) = [(x, x)](a) ∧ [(y, y)](a). Hence (h× h)(Φ) ≥ [(x, x)] ∧ [(y, y)] and
we conclude ΛE((h × h)(Φ)) ≥ ΛE([(x, x)]) ∧ ΛE([(y, y)]) = >. Consequently h is
uniformly continuous and therefore h ◦ f is also uniformly continuous and hence
constant. As h is not constant, then f must be so. �

Uniform E-connectedness often also entails strong uniform connectedness. How-
ever, we need a stronger assumption on the class E.

Lemma 4.5. Let E be a class of stratified L-uniform convergence spaces which
contains a space (E, limE) with |E| ≥ 2 and ΛE ≤ Λsδ,E. If (X,Λ) is uniformly
E-connected, then it is strongly uniformly connected.

Proof. Let f : (X,Λ) −→ ({0, 1},Λsδ) be uniformly continuous and let (E,ΛE) ∈ E
with x, y ∈ E, x 6= y. Again we define h : {0, 1} −→ E by h(0) = x and
h(1) = y. We show that h is (Λsδ,ΛE)-uniformly continuous. Then ΛE((h×h)(Φ)) ≥
λsδ,E((h × h)(Φ)) =

∧
a∈LE×E ([∆E ](a) → (h × h)(Φ)(a)). For a ∈ LE×E we

have [∆E ](a) ≤ [(x, x)] ∧ [(y, y)](a) = a(x, x) ∧ a(y, y) = (h × h)←(a)(0, 0) ∧
(h × h)←(a)(1, 1) = [(0, 0)] ∧ [(1, 1)]((h × h)←(a)) = [∆]((h × h)←(a)). Hence∧
a∈LE×E ([∆E ](a) → (h × h)(Φ)(a)) ≥

∧
a∈LE×E ([∆]((h × h)←(a) → Φ((h ×

h)←(a))) ≥
∧
b∈L{0,1}×{0,1}([∆](b) → Φ(b)) = Λsδ(Φ). Hence, together with h, also

h ◦ f is uniformly continuous and therefore constant. As h is not constant, then f
must be so. �

Strong uniform connectedness can be characterized by a “chaining condition”.
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Theorem 4.6. A space (X,Λ) ∈ |SL-UCS| is strongly uniformly connected if and
only if for all x, y ∈ X and all N ⊆ X ×X with NΛ(>N ) = > there is a natural
number n such that (x, y) ∈ Nn.

Proof. Let first (X,Λ) be strongly uniformly connected and assume that there is
(p, q) ∈ X ×X and N ⊆ X ×X with NΛ(>N ) = > but (p, q) /∈ Nn for all natural
numbers n. We define A = {x ∈ X : (p, x) ∈ Nn for some natural number n}
and B = X \ A. As > = NΛ(>N ) ≤ [(p, p)](>N ) we see that (p, p) ∈ N and
hence A is non-empty. Clearly q /∈ A, i.e. B is non-empty. We define the mapping
f : X −→ {0, 1} by f(x) = 0 if x ∈ A and f(x) = 1 if x ∈ B. For (x, y) ∈ N then,
if x ∈ A also y ∈ A and if x ∈ B then also y ∈ B. Hence N ⊆ (A × A) ∪ (B × B)
and, because > = NΛ(>N ) ≤ NΛ(>(A×A)∪(B×B)), we conclude Λ(Φ) ≤ Φ(>N ) ≤
Φ(>(A×A)∪(B×B)) for all Φ ∈ FsL(X ×X). Furthermore, for a ∈ L{0,1}×{0,1},

(f × f)←(a) ∧ >(A×A)∪(B×B)(x, y) =


a(0, 0) if (x, y) ∈ A×A
a(1, 1) if (x, y) ∈ B ×B
⊥ else

.

Hence (f ×f)←(a)∧>(A×A)∪(B×B) ≥ [∆](a)∧>N and therefore, by stratification,

(f×f)(Φ)(a) ≥ [∆](a)∧Φ(>N ) ≥ [∆](a)∧Λ(Φ). As a ∈ L{0,1}×{0,1} was arbitrary,
we conclude Λ(Φ) ≤

∧
a∈L{0,1}×{0,1}([∆](a) → (f × f)(Φ)(a)) = Λsδ((f × f)(Φ)).

Hence, f is uniformly continuous and not constant, a contradiction.
Let now x 6= y and let f : (X,Λ) −→ ({0, 1},Λsδ) be uniformly continuous.

Then [∆] = NΛsδ
≤ (f × f)(NΛ). Therefore, > = [∆](>∆) ≤ NΛ(>(f×f)←(∆))

and there is a natural number, n, such that (x, y) ∈ ((f × f)←(∆))n, i.e. there are
x = x0, x1, ..., xn = y such that (xk, xk+1) ∈ (f × f)←(∆) for k = 0, 1, 2, ..., n − 1.
This means that (f(xk), f(xk+1)) ∈ ∆, i.e. f(xk) = f(xk+1) for k = 0, 1, 2, ..., n−1.
Hence f(x) = f(y) and f is constant. �

For a class E of stratified L-uniform spaces, we call (X,U) ∈ |SL-UNIF | uni-
formly E-connected if, for any (E,UE) ∈ E, a uniformly continuous mapping f :
(X,U) −→ (E,UE) is constant. If we denote Λ(E) = {(E,ΛUE )) : (E,UE) ∈ E},
then a stratified L-uniform space (X,U) is uniformly E-connected if and only if
(X,ΛU )) is uniformly Λ(E)-connected. For E = {({0, 1}, [∆])}, we call a uniformly
E-connected stratified L-uniform space uniformly connected. Hence (X,U) ∈ |SL-
UNIF | is uniformly connected if and only if (X,ΛU ) is strongly uniformly con-
nected. We obtain as a direct consequence of Theorem 4.6 the following character-
ization.

Theorem 4.7. A space (X,U) ∈ |SL-UNIF | is uniformly connected if and only
if for all x, y ∈ X and all N ⊆ X ×X with U(>N ) = > there is a natural number
n such that (x, y) ∈ Nn.

For L = {0, 1}, a uniform space that satisfies the condition of the above theorem
is called well-chained [22].

5. Properties of Uniformly E-connected Subsets

In the sequel, let E be a class of stratified L-uniform convergence spaces which
contains a space (E,ΛE) with at least two points. We call A ⊆ X, where (X,Λ) ∈
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|SL-UCS|, uniformly E-connected (in (X,Λ)) if the subspace (A,Λ|A) is uniformly
E-connected. Uniform E-connectedness of A ⊆ X then becomes an absolute prop-
erty, i.e. for A ⊆ B ⊆ X we have that A is uniformly E-connected in (B,Λ|B) iff A
is uniformly E-connected in (X,Λ).

Lemma 5.1. Let (X,ΛX), (Y,ΛY ) ∈ |SL-UCS| and let f : (X,ΛX) −→ (Y,ΛY )
be uniformly continuous. If A ⊆ X is uniformly E-connected, then B = f(A) is
uniformly E-connected.

Proof. For Φ ∈ FsL(A× A) we have ΛX |A(Φ) = ΛX((iA × iA)(Φ)) ≤ ΛY ((f × f) ◦
(iA × iA)(Φ)). As (f × f) ◦ (iA × iA) = (iB × iB) ◦ (f × f) we obtain (f × f) ◦
(iA× iA)(Φ) = (iB × iB) ◦ (f × f)(Φ), and therefore ΛX |A(Φ) ≤ ΛY |B((f × f)(Φ)).
Hence, we may assume A = X, B = Y = f(X) and f : X −→ Y surjective. Let
now (E,ΛE) ∈ E and h : (Y,ΛY ) −→ (E,ΛE) be uniformly continuous. Then
h ◦ f : (X,ΛX) −→ (E,ΛE) is uniformly continuous and hence constant. As f is
surjective, then also h must be constant. �

Lemma 5.2. Let E be a class of T2-spaces, (X,Λ) ∈ |SL-UCS| and let A ⊆ X be

uniformly E-connected. Then also A = A
lim(Λ)

is uniformly E-connected.

Proof. Let (E,ΛE) ∈ E and f : (A,Λ|A) −→ (E,ΛE) be uniformly continuous.
Then also f |A : (A,Λ|A) −→ (E,ΛE) is uniformly continuous and hence constant,
i.e. f |A(A) = f(A) = {e} with some e ∈ E. As (E, lim(ΛE)) is a T2-space, {e}
is >-closed and hence M = f←({e}) is >-closed in (A, lim(Λ)|A) = (A, lim(Λ|A)).

We note that A ⊆ M ⊆ A. Hence A = M ∩A ⊆ M ∩ A = M
lim(Λ)|A ⊆ M , i.e.

M = A. Therefore f(A) = f(M) = {e} and f is constant. �

Lemma 5.3. Let (X,Λ) ∈ |SL-UCS| and let Ai, A ⊆ X be uniformly E-connected
(i ∈ I) with A ∩Ai 6= ∅ for all i ∈ I. Then A ∪

⋃
i∈I Ai is uniformly E-connected.

Proof. Let (E, limE) ∈ E and let f : A ∪
⋃
i∈I Ai −→ E be uniformly continuous.

Then all restrictions f |A : A −→ E and f |Ai : Ai −→ E are uniformly continuous
and hence constant. As A ∩ Ai 6= ∅ for all i ∈ I, all function values must be the
same. �

Lemma 5.3 allows the definition of maximal uniformly E-connected subsets of
X.

Definition 5.4. Let (X,Λ) ∈ |SL-UCS| and C ⊆ X be uniformly E-connected.
C is called a uniform E-component of X if C = B whenever C ⊆ B ⊆ X and B is
uniformly E-connected.

It follows immediately from Lemma 5.3 that the uniform E-components form a
partition of X.

Lemma 5.5. Let E be a class of T2-spaces and let (X,Λ) ∈ |SL-UCS|. If C is a
uniform E-component of X, then C is >-closed.

Proof. With C also C is uniformly E-connected. C ⊆ C and the maximality of C
implies C = C and hence C is >-closed. �
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We finally state the important product theorem.

Theorem 5.6. Let E be a class of T2-spaces and let (Xi,Λi)i∈J be a family in
|SL-UCS|. Then the product space (

∏
i∈J Xi, π-Λ) is uniformly E-connected if and

only if all (Xi,Λi) are uniformly E-connected.

Proof. Using Lemma 3.1, Lemma 5.2 and Proposition 3.7, the proof of Theorem
5.8 in [17] can be copied word-by-word. �

6. Uniform Local E-connectedness

In the sequel, let E be a class of stratified L-limit spaces. For δ ∈ L, a set of
subsets B ⊆ P (X ×X) is called a δ-base of Φ ∈ FsL(X ×X) if for all U ⊆ X ×X
with Φ(>U ) ≥ δ there is B ∈ B such that B ⊆ U and Φ(>B) ≥ δ. For a subset
B ⊆ X ×X and x ∈ X we denote B(x) = {y ∈ X : (y, x) ∈ B}. It is not difficult
to see that then >B(·, x) = >B(x).

Definition 6.1. We call (X,Λ) ∈ |SL-UCS| uniformly locally E-connected if for all
α ∈ L, for all Φ ∈ FsL(X×X) with Λ(Φ) ≥ α there is Ψ ∈ FsL(X×X), Ψ ≤ Φ∧ [∆],
Λ(Ψ) ≥ α with a δ-base B such that for all x ∈ X the sets B(x) with B ∈ B are
E-connected (in (X, lim(Λ))), whenever ⊥ < δ ≤ α.

For L = {0, 1} this definition is slightly stronger than the definition of uniform
local connectedness in Vanio [24]. In [24] it is only demanded that Ψ ≤ Φ. Our
stronger requirement Ψ ≤ Φ ∧ [∆] comes in handy lateron.

A stratified L-uniform space (X,U) is called uniformly locally E-connected if
(X,ΛU ) is uniformly locally E-connected.

Proposition 6.2. Let (X,U) ∈ |SL-UNIF |. Then (X,U) is uniformly locally E-
connected if and only if for all α ∈ L, Uα has a δ-base B such that the sets B(x)
with B ∈ B are E-connected for all x ∈ X, whenever ⊥ < δ ≤ α.

Proof. Let first (X,U) be uniformly locally E-connected. Then ΛU (Uα) ≥ α. Hence
there is Ψ ≤ Uα∧ [∆] ≤ Uα with ΛU (Ψ) ≥ α and a δ-base B such that the sets B(x)
with B ∈ B are E-connected for all x ∈ X whenever ⊥ < δ ≤ α. From Λ(Ψ) ≥ α
we conclude that Ψ ≥ Uα and hence Ψ = Uα has a δ-base as desired whenever
⊥ < δ ≤ α.

For the converse, let ΛU (Φ) ≥ α. Then Φ ≥ Uα and as always Uα ≤ [∆], we have
Uα ≤ Φ ∧ [∆]. As ΛU (Uα) ≥ α the claim follows if we choose Ψ = Uα. �

Proposition 6.3. If (X,Λ) ∈ |SL-UCS| is uniformly locally E-connected, then
(X, lim(Λ)) is locally E-connected.

Proof. Let α ∈ L, F ∈ FsL(X) and let x ∈ X such that lim(Λ)F(x) ≥ α. Then
Λ(F × [x]) ≥ α. Hence there is Ψ ∈ FsL(X × X) such that Ψ ≤ (F × [x]) ∧ [∆],
Λ(Ψ) ≥ α and, if ⊥ < δ ≤ α, Ψ has a δ-base B with B(x) E-connected for all
x ∈ X and all B ∈ B. Then Ψ(x) ∈ FsL(X). From Lemma 2.5 we conclude
that Ψ(x) ≤ F ∧ [x]. We show that Ψ(x) has a δ-base of E-connected sets. If
U ⊆ X such that Ψ(x)(>U ) ≥ δ, then Ψ(TU×{x}) = (Ψ(x) × [x])(>U × >{x}) ≥
Ψ(x)(>U )∧[x](>{x}) ≥ δ. Hence there is B ∈ B, B ⊆ U×{x} such that Ψ(>B) ≥ δ.
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Clearly B(x) ⊆ U and Ψ(x)(>B(x)) ≥ Ψ(>B) ≥ δ because >B(·, x) = >B(x).
Therefore B(x) = {B(x) : B ∈ B} is the required δ-base for Ψ(x). �

Proposition 6.4. Let (X,Λ), (X ′,Λ′) ∈ |SL-UCS| and let f : (X,Λ) −→ (X ′,Λ′)
be a uniform isomorphism (i.e. f is bijective and both f and f−1 are uniformly
continuous). If (X,Λ) is uniformly locally E-connected, then so is (X ′,Λ′).

Proof. Let α ∈ L and Φ′ ∈ FsL(X ′ × X ′) and Λ′(Φ′) ≥ α. Then, by uniform
continuity of f−1, Λ((f−1 × f−1)(Φ′)) ≥ α. Hence there is Ψ ≤ (f−1 × f−1)(Φ′) ∧
[∆X ] with Λ(Ψ) ≥ α which has, for ⊥ < δ ≤ α, a δ-base B such that for all
x ∈ X and all B ∈ B, B(x) is E-connected. By uniform continuity of f , then
Λ′((f × f)(Ψ)) ≥ α and (f × f)(Ψ) ≤ (f × f)((f−1 × f−1)(Φ)) ∧ [(f × f)(∆X)] =
Φ∧ [∆X′ ]. We show that (f ×f)(Ψ) has a δ-base B′ with B′(x′) E-connected for all
x′ ∈ X ′ and all B′ ∈ B′. Let (f × f)(Ψ)(>U ) ≥ δ. Then Ψ(>(f−1×f−1)(U)) ≥ δ and

hence there isB ⊆ (f−1×f−1)(U) with Ψ(>B) ≥ δ, B(x) E-connected for all x ∈ X.
It follows that B′ = (f × f)(B) ⊆ U and (f × f)(Ψ)(>(f×f)(B)) ≥ Ψ(>B) ≥ δ.

For x′ ∈ X ′ we have that (f × f)(B)(x′) = f(B(f−1(x′))) is E-connected, as f
is continuous as a mapping from (X, lim(Λ)) to (X ′, lim(Λ′)) and B(f−1(x′)) is
E-connected. �

We now look at the behaviour of uniform local E-connectedness with respect to
quotient spaces and product spaces. First we need two lemmas.

Lemma 6.5. Let (X, lim) ∈ |SL-LIM | and let A,B ⊆ X × X with ∆X ⊆ A. If
B(x) and A(z) are E-connected for all z ∈ X, then (A ◦B)(x) is E-connected.

Proof. This proof goes back to Vainio [24]. It is not difficult to show that (A ◦
B)(x) =

⋃
z∈B(x)A(z). As ∆X ⊆ A, we moreover conlcude B(x) ⊆ (A ◦ B)(x)

and hence (A ◦ B)(x) =
⋃
z∈B(x)(A(z) ∪ B(x)). Again, as ∆X ⊆ A, we conclude

that A(z) ∩ B(x) 6= ∅ and hence A(z) ∪ B(x) is E-connected for all z ∈ B(x).
Consequently also (A ◦B)(x) =

⋃
z∈B(x)A(z) is E-connected. �

Lemma 6.6. Let B ⊆ X × X, x ∈ X and let f : X −→ Y be a mapping. Then
(f × f)(B)(f(x)) =

⋃
z:f(z)=f(x) f(B(z)). Moreover, if ∆X ⊆ B, then f(x) ∈

f(B(z)) whenever f(z) = f(x).

Proof. Let first y ∈ f(B(z)) and f(z) = f(x). Then there is b ∈ X such that
(b, z) ∈ B and f(b) = y. Hence (y, f(x)) = (f(b), f(z)) ∈ (f × f)(B), i.e. y ∈
(f×f)(B)(f(x)). Conversely, let y ∈ (f×f)(B)(f(x)). Then (y, f(x)) ∈ (f×f)(B).
Hence there is (a, b) ∈ B such that f(a) = y and f(b) = f(x). We conclude
a ∈ B(b) and, consequently, y = f(a) ∈ f(B(b)). From f(b) = f(x) we conclude
y ∈

⋃
z:f(z)=f(x) f(B(z)). �

Theorem 6.7. Let the lattice L be completely distributive and let ⊥ ∈ L be prime.
Let (X,Λ) ∈ |SL-UCS| be uniformly locally E-connected and let f : X −→ X ′ be
surjective. Then the quotient space (X ′,Λf ) is uniformly locally E-connected.

Proof. Let α ∈ L and let Λf (Φ′) ≥ α. Let β�α. Then there are Φβk1, ...,Φ
β
knk

(k =

1, 2, ...,m) with
∧m
k=1(f×f)(Φβk1)◦· · ·◦(f×f)(Φβknk) ≤ Φ′ such that

∧m
k=1 Λ(Φβk1)∧
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... ∧ Λ(Φβknk) ≥ β. For each Φβkl there is Ψβ
kl ≤ Φβkl ∧ [∆X ] such that Λ(Ψβ

kl) ≥ β

and which has, for ⊥ < δ ≤ β, a δ-base Bkl such that B(x) is E-connected for each

x ∈ X and each B ∈ Bkl. In particular, (f × f)(Ψβ
kl) ≤ (f × f)([∆X ]) = [∆X′ ],

as f is surjective. We define Ψβ =
∧m
k=1(f × f)(Ψβ

k1) ◦ · · · ◦ (f × f)(Ψβ
knk

). Then

Ψβ ≤ Φ ∧ [∆X′ ] and Λf (Ψβ) ≥ β, as f is uniformly continuous.
We show that Ψβ also has, for ⊥ < δ ≤ α, a δ-base Bβ with B(x′) E-connected

for all x′ ∈ X ′ and all B ∈ Bβ . Let Ψ(>B) ≥ δ. Then (f × f)(Ψβ
kl)(>B) =

Ψβ
kl(>(f×f)←(B)) ≥ δ for all k = 1, ...,m and l = 1, ..., nk. Hence there are sets

Cβkl ⊆ (f × f)←(B) with Ψβ
kl(>Ckl) ≥ δ. From [∆X ] ≥ Ψβ

kl we conclude that

∆X ⊆ Cβkl and, by the surjectivity of f , then ∆X′ ⊆ (f × f)(Cβkl) ⊆ B. Hence

δ ≤ (f × f)(Ψβ
k1) ◦ · · · ◦ (f × f)(Ψβ

knk
)(>(f×f)(Ck1) ◦ · · · ◦ >(f×f)(Cknk )) = (f ×

f)(Ψβ
k1)◦· · ·◦(f×f)(Ψβ

knk
)(>(f×f)(Ck1)◦···◦(f×f)(Cknk )). By Lemma 6.5 and Lemma

6.6, the sets ((f × f)(Ck1) ◦ · · · ◦ (f × f)(Cknk))(x′) are E-connected for all x′ ∈ X ′
and, as all these sets contain ∆X′ as a subset, so are Dβ(x′) = (

⋃m
k=1(f ×f)(Ck1)◦

· · · ◦ (f × f)(Cknk)))(x′) and Ψβ(>Dβ ) ≥ δ.
We define now Ψ =

∨
β�α Ψβ . This stratified L-filter exists and is ≤ Φ ∧ [∆X′ ].

Moreover, Λf (Ψ) ≥ Λf (Ψβ) ≥ β for all β�α, and hence Λf (Ψ) ≥ α. We show that
for ⊥ < δ ≤ α, Ψ has a δ-base B with B(x′) E-connected for all x′ ∈ X ′ and all
B ∈ B. Let Ψ(>B) ≥ δ�η. Then there are βη1 , ..., β

η
n�α and Bη1 , ..., B

η
n ⊆ X ′×X ′

such that Bη1 ∩...∩Bηn ⊆ B and Ψβη1 (>Bη1 )∧...∧Ψβηn(>Bηn) ≥ η. We have seen above

that each Ψβηl has a suitable η-base and hence there are Cη1 ⊆ B
η
1 , ..., C

η
n ⊆ Bηn such

that Ψβη1 (>Cη1 ) ≥ η, ...,Ψβηn(>Cηn) ≥ η and Cη1 (x′), ..., Cηn(x′) are E-connected for

all x′ ∈ X ′. Again, ∆X′ ⊆ Cη1 , ..., Cηn. We define C1 =
⋃
η�δ C

η
1 , ..., Cn =

⋃
η�δ C

η
n.

Then, for l = 1, ..., n we have Ψβηl (>Cl) ≥ η for all η � δ, i.e. Ψβηl (>Cl) ≥ δ and
Cl(x

′) is E-connected for all x′ ∈ X ′. The set C = C1 ∪ ... ∪ Cn ⊆ B satisfies that

C(x′) is E-connected for all x′ ∈ X ′ and Ψ(>C) ≥ Ψβη1 (>C1
) ∧ ... ∧Ψβηn(>Cn) ≥ δ.

Hence Ψ has a δ-base as desired and (X ′,Λf ) is uniformly locally E-connected. �

Theorem 6.8. Let the lattice L be completely distributive and let E be a class of
T2-spaces. Let (Xi,Λi) ∈ |SL-UCS| for all i ∈ J . If all (Xi,Λi) are uniformly
locally E-connected and all but finitely many (Xi, lim(Λi)) are E-connected, then
the product space (

∏
i∈J Xi, π − Λ) is uniformly locally E-connected.

Proof. We denote X =
∏
i∈J Xi. Let α ∈ L and let Φ ∈ FsL(X × X) such that

π − Λ(Φ) ≥ α. Then, for all i ∈ J , Λi((pi × pi)(Φ)) ≥ α and hence, for each
i ∈ J , there is Ψi ∈ FsL(Xi) with Ψi ≤ (pi × pi)(Φ) ∧ [∆Xi ] and Λi(Ψi) ≥ α which
has, for ⊥ < δ ≤ α, a δ-base Bi such that Bi(xi) is E-connected for each Bi ∈ Bi
and each xi ∈ Xi. We define Ψ =

⊗
i∈J Ψi ∈ FsL(X × X). Then π − Λ(Ψ) =∧

i∈J Λi((pi × pi)(
⊗

i∈J Ψi)) ≥
∧
i∈J Λi(Ψi) ≥ α and Ψ ≤

⊗
i∈J((pi × pi)(Φ)) ≤ Φ

and Ψ ≤
⊗

i∈J [∆Xi ] ≤ [∆X ], i.e. Ψ ≤ Φ ∧ [∆X ]. We show that, for ⊥ < δ ≤ α,
Ψ has a δ-base B with B((xi)) E-connected for all B ∈ B and all (xi) ∈ X. Let
Ψ(>B) ≥ δ and let η�δ. We may assume η > ⊥. Then

∏
i∈J Ψi(>ν←(B))�η and by

Lemma 2.1 there are Uηi ⊆ Xi×Xi, U
η
i 6= Xi×Xi for only finitely many i ∈ J with
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i∈J U

η
i ⊆ ν←(B) and

∧
i∈J Ψi(>Uηi ) ≥ η. Hence, for all i ∈ J , Ψi(>Uηi ) ≥ η and

there are sets Bηi ⊆ Uηi such that Bηi (xi) is E-connected for all xi ∈ Xi. We may
assume that for all but finitely many i ∈ J , Bηi = Xi×Xi. Moreover we have ∆Xi ⊆
Bηi for all i ∈ J . It is not difficult to show that

∏
i∈J B

η
i (xi) = ν(

∏
i∈J B

η
i )((xi))

and, as E consists of T2-spaces, these sets are E-connected. Moreover, we have
ν(
∏
i∈J B

η
i ) ⊆ ν(

∏
i∈J U

η
i ) ⊆ ν(ν←(B)) ⊆ B and we have

⊗
i∈J Ψi(ν(>∏

i∈J B
η
i
)) ≥∏

i∈J Ψi(>∏
i∈J B

η
i
) ≥

∧
i∈J Ψi(>Bηi ) ≥ η. From ∆Xi ⊆ Bηi we conclude that

∆X ⊆ ν(
∏
i∈J B

γ
i ). Hence, if we define B =

⋃
η�δ ν(

∏
i∈J B

η
i ), then B((xi)) =⋃

η�δ ν(
∏
i∈J B

η
i )((xi)) is E-connected. As Ψ(>B) ≥ η for all η � δ, we obtain

Ψ(>B) ≥ δ and the proof is complete. �

7. Conclusions

We extended in this paper Preuß’ E-connectedness to stratified L-uniform con-
vergence spaces and studied a suitable definition of uniform local E-connectedness
for such spaces, generalizing a definition and results from Vainio [24]. The preser-
vation of local E-connectedness under products (even for L = {0, 1}) has not been
shown before.

In the theory of classical uniform convergence spaces there is a further connect-
edness notion that plays a role in fixed point theorems, see Kneis [18]. Generalizing
a definition from [18] we call a stratified L-uniform convergence space well-chained
if for all x, y ∈ X there is Φxy ∈ FsL(X ×X) such that for N ⊆ X ×X, there is a
natural number n with (x, y) ∈ Nn whenever Λ(Φxy) ≤ Φxy(>N ). For L = {0, 1}
this definition coincides with the definition given by Kneis [18]. In SL-UNIF , then
(X,U) is well-chained if and only if it is strongly uniformly connected. In general,
we only have that a well-chained space (X,Λ) ∈ |SL-UCS| is strongly uniformly
connected. This can be seen with Theorem 4.6. It would be interesting to know if
the class WC of well-chained uniform convergence spaces coincides with the class
UCE of uniformly E-connected spaces for a suitable class E. The following result
sheds some light into this question. We call a space (X,Λ) totally unchained if the
only well-chained sets A ⊆ X (i.e. well-chained subspaces (A,Λ|A)) are one-point
sets. For instance, the space ({0, 1},Λsδ) is totally unchained.

Lemma 7.1. We have WC ⊆ UCE if and only if all spaces in E are totally
unchained.

Proof. Let WC ⊆ UCE and let (E,ΛE) ∈ E and A ⊆ E be well-chained. Then the
inclusion mapping iA : A −→ E is uniformly continuous and hence constant, i.e.
A is a one-point set. Conversely, let (X,Λ) be well-chained and let f : (X,Λ) −→
(E,ΛE) be uniformly continuous. It is not difficult to see that then f(X) ⊆ E is
well-chained too and hence, by assumption, f(X) = {a}, i.e. f is constant. �
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[20] G. Preuß, E-Zusammenhängende Räume, Manuscripta Mathematica, 3 (1970), 331–342.

[21] G. Preuß, Trennung und Zusammenhang, Monatshefte für Mathematik, 74(1970), 70–87.
[22] W. W. Taylor, Fixed-point theorems for nonexpansive mappings in linear topological spaces,

J. Math. Anal. Appl., 40 (1972), 164–173.

[23] R. Vainio, A note on products of connected convergence spaces, Acta Acad. Aboensis, Ser.
B, 36(2) (1976), 1–4.

[24] R. Vainio, The locally connected and the uniformly locally connected coreflector in general

convergence theory, Acta Acad. Aboensis, Ser. B, 39(1) (1979), 1–13.
[25] R. Vainio, On connectedness in limit space theory, in: Convergence structures and applica-

tions II, Abhandlungen der Akad. d. Wissenschaften der DDR, Berlin (1984), 227–232.
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UNIFORM CONNECTEDNESS AND UNIFORM LOCAL 
CONNECTEDNESS FOR LATTICE-VALUED UNIFORM 

CONVERGENCE SPACES 
 

G. JAGER 
 

  همبندي يكنواخت وهمبندي موضعي يكنواخت براي فضاهاي 
    همگراي يكنواخت شبكه مقدار

 
βهمبندي  - Eما مفهوم  .دهيچك  Preuي همگراي يكنواخت شبكه مقدار و را براي رسته فضاها

مرتبط است اگر تنها توابع  - Eيك فضا بطور يكنواخت . فضاهاي يكنواخت شبكه مقداربه كار مي بريم
ما نظريه اصلي براي مجموعه . توابع ثابت باشند Eمتصل يكنواخت از يك فضا به فضاي ديگر در خانواده 

موضعي را تعريف و  همبند - Eبعلاوه ، . مي دهيم ، از جمله قضيه حاصلضرب را گسترش همبند - Eهاي 
مقدار  –بررسي مي كنيم ، و يك تعريف كلاسيك از نظريه فضاهاي همگرا يكنواخت را به حالت شبكه 

بخصوص ، نشان داده شده است كه اگر شبكه زمينه كاملاً توزيعپذير باشد، فضاي خارج . تعميم مي دهيم
 - Eموضعي و حاصلضربهاي  فضاهاي  بطور يكنواخت  مبنده - Eقسمتي يك فضاي بطور يكنواخت 

  . موضعي هستند همبند - Eموضعي، بطور يكنواخت  همبند
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