UNIFORM CONNECTEDNESS AND UNIFORM LOCAL CONNECTEDNESS FOR LATTICE-VALUED UNIFORM CONVERGENCE SPACES

G. JÄGER

ABSTRACT. We apply Preuß' concept of \mathbb{E} -connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly \mathbb{E} -connected if the only uniformly continuous mappings from the space to a space in the class \mathbb{E} are the constant mappings. We develop the basic theory for \mathbb{E} -connected sets, including the product theorem. Furthermore, we define and study uniform local \mathbb{E} -connectedness, generalizing a classical definition from the theory of uniform convergence spaces to the lattice-valued case. In particular it is shown that if the underlying lattice is completely distributive, the quotient space of a uniformly locally \mathbb{E} -connected space and products of locally uniformly \mathbb{E} -connected spaces are locally uniformly \mathbb{E} -connected.

1. Introduction

Connectedness was first defined by G. Cantor in [2]. In the more modern setting of metric spaces, it can be expressed as follows. A metric space (X,d) is connected if for all $\epsilon > 0$ and all $x, y \in X$ there are finitely many points $x = t_1, t_2, ..., t_n = y$ such that $d(t_k, t_{k+1}) \leq \epsilon$ for all k = 1, 2, ..., n-1. This notion bears nowadays the name well-chainedness or chain-connectedness. It was shown later, that for bounded, closed subsets, this definition is equivalent to the requirement that the space cannot be separated into two non-empty, disjoint closed subsets. The latter characterization does not need a metric and was subsequently considered as the "proper" definition of connectedness in topology, see e.g. [8]. Cantor's concept reappeared after the introduction of uniform spaces. A uniform space (X,\mathcal{U}) is well-chained if for all $x, y \in X$ and all $U \in \mathcal{U}$, there is a natural number n such that $(x,y) \in U^n$, see e.g. [22]. It was shown in [19] that a uniform space is well-chained if and only if each uniformly continuous mapping from (X,\mathcal{U}) into the discrete two-point uniform space is constant. (The latter is called uniform connectedness in [19].) It is well-known that, similarly, a topological space is connected if each continuous mapping into the discrete two-point topological space is constant. These characterizations were subsequently generalized by Preuß [20, 21] and the concept of \mathbb{E} -connectedness. A (uniform, resp. topological) space X is \mathbb{E} -connected if, for

Received: July 2015; Revised: January 2016; Accepted: February 2016

 $Key\ words\ and\ phrases:\ L$ -topology, L-uniform convergence space, Uniform connectedness, Local connectedness.

each (uniform, resp. topological) space E in \mathbb{E} , the only (continuous resp. uniformly continuous) mappings from X to E are the constant ones.

In the realm of (uniform) convergence spaces, Vainio [23, 24, 25] developed the theory of connectedness along Preuß' lines. He also introduced a notion of local connectedness [24]. Also Gähler [5] contributed to the theory. For uniform convergence spaces, Kneis [18] generalized Cantor's connectedness in order to prove a fixed point theorem, generalizing a similar result by Taylor [22] from uniform spaces to uniform convergence spaces.

In this paper, we use Preuß' concept of \mathbb{E} -connectedness and apply it to lattice-valued uniform convergence spaces. We develop the basic theory for uniformly \mathbb{E} -connected sets. Further, we define a suitable notion of uniform local \mathbb{E} -connectedness, generalizing Vainio's approach [24] to the lattice-valued case.

The paper is organised as follows. In the second section, we provide the necessary notation, definitions and results on lattices, lattice-valued sets and lattice-valued filters needed later on. Section 3 collects the definitions and results regarding lattice-valued uniform convergence spaces and lattice-valued limit spaces. Section 4 discusses the concepts of uniform \mathbb{E} -connectedness and Section 5 then collects the results about uniformly \mathbb{E} -connected sets. Section 6 is devoted to uniform local \mathbb{E} -connectedness and in the last section, we finally draw some conclusions.

2. Preliminaries

We consider in this paper frames, i.e. complete lattices L (with bottom element \bot and top element \top) for which the infinite distributive law $\bigvee_{j \in J} (\alpha \land \beta_j) = \alpha \land \bigvee_{j \in J} \beta_j$ holds for all $\alpha, \beta_j \in L$ $(j \in J)$. In a frame L, we can define an implication operator by $\alpha \to \beta = \bigvee \{ \gamma \in L : \alpha \land \gamma \leq \beta \}$. This implication is then right-adjoint to the meet operation, i.e. we have $\delta \leq \alpha \to \beta$ iff $\alpha \land \delta \leq \beta$. A complete lattice L is completely distributive if the following distributive laws are true.

$$(CD1) \bigvee_{j \in J} \left(\bigwedge_{i \in I_j} \alpha_{ji} \right) = \bigwedge_{f \in \prod_{j \in J} I_j} \left(\bigvee_{j \in J} \alpha_{jf(j)} \right),$$

$$(CD2) \bigwedge_{j \in J} \left(\bigvee_{i \in I_j} \alpha_{ji} \right) = \bigvee_{f \in \prod_{j \in J} I_j} \left(\bigwedge_{j \in J} \alpha_{jf(j)} \right).$$

It is well known that, in a complete lattice, (CD1) and (CD2) are equivalent. In any complete lattice we can define the wedge-below relation $\alpha \lhd \beta$ if for all subsets $D \subseteq L$ such that $\beta \leq \bigvee D$ there is $\delta \in D$ such that $\alpha \leq \delta$. Then $\alpha \leq \beta$ whenever $\alpha \lhd \beta$ and $\alpha \lhd \bigvee_{j \in J} \beta_j$ iff $\alpha \lhd \beta_i$ for some $i \in J$. In a completely distributive lattice we have $\alpha = \bigvee \{\beta : \beta \lhd \alpha\}$ for any $\alpha \in L$. An element $\alpha \in L$ in a lattice is called prime if $\beta \land \gamma \leq \alpha$ implies $\beta \leq \alpha$ or $\gamma \leq \alpha$.

For notions from category theory, we refer to the textbook [1].

For a frame L and a set X, we denote the set of all L-sets $a, b, c, \ldots : X \longrightarrow L$ by L^X . We define, for $\alpha \in L$ and $A \subseteq X$, the L-set α_A by $\alpha_A(x) = \alpha$ if $x \in A$ and $\alpha_A(x) = \bot$ else. In particular, we denote the constant L-set with value $\alpha \in L$ by

 α_X and \top_A is the characteristic function of $A \subseteq X$. The operations and the order are extended pointwisely from L to L^X . For $a \in L^X$ we define $[a > \bot] = \{x \in X : a(x) > \bot\}$.

For $a, b \in L^{X \times X}$ we define $a^{-1} \in L^{X \times X}$ by $a^{-1}(x, y) = a(y, x)$ and $a \circ b \in L^{X \times X}$ by $a \circ b(x, y) = \bigvee_{z \in X} (a(x, z) \wedge b(z, y))$, for all $(x, y) \in X \times X$, see [12]. Then, for $A, B \subseteq X \times X$, $(\top_A)^{-1} = \top_{A^{-1}}$ with $A^{-1} = \{(x, y) : (y, x) \in A\}$ and $\top_A \circ \top_B = \top_{A \circ B}$, where $A \circ B = \{(x, y) : \text{there is } z \in X \text{ s.t. } (x, z) \in A, (z, y) \in B\}$. Further, we denote $\Delta_X = \{(x, x) : x \in X\}$.

A mapping $\mathcal{F}: L^X \longrightarrow L$ is called a $stratified\ L$ -filter on X [9] if (LF1) $\mathcal{F}(\top_X) = \mathbb{T}$ and $\mathcal{F}(\bot_X) = \bot$, (LF2) $\mathcal{F}(a) \le \mathcal{F}(b)$ whenever $a \le b$, (LF3) $\mathcal{F}(a) \land \mathcal{F}(b) \le \mathcal{F}(a \land b)$ and (LFs) $\mathcal{F}(\alpha_X) \ge \alpha$ for all $a, b \in L^X$ and all $\alpha \in L$. A typical example is, for $x \in X$, the point L-filter [x] defined by [x](a) = a(x) for all $a \in L^X$. We denote the set of all stratified L-filters on X by $\mathcal{F}_L^s(X)$ and order it by $\mathcal{F} \le \mathcal{G}$ if for all $a \in L^X$ we have $\mathcal{F}(a) \le \mathcal{G}(a)$. For a family of stratified L-filters \mathcal{F}_i $(i \in J)$, the infimum in the order is given by $(\bigwedge_{i \in J} \mathcal{F}_i)(a) = \bigwedge_{i \in J} \mathcal{F}_i(a)$ for all $a \in L^X$. The supremum, however, only exists if $\mathcal{F}_{i_1}(a_1) \land \mathcal{F}_{i_2}(a_2) \land \dots \land \mathcal{F}_{i_n}(a_n) = \bot$ whenever $a_1 \land a_2 \land \dots \land a_n = \bot_X$. In this case the supremum is given by $(\bigvee_{i \in J} \mathcal{F}_i)(a) = \bigvee \{\mathcal{F}_{i_1}(a_1) \land \mathcal{F}_{i_2}(a_2) \land \dots \land \mathcal{F}_{i_n}(a_n) : a_1 \land a_2 \land \dots \land a_n \le a\}$, see [9]. Consider now a mapping $f: X \longrightarrow Y$. For $\mathcal{F} \in \mathcal{F}_L^s(X)$ then $f(\mathcal{F}) \in \mathcal{F}_L^s(Y)$ is defined by $f(\mathcal{F})(b) = \mathcal{F}(f^{\leftarrow}(b))$ with $f^{\leftarrow}(b) = b \circ f$ for $b \in L^X$, [9]. For $\mathcal{G} \in \mathcal{F}_L^s(Y)$ we define $f^{\leftarrow}(\mathcal{G})(a) = \bigvee \{\mathcal{G}(b): f^{\leftarrow}(b) \le a\}$. If $\mathcal{G}(b) = \bot$ whenever $f^{\leftarrow}(b) = \bot_X$, then $f^{\leftarrow}(\mathcal{G})(a) = \bigvee \{\mathcal{G}(b): f^{\leftarrow}(b) \le a\}$. If $\mathcal{G}(b) = \bot$ whenever $f^{\leftarrow}(b) = \bot_X$, then $f^{\leftarrow}(\mathcal{G})(a) \in \mathcal{F}_L^s(X)$, see [10]. We will need the following two examples later. Firstly, if $M \subseteq X$ we define $i_M: M \longrightarrow X$, $i_M(x) = x$. In case of existence, we denote, for $\mathcal{F} \in \mathcal{F}_L^s(X)$, $\mathcal{F}_M = i_M^{\leftarrow}(\mathcal{F})$. Secondly, for sets X_i $(i \in J)$, we denote the projections $p_j: \prod_{i \in J} X_i \longrightarrow X_j$ and define the $stratified\ L$ -product filter $\prod_{i \in J} \mathcal{F}_i = \bigvee_{i \in J} p_i^{\leftarrow}(\mathcal{F}_i)$, see [3, 10]. The following result follows directly from the definition.

Lemma 2.1. Let
$$\mathcal{F}_i \in \mathcal{F}_L^s(X_i)$$
 for $i \in J$. Then, for $U \subseteq \prod_{i \in J} X_i$,
$$\prod_{i \in J} \mathcal{F}_i(\top_U) = \bigvee \{ \bigwedge_{i \in J} \mathcal{F}_i(\top_{U_i}) : \prod_{i \in J} U_i \subseteq U \text{ and only finitely many } U_i \neq X_i \}.$$

We denote stratified L-filters on $X \times X$ by Φ, Ψ, \dots In [12] we defined the following constructions. For $\Phi, \Psi \in \mathcal{F}_L^s(X \times X)$ we define $\Phi^{-1} \in \mathcal{F}_L^s(X \times X)$ by $\Phi^{-1}(a) = \Phi(a^{-1})$ for all $a \in L^{X \times X}$. We further define $\Phi \circ \Psi : L^{X \times X} \longrightarrow L$ by $\Phi \circ \Psi(a) = \bigvee \{\Phi(b) \land \Psi(c) : b \circ c \leq a\}$. Then $\Phi \circ \Psi \in \mathcal{F}_L^s(X \times X)$ if and only if $b \circ c = \bot_{X \times X}$ implies $\Phi(b) \land \Psi(c) = \bot$. In this case we also say that $\Phi \circ \Psi$ exists. Lastly, we denote $[\Delta_X] = \bigwedge_{x \in X} [(x, x)]$.

Lemma 2.2. Let $\bot \in L$ be prime and let $a, b \in L^X$ and $B \subseteq X$. If $a \circ b \leq \top_B$ then $\top_{[a>\bot]} \circ \top_{[b>\bot]} \leq \top_B$.

Proof. The proof is easy and left for the reader.

Corollary 2.3. Let $\bot \in L$ be prime, let $\Phi, \Psi \in \mathcal{F}_L^s(X \times X)$ and let $B \subseteq X \times X$. Then $\Phi \circ \Psi(\top_B) = \bigvee \{\Phi(\top_C) \land \Psi(\top_D) : C \circ D \subseteq B\}$.

Lemma 2.4. Let $\Psi \in \mathcal{F}_L^s(X \times X)$ and let $x \in X$. We define $\Psi(x) : L^X \longrightarrow L$ by $\Psi(x)(a) = \bigvee \{\Psi(\psi) : \psi(\cdot, x) \leq a\}$. Then $\Psi(x) \in \mathcal{F}_L^s(X)$ if and only if $\Psi(\psi) = \bot$ whenever $\psi(\cdot, x) = \bot_X$.

Proof. We omit the straightforward proof and only mention that the condition is used to ensure $\Psi(x)(\perp_X) = \perp$.

We note that if $\Psi \leq [\Delta_X]$, then $\psi(\cdot, x) = \bot_X$ implies $\Psi(\psi) \leq \bigwedge_{y \in X} \psi(y, y) \leq \psi(x, x) = \bot$. Hence, in this case, $\Psi(x) \in \mathcal{F}_L^s(X)$.

Lemma 2.5. Let $\Phi, \Psi \in \mathcal{F}_L^s(X \times X)$, $\mathcal{F} \in \mathcal{F}_L^s(X)$ and let $x \in X$ and $\Phi(x), \Psi(x) \in \mathcal{F}_L^s(X)$. The following hold.

- (1) If $\Phi \leq \Psi$, then $\Phi(x) \leq \Psi(x)$.
- (2) $(\Phi \wedge \Psi)(x) \leq \Phi(x) \wedge \Psi(x)$.
- (3) $[\Delta_X](x) = [x].$
- (4) $\Psi = \Psi(x) \times [x]$.
- (5) $(\mathcal{F} \times [x])(x) \leq \mathcal{F}$.

Proof. (1) and (2) are easy and left for the reader.

- (3) We have $[\Delta_X](x)(a) = \bigvee \{ \bigwedge_{y \in X} \phi(y, y) : \phi(\cdot, x) \leq a \} \leq \bigvee \{ \phi(x, x) : \phi(\cdot, x) \leq a \} \leq a(x) = [x](a)$. On the other hand, for $a \in L^X$, we define $\phi_a(u, v) = \top$ if $v \neq x$ and $\phi_a(u, v) = a(u)$ if v = x. Then $\phi_a(\cdot, x) = a$ and hence $[\Delta](x)(a) \geq \bigvee_{y \in X} \phi_a(y, y) = \phi_a(x, x) = a(x) = [x](a)$.
- $\begin{array}{l} (4) \ \text{For} \ \phi \in L^{X \times X} \ \text{we have} \ \phi(\cdot, x) \times \top_{\{x\}} \leq \phi \ \text{and hence} \ \Psi(x) \times [x](\psi) = \\ \bigvee \{\Psi(x)(c) \wedge [x](d) \ : \ c \times d \leq \psi\} \geq \bigvee \{\Psi(\phi) \wedge d(x) \ : \ \phi(\cdot, x) \times d \leq \psi\} \geq \\ \Psi(\psi) \wedge \top_{\{x\}}(x) = \Psi(\psi). \ \text{For the converse inequality, we note that} \ c \times d \leq \psi \ \text{and} \\ \phi(\cdot, x) \leq c \ \text{implies} \ \phi(\cdot, x) \times d \leq \psi. \ \text{Hence it follows with (LFs) that if} \ c \times d \leq \psi, \\ \text{then} \ \Psi(x)(c) \wedge d(x) \leq \bigvee \{\Psi(\phi \wedge (d(x))_X) \ : \ \phi(\cdot, x) \leq c\} \leq \bigvee \{\Psi(\phi \wedge (d(x))_X) \ : \\ \phi \wedge (d(x))_X \leq \psi\} \leq \Psi(\psi). \ \text{Hence} \ (\Psi(x) \times [x])(\psi) = \bigvee \{\Psi(x)(c) \wedge [x](d) \ : \ c \times d \leq \psi\} \leq \Psi(\psi). \end{array}$
- (5) If $\phi(\cdot, x) \leq a$ then if $c \times d \leq \phi$ we have, for all $y \in X$, that $c(y) \wedge d(x) \leq \phi(y, x) \leq a(y)$. Hence it follows $(\mathcal{F} \times [x])(\phi) \leq \{\mathcal{F}(c \wedge (d(x))_X) : c \wedge (d(x))_X \leq a\} \leq \mathcal{F}(a)$ and therefore $(\mathcal{F} \times [x])(x)(a) = \bigvee \{(\mathcal{F} \times [x])(\phi) : \phi(\cdot, x) \leq a\} \leq \mathcal{F}(a)$. \square

We will later need a further construction. We describe the situation. Let X_i be sets $(i \in J)$. We denote the projections $\pi_j: \prod_{i \in J} (X_i \times X_i) \longrightarrow X_j \times X_j$, $((x_i,y_i)) \longmapsto (x_j,y_j)$, the mapping $\nu: \prod_{i \in J} (X_i \times X_i) \longrightarrow \prod_{i \in J} X_i \times \prod_{i \in J} X_i$ defined by $\nu((x_i,y_i)) = ((x_i),(y_i))$ and the product of the projections $p_j: \prod_{i \in J} X_i \longrightarrow X_j, p_j \times p_j: \prod_{i \in J} X_i \times \prod_{i \in J} X_i \longrightarrow X_j \times X_j$. Then $(p_j \times p_j) \circ \nu = \pi_j$ for all $j \in J$. For $\Psi_i \in \mathcal{F}^s_L(X_i \times X_i)$, $(i \in J)$ we define

$$\bigotimes_{i \in J} \Psi_i = \nu(\prod_{i \in J} \Psi_i) \in \mathcal{F}_L^s(\prod_{i \in J} X_i \times \prod_{i \in J} X_i).$$

Following Gähler [5], we call $\bigotimes_{i \in J} \Psi_i$ the stratified relation product L-filter of the Ψ_i $(i \in J)$.

Proposition 2.6. Let $\Psi_i \in \mathcal{F}_L^s(X_i \times X_i)$ for $i \in J$ and $X = \prod_{i \in I} X_i$. Let $\Phi \in \mathcal{F}_L^s(X \times X)$. Then

- $\begin{array}{l} (1) \ (p_j \times p_j) (\bigotimes_{i \in J} \Psi_i) \geq \Psi_j; \\ (2) \ \bigotimes_{i \in J} ((p_i \times p_i)(\Phi)) \leq \Phi; \\ (3) \ \bigotimes_{i \in J} [\Delta_{X_i}] \leq [\Delta_{\prod_{i \in J} X_i}]. \end{array}$

Proof. (1) We use $(p_j \times p_j) \circ \nu = \pi_j$. Then $(p_j \times p_j)(\bigotimes_{i \in J} \Psi_i) = \pi_j(\prod_{i \in J} \Psi_i) \ge \Psi_j$.

- (2) It is not difficult to show that for $a \in L^{X \times X}$ and $a_1 \in L^{X_{j_1} \times X_{j_1}},...,a_n \in$ $L^{X_{j_n} \times X_{j_n}} \text{ we have } (p_{j_1} \times p_{j_1})^{\leftarrow}(a_1) \wedge \ldots \wedge (p_{j_n} \times p_{j_n})^{\leftarrow}(a_n) \leq a \text{ whenever } \pi_{j_1}^{\leftarrow}(a_1) \wedge \ldots \wedge \pi_{j_n}^{\leftarrow}(a_n) \leq \nu^{\leftarrow}(a). \text{ Hence } \nu(\prod_{i \in J} (p_i \times p_i)(\Phi))(a) = \bigvee \{\Phi((p_{j_1} \times p_{j_1})^{\leftarrow}(a_1) \wedge \ldots \wedge (p_{j_n} \times p_{j_n})^{\leftarrow}(a_n) \leq \nu^{\leftarrow}(a)\}$ $(p_{j_n} \times p_{j_n})^{\leftarrow}(a_n)) : \pi_{j_1}^{\leftarrow}(a_1) \wedge \dots \wedge \pi_{j_n}^{\leftarrow}(a_n) \leq \nu^{\leftarrow}(a)\} \leq \Phi.$
- (3) For $a \in L^{X \times X}$ and $a_1 \in L^{X_{j_1} \times X_{j_1}}, ..., a_n \in L^{X_{j_n} \times X_{j_n}}$, if $\pi_{j_1}^{\leftarrow}(a_1) \wedge ... \wedge \pi_{j_n}^{\leftarrow}(a_n)((x_i, x_i)) = a_1(x_{j_1}, x_{j_1}) \wedge ... \wedge a_n(x_{j_n}, x_{j_n}) \leq \nu^{\leftarrow}(a)((x_i, x_i)) = a((x_i), (x_i))$, then $\bigwedge_{x_{j_1} \in X_{j_1}} a_1(x_{j_1}, x_{j_1}) \wedge ... \wedge \bigwedge_{x_{j_n} \in X_{j_n}} a_n(x_{j_n}, x_{j_n}) \leq \bigwedge_{(x_i) \in X} a((x_i), (x_i))$. Hence, $\bigotimes_{i \in J} [\Delta_{X_i}](a) = \bigvee \{ [\Delta_{X_{j_1}}](a_1) \wedge ... \wedge [\Delta_{X_{j_n}}](a_n) : \pi_{j_1}^{\leftarrow}(a_1) \wedge ... \wedge \pi_{j_n}^{\leftarrow}(a_n) \leq v^{\leftarrow}(a_n) \leq v^{\leftarrow}(a_n) = v^{\leftarrow}(a_n)$ $\nu^{\leftarrow}(a)\} \leq \bigwedge_{(x_i)\in X} a((x_i), (x_i)) = [\Delta_X](a).$

3. Lattice-valued Uniform Convergence Spaces and Lattice-valued Limit Spaces

Let $X \neq \emptyset$. A mapping $\Lambda : \mathcal{F}_L^s(X \times X) \longrightarrow L$ is called a *stratified L-uniform* convergence structure and the pair (X, Λ) a stratified L-uniform convergence space [3, 12] if for all $x \in X$ and all $\Phi, \Psi \in \mathcal{F}_L^s(X \times X)$,

- (UC1)
- $\begin{array}{ll} \Lambda([(x,x)]) = \top & \forall x \in X; \\ \Phi \leq \Psi & \Longrightarrow & \Lambda(\Phi) \leq \Lambda(\Psi); \end{array}$ (UC2)
- $\Lambda(\Phi) \leq \Lambda(\Phi^{-1});$ (UC3)
- (UC4)
- $\begin{array}{l} \Lambda(\Phi) \wedge \Lambda(\Psi) \leq \Lambda(\Phi \wedge \Psi); \\ \Lambda(\Phi) \wedge \Lambda(\Psi) \leq \Lambda(\Phi \circ \Psi) \text{ whenever } \Phi \circ \Psi \text{ exists.} \end{array}$ (UC5)

A mapping $f:(X,\Lambda) \longrightarrow (X',\Lambda')$, where $(X,\Lambda),(X',\Lambda')$ are stratified Luniform convergence spaces, is called *uniformly continuous* iff $\Lambda(\Phi) \leq \Lambda'((f \times f)(\Phi))$ for all $\Phi \in \mathcal{F}_s^s(X \times X)$. The category SL-UCS has as objects the stratified L-uniform convergence spaces and as morphisms the uniformly continuous mappings. Then SL-UCS is a well-fibred topological construct and has natural function spaces, i.e. SL-UCS is Cartesian closed [12]. In particular, constant mappings are uniformly continuous. We describe the initial constructions. Let $(f_i: X \longrightarrow$ $(X_i, \Lambda_i)_{i \in I}$ be a source. Define for $\Phi \in \mathcal{F}_L^s(X \times X)$ the initial stratified L-uniform convergence structure on X by $\Lambda(\Phi) = \bigwedge_{i \in I} \Lambda_i((f_i \times f_i)(\Phi))$. In particular, we can define subspaces and product spaces.

- Subspace: Let $(X, \Lambda) \in |SL\text{-}UCS|$ and let $T \subseteq X$ and $i_T : T \longrightarrow X$ be the embedding mapping defined by $i_T(x) = x$ for $x \in T$. Then the subspace $(T, \Lambda|_T)$ is defined by $\Lambda|_T(\Phi) = \Lambda((i_T \times i_T)(\Phi))$ for $\Phi \in \mathcal{F}_L^s(T \times T)$.
- Product space: Let $(X_i, \Lambda_i) \in |SL\text{-}UCS|$ for all $i \in J$ and let $X = \prod_{i \in J} X_i$ be the Cartesian product and consider the projections $p_j: X \longrightarrow X_j$. Then

the product space $(X, \pi - \Lambda)$ is defined by $\pi - \Lambda(\Phi) = \bigwedge_{i \in J} \Lambda_i((p_i \times p_i)(\Phi))$ for all $\Phi \in \mathcal{F}_s^s(X \times X)$

all $\Phi \in \mathcal{F}_L^s(X \times X)$. Subspaces and product spaces are well behaved. Let $T_i \subseteq X_i$ and $(X_i, \Lambda_i) \in |SL-UCS|$ for all $i \in J$. We denote $X = \prod_{i \in J} X_i$ and $T = \prod_{i \in J} T_i$ and the projections $p_j : X \longrightarrow X_j$ and $q_j : T \longrightarrow T_j$ and the embeddings $i_T : T \longrightarrow X$ and $i_{T_j} : T_j \longrightarrow X_j$. Then we have $(p_j \times p_j) \circ (i_T \times i_T) = (i_{T_j} \times i_{T_j}) \circ (q_j \times q_j)$. It follows that if we denote the product structure on X w.r.t. the projections p_j by π - Λ_i and the product structure on T w.r.t. the projections q_j and the spaces $(T_i, \Lambda|_{T_i})$ by π - $(\Lambda|_{T_i})$, then we have π - $(\Lambda|_{T_i}) = (\pi$ - $\Lambda_i)|_T$. Moreover, we have the following result.

Lemma 3.1. Let $(X_i, \Lambda_i) \in |SL\text{-}UCS|$ for all $i \in J$ and let $(z_i) \in \prod_{i \in J} X_i$ be fixed. Define the slice $\widetilde{X}_j = \{(x_i) \in \prod_{i \in J} X_i : x_i = z_i \forall i \neq j\} = \prod_{i \in J} T_i$ with $T_i = \{z_i\}$ if $i \neq j$ and $T_j = X_j$. Then $(\widetilde{X}_j, \pi\text{-}\Lambda|_{\widetilde{X}_j})$ is isomorphic to (X_j, Λ_j) .

Proof. We use the notations from above and define $h: \widetilde{X}_j \longrightarrow X_j$ by $h((x_i)) = x_j$. Then $h = p_j \circ i_{\widetilde{X}_j}$ is uniformly continuous. Clearly h is a bijection and its inverse is defined by $h^{-1}(x_j) = (x_i)$ with $x_i = z_i$ for $i \neq j$. Then $q_i \circ h^{-1}(x_j) = z_i$ for $i \neq j$, i.e. $q_i \circ h^{-1}$ is a constant mapping for $i \neq j$. For i = j, we have $q_j \circ h^{-1}(x_j) = x_j$, i.e. it is the identity mapping. Hence all compositions $q_i \circ h^{-1}$ are uniformly continuous and therefore also h^{-1} is uniformly continuous.

In SL-UCS, also final structures exist. They are, however, complicated and we will use only quotient spaces later. Let $(X,\Lambda) \in |SL\text{-}UCS|$ and let $f: X \longrightarrow X'$ be a surjective mapping. We define the following stratified L-uniform convergence structure Λ_f on X'. Let $\Phi' \in \mathcal{F}_L^s(X' \times X')$. Then

structure
$$\Lambda_f$$
 on X' . Let $\Phi' \in \mathcal{F}_L^s(X' \times X')$. Then
$$\Lambda_f(\Phi') = \bigvee \{ \bigwedge_{k=1}^m \Lambda(\Phi_{k1}) \wedge ... \wedge \Lambda(\Phi_{kn_k}) : \bigwedge_{k=1}^m (f \times f)(\Phi_{k1}) \circ \cdots \circ (f \times f)(\Phi_{kn_k}) \leq \Phi' \}.$$

Lemma 3.2. Let $(X, \Lambda) \in |SL\text{-}UCS|$ and let $f: X \longrightarrow X'$ be a surjective mapping. Then $(X', \Lambda_f) \in |SL\text{-}UCS|$ and for a further mapping $g: (X', \Lambda_f) \longrightarrow (Y, \Lambda_Y)$ we have that g is uniformly continuous if and only if $g \circ f$ is uniformly continuous.

Proof. We first show, that $(X', \Lambda_f) \in |SL\text{-}UCS|$. The axioms (UC1) and (UC2) are easy. (UC3) follows from $((f \times f)(\Phi))^{-1} = (f \times f)(\Phi^{-1})$ and (UC3) for (X, Λ) . (UC4) is again clear by construction and (UC5) follows as $\Theta \leq \Phi$ and $\Upsilon \leq \Psi$ implies $\Theta \circ \Upsilon \leq \Phi \circ \Psi$. It is furthermore clear that $f: (X, \Lambda) \longrightarrow (X', \Lambda_f)$ is uniformly continuous. Let now $g: (X', \Lambda_f) \longrightarrow (Y, \Lambda_Y)$ be a mapping such that $g \circ f$ is uniformly continuous. Then, for $\Phi' \in \mathcal{F}_L^s(X' \times X')$ we have

$$\begin{split} \Lambda_f(\Phi') &= \bigvee \{ \bigwedge_{k=1}^m \Lambda(\Phi_{k1}) \wedge \ldots \wedge \Lambda(\Phi_{kn_k}) : \\ & \bigwedge_{k=1}^m (f \times f)(\Phi_{k1}) \circ \cdots \circ (f \times f)(\Phi_{kn_k}) \leq \Phi' \} \\ &\leq \bigvee \{ \bigwedge_{k=1}^m \Lambda_Y((g \times g)((f \times f)(\Phi_{k1}))) \wedge \ldots \wedge \Lambda_Y((g \times g)((f \times f)(\Phi_{kn_k}))) : \\ & \bigwedge_{k=1}^m (f \times f)(\Phi_{k1}) \circ \cdots \circ (f \times f)(\Phi_{kn_k}) \leq \Phi' \}. \end{split}$$

With $\Psi_{kl} = (f \times f)(\Phi_{kl})$ then

$$\Lambda_{f}(\Phi') \leq \bigvee \{ \bigwedge_{k=1}^{m} \Lambda_{Y}((g \times g)(\Psi_{k1})) \wedge ... \wedge \Lambda_{Y}((g \times g)(\Psi_{kn_{k}})) :$$

$$\bigwedge_{k=1}^{m} \Psi_{k1} \circ \cdots \circ \Psi_{kn_{k}} \leq \Phi' \}$$

$$\leq \bigvee \{ \bigwedge_{k=1}^{m} \Lambda_{Y}((g \times g)(\Psi_{k1})) \wedge ... \wedge \Lambda_{Y}((g \times g)(\Psi_{kn_{k}})) :$$

$$\bigwedge_{k=1}^{m} (g \times g)(\Psi_{k1}) \circ \cdots \circ (g \times g)(\Psi_{kn_{k}}) \leq (g \times g)(\Phi') \}$$

$$\leq \Lambda_{Y}((g \times g)(\Phi').$$

Therefore g is uniformly continuous.

Hence, Λ_f is the final structure and (X', Λ_f) is the *quotient space* for the sink $f: (X, \Lambda) \longrightarrow X'$.

For $(X, \Lambda) \in |SL\text{-}UCS|$ we define the stratified L-entourage filter by $\mathcal{N}_{\Lambda}(a) = \bigwedge_{\Phi \in \mathcal{F}^s_L(X \times X)} (\Lambda(\Phi) \to \Phi(a))$, see [12]. We further define, for $\alpha \in L$, the stratified $\alpha\text{-}level\ L\text{-}entourage\ filter$ by $\mathcal{N}_{\alpha}(a) = \bigwedge_{\Lambda(\Phi) > \alpha} \Phi$, see [14].

Lemma 3.3. [12] A mapping $f:(X,\Lambda) \longrightarrow (X',\Lambda')$ satisfies $\mathcal{N}_{\Lambda'} \leq (f \times f)(\mathcal{N}_{\Lambda})$ whenever it is uniformly continuous.

In [12] we defined the discrete stratified L-uniform convergence structure on X, Λ_{δ} , by $\Lambda_{\delta}(\Phi) = \top$ if $\Phi \geq \bigwedge_{x \in A} [(x,x)]$ for some finite set $A \subseteq X$ and $\Lambda_{\delta}(\Phi) = \bot$ else. It is not difficult to see that in case that X is a finite set, then $\Lambda_{\delta}(\Phi) = \top$ if $\Phi \geq [\Delta_X]$ and $\Lambda_{\delta}(\Phi) = \bot$ else.

We further consider the following stratified L-uniform convergence structure, which we shall call the strong discrete stratified L-uniform convergence structure

$$\Lambda^s_{\delta}(\Phi) = \bigwedge_{a \in L^{X \times X}} ([\Delta_X](a) \to \Phi(a)).$$

Whenever $X = \{0, 1\}$, then we denote $[\Delta] = [\Delta_{\{0, 1\}}]$ for simplicity.

A pair (X,\mathcal{U}) of a non-void set X and a stratified L-filter $\mathcal{U} \in \mathcal{F}_L^s(X \times X)$ is called a $stratified\ L$ -uniform $space\ [6,7]$ if \mathcal{U} satisfies the following axioms (LU1) $\mathcal{U} \leq [\Delta_X]$, (LU2) $\mathcal{U} \leq \mathcal{U}^{-1}$ and (LU3) $\mathcal{U} \leq \mathcal{U} \circ \mathcal{U}$. A mapping $f:(X,\mathcal{U}) \longrightarrow (X',\mathcal{U}')$ is called $uniformly\ continuous\ if\ \mathcal{U}' \leq (f \times f)(\mathcal{U})$. The category SL-UNIF has as objects the stratified L-uniform spaces and as morphisms the uniformly continuous mappings. This category can be embedded into SL-UCS by defining, for $(X,\mathcal{U}) \in |SL$ -UNIF|, the stratified L-uniform convergence structure $\Lambda_{\mathcal{U}}$ by $\Lambda_{\mathcal{U}}(\Phi) = \bigwedge_{a \in L^X \times X} (\mathcal{U}(a) \to \Phi(a))$. Then a mapping $f:(X,\mathcal{U}) \longrightarrow (X',\mathcal{U}')$ is uniformly continuous if and only if $f:(X,\Lambda_{\mathcal{U}}) \longrightarrow (X',\Lambda_{\mathcal{U}'})$ is uniformly continuous. SL-UNIF is then isomorphic to a reflective subcategory of SL-UCS, see [3]. We define $\mathcal{U}_{\alpha} = \bigwedge_{\Lambda_{\mathcal{U}}(\Phi) \geq \alpha} \Phi$. Then $\Lambda_{\mathcal{U}}(\mathcal{U}_{\alpha}) \geq \alpha$, cf. [14].

A pair (X, \lim) of a non-void set X and a mapping $\lim : \mathcal{F}_L^s(X) \longrightarrow L^X$ is called a *stratified L-limit space*, if the axioms (LC1) $\limx = \top$; (LC2) $\lim \mathcal{F} \leq \lim \mathcal{G}$

whenever $\mathcal{F} \leq \mathcal{G}$ and (LC3) $\forall \mathcal{F}, \mathcal{G} \in \mathcal{F}_L^s(X)$: $\lim \mathcal{F} \wedge \lim \mathcal{G} \leq \lim \mathcal{F} \wedge \mathcal{G}$ are satisfied, [10]. A mapping $f: X \longrightarrow X'$ between the stratified L-limit spaces $(X, \lim), (X', \lim')$ is called *continuous* if and only if for all $\mathcal{F} \in \mathcal{F}_L^s(X)$ and all $x \in X$ we have $\lim \mathcal{F}(x) \leq \lim' f(\mathcal{F})(f(x))$. The category of all stratified L-limit spaces with the continuous mappings as morphisms is denoted by SL-LIM. The category SL-LIM is topological and Cartesian closed [11].

In [13] we defined the following two separation axioms in SL-LIM. We call $(X, \lim) \in |SL\text{-}LIM|$ a T1-space if for all $x, y \in X$, x = y whenever $\lim[y](x) = \top$ and we call (X, \lim) a T2-space if for all $\mathcal{F} \in \mathcal{F}_L^s(X)$, x = y whenever $\lim \mathcal{F}(x) = y$ $\lim \mathcal{F}(y) = \top.$

Let $(X,\Lambda) \in |SL\text{-}UCS|$. Then $(X,\lim(\Lambda)) \in |SL\text{-}LIM|$, where the limit map $\lim(\Lambda): \mathcal{F}_L^s(X) \longrightarrow L^X$ is defined by $\lim(\Lambda)\mathcal{F}(x) = \Lambda(\mathcal{F} \times [x])$, see [12]. Furthermore, if $f:(X,\Lambda)\longrightarrow (X',\Lambda')$ is uniformly continuous then $f:(X,\lim(\Lambda))\longrightarrow$ $(X', \lim(\Lambda'))$ is continuous. Hence we can define a functor $H: SL\text{-}UCS \longrightarrow$ SL-LIM. This functor preserves initial constructions.

Lemma 3.4. [12] Let $(f_i: X \longrightarrow (X_i, \Lambda_i))_{i \in I}$ be a source in SL-UCS and let Λ be the initial SL-UCS structure on X. Then $\lim(\Lambda)$ is the initial SL-LIM structure with respect to the source $(f_i: X \longrightarrow (X_i, \lim(\Lambda_i)))_{i \in I}$.

In particular, for subspaces $(A, \Lambda|_A)$ of (X, Λ) we have $\lim(\Lambda|_A) = \lim(\Lambda)|_A$ and for product spaces $(\prod_{i \in J} X_i, \pi - \Lambda)$ we have $\lim(\pi - \Lambda) = \pi - \lim(\Lambda_i)$.

For a stratified L-uniform space (X,\mathcal{U}) and $x \in X$ we define the stratified Lneighbourhood filter of x, $\mathcal{N}_{\mathcal{U}}^x \in \mathcal{F}_L^s(X)$, by $\mathcal{N}_{\mathcal{U}}^x = \mathcal{U}(x)$ [6, 7] and with this the limit map $\lim(\mathcal{U})\mathcal{F}(x) = \bigwedge_{a \in L^X}(\mathcal{N}_{\mathcal{U}}^x(a) \to \mathcal{F}(a))$. Then $(X, \lim_{\mathcal{U}}) \in |SL\text{-}LIM|$ and, moreover, $\lim(\mathcal{U}) = \lim(\Lambda_{\mathcal{U}})$, see [3, 12].

We further call $(X, \Lambda) \in |SL\text{-}UCS|$ a T1-space (resp. a T2-space) if $(X, \lim(\Lambda))$ is a T1-space (resp. is a T2-space). It was shown in [16] that if L is a complete Boolean algebra, then (X, Λ) is a T2-space if and only if it is a T1-space.

In [17] we defined, for $(X, \lim) \in |SL\text{-}LIM|$, the \top -closure of $A \subseteq X$, $\overline{A}^{\lim} = \overline{A}$, by $x \in \overline{A}$ if there is $\mathcal{F} \in \mathcal{F}_L^s(X)$ such that $\lim \mathcal{F}(x) = \top$ and $\mathcal{F}(\top_A) = \top$. In [15] a subset $A \subseteq X$ is called \top -closed if for $\mathcal{F} \in \mathcal{F}_L^s(X)$, $\lim \mathcal{F}(x) = \top$ and $\mathcal{F}(\top_A) = \top$ implies $x \in A$. It is then not difficult to show that A is \top -closed if and only if $\overline{A} \subseteq A$. It was shown in [15] that in a T2-space, one-point sets $\{x\}$ are \top -closed. Hence, for a complete Boolean algebra L, in T1-spaces (X, Λ) , the one-point sets are T-closed.

Proposition 3.5. [17] Let $(X, \lim^X), (Y, \lim^Y) \in |SL\text{-}LIM|$ and let $A \subseteq M \subseteq X$, $B \subseteq Y$ and let $f: X \longrightarrow Y$ be continuous. (1) $\overline{A}^M = \overline{A} \cap M$, where \overline{A}^M is the \top -closure of A in the subspace $(M, \lim|_M)$. (2) If $\lim \leq \lim'$, then $\overline{A}^{\lim'} \subseteq \overline{A}^{\lim}$.

- (3) If B is \top -closed, then $f \leftarrow (B)$ is \top -closed.

Proposition 3.6. [17] Let $(X_i, \lim_i) \in |SL\text{-}LIM|$ for all $i \in j$ and let $(x_i) \in SL$ $\prod_{i \in J} X_i$ be fixed. Define

$$A = A((x_i)) = \{(y_i) \in \prod_{i \in J} X_i : x_j \neq y_j \text{ for at most finitely many } j \in J\}.$$

Then
$$\overline{A}^{\pi-\lim} = \prod_{i \in J} X_i$$
.

Let \mathbb{E} be a class of stratified L-limit spaces. A space $(X, \lim) \in |SL\text{-}LIM|$ is called \mathbb{E} -connected [17] if, for any $(E, \lim_E) \in \mathbb{E}$, a continuous mapping $f: X \longrightarrow E$ is constant. A subset $A \subseteq X$ is called \mathbb{E} -connected if the subspace (A, \lim_A) is \mathbb{E} -connected.

Proposition 3.7. [17] Let $(X, \lim), (X', \lim'), (X_i, \lim_i) \in |SL\text{-}LIM|, (i \in J)$.

- (1) If \mathbb{E} is a class of T2-spaces and $A \subseteq X$ is \mathbb{E} -connected, then so is \overline{A} ;
- (2) If $A, A_i \subseteq X$ $(i \in J)$ are \mathbb{E} -connected and $A \cap A_i \neq \emptyset$ for all $i \in J$, then $A \cup \bigcup_{i \in J} A_i$ is \mathbb{E} -connected.
- (3) If \mathbb{E} is a class of T2-spaces and all $A_i \subseteq X_i$ are \mathbb{E} -connected, then so is $\prod_{i \in J} A_i$ (as a subset of the product space).
- (4) If $A \subseteq X$ is \mathbb{E} -connected and $f: X \longrightarrow X'$ is uniformly continuous, then f(A) is \mathbb{E} -connected.

For $\mathcal{F} \in \mathcal{F}_L^s(X)$, a set \mathbb{B} of subsets of X is called a δ -base of \mathcal{F} [17] if for $\mathcal{F}(\top_U) \geq \delta$ there is $B \in \mathbb{B}$, $B \subseteq U$ such that $\mathcal{F}(\top_B) \geq \delta$. A space $(X, \lim) \in |SL-LIM|$ is called locally \mathbb{E} -connected [17] if for all $\alpha \in L$, if $\lim \mathcal{F}(x) \geq \alpha$, there is $\mathcal{G} \leq \mathcal{F} \wedge [x]$ with $\lim \mathcal{G}(x) \geq \alpha$ and with a δ -base of \mathbb{E} -connected sets, whenever $L < \delta \leq \alpha$.

4. Uniform E-connectedness

Let \mathbb{E} be a class of stratified L-uniform convergence spaces (E, Λ_E) which contains a space with at least two points.

Definition 4.1. A space $(X, \Lambda) \in |SL\text{-}UCS|$ is called *uniformly* \mathbb{E} -connected if, for any $(E, \Lambda_E) \in \mathbb{E}$, every uniformly continuous mapping $f: (X, \Lambda) \longrightarrow (E, \Lambda_E)$ is constant.

In particular, we call (X, Λ) uniformly connected if it is uniformly \mathbb{E} -connected for $\mathbb{E} = \{(\{0, 1\}, \Lambda_{\delta})\}$ and strongly uniformly connected if it is uniformly \mathbb{E} -connected for $\mathbb{E} = \{(\{0, 1\}, \Lambda_{\delta}^s)\}$.

Clearly, a strongly uniformly connected space (X, Λ) is uniformly connected. The converse is not true in general, as the following example shows.

Example 4.2. Let $L = \{\bot, \alpha, \top\}$ with $\bot < \alpha < \top$. We show that $(\{0, 1\}, \Lambda_{\delta}^s)$ is uniformly connected. There are two non-constant mappings $f : \{0, 1\} \longrightarrow \{0, 1\}$, namely $f = id_{\{0, 1\}}$ and $f = 1 - id_{\{0, 1\}}$. We will show that both are not uniformly continuous as mappings $f : (\{0, 1\}), \Lambda_{\delta}^s) \longrightarrow (\{0, 1\}, \Lambda_{\delta})$. For $f = id_{\{0, 1\}}$, consider the stratified L-filter

$$\mathcal{F}^*(a) = \begin{cases} \top & \text{if } a = \top_{\{0,1\}} \\ \alpha & \text{if } a(0) = \top, a(1) \neq \top \\ \alpha & \text{if } a(0) = \alpha \\ \bot & \text{if } a(0) = \bot \end{cases},$$

see [11]. It was shown in [4] that $\Lambda_{\delta}^{s}(\mathcal{F}^{*} \times \mathcal{F}^{*}) \geq \bigwedge_{a \in L^{\{0,1\}}}([(0,0)](a) \to (\mathcal{F}^{*} \times \mathcal{F}^{*})(a)) \geq \alpha$. However, $\Lambda_{\delta}(\mathcal{F}^{*} \times \mathcal{F}^{*}) = \bot$, because $\mathcal{F}^{*} \times \mathcal{F}^{*} \not\geq [\Delta] = [(0,0)] \wedge [(1,1)]$.

This can be seen using $a(x,y) = \begin{cases} \top & \text{if } x = y \\ \alpha & \text{if } x \neq y \end{cases}$. Then $[(0,0)] \wedge [(1,1)](a) = \top$ but $(\mathcal{F}^* \times \mathcal{F}^*)(a) \leq \alpha$, see [4]. Hence $f = id \in \mathbb{R}$ is not uniformly continuous.

but $(\mathcal{F}^* \times \mathcal{F}^*)(a) \leq \alpha$, see [4]. Hence $f = id_{\{0,1\}}$ is not uniformly continuous. For $f = 1 - id_{\{0,1\}}$ we define, for $a \in L^{\{0,1\}}$, $a^* = f^{\leftarrow}(a)$ and with this $\mathcal{F}_* \in \mathcal{F}^s_L(\{0,1\})$ by $\mathcal{F}_*(a) = \mathcal{F}^*(a^*)$. Then $\Lambda^s_\delta(\mathcal{F}_* \times \mathcal{F}_*) \geq \alpha$ but $\Lambda_\delta((f \times f)(\mathcal{F}_* \times \mathcal{F}_*)) = \Lambda_\delta(\mathcal{F}^* \times \mathcal{F}^*) = \bot$. Hence $f = 1 - id_{\{0,1\}}$ is not uniformly continuous too and the only continuous mappings are the constant ones. Therefore $(\{0,1\},\Lambda^s_\delta)$ is uniformly connected. As clearly the identity mapping $f = id_{\{0,1\}} : (\{0,1\},\Lambda^s_\delta) \longrightarrow (\{0,1\},\Lambda^s_\delta)$ is uniformly continuous, $(\{0,1\},\Lambda^s_\delta)$ is not strongly uniformly connected.

For a class of stratified L-uniform convergence spaces, \mathbb{E} , we denote $L(\mathbb{E}) = \{(E, \lim(\Lambda_E)) : (E, \Lambda_E) \in \mathbb{E}\}.$

Lemma 4.3. Let $(X, \Lambda) \in |SL\text{-}UCS|$. If $(X, \lim(\Lambda))$ is $L(\mathbb{E})$ -connected, then (X, Λ) is uniformly \mathbb{E} -connected.

Lemma 4.4. Let \mathbb{E} be a class of stratified L-uniform convergence spaces which contains a space (E, \lim_E) with $|E| \geq 2$. If (X, Λ) is uniformly \mathbb{E} -connected, then it is uniformly connected.

Proof. Let $f:(X,\Lambda) \longrightarrow (\{0,1\},\Lambda_\delta)$ be uniformly continuous and let $(E,\Lambda_E) \in \mathbb{E}$ with $x,y \in E, x \neq y$. We define $h:\{0,1\} \longrightarrow E$ by h(0) = x and h(1) = y. We show that h is uniformly continuous. Let $\Lambda_\delta(\Phi) = \mathbb{T}$. Then $\Phi \geq [\Delta]$ and hence $(h \times h)(\Phi) \geq (h \times h)[\Delta]$. For $a \in L^{E \times E}$ we then have $(h \times h)([\Delta])(a) = [\Delta]((h \times h)^{\leftarrow}(a)) = (h \times h)^{\leftarrow}(a)(0,0) \wedge (h \times h)^{\leftarrow}(a)(1,1) = a(h(0),h(0)) \wedge a(h(1),h(1)) = a(x,x) \wedge a(y,y) = [(x,x)](a) \wedge [(y,y)](a)$. Hence $(h \times h)(\Phi) \geq [(x,x)] \wedge [(y,y)]$ and we conclude $\Lambda_E((h \times h)(\Phi)) \geq \Lambda_E([(x,x)]) \wedge \Lambda_E([(y,y)]) = \mathbb{T}$. Consequently h is uniformly continuous and therefore $h \circ f$ is also uniformly continuous and hence constant. As h is not constant, then f must be so.

Uniform \mathbb{E} -connectedness often also entails strong uniform connectedness. However, we need a stronger assumption on the class \mathbb{E} .

Lemma 4.5. Let \mathbb{E} be a class of stratified L-uniform convergence spaces which contains a space (E, \lim_E) with $|E| \geq 2$ and $\Lambda_E \leq \Lambda_{\delta,E}^s$. If (X, Λ) is uniformly \mathbb{E} -connected, then it is strongly uniformly connected.

Proof. Let $f:(X,\Lambda) \longrightarrow (\{0,1\},\Lambda_\delta^s)$ be uniformly continuous and let $(E,\Lambda_E) \in \mathbb{E}$ with $x,y \in E, x \neq y$. Again we define $h:\{0,1\} \longrightarrow E$ by h(0) = x and h(1) = y. We show that h is $(\Lambda_\delta^s,\Lambda_E)$ -uniformly continuous. Then $\Lambda_E((h \times h)(\Phi)) \geq \lambda_{\delta,E}^s((h \times h)(\Phi)) = \bigwedge_{a \in L^{E \times E}} ([\Delta_E](a) \to (h \times h)(\Phi)(a))$. For $a \in L^{E \times E}$ we have $[\Delta_E](a) \leq [(x,x)] \wedge [(y,y)](a) = a(x,x) \wedge a(y,y) = (h \times h)^{\leftarrow}(a)(0,0) \wedge (h \times h)^{\leftarrow}(a)(1,1) = [(0,0)] \wedge [(1,1)]((h \times h)^{\leftarrow}(a)) = [\Delta]((h \times h)^{\leftarrow}(a))$. Hence $\bigwedge_{a \in L^{E \times E}} ([\Delta_E](a) \to (h \times h)(\Phi)(a)) \geq \bigwedge_{a \in L^{E \times E}} ([\Delta]((h \times h)^{\leftarrow}(a) \to \Phi((h \times h)^{\leftarrow}(a))) \geq \bigwedge_{b \in L^{\{0,1\} \times \{0,1\}}} ([\Delta](b) \to \Phi(b)) = \Lambda_\delta^s(\Phi)$. Hence, together with h, also $h \circ f$ is uniformly continuous and therefore constant. As h is not constant, then f must be so.

Strong uniform connectedness can be characterized by a "chaining condition".

Theorem 4.6. A space $(X, \Lambda) \in |SL\text{-}UCS|$ is strongly uniformly connected if and only if for all $x, y \in X$ and all $N \subseteq X \times X$ with $\mathcal{N}_{\Lambda}(\top_N) = \top$ there is a natural number n such that $(x, y) \in N^n$.

Proof. Let first (X,Λ) be strongly uniformly connected and assume that there is $(p,q) \in X \times X$ and $N \subseteq X \times X$ with $\mathcal{N}_{\Lambda}(\top_N) = \top$ but $(p,q) \notin N^n$ for all natural numbers n. We define $A = \{x \in X : (p,x) \in N^n \text{ for some natural number } n\}$ and $B = X \setminus A$. As $\top = \mathcal{N}_{\Lambda}(\top_N) \leq [(p,p)](\top_N)$ we see that $(p,p) \in N$ and hence A is non-empty. Clearly $q \notin A$, i.e. B is non-empty. We define the mapping $f: X \longrightarrow \{0,1\}$ by f(x) = 0 if $x \in A$ and f(x) = 1 if $x \in B$. For $(x,y) \in N$ then, if $x \in A$ also $y \in A$ and if $x \in B$ then also $y \in B$. Hence $N \subseteq (A \times A) \cup (B \times B)$ and, because $\top = \mathcal{N}_{\Lambda}(\top_N) \leq \mathcal{N}_{\Lambda}(\top_{(A \times A) \cup (B \times B)})$, we conclude $\Lambda(\Phi) \leq \Phi(\top_N) \leq \Phi(\top_{(A \times A) \cup (B \times B)})$ for all $\Phi \in \mathcal{F}_L^s(X \times X)$. Furthermore, for $a \in L^{\{0,1\} \times \{0,1\}}$,

$$(f \times f)^{\leftarrow}(a) \wedge \top_{(A \times A) \cup (B \times B)}(x, y) = \begin{cases} a(0, 0) & \text{if } (x, y) \in A \times A \\ a(1, 1) & \text{if } (x, y) \in B \times B \end{cases}$$

Hence $(f \times f)^{\leftarrow}(a) \wedge \top_{(A \times A) \cup (B \times B)} \geq [\Delta](a) \wedge \top_N$ and therefore, by stratification, $(f \times f)(\Phi)(a) \geq [\Delta](a) \wedge \Phi(\top_N) \geq [\Delta](a) \wedge \Lambda(\Phi)$. As $a \in L^{\{0,1\} \times \{0,1\}}$ was arbitrary, we conclude $\Lambda(\Phi) \leq \bigwedge_{a \in L^{\{0,1\} \times \{0,1\}}} ([\Delta](a) \to (f \times f)(\Phi)(a)) = \Lambda_{\delta}^{s}((f \times f)(\Phi))$. Hence, f is uniformly continuous and not constant, a contradiction.

Let now $x \neq y$ and let $f:(X,\Lambda) \longrightarrow (\{0,1\},\Lambda_{\delta}^s)$ be uniformly continuous. Then $[\Delta] = \mathcal{N}_{\Lambda_{\delta}^s} \leq (f \times f)(\mathcal{N}_{\Lambda})$. Therefore, $\top = [\Delta](\top_{\Delta}) \leq \mathcal{N}_{\Lambda}(\top_{(f \times f)^{\leftarrow}(\Delta)})$ and there is a natural number, n, such that $(x,y) \in ((f \times f)^{\leftarrow}(\Delta))^n$, i.e. there are $x = x_0, x_1, ..., x_n = y$ such that $(x_k, x_{k+1}) \in (f \times f)^{\leftarrow}(\Delta)$ for k = 0, 1, 2, ..., n-1. This means that $(f(x_k), f(x_{k+1})) \in \Delta$, i.e. $f(x_k) = f(x_{k+1})$ for k = 0, 1, 2, ..., n-1. Hence f(x) = f(y) and f is constant.

For a class \mathbb{E} of stratified L-uniform spaces, we call $(X,\mathcal{U}) \in |SL\text{-}UNIF|$ uniformly $\mathbb{E}\text{-}connected}$ if, for any $(E,\mathcal{U}_E) \in \mathbb{E}$, a uniformly continuous mapping $f:(X,\mathcal{U}) \longrightarrow (E,\mathcal{U}_E)$ is constant. If we denote $\Lambda(\mathbb{E}) = \{(E,\Lambda_{\mathcal{U}_E})) : (E,\mathcal{U}_E) \in \mathbb{E}\}$, then a stratified L-uniform space (X,\mathcal{U}) is uniformly \mathbb{E} -connected if and only if $(X,\Lambda_{\mathcal{U}})$ is uniformly $\Lambda(\mathbb{E})$ -connected. For $\mathbb{E} = \{(\{0,1\},[\Delta])\}$, we call a uniformly \mathbb{E} -connected stratified L-uniform space uniformly connected. Hence $(X,\mathcal{U}) \in |SL$ -UNIF| is uniformly connected if and only if $(X,\Lambda_{\mathcal{U}})$ is strongly uniformly connected. We obtain as a direct consequence of Theorem 4.6 the following characterization.

Theorem 4.7. A space $(X, \mathcal{U}) \in |SL\text{-}UNIF|$ is uniformly connected if and only if for all $x, y \in X$ and all $N \subseteq X \times X$ with $\mathcal{U}(\top_N) = \top$ there is a natural number n such that $(x, y) \in N^n$.

For $L = \{0, 1\}$, a uniform space that satisfies the condition of the above theorem is called *well-chained* [22].

5. Properties of Uniformly E-connected Subsets

In the sequel, let \mathbb{E} be a class of stratified L-uniform convergence spaces which contains a space (E, Λ^E) with at least two points. We call $A \subseteq X$, where $(X, \Lambda) \in$

|SL-UCS|, uniformly \mathbb{E} -connected (in (X,Λ)) if the subspace $(A,\Lambda|_A)$ is uniformly \mathbb{E} -connected. Uniform \mathbb{E} -connectedness of $A\subseteq X$ then becomes an absolute property, i.e. for $A\subseteq B\subseteq X$ we have that A is uniformly \mathbb{E} -connected in $(B,\Lambda|_B)$ iff A is uniformly \mathbb{E} -connected in (X,Λ) .

Lemma 5.1. Let $(X, \Lambda^X), (Y, \Lambda^Y) \in |SL\text{-}UCS|$ and let $f: (X, \Lambda^X) \longrightarrow (Y, \Lambda^Y)$ be uniformly continuous. If $A \subseteq X$ is uniformly \mathbb{E} -connected, then B = f(A) is uniformly \mathbb{E} -connected.

Proof. For $\Phi \in \mathcal{F}_L^s(A \times A)$ we have $\Lambda^X|_A(\Phi) = \Lambda^X((i_A \times i_A)(\Phi)) \leq \Lambda^Y((f \times f) \circ (i_A \times i_A)(\Phi))$. As $(f \times f) \circ (i_A \times i_A) = (i_B \times i_B) \circ (f \times f)$ we obtain $(f \times f) \circ (i_A \times i_A)(\Phi) = (i_B \times i_B) \circ (f \times f)(\Phi)$, and therefore $\Lambda^X|_A(\Phi) \leq \Lambda^Y|_B((f \times f)(\Phi))$. Hence, we may assume A = X, B = Y = f(X) and $f : X \longrightarrow Y$ surjective. Let now $(E, \Lambda^E) \in \mathbb{E}$ and $h : (Y, \Lambda^Y) \longrightarrow (E, \Lambda^E)$ be uniformly continuous. Then $h \circ f : (X, \Lambda^X) \longrightarrow (E, \Lambda^E)$ is uniformly continuous and hence constant. As f is surjective, then also h must be constant.

Lemma 5.2. Let \mathbb{E} be a class of T2-spaces, $(X, \Lambda) \in |SL\text{-}UCS|$ and let $A \subseteq X$ be uniformly \mathbb{E} -connected. Then also $\overline{A} = \overline{A}^{\lim(\Lambda)}$ is uniformly \mathbb{E} -connected.

Proof. Let $(E,\Lambda^E)\in\mathbb{E}$ and $f:(\overline{A},\Lambda|_{\overline{A}})\longrightarrow (E,\Lambda^E)$ be uniformly continuous. Then also $f|_A:(A,\Lambda|_A)\longrightarrow (E,\Lambda^E)$ is uniformly continuous and hence constant, i.e. $f|_A(A)=f(A)=\{e\}$ with some $e\in E$. As $(E,\lim(\Lambda^E))$ is a T2-space, $\{e\}$ is \top -closed and hence $M=f^\leftarrow(\{e\})$ is \top -closed in $(\overline{A},\lim(\Lambda)|_{\overline{A}})=(\overline{A},\lim(\Lambda|_{\overline{A}}))$. We note that $A\subseteq M\subseteq \overline{A}$. Hence $\overline{A}=\overline{M}\cap A\subseteq \overline{M}\cap \overline{A}=\overline{M}^{\lim(\Lambda)|_{\overline{A}}}\subseteq M$, i.e. $M=\overline{A}$. Therefore $f(\overline{A})=f(M)=\{e\}$ and f is constant. \square

Lemma 5.3. Let $(X, \Lambda) \in |SL \cdot UCS|$ and let $A_i, A \subseteq X$ be uniformly \mathbb{E} -connected $(i \in I)$ with $A \cap A_i \neq \emptyset$ for all $i \in I$. Then $A \cup \bigcup_{i \in I} A_i$ is uniformly \mathbb{E} -connected.

Proof. Let $(E, \lim^E) \in \mathbb{E}$ and let $f: A \cup \bigcup_{i \in I} A_i \longrightarrow E$ be uniformly continuous. Then all restrictions $f|_A: A \longrightarrow E$ and $f|_{A_i}: A_i \longrightarrow E$ are uniformly continuous and hence constant. As $A \cap A_i \neq \emptyset$ for all $i \in I$, all function values must be the same.

Lemma 5.3 allows the definition of maximal uniformly \mathbb{E} -connected subsets of X.

Definition 5.4. Let $(X, \Lambda) \in |SL\text{-}UCS|$ and $C \subseteq X$ be uniformly \mathbb{E} -connected. C is called a *uniform* \mathbb{E} -component of X if C = B whenever $C \subseteq B \subseteq X$ and B is uniformly \mathbb{E} -connected.

It follows immediately from Lemma 5.3 that the uniform \mathbb{E} -components form a partition of X.

Lemma 5.5. Let \mathbb{E} be a class of T2-spaces and let $(X,\Lambda) \in |SL\text{-}UCS|$. If C is a uniform \mathbb{E} -component of X, then C is \top -closed.

Proof. With C also \overline{C} is uniformly \mathbb{E} -connected. $C \subseteq \overline{C}$ and the maximality of C implies $\overline{C} = C$ and hence C is \top -closed.

We finally state the important product theorem.

Theorem 5.6. Let \mathbb{E} be a class of T2-spaces and let $(X_i, \Lambda_i)_{i \in J}$ be a family in |SL-UCS|. Then the product space $(\prod_{i \in J} X_i, \pi\text{-}\Lambda)$ is uniformly \mathbb{E} -connected if and only if all (X_i, Λ_i) are uniformly \mathbb{E} -connected.

Proof. Using Lemma 3.1, Lemma 5.2 and Proposition 3.7, the proof of Theorem 5.8 in [17] can be copied word-by-word. \Box

6. Uniform Local E-connectedness

In the sequel, let \mathbb{E} be a class of stratified L-limit spaces. For $\delta \in L$, a set of subsets $\mathbb{B} \subseteq P(X \times X)$ is called a δ -base of $\Phi \in \mathcal{F}_L^s(X \times X)$ if for all $U \subseteq X \times X$ with $\Phi(\top_U) \geq \delta$ there is $B \in \mathbb{B}$ such that $B \subseteq U$ and $\Phi(\top_B) \geq \delta$. For a subset $B \subseteq X \times X$ and $x \in X$ we denote $B(x) = \{y \in X : (y, x) \in B\}$. It is not difficult to see that then $\top_B(\cdot, x) = \top_{B(x)}$.

Definition 6.1. We call $(X, \Lambda) \in |SL\text{-}UCS|$ uniformly locally \mathbb{E} -connected if for all $\alpha \in L$, for all $\Phi \in \mathcal{F}_L^s(X \times X)$ with $\Lambda(\Phi) \geq \alpha$ there is $\Psi \in \mathcal{F}_L^s(X \times X)$, $\Psi \leq \Phi \wedge [\Delta]$, $\Lambda(\Psi) \geq \alpha$ with a δ -base \mathbb{B} such that for all $x \in X$ the sets B(x) with $B \in \mathbb{B}$ are \mathbb{E} -connected (in $(X, \lim(\Lambda))$), whenever $\bot < \delta \leq \alpha$.

For $L = \{0, 1\}$ this definition is slightly stronger than the definition of uniform local connectedness in Vanio [24]. In [24] it is only demanded that $\Psi \leq \Phi$. Our stronger requirement $\Psi \leq \Phi \wedge [\Delta]$ comes in handy lateron.

A stratified L-uniform space (X, \mathcal{U}) is called uniformly locally \mathbb{E} -connected if $(X, \Lambda_{\mathcal{U}})$ is uniformly locally \mathbb{E} -connected.

Proposition 6.2. Let $(X,\mathcal{U}) \in |SL\text{-}UNIF|$. Then (X,\mathcal{U}) is uniformly locally \mathbb{E} -connected if and only if for all $\alpha \in L$, \mathcal{U}_{α} has a δ -base \mathbb{B} such that the sets B(x) with $B \in \mathbb{B}$ are \mathbb{E} -connected for all $x \in X$, whenever $\bot < \delta \leq \alpha$.

Proof. Let first (X, \mathcal{U}) be uniformly locally \mathbb{E} -connected. Then $\Lambda_{\mathcal{U}}(\mathcal{U}_{\alpha}) \geq \alpha$. Hence there is $\Psi \leq \mathcal{U}_{\alpha} \wedge [\Delta] \leq \mathcal{U}_{\alpha}$ with $\Lambda_{\mathcal{U}}(\Psi) \geq \alpha$ and a δ -base \mathbb{B} such that the sets B(x) with $B \in \mathbb{B}$ are \mathbb{E} -connected for all $x \in X$ whenever $\bot < \delta \leq \alpha$. From $\Lambda(\Psi) \geq \alpha$ we conclude that $\Psi \geq \mathcal{U}_{\alpha}$ and hence $\Psi = \mathcal{U}_{\alpha}$ has a δ -base as desired whenever $\bot < \delta \leq \alpha$.

For the converse, let $\Lambda_{\mathcal{U}}(\Phi) \geq \alpha$. Then $\Phi \geq \mathcal{U}_{\alpha}$ and as always $\mathcal{U}_{\alpha} \leq [\Delta]$, we have $\mathcal{U}_{\alpha} \leq \Phi \wedge [\Delta]$. As $\Lambda_{\mathcal{U}}(\mathcal{U}_{\alpha}) \geq \alpha$ the claim follows if we choose $\Psi = \mathcal{U}_{\alpha}$.

Proposition 6.3. If $(X, \Lambda) \in |SL\text{-}UCS|$ is uniformly locally \mathbb{E} -connected, then $(X, \lim(\Lambda))$ is locally \mathbb{E} -connected.

Proof. Let $\alpha \in L$, $\mathcal{F} \in \mathcal{F}_L^s(X)$ and let $x \in X$ such that $\lim(\Lambda)\mathcal{F}(x) \geq \alpha$. Then $\Lambda(\mathcal{F} \times [x]) \geq \alpha$. Hence there is $\Psi \in \mathcal{F}_L^s(X \times X)$ such that $\Psi \leq (\mathcal{F} \times [x]) \wedge [\Delta]$, $\Lambda(\Psi) \geq \alpha$ and, if $\bot < \delta \leq \alpha$, Ψ has a δ -base \mathbb{B} with B(x) \mathbb{E} -connected for all $x \in X$ and all $B \in \mathbb{B}$. Then $\Psi(x) \in \mathcal{F}_L^s(X)$. From Lemma 2.5 we conclude that $\Psi(x) \leq \mathcal{F} \wedge [x]$. We show that $\Psi(x)$ has a δ -base of \mathbb{E} -connected sets. If $U \subseteq X$ such that $\Psi(x)(\top_U) \geq \delta$, then $\Psi(T_{U \times \{x\}}) = (\Psi(x) \times [x])(\top_U \times \top_{\{x\}}) \geq \Psi(x)(\top_U) \wedge [x](\top_{\{x\}}) \geq \delta$. Hence there is $B \in \mathbb{B}$, $B \subseteq U \times \{x\}$ such that $\Psi(\top_B) \geq \delta$.

Clearly $B(x) \subseteq U$ and $\Psi(x)(\top_{B(x)}) \ge \Psi(\top_B) \ge \delta$ because $\top_B(\cdot, x) = \top_{B(x)}$. Therefore $\mathbb{B}(x) = \{B(x) : B \in \mathbb{B}\}$ is the required δ -base for $\Psi(x)$.

Proposition 6.4. Let $(X, \Lambda), (X', \Lambda') \in |SL\text{-}UCS|$ and let $f : (X, \Lambda) \longrightarrow (X', \Lambda')$ be a uniform isomorphism (i.e. f is bijective and both f and f^{-1} are uniformly continuous). If (X, Λ) is uniformly locally \mathbb{E} -connected, then so is (X', Λ') .

Proof. Let $\alpha \in L$ and $\Phi' \in \mathcal{F}_L^s(X' \times X')$ and $\Lambda'(\Phi') \geq \alpha$. Then, by uniform continuity of f^{-1} , $\Lambda((f^{-1} \times f^{-1})(\Phi')) \geq \alpha$. Hence there is $\Psi \leq (f^{-1} \times f^{-1})(\Phi') \wedge [\Delta_X]$ with $\Lambda(\Psi) \geq \alpha$ which has, for $\bot < \delta \leq \alpha$, a δ -base \mathbb{B} such that for all $x \in X$ and all $B \in \mathbb{B}$, B(x) is \mathbb{E} -connected. By uniform continuity of f, then $\Lambda'((f \times f)(\Psi)) \geq \alpha$ and $(f \times f)(\Psi) \leq (f \times f)((f^{-1} \times f^{-1})(\Phi)) \wedge [(f \times f)(\Delta_X)] = \Phi \wedge [\Delta_{X'}]$. We show that $(f \times f)(\Psi)$ has a δ -base \mathbb{B}' with B'(x') \mathbb{E} -connected for all $x' \in X'$ and all $B' \in \mathbb{B}'$. Let $(f \times f)(\Psi)(\top_U) \geq \delta$. Then $\Psi(\top_{(f^{-1} \times f^{-1})(U)}) \geq \delta$ and hence there is $B \subseteq (f^{-1} \times f^{-1})(U)$ with $\Psi(\top_B) \geq \delta$, B(x) \mathbb{E} -connected for all $x \in X$. It follows that $B' = (f \times f)(B) \subseteq U$ and $(f \times f)(\Psi)(\top_{(f \times f)(B)}) \geq \Psi(\top_B) \geq \delta$. For $x' \in X'$ we have that $(f \times f)(B)(x') = f(B(f^{-1}(x')))$ is \mathbb{E} -connected, as f is continuous as a mapping from $(X, \lim(\Lambda))$ to $(X', \lim(\Lambda'))$ and $B(f^{-1}(x'))$ is \mathbb{E} -connected.

We now look at the behaviour of uniform local \mathbb{E} -connectedness with respect to quotient spaces and product spaces. First we need two lemmas.

Lemma 6.5. Let $(X, \lim) \in |SL\text{-}LIM|$ and let $A, B \subseteq X \times X$ with $\Delta_X \subseteq A$. If B(x) and A(z) are \mathbb{E} -connected for all $z \in X$, then $(A \circ B)(x)$ is \mathbb{E} -connected.

Proof. This proof goes back to Vainio [24]. It is not difficult to show that $(A \circ B)(x) = \bigcup_{z \in B(x)} A(z)$. As $\Delta_X \subseteq A$, we moreover conclude $B(x) \subseteq (A \circ B)(x)$ and hence $(A \circ B)(x) = \bigcup_{z \in B(x)} (A(z) \cup B(x))$. Again, as $\Delta_X \subseteq A$, we conclude that $A(z) \cap B(x) \neq \emptyset$ and hence $A(z) \cup B(x)$ is \mathbb{E} -connected for all $z \in B(x)$. Consequently also $(A \circ B)(x) = \bigcup_{z \in B(x)} A(z)$ is \mathbb{E} -connected.

Lemma 6.6. Let $B \subseteq X \times X$, $x \in X$ and let $f: X \longrightarrow Y$ be a mapping. Then $(f \times f)(B)(f(x)) = \bigcup_{z: f(z) = f(x)} f(B(z))$. Moreover, if $\Delta_X \subseteq B$, then $f(x) \in f(B(z))$ whenever f(z) = f(x).

Proof. Let first $y \in f(B(z))$ and f(z) = f(x). Then there is $b \in X$ such that $(b,z) \in B$ and f(b) = y. Hence $(y,f(x)) = (f(b),f(z)) \in (f \times f)(B)$, i.e. $y \in (f \times f)(B)(f(x))$. Conversely, let $y \in (f \times f)(B)(f(x))$. Then $(y,f(x)) \in (f \times f)(B)$. Hence there is $(a,b) \in B$ such that f(a) = y and f(b) = f(x). We conclude $a \in B(b)$ and, consequently, $y = f(a) \in f(B(b))$. From f(b) = f(x) we conclude $y \in \bigcup_{z:f(z)=f(x)} f(B(z))$.

Theorem 6.7. Let the lattice L be completely distributive and let $L \in L$ be prime. Let $(X, \Lambda) \in |SL\text{-}UCS|$ be uniformly locally \mathbb{E} -connected and let $f: X \longrightarrow X'$ be surjective. Then the quotient space (X', Λ_f) is uniformly locally \mathbb{E} -connected.

Proof. Let $\alpha \in L$ and let $\Lambda_f(\Phi') \geq \alpha$. Let $\beta \triangleleft \alpha$. Then there are $\Phi_{k1}^{\beta}, ..., \Phi_{kn_k}^{\beta}$ (k = 1, 2, ..., m) with $\bigwedge_{k=1}^m (f \times f)(\Phi_{k1}^{\beta}) \circ \cdots \circ (f \times f)(\Phi_{kn_k}^{\beta}) \leq \Phi'$ such that $\bigwedge_{k=1}^m \Lambda(\Phi_{k1}^{\beta}) \wedge \cdots \circ (f \times f)(\Phi_{kn_k}^{\beta}) \leq \Phi'$ such that $\bigwedge_{k=1}^m \Lambda(\Phi_{k1}^{\beta}) \wedge \cdots \circ (f \times f)(\Phi_{kn_k}^{\beta}) \leq \Phi'$ such that $\bigwedge_{k=1}^m \Lambda(\Phi_{k1}^{\beta}) \wedge \cdots \circ (f \times f)(\Phi_{kn_k}^{\beta}) \leq \Phi'$ such that $\bigwedge_{k=1}^m \Lambda(\Phi_{k1}^{\beta}) \wedge \cdots \circ (f \times f)(\Phi_{kn_k}^{\beta}) \leq \Phi'$ such that $\bigwedge_{k=1}^m \Lambda(\Phi_{k1}^{\beta}) \wedge \cdots \circ (f \times f)(\Phi_{kn_k}^{\beta}) \leq \Phi'$ such that $\bigwedge_{k=1}^m \Lambda(\Phi_{k1}^{\beta}) \wedge \cdots \circ (f \times f)(\Phi_{kn_k}^{\beta}) \leq \Phi'$ such that $\bigwedge_{k=1}^m \Lambda(\Phi_{k1}^{\beta}) \wedge \cdots \circ (f \times f)(\Phi_{kn_k}^{\beta}) \leq \Phi'$ such that $\bigwedge_{k=1}^m \Lambda(\Phi_{k1}^{\beta}) \wedge \cdots \circ (f \times f)(\Phi_{kn_k}^{\beta}) \leq \Phi'$ such that $\bigwedge_{k=1}^m \Lambda(\Phi_{k1}^{\beta}) \wedge \cdots \circ (f \times f)(\Phi_{kn_k}^{\beta}) \leq \Phi'$ such that $\bigwedge_{k=1}^m \Lambda(\Phi_{k1}^{\beta}) \wedge \cdots \circ (f \times f)(\Phi_{kn_k}^{\beta}) \leq \Phi'$ such that $\bigwedge_{k=1}^m \Lambda(\Phi_{k1}^{\beta}) \wedge \cdots \circ (f \times f)(\Phi_{kn_k}^{\beta}) \leq \Phi'$ such that $\bigwedge_{k=1}^m \Lambda(\Phi_{k1}^{\beta}) \wedge \cdots \circ (f \times f)(\Phi_{kn_k}^{\beta}) = \Phi'$

... $\wedge \Lambda(\Phi_{kn_k}^{\beta}) \geq \beta$. For each Φ_{kl}^{β} there is $\Psi_{kl}^{\beta} \leq \Phi_{kl}^{\beta} \wedge [\Delta_X]$ such that $\Lambda(\Psi_{kl}^{\beta}) \geq \beta$ and which has, for $\bot < \delta \leq \beta$, a δ -base \mathbb{B}_{kl} such that B(x) is \mathbb{E} -connected for each $x \in X$ and each $B \in \mathbb{B}_{kl}$. In particular, $(f \times f)(\Psi_{kl}^{\beta}) \leq (f \times f)([\Delta_X]) = [\Delta_{X'}]$, as f is surjective. We define $\Psi^{\beta} = \bigwedge_{k=1}^{m} (f \times f)(\Psi_{kl}^{\beta}) \circ \cdots \circ (f \times f)(\Psi_{kn_k}^{\beta})$. Then $\Psi^{\beta} \leq \Phi \wedge [\Delta_{X'}]$ and $\Lambda_f(\Psi^{\beta}) \geq \beta$, as f is uniformly continuous.

We show that Ψ^{β} also has, for $\bot < \delta \le \alpha$, a δ -base \mathbb{B}^{β} with B(x') \mathbb{E} -connected for all $x' \in X'$ and all $B \in \mathbb{B}^{\beta}$. Let $\Psi(\top_B) \ge \delta$. Then $(f \times f)(\Psi_{kl}^{\beta})(\top_B) = \Psi_{kl}^{\beta}(\top_{(f \times f)^{\leftarrow}(B)}) \ge \delta$ for all k = 1, ..., m and $l = 1, ..., n_k$. Hence there are sets $C_{kl}^{\beta} \subseteq (f \times f)^{\leftarrow}(B)$ with $\Psi_{kl}^{\beta}(\top_{C_{kl}}) \ge \delta$. From $[\Delta_X] \ge \Psi_{kl}^{\beta}$ we conclude that $\Delta_X \subseteq C_{kl}^{\beta}$ and, by the surjectivity of f, then $\Delta_{X'} \subseteq (f \times f)(C_{kl}^{\beta}) \subseteq B$. Hence $\delta \le (f \times f)(\Psi_{k1}^{\beta}) \circ \cdots \circ (f \times f)(\Psi_{kn_k}^{\beta})(\top_{(f \times f)(C_{k1})} \circ \cdots \circ (f \times f)(C_{kn_k})) = (f \times f)(\Psi_{k1}^{\beta}) \circ \cdots \circ (f \times f)(\Psi_{kn_k}^{\beta})(\top_{(f \times f)(C_{k1})} \circ \cdots \circ (f \times f)(C_{kn_k}))$. By Lemma 6.5 and Lemma 6.6, the sets $((f \times f)(C_{k1}) \circ \cdots \circ (f \times f)(C_{kn_k}))(x')$ are \mathbb{E} -connected for all $x' \in X'$ and, as all these sets contain $\Delta_{X'}$ as a subset, so are $D^{\beta}(x') = (\bigcup_{k=1}^{m} (f \times f)(C_{k1}) \circ \cdots \circ (f \times f)(C_{kn_k}))(x')$ and $\Psi^{\beta}(\top_{D^{\beta}}) \ge \delta$.

We define now $\Psi = \bigvee_{\beta \lhd \alpha} \Psi^{\beta}$. This stratified L-filter exists and is $\leq \Phi \wedge [\Delta_{X'}]$. Moreover, $\Lambda_f(\Psi) \geq \Lambda_f(\Psi^{\beta}) \geq \beta$ for all $\beta \lhd \alpha$, and hence $\Lambda_f(\Psi) \geq \alpha$. We show that for $\bot < \delta \leq \alpha$, Ψ has a δ -base $\mathbb B$ with B(x') $\mathbb E$ -connected for all $x' \in X'$ and all $B \in \mathbb B$. Let $\Psi(\top_B) \geq \delta \rhd \eta$. Then there are $\beta_1^n, ..., \beta_n^n \lhd \alpha$ and $B_1^n, ..., B_n^n \subseteq X' \times X'$ such that $B_1^n \cap ... \cap B_n^n \subseteq B$ and $\Psi^{\beta_1^n}(\top_{B_1^n}) \wedge ... \wedge \Psi^{\beta_n^n}(\top_{B_n^n}) \geq \eta$. We have seen above that each $\Psi^{\beta_1^n}$ has a suitable η -base and hence there are $C_1^n \subseteq B_1^n, ..., C_n^n \subseteq B_n^n$ such that $\Psi^{\beta_1^n}(\top_{C_1^n}) \geq \eta$, ..., $\Psi^{\beta_n^n}(\top_{C_n^n}) \geq \eta$ and $C_1^n(x'), ..., C_n^n(x')$ are $\mathbb E$ -connected for all $x' \in X'$. Again, $\Delta_{X'} \subseteq C_1^n, ..., C_n^n$. We define $C_1 = \bigcup_{\eta \lhd \delta} C_1^n, ..., C_n = \bigcup_{\eta \lhd \delta} C_n^n$. Then, for l = 1, ..., n we have $\Psi^{\beta_1^n}(\top_{C_l}) \geq \eta$ for all $\eta \lhd \delta$, i.e. $\Psi^{\beta_1^n}(\top_{C_l}) \geq \delta$ and $C_l(x')$ is $\mathbb E$ -connected for all $x' \in X'$. The set $C = C_1 \cup ... \cup C_n \subseteq B$ satisfies that C(x') is $\mathbb E$ -connected for all $x' \in X'$ and $\Psi(\top_C) \geq \Psi^{\beta_1^n}(\top_{C_1}) \wedge ... \wedge \Psi^{\beta_n^n}(\top_{C_n}) \geq \delta$. Hence Ψ has a δ -base as desired and (X', Λ_f) is uniformly locally $\mathbb E$ -connected. \square

Theorem 6.8. Let the lattice L be completely distributive and let \mathbb{E} be a class of T2-spaces. Let $(X_i, \Lambda_i) \in |SL\text{-}UCS|$ for all $i \in J$. If all (X_i, Λ_i) are uniformly locally \mathbb{E} -connected and all but finitely many $(X_i, \lim(\Lambda_i))$ are \mathbb{E} -connected, then the product space $(\prod_{i \in J} X_i, \pi - \Lambda)$ is uniformly locally \mathbb{E} -connected.

Proof. We denote $X = \prod_{i \in J} X_i$. Let $\alpha \in L$ and let $\Phi \in \mathcal{F}_L^s(X \times X)$ such that $\pi - \Lambda(\Phi) \geq \alpha$. Then, for all $i \in J$, $\Lambda_i((p_i \times p_i)(\Phi)) \geq \alpha$ and hence, for each $i \in J$, there is $\Psi_i \in \mathcal{F}_L^s(X_i)$ with $\Psi_i \leq (p_i \times p_i)(\Phi) \wedge [\Delta_{X_i}]$ and $\Lambda_i(\Psi_i) \geq \alpha$ which has, for $\bot < \delta \leq \alpha$, a δ -base \mathbb{B}_i such that $B_i(x_i)$ is \mathbb{E} -connected for each $B_i \in \mathbb{B}_i$ and each $x_i \in X_i$. We define $\Psi = \bigotimes_{i \in J} \Psi_i \in \mathcal{F}_L^s(X \times X)$. Then $\pi - \Lambda(\Psi) = \bigwedge_{i \in J} \Lambda_i((p_i \times p_i)(\bigotimes_{i \in J} \Psi_i)) \geq \bigwedge_{i \in J} \Lambda_i(\Psi_i) \geq \alpha$ and $\Psi \leq \bigotimes_{i \in J} ((p_i \times p_i)(\Phi)) \leq \Phi$ and $\Psi \leq \bigotimes_{i \in J} [\Delta_{X_i}] \leq [\Delta_X]$, i.e. $\Psi \leq \Phi \wedge [\Delta_X]$. We show that, for $\bot < \delta \leq \alpha$, Ψ has a δ -base \mathbb{B} with $B((x_i))$ \mathbb{E} -connected for all $B \in \mathbb{B}$ and all $(x_i) \in X$. Let $\Psi(\top_B) \geq \delta$ and let $\eta \lhd \delta$. We may assume $\eta > \bot$. Then $\prod_{i \in J} \Psi_i(\top_{\nu \vdash (B)}) \rhd \eta$ and by Lemma 2.1 there are $U_i^{\eta} \subseteq X_i \times X_i$, $U_i^{\eta} \neq X_i \times X_i$ for only finitely many $i \in J$ with

$$\begin{split} &\prod_{i\in J} U_i^\eta\subseteq \nu^\leftarrow(B) \text{ and } \bigwedge_{i\in J} \Psi_i(\top_{U_i^\eta}) \geq \eta. \text{ Hence, for all } i\in J, \ \Psi_i(\top_{U_i^\eta}) \geq \eta \text{ and there are sets } B_i^\eta\subseteq U_i^\eta \text{ such that } B_i^\eta(x_i) \text{ is \mathbb{E}-connected for all } x_i\in X_i. \text{ We may assume that for all but finitely many } i\in J, \ B_i^\eta=X_i\times X_i. \ \text{Moreover we have } \Delta_{X_i}\subseteq B_i^\eta \text{ for all } i\in J. \text{ It is not difficult to show that } \prod_{i\in J} B_i^\eta(x_i)=\nu(\prod_{i\in J} B_i^\eta)((x_i)) \text{ and, as \mathbb{E} consists of $\mathrm{T2}$-spaces, these sets are \mathbb{E}-connected. Moreover, we have } \nu(\prod_{i\in J} B_i^\eta)\subseteq \nu(\prod_{i\in J} U_i^\eta)\subseteq \nu(\nu^\leftarrow(B))\subseteq B \text{ and we have } \bigotimes_{i\in J} \Psi_i(\nu(\top_{\prod_{i\in J} B_i^\eta}))\geq \prod_{i\in J} \Psi_i(\top_{\prod_{i\in J} B_i^\eta})\geq \bigwedge_{i\in J} \Psi_i(\top_{B_i^\eta})\geq \eta. \text{ From } \Delta_{X_i}\subseteq B_i^\eta \text{ we conclude that } \Delta_X\subseteq \nu(\prod_{i\in J} B_i^\eta). \text{ Hence, if we define } B=\bigcup_{\eta\lhd\delta}\nu(\prod_{i\in J} B_i^\eta), \text{ then } B((x_i))=\bigcup_{\eta\lhd\delta}\nu(\prod_{i\in J} B_i^\eta)((x_i)) \text{ is \mathbb{E}-connected. As } \Psi(\top_B)\geq \eta \text{ for all } \eta\lhd\delta, \text{ we obtain } \Psi(\top_B)\geq\delta \text{ and the proof is complete.} \end{split}$$

7. Conclusions

We extended in this paper Preuß' \mathbb{E} -connectedness to stratified L-uniform convergence spaces and studied a suitable definition of uniform local \mathbb{E} -connectedness for such spaces, generalizing a definition and results from Vainio [24]. The preservation of local \mathbb{E} -connectedness under products (even for $L=\{0,1\}$) has not been shown before.

In the theory of classical uniform convergence spaces there is a further connectedness notion that plays a role in fixed point theorems, see Kneis [18]. Generalizing a definition from [18] we call a stratified L-uniform convergence space well-chained if for all $x, y \in X$ there is $\Phi_{xy} \in \mathcal{F}_L^s(X \times X)$ such that for $N \subseteq X \times X$, there is a natural number n with $(x,y) \in N^n$ whenever $\Lambda(\Phi_{xy}) \leq \Phi_{xy}(\top_N)$. For $L = \{0,1\}$ this definition coincides with the definition given by Kneis [18]. In SL-UNIF, then (X,\mathcal{U}) is well-chained if and only if it is strongly uniformly connected. In general, we only have that a well-chained space $(X,\Lambda) \in |SL$ -UCS| is strongly uniformly connected. This can be seen with Theorem 4.6. It would be interesting to know if the class WC of well-chained uniform convergence spaces coincides with the class $UC\mathbb{E}$ of uniformly \mathbb{E} -connected spaces for a suitable class \mathbb{E} . The following result sheds some light into this question. We call a space (X,Λ) totally unchained if the only well-chained sets $A \subseteq X$ (i.e. well-chained subspaces $(A,\Lambda|_A)$) are one-point sets. For instance, the space $(\{0,1\},\Lambda_\delta^s)$ is totally unchained.

Lemma 7.1. We have $WC \subseteq UC\mathbb{E}$ if and only if all spaces in \mathbb{E} are totally unchained.

Proof. Let $WC \subseteq UC\mathbb{E}$ and let $(E, \Lambda_E) \in \mathbb{E}$ and $A \subseteq E$ be well-chained. Then the inclusion mapping $i_A : A \longrightarrow E$ is uniformly continuous and hence constant, i.e. A is a one-point set. Conversely, let (X, Λ) be well-chained and let $f : (X, \Lambda) \longrightarrow (E, \Lambda_E)$ be uniformly continuous. It is not difficult to see that then $f(X) \subseteq E$ is well-chained too and hence, by assumption, $f(X) = \{a\}$, i.e. f is constant. \square

References

 J. Adámek, H. Herrlich, and G.E. Strecker, Abstract and Concrete Categories, Wiley, New York, 1989.

- [2] G. Cantor, Über unendliche lineare Punktmannichfaltigkeiten, Math. Ann., 21 (1883), 545– 591.
- [3] A. Craig and G. Jäger, A common framework for lattice-valued uniform spaces and probabilistic uniform limit spaces, Fuzzy Sets and Systems, 160 (2009), 1177 - 1203.
- [4] J. Fang, Lattice-valued semiuniform convergence spaces, Fuzzy Sets and Systems, 195 (2012), 33-57.
- [5] W. Gähler, Grundstrukturen der Analysis I, Birkhäuser Verlag, Basel and Stuttgart, 1977.
- [6] J. Gutiérrez García, A unified approach to the concept of fuzzy L-uniform space, Thesis, Universidad del Pais Vasco, Bilbao, Spain, 2000.
- [7] J. Gutiérrez García, M.A. de Prada Vicente and A. P. Šostak, A unified approach to the concept of fuzzy L-uniform space, In: S. E. Rodabaugh, E. P. Klement (Eds.), Topological and algebraic structures in fuzzy sets, Kluwer, Dordrecht, (2003), 81–114.
- F. Hausdorff, Grundzüge der Mengenlehre, Leipzig, 1914.
- U. Höhle and A. P. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, In: U. Höhle, S.E. Rodabauch (Eds.), Mathematics of Fuzzy Sets. Logic, Topology and Measure Theory, Kluwer, Boston/Dordrecht/London (1999), 123-272.
- [10] G. Jäger, A category of L-fuzzy convergence spaces, Quaestiones Math., 24 (2001), 501–517.
- [11] G. Jäger, Subcategories of lattice-valued convergence spaces, Fuzzy Sets and Systems, 156 (2005), 1-24.
- [12] G. Jäger and M. H. Burton, Stratified L-uniform convergence spaces, Quaest. Math., 28 (2005), 11 - 36.
- [13] G. Jäger, Lattice-valued convergence spaces and regularity, Fuzzy Sets and Systems, 159 (2008), 2488-2502.
- [14] G. Jäger, Level spaces for lattice-valued uniform convergence spaces, Quaest. Math., 31 (2008), 255–277.
- [15] G. Jäger, Compactness in lattice-valued function spaces, Fuzzy Sets and Systems, 161 (2010), 2962 - 2974.
- [16] G. Jäger, Lattice-valued Cauchy spaces and completion, Quaest. Math., 33 (2010), 53–74.
- [17] G. Jäger, Connectedness and local connectedness for lattice-valued convergence spaces, Fuzzy Sets and Systems, to appear, doi:10.1016/j.fss.2015.11.013.
- [18] G. Kneis, Contributions to the theory of pseudo-uniform spaces, Math. Nachrichten, 89 (1979), 149-163.
- [19] S. G. Mrówka and W. J. Pervin, On uniform connectedness, Proc. Amer. Math. Soc., 15 (1964), 446–449.
- [20] G. Preuß, E-Zusammenhängende Räume, Manuscripta Mathematica, 3 (1970), 331–342.
- [21] G. Preuß, Trennung und Zusammenhang, Monatshefte für Mathematik, 74(1970), 70-87.
- [22] W. W. Taylor, Fixed-point theorems for nonexpansive mappings in linear topological spaces, J. Math. Anal. Appl., 40 (1972), 164–173.
- [23] R. Vainio, A note on products of connected convergence spaces, Acta Acad. Aboensis, Ser. B, **36(2)** (1976), 1–4.
- [24] R. Vainio, The locally connected and the uniformly locally connected coreflector in general convergence theory, Acta Acad. Aboensis, Ser. B, 39(1) (1979), 1–13.
- [25] R. Vainio, On connectedness in limit space theory, in: Convergence structures and applications II, Abhandlungen der Akad. d. Wissenschaften der DDR, Berlin (1984), 227–232.

Gunther Jäger, School of Mechanical Engineering, University of Applied Sciences STRALSUND, 18435 STRALSUND, GERMANY

E-mail address: gunther.jaeger@fh-stralsund.de

UNIFORM CONNECTEDNESS AND UNIFORM LOCAL CONNECTEDNESS FOR LATTICE-VALUED UNIFORM CONVERGENCE SPACES

G. JAGER

همبندی یکنواخت وهمبندی موضعی یکنواخت برای فضاهای همگرای یکنواخت شبکه مقدار

چکیده. ما مفهوم E همبندی Preu را برای رسته فضاهای همگرای یکنواخت شبکه مقدار و فضاهای یکنواخت شبکه مقداربه کار می بریم. یک فضا بطور یکنواخت E مرتبط است اگر تنها توابع متصل یکنواخت از یک فضا به فضای دیگر در خانواده E توابع ثابت باشند. ما نظریه اصلی برای مجموعه های E همبند ، از جمله قضیه حاصلضرب را گسترش می دهیم. بعلاوه ، E همبند موضعی را تعریف و بررسی می کنیم ، و یک تعریف کلاسیک از نظریه فضاهای همگرا یکنواخت را به حالت شبکه E مقدار تعمیم می دهیم. بخصوص ، نشان داده شده است که اگر شبکه زمینه کاملاً توزیعپذیر باشد، فضای خارج قسمتی یک فضای بطور یکنواخت E همبند موضعی و حاصلضربهای فضاهای بطور یکنواخت E همبند موضعی هستند.