UNIFORM CONNECTEDNESS AND UNIFORM LOCAL CONNECTEDNESS FOR LATTICE-VALUED UNIFORM CONVERGENCE SPACES

G. JÄGER

ABSTRACT. We apply Preuß' concept of E-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly E-connected if the only uniformly continuous mappings from the space to a space in the class E are the constant mappings. We develop the basic theory for E-connected sets, including the product theorem. Furthermore, we define and study uniform local E-connectedness, generalizing a classical definition from the theory of uniform convergence spaces to the lattice-valued case. In particular it is shown that if the underlying lattice is completely distributive, the quotient space of a uniformly locally E-connected space and products of locally uniformly E-connected spaces are locally uniformly E-connected.

1. Introduction

Connectedness was first defined by G. Cantor in [2]. In the more modern setting of metric spaces, it can be expressed as follows. A metric space (X, d) is connected if for all $\epsilon > 0$ and all $x, y \in X$ there are finitely many points $x = t_1, t_2, ..., t_n = y$ such that $d(t_k, t_{k+1}) \leq \epsilon$ for all $k = 1, 2, ..., n-1$. This notion bears nowadays the name well-chainedness or chain-connectedness. It was shown later, that for bounded, closed subsets, this definition is equivalent to the requirement that the space cannot be separated into two non-empty, disjoint closed subsets. The latter characterization does not need a metric and was subsequently considered as the "proper" definition of connectedness in topology, see e.g. [8]. Cantor's concept reappeared after the introduction of uniform spaces. A uniform space (X, \mathcal{U}) is well-chained if for all $x, y \in X$ and all $U \in \mathcal{U}$, there is a natural number n such that $(x, y) \in Uⁿ$, see e.g. [22]. It was shown in [19] that a uniform space is well-chained if and only if each uniformly continuous mapping from (X, \mathcal{U}) into the discrete two-point uniform space is constant. (The latter is called uniform connectedness in $[19]$.) It is well-known that, similarly, a topological space is connected if each continuous mapping into the discrete two-point topological space is constant. These characterizations were subsequently generalized by Preuß [20, 21] and the concept of E-connectedness. A (uniform, resp. topological) space X is E-connected if, for ARFIRACT. We apply Preuß' concept of E-connectedness to the categories of
lattice-valued uniform convergence spaces and of lattice-valued uniform spaces.
A space is uniformly E-connected if the only uniformly contingulars

Received: July 2015; Revised: January 2016; Accepted: February 2016

Key words and phrases: L-topology, L-uniform convergence space, Uniform connectedness, Local connectedness.

each (uniform, resp. topological) space E in \mathbb{E} , the only (continuous resp. uniformly continuous) mappings from X to E are the constant ones.

In the realm of (uniform) convergence spaces, Vainio [23, 24, 25] developed the theory of connectedness along Preuß' lines. He also introduced a notion of local connectedness $[24]$. Also Gähler $[5]$ contributed to the theory. For uniform convergence spaces, Kneis [18] generalized Cantor's connectedness in order to prove a fixed point theorem, generalizing a similar result by Taylor [22] from uniform spaces to uniform convergence spaces.

In this paper, we use Preuß' concept of E-connectedness and apply it to latticevalued uniform convergence spaces. We develop the basic theory for uniformly E-connected sets. Further, we define a suitable notion of uniform local E-connectedness, generalizing Vainio's approach [24] to the lattice-valued case.

The paper is organised as follows. In the second section, we provide the necessary notation, definitions and results on lattices, lattice-valued sets and lattice-valued filters needed later on. Section 3 collects the definitions and results regarding lattice-valued uniform convergence spaces and lattice-valued limit spaces. Section 4 discusses the concepts of uniform E-connectedness and Section 5 then collects the results about uniformly E-connected sets. Section 6 is devoted to uniform local E-connectedness and in the last section, we finally draw some conclusions. alued uniform convergence spaces. We develop the basic theory for uniform
 Archive density. Further, we define a suitable notion of uniform local
 Archive of the axchive of the similarity (*Archive of the second set o*

2. Preliminaries

We consider in this paper frames, i.e. complete lattices L (with bottom element \perp and top element \top) for which the infinite distributive law $\bigvee_{j\in J} (\alpha\wedge\beta_j) = \alpha\wedge\bigvee_{j\in J}\beta_j$ holds for all $\alpha, \beta_j \in L$ $(j \in J)$. In a frame L, we can define an implication operator by $\alpha \to \beta = \bigvee {\gamma \in L} : \alpha \wedge \gamma \leq \beta$. This implication is then right-adjoint to the meet operation, i.e. we have $\delta \leq \alpha \to \beta$ iff $\alpha \wedge \delta \leq \beta$. A complete lattice L is completely distributive if the following distributive laws are true.

$$
(CD1) \bigvee_{j \in J} \left(\bigwedge_{i \in I_j} \alpha_{ji} \right) = \bigwedge_{f \in \prod_{j \in J} I_j} \left(\bigvee_{j \in J} \alpha_{jf(j)} \right),
$$

$$
(CD2) \bigwedge_{j \in J} \left(\bigvee_{i \in I_j} \alpha_{ji} \right) = \bigvee_{f \in \prod_{j \in J} I_j} \left(\bigwedge_{j \in J} \alpha_{jf(j)} \right).
$$

It is well known that, in a complete lattice, (CD1) and (CD2) are equivalent. In any complete lattice we can define the *wedge-below relation* $\alpha \leq \beta$ if for all subsets $D \subseteq L$ such that $\beta \leq \bigvee D$ there is $\delta \in D$ such that $\alpha \leq \delta$. Then $\alpha \leq \beta$ whenever $\alpha \triangleleft \beta$ and $\alpha \triangleleft \bigvee_{j \in J} \beta_j$ iff $\alpha \triangleleft \beta_i$ for some $i \in J$. In a completely distributive lattice we have $\alpha = \bigvee {\beta : \beta \lhd \alpha}$ for any $\alpha \in L$. An element $\alpha \in L$ in a lattice is called *prime* if $\beta \wedge \gamma \leq \alpha$ implies $\beta \leq \alpha$ or $\gamma \leq \alpha$.

For notions from category theory, we refer to the textbook [1].

For a frame L and a set X, we denote the set of all L-sets $a, b, c, ... : X \longrightarrow L$ by L^X . We define, for $\alpha \in L$ and $A \subseteq X$, the L-set α_A by $\alpha_A(x) = \alpha$ if $x \in A$ and $\alpha_A(x) = \bot$ else. In particular, we denote the constant L-set with value $\alpha \in L$ by α_X and \top_A is the characteristic function of $A \subseteq X$. The operations and the order are extended pointwisely from L to L^X . For $a \in L^X$ we define $[a > \perp] = \{x \in X :$ $a(x) > \perp$.

For $a, b \in L^{X \times X}$ we define $a^{-1} \in L^{X \times X}$ by $a^{-1}(x, y) = a(y, x)$ and $a \circ b \in L^{X \times X}$ by $a \circ b(x, y) = \bigvee_{z \in X} (a(x, z) \wedge b(z, y))$, for all $(x, y) \in X \times X$, see [12]. Then, for $A, B \subseteq X \times X, (\top_A)^{-1} = \top_{A^{-1}}$ with $A^{-1} = \{(x, y) : (y, x) \in A\}$ and $\top_A \circ \top_B =$ $\top_{A \circ B}$, where $\overrightarrow{A \circ B} = \{(x, y) : \text{there is } z \in X \text{ s.t. } (x, z) \in A, (z, y) \in B\}.$ Further, we denote $\Delta_X = \{(x, x) : x \in X\}.$

A mapping $\mathcal{F}: L^X \longrightarrow L$ is called a *stratified L-filter on* X [9] if (LF1) $\mathcal{F}(\top_X) =$ \top and $\mathcal{F}(\perp_X) = \perp$, (LF2) $\mathcal{F}(a) \leq \mathcal{F}(b)$ whenever $a \leq b$, (LF3) $\mathcal{F}(a) \wedge \mathcal{F}(b) \leq$ $\mathcal{F}(a \wedge b)$ and (LFs) $\mathcal{F}(\alpha_X) \ge \alpha$ for all $a, b \in L^X$ and all $\alpha \in L$. A typical example is, for $x \in X$, the *point L-filter* [x] defined by $[x](a) = a(x)$ for all $a \in L^X$. We denote the set of all stratified L-filters on X by $\mathcal{F}_{L}^{s}(X)$ and order it by $\mathcal{F} \leq \mathcal{G}$ if for all $a \in L^X$ we have $\mathcal{F}(a) \leq \mathcal{G}(a)$. For a family of stratified L-filters \mathcal{F}_i $(i \in J)$, the infimum in the order is given by $(\bigwedge_{i\in J} \mathcal{F}_i)(a) = \bigwedge_{i\in J} \mathcal{F}_i(a)$ for all $a \in L^X$. The supremum, however, only exists if $\mathcal{F}_{i_1}(a_1) \wedge \mathcal{F}_{i_2}(a_2) \wedge ... \wedge \mathcal{F}_{i_n}(a_n) = \bot$ whenever $a_1 \wedge a_2 \wedge ... \wedge a_n = \perp_X$. In this case the supremum is given by $(\bigvee_{i \in J} \mathcal{F}_i)(a) =$ $\bigvee {\mathcal{F}_{i_1}(a_1) \wedge \mathcal{F}_{i_2}(a_2) \wedge ... \wedge \mathcal{F}_{i_n}(a_n)}$: $a_1 \wedge a_2 \wedge ... \wedge a_n \le a$, see [9]. Consider now a mapping $f: X \longrightarrow Y$. For $\mathcal{F} \in \mathcal{F}_L^s(X)$ then $f(\mathcal{F}) \in \mathcal{F}_L^s(Y)$ is defined by $f(\mathcal{F})(b) = \mathcal{F}(f^{\leftarrow}(b))$ with $f^{\leftarrow}(b) = b \circ f$ for $b \in L^X$, [9]. For $\mathcal{G} \in \mathcal{F}_L^s(Y)$ we define $f^{\leftarrow}(\mathcal{G})(a) = \bigvee \{ \mathcal{G}(b) : f^{\leftarrow}(b) \leq a \}.$ If $\mathcal{G}(b) = \perp$ whenever $f^{\leftarrow}(b) = \perp_X$, then $f^{\leftarrow}(\mathcal{G}) \in \mathcal{F}_L^s(X)$, see [10]. We will need the following two examples later. Firstly, if $M \subseteq X$ we define $i_M : M \longrightarrow X$, $i_M(x) = x$. In case of existence, we denote, for $\mathcal{F} \in \mathcal{F}_L^s(X)$, $\mathcal{F}_M = i_M^{\leftarrow}(\mathcal{F})$. Secondly, for sets X_i $(i \in J)$, we denote the projections $p_j : \prod_{i \in J} X_i \longrightarrow X_j$ and define the *stratified L-product* filter $\prod_{i\in J} \mathcal{F}_i = \bigvee_{i\in J} p_i^{\leftarrow}(\mathcal{F}_i)$, see [3, 10]. The following result follows directly from the definition. *T* and $\mathcal{F}(\perp_X) = \perp$, (I.F2) $\mathcal{F}(a) \leq \mathcal{F}(b)$ whenever $a \leq b$, (I.F3) $\mathcal{F}(a) \wedge \mathcal{F}(b)$
 $\mathcal{F}(a \wedge b)$ and (I.F8) $\mathcal{F}(\alpha) \wedge \mathcal{F}(b)$ as for all $a, b \in L^X$ and all $\alpha \in L$. A typical example if $\alpha \in \mathbb$

Lemma 2.1. Let
$$
\mathcal{F}_i \in \mathcal{F}_L^s(X_i)
$$
 for $i \in J$. Then, for $U \subseteq \prod_{i \in J} X_i$,
\n
$$
\prod_{i \in J} \mathcal{F}_i(\top_U) = \bigvee \{ \bigwedge_{i \in J} \mathcal{F}_i(\top_{U_i}) : \prod_{i \in J} U_i \subseteq U \text{ and only finitely many } U_i \neq X_i \}.
$$

We denote stratified L-filters on $X \times X$ by Φ, Ψ, \dots In [12] we defined the following constructions. For $\Phi, \Psi \in \mathcal{F}_L^s(X \times X)$ we define $\Phi^{-1} \in \mathcal{F}_L^s(X \times X)$ by $\Phi^{-1}(a) = \Phi(a^{-1})$ for all $a \in L^{X \times X}$. We further define $\Phi \circ \Psi : L^{X \times X} \longrightarrow L$ by $\Phi \circ \Psi(a) = \bigvee \{ \Phi(b) \land \Psi(c) : b \circ c \leq a \}.$ Then $\Phi \circ \Psi \in \mathcal{F}_L^s(X \times X)$ if and only if $b \circ c = \perp_{X \times X}$ implies $\Phi(b) \wedge \Psi(c) = \perp$. In this case we also say that $\Phi \circ \Psi$ exists. Lastly, we denote $[\Delta_X] = \bigwedge_{x \in X} [(x, x)].$

Lemma 2.2. Let $\bot \in L$ be prime and let $a, b \in L^X$ and $B \subseteq X$. If $a \circ b \leq \top_B$ then $\top_{[a>\perp]} \circ \top_{[b>\perp]} \leq \top_B$.

Proof. The proof is easy and left for the reader. \Box

Corollary 2.3. Let $\bot \in L$ be prime, let $\Phi, \Psi \in \mathcal{F}_L^s(X \times X)$ and let $B \subseteq X \times X$. Then $\Phi \circ \Psi(\top_B) = \bigvee \{ \Phi(\top_C) \wedge \Psi(\top_D) : C \circ D \subseteq B \}.$

Lemma 2.4. Let $\Psi \in \mathcal{F}_L^s(X \times X)$ and let $x \in X$. We define $\Psi(x) : L^X \longrightarrow L$ by $\Psi(x)(a) = \bigvee \{ \Psi(\psi) : \psi(\cdot, x) \leq a \}.$ Then $\Psi(x) \in \mathcal{F}_L^s(X)$ if and only if $\Psi(\psi) = \bot$ whenever $\psi(\cdot, x) = \perp_X$.

Proof. We omit the straightforward proof and only mention that the condition is used to ensure $\Psi(x)(\perp_{X}) = \perp$.

We note that if $\Psi \leq [\Delta_X]$, then $\psi(\cdot, x) = \bot_X$ implies $\Psi(\psi) \leq \bigwedge_{y \in X} \psi(y, y) \leq \bot_Y$ $\psi(x, x) = \bot$. Hence, in this case, $\Psi(x) \in \mathcal{F}_L^s(X)$.

Lemma 2.5. Let $\Phi, \Psi \in \mathcal{F}_L^s(X \times X)$, $\mathcal{F} \in \mathcal{F}_L^s(X)$ and let $x \in X$ and $\Phi(x), \Psi(x) \in$ $\mathcal{F}_L^s(X)$. The following hold.

(1) If $\Phi \leq \Psi$, then $\Phi(x) \leq \Psi(x)$. (2) $(\Phi \wedge \Psi)(x) \leq \Phi(x) \wedge \Psi(x)$.

 (3) $[\Delta_X](x) = [x]$.

 $(4) \Psi = \Psi(x) \times [x].$

$$
(5) \; (\mathcal{F} \times [x])(x) \leq \mathcal{F}.
$$

Proof. (1) and (2) are easy and left for the reader.

(3) We have $[\Delta_X](x)(a) = \bigvee {\{\bigwedge_{y \in X} \phi(y, y) \ \wedge \ \phi(\cdot, x) \leq a\}} \leq \bigvee {\{\phi(x, x) \ : \ \bigwedge_{y \in X} \phi(y, y) \ \wedge \ \phi(\cdot, x) \leq a\}}$ $\phi(\cdot, x) \le a \} \le a(x) = [x](a)$. On the other hand, for $a \in L^X$, we define $\phi_a(u, v) = \top$ if $v \neq x$ and $\phi_a(u, v) = a(u)$ if $v = x$. Then $\phi_a(\cdot, x) = a$ and hence $[\Delta](x)(a) \geq$ $\bigwedge_{y \in X} \phi_a(y, y) = \phi_a(x, x) = a(x) = [x](a).$

(4) For $\phi \in L^{X \times X}$ we have $\phi(\cdot, x) \times \top_{\{x\}} \leq \phi$ and hence $\Psi(x) \times [x](\psi) =$ $\bigvee \{\Psi(x)(c) \wedge [x](d) : c \times d \leq \psi\} \geq \bigvee \{\Psi(\phi) \wedge d(x) : \phi(\cdot, x) \times d \leq \psi\} \geq$ $\Psi(\psi) \wedge \top_{\{x\}}(x) = \Psi(\psi)$. For the converse inequality, we note that $c \times d \leq \psi$ and $\phi(\cdot, x) \leq c$ implies $\phi(\cdot, x) \times d \leq \psi$. Hence it follows with (LFs) that if $c \times d \leq \psi$, then $\Psi(x)(c) \wedge d(x) \leq \bigvee \{\Psi(\phi \wedge (d(x))_X) : \phi(\cdot, x) \leq c\} \leq \bigvee \{\Psi(\phi \wedge (d(x))_X) :$ $\phi \wedge (d(x))_X \leq \psi$ $\leq \Psi(\psi)$. Hence $(\Psi(x) \times [x])(\psi) = \bigvee {\Psi(x)(c) \wedge [x](d)} : c \times d \leq$ ψ } $\leq \Psi(\psi)$. **Lemma 2.5.** Let $\Phi, \Psi \in \mathcal{F}_L^s(X \times X), \mathcal{F} \in \mathcal{F}_L^s(X)$ and let $x \in X$ and $\Phi(x)$, $\Psi(x)$
 $\mathcal{F}_L^s(X)$. The following hold.

(1) If $\Phi \le \Psi$, then $\Phi(x) \le \Phi(x)$.

(2) If $\Phi \le \Psi$, then $\Phi(x) \le \Phi(x)$.

(2) If $\chi = \Psi(x) \$

(5) If $\phi(\cdot, x) \leq a$ then if $c \times d \leq \phi$ we have, for all $y \in X$, that $c(y) \wedge d(x) \leq$ $\phi(y, x) \leq a(y)$. Hence it follows $(\mathcal{F} \times [x])(\phi) \leq {\mathcal{F}(c \land (d(x))_X)} : c \land (d(x))_X \leq a} \leq$ $\mathcal{F}(a)$ and therefore $(\mathcal{F} \times [x])(x)(a) = \bigvee \{ (\mathcal{F} \times [x])(\phi) : \phi(\cdot, x) \leq a \} \leq \mathcal{F}(a).$

We will later need a further construction. We describe the situation. Let X_i be sets $(i \in J)$. We denote the projections $\pi_j : \prod_{i \in J} (X_i \times X_i) \longrightarrow X_j \times X_j$, $((x_i, y_i)) \mapsto (x_j, y_j)$, the mapping $\nu : \prod_{i \in J} (X_i \times X_i) \longrightarrow \prod_{i \in J} X_i \times \prod_{i \in J} X_i$ defined by $\nu((x_i, y_i)) = ((x_i), (y_i))$ and the product of the projections $p_j : \prod_{i \in J} X_i \longrightarrow$ $X_j, p_j \times p_j : \prod_{i \in J} X_i \times \prod_{i \in J} X_i \longrightarrow X_j \times X_j$. Then $(p_j \times p_j) \circ \nu = \pi_j$ for all $j \in J$. For $\Psi_i \in \mathcal{F}_L^s(X_i \times X_i)$, $(i \in J)$ we define

$$
\bigotimes_{i \in J} \Psi_i = \nu(\prod_{i \in J} \Psi_i) \in \mathcal{F}_L^s(\prod_{i \in J} X_i \times \prod_{i \in J} X_i).
$$

Following Gähler [5], we call $\bigotimes_{i \in J} \Psi_i$ the *stratified relation product L-filter of* the Ψ_i $(i \in J)$.

Proposition 2.6. Let $\Psi_i \in \mathcal{F}_L^s(X_i \times X_i)$ for $i \in J$ and $X = \prod_{i \in J} X_i$. Let $\Phi \in \mathcal{F}_L^s(X \times X)$. Then (1) $(p_j \times p_j)(\bigotimes_{i \in J} \Psi_i) \geq \Psi_j;$ $(2) \bigotimes_{i \in J} ((p_i \times p_i)(\Phi)) \leq \Phi;$

 $(3) \bigotimes_{i \in J} [\Delta_{X_i}] \leq [\Delta_{\prod_{i \in J} X_i}].$

Proof. (1) We use $(p_j \times p_j) \circ \nu = \pi_j$. Then $(p_j \times p_j)(\bigotimes_{i \in J} \Psi_i) = \pi_j(\prod_{i \in J} \Psi_i) \ge \Psi_j$.

(2) It is not difficult to show that for $a \in L^{X \times X}$ and $a_1 \in L^{X_{j_1} \times X_{j_1}},...,a_n \in L^{X_{j_n}}$ $L^{X_{j_n}\times X_{j_n}}$ we have $(p_{j_1}\times p_{j_1})^{\leftarrow}(a_1)\wedge...\wedge(p_{j_n}\times p_{j_n})^{\leftarrow}(a_n) \leq a$ whenever $\pi_{j_1}^{\leftarrow}(a_1)\wedge...$ $\ldots \wedge \pi_{j_n}^{\leftarrow}(a_n) \leq \nu^{\leftarrow}(a)$. Hence $\nu(\prod_{i \in J}(p_i \times p_i)(\Phi))(a) = \bigvee \{ \Phi((p_{j_1} \times p_{j_1})^{\leftarrow}(a_1) \wedge \ldots \wedge b_n)\}$ $(p_{j_n} \times p_{j_n})^{\leftarrow}(a_n)$: $\pi_{j_1}^{\leftarrow}(a_1) \wedge ... \wedge \pi_{j_n}^{\leftarrow}(a_n) \leq \nu^{\leftarrow}(a)$ $\leq \Phi$.

(3) For $a \in L^{X \times X}$ and $a_1 \in L^{X_{j_1} \times X_{j_1}}, \ldots, a_n \in L^{X_{j_n} \times X_{j_n}}$, if $\pi_{j_1}^{\leftarrow}(a_1) \wedge \ldots \wedge$ $\pi_{j_n}^{\leftarrow}(a_n)((x_i,x_i)) = a_1(x_{j_1},x_{j_1}) \wedge ... \wedge a_n(x_{j_n},x_{j_n}) \leq \nu^{\leftarrow}(a)((x_i,x_i)) = a((x_i), (x_i)),$ then $\bigwedge_{x_{j_1} \in X_{j_1}} a_1(x_{j_1}, x_{j_1}) \wedge ... \wedge \bigwedge_{x_{j_n} \in X_{j_n}} a_n(x_{j_n}, x_{j_n}) \leq \bigwedge_{(x_i) \in X} a((x_i), (x_i)).$ Hence, $\bigotimes_{i\in J} [\Delta_{X_i}](a) \ = \ \bigvee \{ [\Delta_{X_{j_1}}](a_1) \ \wedge \ ... \ \wedge \ [\Delta_{X_{j_n}}](a_n) \ \ : \ \ \Big|\pi_{j_1}^{\leftarrow}(a_1) \ \wedge \ ... \ \wedge \ \pi_{j_n}^{\leftarrow}(a_n) \ \leq$ $\nu^{\leftarrow}(a)$ } $\leq \bigwedge_{(x_i)\in X} a((x_i), (x_i)) = [\Delta_X](a).$ $(x_i) \in X$ $a((x_i), (x_i)) = [\Delta_X](a).$

3. Lattice-valued Uniform Convergence Spaces and Lattice-valued Limit Spaces

Let $X \neq \emptyset$. A mapping $\Lambda : \mathcal{F}_L^s(X \times X) \longrightarrow L$ is called a *stratified L-uniform* convergence structure and the pair (X,Λ) a stratified L-uniform convergence space [3, 12] if for all $x \in X$ and all $\Phi, \Psi \in \mathcal{F}_L^s(X \times X)$,

- $(UC1)$ $\Lambda([x, x)]) = \top$ $\forall x \in X;$
- $(UC2)$ $\Phi \leq \Psi \implies \Lambda(\Phi) \leq \Lambda(\Psi);$
- (UC3) $\Lambda(\Phi) \leq \Lambda(\Phi^{-1});$
- $(UC4) \qquad \Lambda(\Phi) \wedge \Lambda(\Psi) \leq \Lambda(\Phi \wedge \Psi);$
- $(UC5)$ $\Lambda(\Phi) \wedge \Lambda(\Psi) \leq \Lambda(\Phi \circ \Psi)$ whenever $\Phi \circ \Psi$ exists.

A mapping $f:(X,\Lambda) \longrightarrow (X',\Lambda')$, where $(X,\Lambda),(X',\Lambda')$ are stratified Luniform convergence spaces, is called *uniformly continuous* iff $\Lambda(\Phi) \leq \Lambda'((f \times f)(\Phi))$ for all $\Phi \in \mathcal{F}_L^s(X \times X)$. The category SL-UCS has as objects the stratified L-uniform convergence spaces and as morphisms the uniformly continuous mappings. Then SL-UCS is a well-fibred topological construct and has natural function spaces, i.e. SL-UCS is Cartesian closed [12]. In particular, constant mappings are uniformly continuous. We describe the initial constructions. Let $(f_i: X \longrightarrow$ $(X_i, \Lambda_i)_{i \in I}$ be a source. Define for $\Phi \in \mathcal{F}_L^s(X \times X)$ the *initial stratified L-uniform* convergence structure on X by $\Lambda(\Phi) = \bigwedge_{i \in I} \Lambda_i((f_i \times f_i)(\Phi))$. In particular, we can define subspaces and product spaces. $\begin{array}{c} \ldots \wedge \pi_{j_n}^r(a_n) \leq \nu^-(a). \text{ Hence } \nu(\prod_{i\in J}(p_i\times p_i)(\Phi))(a) = \bigvee \{\Phi(p_{j_1}\times p_{j_2}) - (a_1)\wedge \ldots \wedge p_{j_n}\wedge p_{j_n}\w$

- Subspace: Let $(X, \Lambda) \in |SL\text{-}UCS|$ and let $T \subseteq X$ and $i_T : T \longrightarrow X$ be the embedding mapping defined by $i_T(x) = x$ for $x \in T$. Then the *subspace* $(T, \Lambda|_T)$ is defined by $\Lambda|_T(\Phi) = \Lambda((i_T \times i_T)(\Phi))$ for $\Phi \in \mathcal{F}_L^s(T \times T)$.
- Product space: Let $(X_i, \Lambda_i) \in |SL\text{-}UCS|$ for all $i \in J$ and let $X = \prod_{i \in J} X_i$ be the Cartesian product and consider the projections $p_j : X \longrightarrow X_j$. Then

the product space $(X, \pi \text{-} \Lambda)$ is defined by $\pi \text{-} \Lambda(\Phi) = \bigwedge_{i \in J} \Lambda_i((p_i \times p_i)(\Phi))$ for all $\Phi \in \mathcal{F}_L^s(X \times X)$.

Subspaces and product spaces are well behaved. Let $T_i \subseteq X_i$ and $(X_i, \Lambda_i) \in |SL-$ UCS for all $i \in J$. We denote $X = \prod_{i \in J} X_i$ and $T = \prod_{i \in J} T_i$ and the projections $p_j: X \longrightarrow X_j$ and $q_j: T \longrightarrow T_j$ and the embeddings $i_T: T \longrightarrow X$ and i_{T_j} : $T_j \longrightarrow X_j$. Then we have $(p_j \times p_j) \circ (i \in \times i \infty) = (i \in I_j \times i \in I_j) \circ (q_j \times q_j)$. It follows that if we denote the product structure on X w.r.t. the projections p_j by π - Λ_i and the product structure on T w.r.t. the projections q_j and the spaces $(T_i, \Lambda |_{T_i})$ by $\pi(\Lambda|_{T_i})$, then we have $\pi(\Lambda|_{T_i}) = (\pi \cdot \Lambda_i)|_T$. Moreover, we have the following result.

Lemma 3.1. Let $(X_i, \Lambda_i) \in |SL\text{-}UCS|$ for all $i \in J$ and let $(z_i) \in \prod_{i \in J} X_i$ be fixed. Define the slice $X_j = \{(x_i) \in \prod_{i \in J} X_i : x_i = z_i \forall i \neq j\} = \prod_{i \in J} T_i$ with $T_i = \{z_i\}$ if $i \neq j$ and $T_j = X_j$. Then $(X_j, \pi\text{-}\Lambda|_{\widetilde{X}_j})$ is isomorphic to (X_j, Λ_j) .

Proof. We use the notations from above and define $h : \widetilde{X}_j \longrightarrow X_j$ by $h((x_i)) = x_j$. Then $h = p_j \circ i_{\tilde{X}_j}$ is uniformly continuous. Clearly h is a bijection and its inverse is defined by $h^{-1}(x_j) = (x_i)$ with $x_i = z_i$ for $i \neq j$. Then $q_i \circ h^{-1}(x_j) = z_i$ for $i \neq j$, i.e. $q_i \circ h^{-1}$ is a constant mapping for $i \neq j$. For $i = j$, we have $q_j \circ h^{-1}(x_j) = x_j$, i.e. it is the identity mapping. Hence all compositions $q_i \circ h^{-1}$ are uniformly continuous and therefore also h^{-1} is uniformly continuous. \Box **Lemma 3.1.** Let $(X_i, \Lambda_i) \in |SL\text{-}UCS|$ for all $i \in J$ and let $(z_i) \in \prod_{i \in J} X_i$
 Circal. Define the slice $\tilde{X}_j = \{(x_i) \in \prod_{i \in J} X_i : x_i = z_i \forall i \neq j\} - \prod_{i \in J} T_i$
 $T_i = \{z_i\}$ *if* $i \neq j$ *and* $T_j = X_j$. Then $(X_j, \pi \cdot \Lambda | \tilde{X$

In SL-UCS, also final structures exist. They are, however, complicated and we will use only quotient spaces later. Let $(X, \Lambda) \in |SL\text{-}UCS|$ and let $f: X \longrightarrow X'$ be a surjective mapping. We define the following stratified L-uniform convergence structure Λ_f on X'. Let $\Phi' \in \mathcal{F}_L^s(X' \times X')$. Then

$$
\Lambda_f(\Phi') = \bigvee \{ \bigwedge_{k=1}^m \Lambda(\Phi_{k1}) \wedge \ldots \wedge \Lambda(\Phi_{kn_k}) \cdot \bigwedge_{k=1}^m (f \times f)(\Phi_{k1}) \circ \cdots \circ (f \times f)(\Phi_{kn_k}) \leq \Phi' \}.
$$

Lemma 3.2. Let $(X, \Lambda) \in \mathcal{S}L$ -UCS and let $f : X \longrightarrow X'$ be a surjective mapping. Then $(X', \Lambda_f) \in |SL\text{-}UCS|$ and for a further mapping $g: (X', \Lambda_f) \longrightarrow (Y, \Lambda_Y)$ we have that g is uniformly continuous if and only if $g \circ f$ is uniformly continuous.

Proof. We first show, that $(X', \Lambda_f) \in |SL-UCS|$. The axioms (UC1) and (UC2) are easy. (UC3) follows from $((f \times f)(\Phi))^{-1} = (f \times f)(\Phi^{-1})$ and (UC3) for (X, Λ) . (UC4) is again clear by construction and (UC5) follows as $\Theta \leq \Phi$ and $\Upsilon \leq \Psi$ implies $\Theta \circ \Upsilon \leq \Phi \circ \Psi$. It is furthermore clear that $f : (X,\Lambda) \longrightarrow (X',\Lambda_f)$ is uniformly continuous. Let now $g: (X', \Lambda_f) \longrightarrow (Y, \Lambda_Y)$ be a mapping such that $g \circ f$ is uniformly continuous. Then, for $\Phi' \in \mathcal{F}_L^s(X' \times X')$ we have

$$
f(\Phi') = \bigvee{\{\bigwedge_{k=1}^{m} \Lambda(\Phi_{k1}) \wedge \ldots \wedge \Lambda(\Phi_{kn_k}) : \atop m} \atop{\bigwedge_{k=1}^{m} (f \times f)(\Phi_{k1}) \circ \cdots \circ (f \times f)(\Phi_{kn_k}) \leq \Phi' \}}\n\leq \bigvee{\{\bigwedge_{k=1}^{m} \Lambda_Y((g \times g)((f \times f)(\Phi_{k1}))) \wedge \ldots \wedge \Lambda_Y((g \times g)((f \times f)(\Phi_{kn_k}))) : \atop m \hbox{\scriptsize $\bigwedge_{k=1}^{m} (f \times f)(\Phi_{k1}) \circ \cdots \circ (f \times f)(\Phi_{kn_k}) \leq \Phi' \}}.
$$

 Λ

With $\Psi_{kl} = (f \times f)(\Phi_{kl})$ then

$$
\Lambda_f(\Phi') \leq \bigvee \{ \bigwedge_{k=1}^m \Lambda_Y((g \times g)(\Psi_{k1})) \wedge \ldots \wedge \Lambda_Y((g \times g)(\Psi_{kn_k})) :
$$
\n
$$
\bigwedge_{k=1}^m \Psi_{k1} \circ \cdots \circ \Psi_{kn_k} \leq \Phi' \}
$$
\n
$$
\leq \bigvee \{ \bigwedge_{k=1}^m \Lambda_Y((g \times g)(\Psi_{k1})) \wedge \ldots \wedge \Lambda_Y((g \times g)(\Psi_{kn_k})) :
$$
\n
$$
\bigwedge_{k=1}^m (g \times g)(\Psi_{k1}) \circ \cdots \circ (g \times g)(\Psi_{kn_k}) \leq (g \times g)(\Phi') \}
$$
\n
$$
\leq \Lambda_Y((g \times g)(\Phi').
$$

Therefore q is uniformly continuous.

Hence, Λ_f is the final structure and (X', Λ_f) is the quotient space for the sink $f: (X, \Lambda) \longrightarrow X'.$

For $(X, \Lambda) \in |SL-UCS|$ we define the *stratified L-entourage filter* by $\mathcal{N}_{\Lambda}(a)$ = $\bigwedge_{\Phi \in \mathcal{F}_{L}^{s}(X \times X)} (\Lambda(\Phi) \to \Phi(a)),$ see [12]. We further define, for $\alpha \in L$, the *stratified* α -level L-entourage filter by $\mathcal{N}_{\alpha}(a) = \bigwedge_{\Lambda(\Phi) \geq \alpha} \Phi$, see [14].

Lemma 3.3. [12] A mapping $f : (X, \Lambda) \longrightarrow (X', \Lambda')$ satisfies $\mathcal{N}_{\Lambda'} \leq (f \times f)(\mathcal{N}_{\Lambda})$ whenever it is uniformly continuous.

In $[12]$ we defined the *discrete stratified L*-uniform convergence structure on X, Λ_{δ} , by $\Lambda_{\delta}(\Phi) = \top$ if $\Phi \geq \bigwedge_{x \in A} [(x, x)]$ for some finite set $A \subseteq X$ and $\Lambda_{\delta}(\Phi) = \bot$ else. It is not difficult to see that in case that X is a finite set, then $\Lambda_{\delta}(\Phi) = \top$ if $\Phi \geq [\Delta_X]$ and $\Lambda_\delta(\Phi) = \bot$ else.

We further consider the following stratified L-uniform convergence structure, which we shall call the *strong discrete stratified L-uniform convergence structure*

$$
\Lambda_{\delta}^{s}(\Phi) = \bigwedge_{a \in L^{X \times X}} ([\Delta_{X}](a) \to \Phi(a)).
$$

Whenever $X = \{0, 1\}$, then we denote $[\Delta] = [\Delta_{\{0,1\}}]$ for simplicity.

A pair (X, \mathcal{U}) of a non-void set X and a stratified L-filter $\mathcal{U} \in \mathcal{F}_L^s(X \times X)$ is called a stratified L-uniform space [6, 7] if U satisfies the following axioms (LU1) $\mathcal{U} \leq [\Delta_X]$, (LU2) $\mathcal{U} \leq \mathcal{U}^{-1}$ and (LU3) $\mathcal{U} \leq \mathcal{U} \circ \mathcal{U}$. A mapping $f : (X, \mathcal{U}) \longrightarrow (X', \mathcal{U}')$ is called uniformly continuous if $\mathcal{U}' \leq (f \times f)(\mathcal{U})$. The category SL-UNIF has as objects the stratified L-uniform spaces and as morphisms the uniformly continuous mappings. This category can be embedded into $SL-UCS$ by defining, for $(X, \mathcal{U}) \in |SL-UNIF|$, the stratified L-uniform convergence structure $\Lambda_{\mathcal{U}}$ by $\Lambda_{\mathcal{U}}(\Phi) = \bigwedge_{a \in L^{X \times X}} (\mathcal{U}(a) \to$ $\Phi(a)$). Then a mapping $f : (X, \mathcal{U}) \longrightarrow (X', \mathcal{U}')$ is uniformly continuous if and only if $f: (X, \Lambda_{\mathcal{U}}) \longrightarrow (X', \Lambda_{\mathcal{U}'})$ is uniformly continuous. $SL-UNIF$ is then isomorphic to a reflective subcategory of $SL\text{-}UCS$, see [3]. We define $\mathcal{U}_{\alpha} = \bigwedge_{\Lambda_{\mathcal{U}}(\Phi) \geq \alpha} \Phi$. Then $\Lambda_{\mathcal{U}}(\mathcal{U}_{\alpha}) \geq \alpha$, cf. [14]. $\begin{align*} \sqrt{a} \times g)(\Psi_{k1}) \circ \cdots \circ (g \times g)(\Psi_{kn_k}) \leq (g \times g)(\Phi') \,, \end{align*}$

Therefore g is uniformly continuous.
 $\begin{align*} \text{Therefore } g \text{ is uniformly continuous.} \end{align*}$

Therefore g is uniformly continuous.
 $\begin{align*} \text{Hence, } \Lambda_f \text{ is the final structure and } (X', \Lambda_f) \text{ is the quotient space for the structure of } \Gamma \text{ and$

A pair (X, lim) of a non-void set X and a mapping $\lim : \mathcal{F}_L^s(X) \longrightarrow L^X$ is called a stratified L-limit space, if the axioms (LC1) $\lim_x |x(x)| = \text{T}$; (LC2) $\lim \mathcal{F} \leq \lim \mathcal{G}$

whenever $\mathcal{F} \leq \mathcal{G}$ and $(LC3) \ \forall \mathcal{F}, \mathcal{G} \in \mathcal{F}_L^s(X)$: $\lim \mathcal{F} \wedge \lim \mathcal{G} \leq \lim \mathcal{F} \wedge \mathcal{G}$ are satisfied, [10]. A mapping $f : X \longrightarrow X'$ between the stratified L-limit spaces $(X, \text{lim}), (X', \text{lim}')$ is called *continuous* if and only if for all $\mathcal{F} \in \mathcal{F}_L^s(X)$ and all $x \in X$ we have $\lim_{x \to X} \mathcal{F}(x) \leq \lim_{x \to X} f(\mathcal{F})(f(x))$. The category of all stratified L-limit spaces with the continuous mappings as morphisms is denoted by $SL-LIM$. The category SL-LIM is topological and Cartesian closed [11].

In [13] we defined the following two *separation axioms* in $SL-LIM$. We call $(X, \text{lim}) \in \left| SL-LIM \right|$ a T1-space if for all $x, y \in X$, $x = y$ whenever $\lim[y](x) = \top$ and we call (X, \lim) a $T2$ -space if for all $\mathcal{F} \in \mathcal{F}_L^s(X)$, $x = y$ whenever $\lim \mathcal{F}(x) =$ $\lim \mathcal{F}(y) = \top.$

Let $(X, \Lambda) \in |SL\text{-}UCS|$. Then $(X, \lim(\Lambda)) \in |SL\text{-}LIM|$, where the limit map $\lim(\Lambda): \mathcal{F}_L^s(X) \longrightarrow L^X$ is defined by $\lim(\Lambda)\mathcal{F}(x) = \Lambda(\mathcal{F} \times [x])$, see [12]. Furthermore, if $f : (X, \Lambda) \longrightarrow (X', \Lambda')$ is uniformly continuous then $f : (X, \lim(\Lambda)) \longrightarrow$ $(X', \text{lim}(\Lambda'))$ is continuous. Hence we can define a functor $H : SL\text{-}UCS \longrightarrow$ SL-LIM. This functor preserves initial constructions.

Lemma 3.4. [12] Let $(f_i: X \longrightarrow (X_i, \Lambda_i))_{i \in I}$ be a source in SL-UCS and let Λ be the initial SL-UCS structure on X. Then $\lim(\Lambda)$ is the initial SL-LIM structure with respect to the source $(f_i: X \longrightarrow (X_i, \text{lim}(\Lambda_i)))_{i \in I}$.

In particular, for subspaces $(A, \Lambda|_A)$ of (X, Λ) we have $\lim(\Lambda|_A) = \lim(\Lambda)|_A$ and for product spaces $(\prod_{i\in J} X_i, \pi - \Lambda)$ we have $\lim(\pi - \Lambda) = \pi - \lim(\Lambda_i)$.

For a stratified L-uniform space (X, \mathcal{U}) and $x \in X$ we define the *stratified* Lneighbourhood filter of x, $\mathcal{N}_{\mathcal{U}}^x \in \mathcal{F}_{L}^s(X)$, by $\mathcal{N}_{\mathcal{U}}^x = \mathcal{U}(x)$ [6, 7] and with this the limit map $\lim_{\mathcal{U}}(\mathcal{U})\mathcal{F}(x) = \bigwedge_{a \in L^X} (\mathcal{N}_{\mathcal{U}}^x(a)) \to \mathcal{F}(a)$. Then $(X, \lim_{\mathcal{U}}) \in |SL-LIM|$ and, moreover, $\lim_{\mathcal{U}}(\mathcal{U}) = \lim_{\mathcal{U}}(\Lambda_{\mathcal{U}})$, see [3, 12].

We further call $(X, \Lambda) \in |SL\text{-}UCS|$ a T1-space (resp. a T2-space) if $(X, \text{lim}(\Lambda))$ is a T1-space (resp. is a T2-space). It was shown in [16] that if L is a complete Boolean algebra, then (X, Λ) is a T2-space if and only if it is a T1-space.

In [17] we defined, for $(X, \lim) \in |SL-LIM|$, the \top -closure of $A \subseteq X$, $\overline{A}^{\lim} = \overline{A}$, by $x \in \overline{A}$ if there is $\mathcal{F} \in \mathcal{F}_L^s(X)$ such that $\lim \mathcal{F}(x) = \top$ and $\mathcal{F}(\top_A) = \top$. In [15] a subset $A \subseteq X$ is called \top -closed if for $\mathcal{F} \in \mathcal{F}_L^s(X)$, $\lim \mathcal{F}(x) = \top$ and $\mathcal{F}(\top_A) = \top$ implies $x \in A$. It is then not difficult to show that A is \top -closed if and only if $\overline{A} \subseteq A$. It was shown in [15] that in a T2-space, one-point sets $\{x\}$ are T-closed. Hence, for a complete Boolean algebra L, in T1-spaces (X, Λ) , the one-point sets are T-closed. *Im* $\mathcal{F}(y) = T$.

Let $(K, \lambda) \in |SL-UCS|$. Then $(X, \text{lim}(\Lambda)) \in |SL-LIM|$, where the limit in $\text{Im}(\Lambda) : F_{\ell}(X) \to L^{X}$ is defined by $\text{lim}(\Lambda) \mathcal{F}(x) = \Lambda(\mathcal{F} \times [x])$, see [12]. Furth more, if $f : (X, \lambda) \longrightarrow (X', \Lambda')$ is uniformly con

Proposition 3.5. [17] Let (X, \lim^X) , $(Y, \lim^Y) \in \left| SL\text{-}LIM \right|$ and let $A \subseteq M \subseteq X$, $B \subseteq Y$ and let $f : X \longrightarrow Y$ be continuous.

(1) $\overline{A}^M = \overline{A} \cap M$, where \overline{A}^M is the \top -closure of A in the subspace $(M, \lim |_M)$. (2) If $\lim \leq \lim'$, then $\overline{A}^{\lim'} \subseteq \overline{A}^{\lim}$.

(3) If B is \top -closed, then $f^{\leftarrow}(B)$ is \top -closed.

Proposition 3.6. [17] Let $(X_i, \text{lim}_i) \in |SL\text{-}LIM|$ for all $i \in j$ and let $(x_i) \in \prod_{i \in I} X_i$ be fixed. Define $\prod_{i\in J} X_i$ be fixed. Define

$$
A = A((x_i)) = \{ (y_i) \in \prod_{i \in J} X_i : x_j \neq y_j \text{ for at most finitely many } j \in J \}.
$$

Uniform Connectedness and Uniform Local Connectedness for Lattice-valued Uniform ... 103

Then $\overline{A}^{\pi-\lim} = \prod_{i \in J} X_i$.

Let E be a class of stratified L-limit spaces. A space $(X, \text{lim}) \in |SL-LIM|$ is called E-connected [17] if, for any $(E, \text{lim}_E) \in \mathbb{E}$, a continuous mapping $f : X \longrightarrow E$ is constant. A subset $A \subseteq X$ is called E-connected if the subspace $(A, \lim |A)$ is E-connected.

Proposition 3.7. [17] Let $(X, \lim), (X', \lim'), (X_i, \lim_i) \in [SL-LIM], \; (i \in J).$ Then

(1) If $\mathbb E$ is a class of T2-spaces and $A \subseteq X$ is $\mathbb E$ -connected, then so is \overline{A} ;

(2) If $A, A_i \subseteq X$ $(i \in J)$ are E-connected and $A \cap A_i \neq \emptyset$ for all $i \in J$, then $A \cup \bigcup_{i \in J} A_i$ is $\mathbb{E}\text{-connected}.$

(3) If E is a class of T2-spaces and all $A_i \subseteq X_i$ are E-connected, then so is $\prod_{i \in J} A_i$ (as a subset of the product space).

(4) If $A \subseteq X$ is E-connected and $f : X \longrightarrow X'$ is uniformly continuous, then $f(A)$ is E-connected.

For $\mathcal{F} \in \mathcal{F}_L^s(X)$, a set B of subsets of X is called a δ -base of F [17] if for $\mathcal{F}(\top_U) \geq \delta$ there is $B \in \mathbb{B}, B \subseteq U$ such that $\mathcal{F}(\top_B) \geq \delta$. A space $(X, \text{lim}) \in \mathcal{S}L$ -LIM| is called *locally* E-connected [17] if for all $\alpha \in L$, if $\lim \mathcal{F}(x) \geq \alpha$, there is $\mathcal{G} \leq \mathcal{F} \wedge [x]$ with $\lim \mathcal{G}(x) \geq \alpha$ and with a δ -base of E-connected sets, whenever $\bot < \delta \leq \alpha.$ *ARCE* \mathbb{R} *if* $A, \mathbb{R} \subseteq X$ *(i* $\in J$) are E-connected and $A \cap A_i \neq \emptyset$ for all $i \in J$, the $A \cup [J_{i \in J} \land j \in J_{i \in J} \land j \in J_{i \in J}$ are \mathbb{R} connected, then so is $\prod_{i \in J}$ (as a subset of the product space).

(

4. Uniform E-connectedness

Let E be a class of stratified L-uniform convergence spaces (E, Λ_E) which contains a space with at least two points.

Definition 4.1. A space $(X, \Lambda) \in |SL-UCS|$ is called uniformly E-connected if, for any $(E, \Lambda_E) \in \mathbb{E}$, every uniformly continuous mapping $f : (X, \Lambda) \longrightarrow (E, \Lambda_E)$ is constant.

In particular, we call (X, Λ) uniformly connected if it is uniformly E-connected for $\mathbb{E} = \{ (\{0,1\}, \Lambda_\delta) \}$ and strongly uniformly connected if it is uniformly E-connected for $\mathbb{E} = \{ (\{0, 1\}, \Lambda_{\delta}^{s}) \}.$

Clearly, a strongly uniformly connected space (X, Λ) is uniformly connected. The converse is not true in general, as the following example shows.

Example 4.2. Let $L = \{\perp, \alpha, \top\}$ with $\perp < \alpha < \top$. We show that $(\{0, 1\}, \Lambda^s_{\delta})$ is uniformly connected. There are two non-constant mappings $f : \{0,1\} \longrightarrow \{0,1\}$, namely $f = id_{\{0,1\}}$ and $f = 1 - id_{\{0,1\}}$. We will show that both are not uniformly continuous as mappings $f: (\{0,1\}), \Lambda_\delta^s) \longrightarrow (\{0,1\}, \Lambda_\delta)$. For $f = id_{\{0,1\}}$, consider the stratified L-filter

$$
\mathcal{F}^*(a) = \begin{cases} \top & \text{if } a = \top_{\{0,1\}} \\ \alpha & \text{if } a(0) = \top, a(1) \neq \top \\ \alpha & \text{if } a(0) = \alpha \\ \bot & \text{if } a(0) = \bot \end{cases}
$$

,

see [11]. It was shown in [4] that $\Lambda_{\delta}^{s}(\mathcal{F}^{*} \times \mathcal{F}^{*}) \geq \bigwedge_{a \in L^{\{0,1\}}} ([(0,0)](a) \to (\mathcal{F}^{*} \times$ $\mathcal{F}^*(a)$ $\geq \alpha$. However, $\Lambda_{\delta}(\mathcal{F}^* \times \mathcal{F}^*) = \bot$, because $\mathcal{F}^* \times \overline{\mathcal{F}^*} \not\geq [\Delta] = [(0,0)] \wedge [(1,1)].$

This can be seen using $a(x, y) = \begin{cases} \top & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$ α if $x \neq y$. Then $[(0,0)] \wedge [(1,1)](a) = \top$ but $(\mathcal{F}^* \times \mathcal{F}^*)(a) \leq \alpha$, see [4]. Hence $f = id_{\{0,1\}}$ is not uniformly continuous.

For $f = 1 - id_{\{0,1\}}$ we define, for $a \in L^{\{0,1\}}$, $a^* = f^{\leftarrow}(a)$ and with this $\mathcal{F}_* \in$ $\mathcal{F}_{L}^{s}(\{0,1\})$ by $\mathcal{F}_{*}(a) = \mathcal{F}^{*}(a^{*})$. Then $\Lambda_{\delta}^{s}(\mathcal{F}_{*} \times \mathcal{F}_{*}) \geq \alpha$ but $\Lambda_{\delta}((f \times f)(\mathcal{F}_{*} \times \mathcal{F}_{*}))$ $\Lambda_{\delta}(\mathcal{F}^* \times \mathcal{F}^*) = \bot$. Hence $f = 1 - id_{\{0,1\}}$ is not uniformly continuous too and the only continuous mappings are the constant ones. Therefore $(\{0,1\}, \Lambda_{\delta}^{s})$ is uniformly connected. As clearly the identity mapping $f = id_{\{0,1\}} : (\{0,1\}, \Lambda_{\delta}^s) \longrightarrow (\{0,1\}, \Lambda_{\delta}^s)$ is uniformly continuous, $(\{0,1\}, \Lambda_{\delta}^s)$ is not strongly uniformly connected.

For a class of stratified L-uniform convergence spaces, \mathbb{E} , we denote $L(\mathbb{E}) =$ $\{(E,\lim(\Lambda_E)) : (E,\Lambda_E) \in \mathbb{E}\}.$

Lemma 4.3. Let $(X, \Lambda) \in |SL\text{-}UCS|$. If $(X, \text{lim}(\Lambda))$ is $L(\mathbb{E})$ -connected, then (X, Λ) is uniformly E-connected.

Lemma 4.4. Let E be a class of stratified L-uniform convergence spaces which contains a space (E, lim_{E}) with $|E| \geq 2$. If (X, Λ) is uniformly E-connected, then it is uniformly connected.

Proof. Let $f : (X, \Lambda) \longrightarrow (\{0, 1\}, \Lambda_\delta)$ be uniformly continuous and let $(E, \Lambda_E) \in \mathbb{E}$ with $x, y \in E$, $x \neq y$. We define $h : \{0, 1\} \longrightarrow E$ by $h(0) = x$ and $h(1) = y$. We show that h is uniformly continuous. Let $\Lambda_{\delta}(\Phi) = \top$. Then $\Phi \geq [\Delta]$ and hence $(h \times h)(\Phi) \ge (h \times h)[\Delta]$. For $a \in L^{E \times E}$ we then have $(h \times h)([\Delta])(a) = [\Delta]((h \times h)(\Phi)]$ $h^{+}(a) = (h \times h)^{+}(a)(0,0) \wedge (h \times h)^{+}(a)(1,1) = a(h(0), h(0)) \wedge a(h(1), h(1)) =$ $a(x, x) \wedge a(y, y) = [(x, x)](a) \wedge [(y, y)](a)$. Hence $(h \times h)(\Phi) \geq [(x, x)] \wedge [(y, y)]$ and we conclude $\Lambda_E((h \times h)(\Phi)) \geq \Lambda_E((x,x)) \wedge \Lambda_E((y,y))] = \top$. Consequently h is uniformly continuous and therefore $h \circ f$ is also uniformly continuous and hence constant. As h is not constant, then f must be so. \square For a class of stratified *L*-uniform convergence spaces, **E**, we denote $L(\mathbb{E})$
 $[(E, \lim(\Lambda_E)) : (E, \Lambda_E) \in \mathbb{E}]$.
 Lemma 4.3. Let $(X, \Lambda) \in |SL-UCS|$. If $(X, \lim(\Lambda))$ is $L(\mathbb{E})$ -connected, if
 (X, Λ) is uniformly \mathbb{E} -co

Uniform E-connectedness often also entails strong uniform connectedness. However, we need a stronger assumption on the class E.

Lemma 4.5. Let E be a class of stratified L-uniform convergence spaces which contains a space $(E, \lim_{E} |E|)$ with $|E| \geq 2$ and $\Lambda_E \leq \Lambda_{\delta,E}^s$. If (X, Λ) is uniformly E-connected, then it is strongly uniformly connected.

Proof. Let $f: (X, \Lambda) \longrightarrow (\{0, 1\}, \Lambda_\delta^s)$ be uniformly continuous and let $(E, \Lambda_E) \in \mathbb{E}$ with $x, y \in E$, $x \neq y$. Again we define $h : \{0,1\} \longrightarrow E$ by $h(0) = x$ and $h(1) = y$. We show that h is $(\Lambda_{\delta}^{s}, \Lambda_{E})$ -uniformly continuous. Then $\Lambda_{E}((h \times h)(\Phi)) \ge$ $\lambda_{\delta,E}^s((h \times h)(\Phi)) = \Lambda_{a \in L^{E \times E}}([\Delta_E](a) \to (h \times h)(\Phi)(a)).$ For $a \in L^{E \times E}$ we have $[\Delta_E](a) \leq [(x,x)] \wedge [(y,y)](a) = a(x,x) \wedge a(y,y) = (h \times h)^{(-1)}(a)(0,0) \wedge$ $(h \times h) \leftarrow (a)(1,1) = [(0,0)] \wedge [(1,1)]((h \times h) \leftarrow (a)) = [\Delta]((h \times h) \leftarrow (a)).$ Hence $\Lambda_{a\in L^{E\times E}}([\Delta_E](a) \rightarrow (h\times h)(\Phi)(a)) \geq \Lambda_{a\in L^{E\times E}}([\Delta]((h\times h)^{\leftarrow}(a) \rightarrow \Phi((h\times h)^{\leftarrow}(a))$ $(h^{\widetilde{\phi}}(a)) \geq \bigwedge_{b \in L^{\{0,1\} \times \{0,1\}}} ([\Delta](b) \to \Phi(b)) = \widetilde{\Lambda}_{\delta}^{s}(\Phi)$. Hence, together with h, also $h \circ f$ is uniformly continuous and therefore constant. As h is not constant, then f must be so. $\hfill \square$

Strong uniform connectedness can be characterized by a "chaining condition".

Theorem 4.6. A space $(X, \Lambda) \in \left| SL\text{-}UCS \right|$ is strongly uniformly connected if and only if for all $x, y \in X$ and all $N \subseteq X \times X$ with $\mathcal{N}_{\Lambda}(\top_N) = \top$ there is a natural number n such that $(x, y) \in N^n$.

Proof. Let first (X, Λ) be strongly uniformly connected and assume that there is $(p,q) \in X \times X$ and $N \subseteq X \times X$ with $\mathcal{N}_{\Lambda}(\top_N) = \top$ but $(p,q) \notin N^n$ for all natural numbers *n*. We define $A = \{x \in X : (p, x) \in N^n \text{ for some natural number } n\}$ and $B = X \setminus A$. As $\top = \mathcal{N}_{\Lambda}(\top_N) \leq [(p, p)](\top_N)$ we see that $(p, p) \in N$ and hence A is non-empty. Clearly $q \notin A$, i.e. B is non-empty. We define the mapping $f: X \longrightarrow \{0,1\}$ by $f(x) = 0$ if $x \in A$ and $f(x) = 1$ if $x \in B$. For $(x, y) \in N$ then, if $x \in A$ also $y \in A$ and if $x \in B$ then also $y \in B$. Hence $N \subseteq (A \times A) \cup (B \times B)$ and, because $\top = \mathcal{N}_{\Lambda}(\top_N) \leq \mathcal{N}_{\Lambda}(\top_{(A \times A) \cup (B \times B)})$, we conclude $\Lambda(\Phi) \leq \Phi(\top_N) \leq$ $\Phi(\top_{(A\times A)\cup(B\times B)})$ for all $\Phi\in\mathcal{F}_L^s(X\times X)$. Furthermore, for $a\in L^{\{0,1\}\times\{0,1\}}$,

$$
(f \times f)^{\leftarrow}(a) \land \top_{(A \times A) \cup (B \times B)}(x, y) = \begin{cases} a(0,0) & \text{if } (x, y) \in A \times A \\ a(1,1) & \text{if } (x, y) \in B \times B \\ \perp & \text{else} \end{cases}.
$$

Hence $(f \times f) \sim (a) \wedge \top_{(A \times A) \cup (B \times B)} \geq [\Delta](a) \wedge \top_N$ and therefore, by stratification, $(f \times f)(\Phi)(a) \geq [\Delta](a) \wedge \Phi(\top_N) \geq [\Delta](a) \wedge \Lambda(\Phi)$. As $a \in L^{\{0,1\} \times \{0,1\}}$ was arbitrary, we conclude $\Lambda(\Phi) \leq \Lambda_{a \in L^{\{0,1\} \times \{0,1\}}}([\Delta](a) \to (f \times f)(\Phi)(a)) = \Lambda_{\delta}^s((f \times f)(\Phi)).$ Hence, f is uniformly continuous and not constant, a contradiction.

Let now $x \neq y$ and let $f : (X, \Lambda) \longrightarrow (\{0, 1\}, \Lambda^s_{\delta})$ be uniformly continuous. Then $[\Delta] = \mathcal{N}_{\Lambda_{\delta}^{s}} \leq (f \times f)(\mathcal{N}_{\Lambda})$. Therefore, $\top = [\Delta](\top_{\Delta}) \leq \mathcal{N}_{\Lambda}(\top_{(f \times f)^{\leftarrow}(\Delta)})$ and there is a natural number, n, such that $(x, y) \in ((f \times f)^{\leftarrow}(\Delta))^n$, i.e. there are $x = x_0, x_1, ..., x_n = y$ such that $(x_k, x_{k+1}) \in (f \times f)^\leftarrow(\Delta)$ for $k = 0, 1, 2, ..., n-1$. This means that $(f(x_k), f(x_{k+1})) \in \Delta$, i.e. $f(x_k) = f(x_{k+1})$ for $k = 0, 1, 2, ..., n-1$. Hence $f(x) = f(y)$ and f is constant.

For a class E of stratified L-uniform spaces, we call $(X, \mathcal{U}) \in \mathcal{S}L\text{-}UNIF$ uniformly E-connected if, for any $(E, \mathcal{U}_E) \in \mathbb{E}$, a uniformly continuous mapping f: $(X,\mathcal{U}) \longrightarrow (E,\mathcal{U}_E)$ is constant. If we denote $\Lambda(\mathbb{E}) = \{ (E,\Lambda_{\mathcal{U}_E}) : (E,\mathcal{U}_E) \in \mathbb{E} \},$ then a stratified L-uniform space (X, \mathcal{U}) is uniformly E-connected if and only if $(X, \Lambda_{\mathcal{U}})$ is uniformly $\Lambda(\mathbb{E})$ -connected. For $\mathbb{E} = \{(\{0, 1\}, [\Delta])\}$, we call a uniformly E-connected stratified L-uniform space uniformly connected. Hence $(X, \mathcal{U}) \in \mathcal{S}$ L-UNIF| is uniformly connected if and only if $(X, \Lambda_{\mathcal{U}})$ is strongly uniformly connected. We obtain as a direct consequence of Theorem 4.6 the following characterization. *Archive Columbian Arch Arch Archive of F(X) \leq M_A(X) \cup (B \times M_A) \cup*

Theorem 4.7. A space $(X, \mathcal{U}) \in \{SL\text{-}UNIF | \text{ is uniformly connected if and only} \}$ if for all $x, y \in X$ and all $N \subseteq X \times X$ with $\mathcal{U}(\top_N) = \top$ there is a natural number n such that $(x, y) \in N^n$.

For $L = \{0, 1\}$, a uniform space that satisfies the condition of the above theorem is called well-chained [22].

5. Properties of Uniformly E-connected Subsets

In the sequel, let E be a class of stratified *L*-uniform convergence spaces which contains a space (E, Λ^E) with at least two points. We call $A \subseteq X$, where $(X, \Lambda) \in$

 $|SL-UCS|$, uniformly E-connected (in (X, Λ)) if the subspace $(A, \Lambda|_A)$ is uniformly E-connected. Uniform E-connectedness of $A \subseteq X$ then becomes an *absolute prop*erty, i.e. for $A \subseteq B \subseteq X$ we have that A is uniformly E-connected in $(B, \Lambda|_B)$ iff A is uniformly E-connected in (X, Λ) .

Lemma 5.1. Let $(X, \Lambda^X), (Y, \Lambda^Y) \in |SL\text{-}UCS|$ and let $f : (X, \Lambda^X) \longrightarrow (Y, \Lambda^Y)$ be uniformly continuous. If $A \subseteq X$ is uniformly E-connected, then $B = f(A)$ is uniformly E-connected.

Proof. For $\Phi \in \mathcal{F}_L^s(A \times A)$ we have $\Lambda^X|_A(\Phi) = \Lambda^X((i_A \times i_A)(\Phi)) \leq \Lambda^Y((f \times f) \circ$ $(i_A \times i_A)(\Phi)$). As $(f \times f) \circ (i_A \times i_A) = (i_B \times i_B) \circ (f \times f)$ we obtain $(f \times f) \circ$ $(i_A \times i_A)(\Phi) = (i_B \times i_B) \circ (f \times f)(\Phi)$, and therefore $\Lambda^X|_A(\Phi) \leq \Lambda^Y|_B((f \times f)(\Phi))$. Hence, we may assume $A = X$, $B = Y = f(X)$ and $f: X \longrightarrow Y$ surjective. Let now $(E, \Lambda^E) \in \mathbb{E}$ and $h : (Y, \Lambda^Y) \longrightarrow (E, \Lambda^E)$ be uniformly continuous. Then $h \circ f : (X, \Lambda^X) \longrightarrow (E, \Lambda^E)$ is uniformly continuous and hence constant. As f is surjective, then also h must be constant.

Lemma 5.2. Let $\mathbb E$ be a class of T2-spaces, $(X, \Lambda) \in |SL-UCS|$ and let $A \subseteq X$ be uniformly E-connected. Then also $\overline{A} = \overline{A}^{\text{lim}(\Lambda)}$ is uniformly E-connected.

Proof. Let $(E, \Lambda^E) \in \mathbb{E}$ and $f : (\overline{A}, \Lambda|_{\overline{A}}) \longrightarrow (E, \Lambda^E)$ be uniformly continuous. Then also $f|_A : (A, \Lambda|_A) \longrightarrow (E, \Lambda^E)$ is uniformly continuous and hence constant, i.e. $f|_A(A) = f(A) = \{e\}$ with some $e \in E$. As $(E, \lim(A^E))$ is a T2-space, $\{e\}$ is \top -closed and hence $M = f^{\leftarrow}(\lbrace e \rbrace)$ is \top -closed in $(\overline{A}, \lim(\Lambda)|_{\overline{A}}) = (\overline{A}, \lim(\Lambda)|_{\overline{A}})$. We note that $A \subseteq M \subseteq \overline{A}$. Hence $\overline{A} = \overline{M \cap A} \subseteq \overline{M} \cap \overline{A} = \overline{M}^{\lim(\Lambda)|_{\overline{A}}} \subseteq M$, i.e. $M = \overline{A}$. Therefore $f(\overline{A}) = f(M) = \{e\}$ and f is constant. *i*_A $\times i_A$ (**b**)). As $(f \times f) \circ (i_A \times i_A) = (i_B \times i_B) \circ (f \times f)$ we obtain $(f \times f)$
 *i*_A $\times i_A$ (*A* ∞ *A* \in

Lemma 5.3. Let $(X, \Lambda) \in \left| SL\text{-}UCS \right|$ and let $A_i, A \subseteq X$ be uniformly E-connected $(i \in I)$ with $A \cap A_i \neq \emptyset$ for all $i \in I$. Then $A \cup \bigcup_{i \in I} A_i$ is uniformly E-connected.

Proof. Let $(E, \lim^E) \in \mathbb{E}$ and let $f : A \cup \bigcup_{i \in I} A_i \longrightarrow E$ be uniformly continuous. Then all restrictions $f|_A: A \longrightarrow E$ and $f|_{A_i}: A_i \longrightarrow E$ are uniformly continuous and hence constant. As $A \cap A_i \neq \emptyset$ for all $i \in I$, all function values must be the same.

Lemma 5.3 allows the definition of maximal uniformly E-connected subsets of X.

Definition 5.4. Let $(X, \Lambda) \in \left| SL-UCS \right|$ and $C \subseteq X$ be uniformly E-connected. C is called a uniform E-component of X if $C = B$ whenever $C \subseteq B \subseteq X$ and B is uniformly E-connected.

It follows immediately from Lemma 5.3 that the uniform E-components form a partition of X.

Lemma 5.5. Let $\mathbb E$ be a class of T2-spaces and let $(X, \Lambda) \in |SL-UCS|$. If C is a uniform $\mathbb E$ -component of X, then C is \top -closed.

Proof. With C also \overline{C} is uniformly E-connected. $C \subseteq \overline{C}$ and the maximality of C implies $\overline{C} = C$ and hence C is T-closed. Uniform Connectedness and Uniform Local Connectedness for Lattice-valued Uniform ... 107

We finally state the important product theorem.

Theorem 5.6. Let \mathbb{E} be a class of T2-spaces and let $(X_i, \Lambda_i)_{i \in J}$ be a family in |SL-UCS|. Then the product space $(\prod_{i\in J} X_i, \pi \cdot \Lambda)$ is uniformly E-connected if and only if all (X_i, Λ_i) are uniformly E-connected.

Proof. Using Lemma 3.1, Lemma 5.2 and Proposition 3.7, the proof of Theorem 5.8 in [17] can be copied word-by-word.

6. Uniform Local E-connectedness

In the sequel, let E be a class of stratified L-limit spaces. For $\delta \in L$, a set of subsets $\mathbb{B} \subseteq P(X \times X)$ is called a δ -base of $\Phi \in \mathcal{F}_L^s(X \times X)$ if for all $U \subseteq X \times X$ with $\Phi(\top_U) \geq \delta$ there is $B \in \mathbb{B}$ such that $B \subseteq U$ and $\Phi(\top_B) \geq \delta$. For a subset $B \subseteq X \times X$ and $x \in X$ we denote $B(x) = \{y \in X : (y, x) \in B\}$. It is not difficult to see that then $\top_B(\cdot, x) = \top_{B(x)}$.

Definition 6.1. We call $(X, \Lambda) \in |SL-UCS|$ uniformly locally E-connected if for all $\alpha \in L$, for all $\Phi \in \mathcal{F}_L^s(X \times X)$ with $\Lambda(\Phi) \geq \alpha$ there is $\Psi \in \mathcal{F}_L^s(X \times X)$, $\Psi \leq \Phi \wedge [\Delta]$, $\Lambda(\Psi) \geq \alpha$ with a δ -base $\mathbb B$ such that for all $x \in X$ the sets $B(x)$ with $B \in \mathbb B$ are E-connected (in $(X, \text{lim}(\Lambda)))$, whenever $\bot < \delta \leq \alpha$.

For $L = \{0, 1\}$ this definition is slightly stronger than the definition of uniform local connectedness in Vanio [24]. In [24] it is only demanded that $\Psi \leq \Phi$. Our stronger requirement $\Psi \leq \Phi \wedge |\Delta|$ comes in handy lateron.

A stratified L-uniform space (X, \mathcal{U}) is called uniformly locally E-connected if $(X, \Lambda_{\mathcal{U}})$ is uniformly locally E-connected.

Proposition 6.2. Let $(X,\mathcal{U}) \in \{SL\text{-}UNIF\}$. Then (X,\mathcal{U}) is uniformly locally \mathbb{E} connected if and only if for all $\alpha \in L$, \mathcal{U}_{α} has a δ -base $\mathbb B$ such that the sets $B(x)$ with $B \in \mathbb{B}$ are \mathbb{E} -connected for all $x \in X$, whenever $\bot < \delta \leq \alpha$.

Proof. Let first (X, \mathcal{U}) be uniformly locally E-connected. Then $\Lambda_{\mathcal{U}}(\mathcal{U}_{\alpha}) \geq \alpha$. Hence there is $\Psi \leq U_\alpha \wedge [\Delta] \leq U_\alpha$ with $\Lambda_{\mathcal{U}}(\Psi) \geq \alpha$ and a δ -base $\mathbb B$ such that the sets $B(x)$ with $B \in \mathbb{B}$ are E-connected for all $x \in X$ whenever $\bot < \delta \leq \alpha$. From $\Lambda(\Psi) \geq \alpha$ we conclude that $\Psi \geq \mathcal{U}_{\alpha}$ and hence $\Psi = \mathcal{U}_{\alpha}$ has a δ -base as desired whenever $\bot < \delta \leq \alpha$. In the sequel, let *E* be a class of stratified *L*-limit spaces. For $\delta \in L$, a set

substets $\mathbb{B} \subseteq P(X \times X)$ is called a *b*-base of $\Phi \in \mathcal{F}_L^2(X \times X)$ if for all $U \subseteq X \times X$ is a

with $\Phi(\top_U) \geq \delta$ there is $B \in \mathbb{B$

For the converse, let $\Lambda_{\mathcal{U}}(\Phi) \geq \alpha$. Then $\Phi \geq \mathcal{U}_{\alpha}$ and as always $\mathcal{U}_{\alpha} \leq [\Delta]$, we have $\mathcal{U}_{\alpha} \leq \Phi \wedge [\Delta]$. As $\Lambda_{\mathcal{U}}(\mathcal{U}_{\alpha}) \geq \alpha$ the claim follows if we choose $\Psi = \mathcal{U}_{\alpha}$.

Proposition 6.3. If $(X, \Lambda) \in \left| SL\text{-}UCS \right|$ is uniformly locally E-connected, then $(X, \text{lim}(\Lambda))$ is locally E-connected.

Proof. Let $\alpha \in L$, $\mathcal{F} \in \mathcal{F}_L^s(X)$ and let $x \in X$ such that $\lim(\Lambda)\mathcal{F}(x) \geq \alpha$. Then $\Lambda(\mathcal{F} \times [x]) \geq \alpha$. Hence there is $\Psi \in \mathcal{F}_L^s(X \times X)$ such that $\Psi \leq (\mathcal{F} \times [x]) \wedge [\Delta],$ $\Lambda(\Psi) \geq \alpha$ and, if $\bot < \delta \leq \alpha$, Ψ has a δ -base $\mathbb B$ with $B(x)$ E-connected for all $x \in X$ and all $B \in \mathbb{B}$. Then $\Psi(x) \in \mathcal{F}_L^s(X)$. From Lemma 2.5 we conclude that $\Psi(x) \leq \mathcal{F} \wedge [x]$. We show that $\Psi(x)$ has a δ -base of E-connected sets. If $U \subseteq X$ such that $\Psi(x)(\top_U) \ge \delta$, then $\Psi(T_{U \times \{x\}}) = (\Psi(x) \times [x])(\top_U \times \top_{\{x\}}) \ge$ $\Psi(x)(\top_U) \wedge [x](\top_{\{x\}}) \ge \delta$. Hence there is $B \in \mathbb{B}, B \subseteq U \times \{x\}$ such that $\Psi(\top_B) \ge \delta$.

Clearly $B(x) \subseteq U$ and $\Psi(x)(\top_{B(x)}) \ge \Psi(\top_B) \ge \delta$ because $\top_B(\cdot, x) = \top_{B(x)}$. Therefore $\mathbb{B}(x) = \{B(x) : B \in \mathbb{B}\}\$ is the required δ -base for $\Psi(x)$.

Proposition 6.4. Let $(X, \Lambda), (X', \Lambda') \in |SL\text{-}UCS|$ and let $f : (X, \Lambda) \longrightarrow (X', \Lambda')$ be a uniform isomorphism (i.e. f is bijective and both f and f^{-1} are uniformly continuous). If (X, Λ) is uniformly locally E-connected, then so is (X', Λ') .

Proof. Let $\alpha \in L$ and $\Phi' \in \mathcal{F}_L^s(X' \times X')$ and $\Lambda'(\Phi') \geq \alpha$. Then, by uniform continuity of f^{-1} , $\Lambda((f^{-1} \times f^{-1})(\Phi')) \geq \alpha$. Hence there is $\Psi \leq (f^{-1} \times f^{-1})(\Phi') \wedge$ $[\Delta_X]$ with $\Lambda(\Psi) \ge \alpha$ which has, for $\bot \langle \delta \le \alpha, \rangle$ a δ-base B such that for all $x \in X$ and all $B \in \mathbb{B}$, $B(x)$ is E-connected. By uniform continuity of f, then $\Lambda'((f \times f)(\Psi)) \ge \alpha$ and $(f \times f)(\Psi) \le (f \times f)((f^{-1} \times f^{-1})(\Phi)) \wedge [(f \times f)(\Delta_X)] =$ $\Phi \wedge [\Delta_{X'}]$. We show that $(f \times f)(\Psi)$ has a δ -base \mathbb{B}' with $B'(x')$ E-connected for all $x' \in X'$ and all $B' \in \mathbb{B}'$. Let $(f \times f)(\Psi)(\top_U) \geq \delta$. Then $\Psi(\top_{(f^{-1} \times f^{-1})(U)}) \geq \delta$ and hence there is $B \subseteq (f^{-1} \times f^{-1})(U)$ with $\Psi(\top_B) \ge \delta$, $B(x)$ E-connected for all $x \in X$. It follows that $B' = (f \times f)(B) \subseteq U$ and $(f \times f)(\Psi)(\top_{(f \times f)(B)}) \ge \Psi(\top_B) \ge \delta$. For $x' \in X'$ we have that $(f \times f)(B)(x') = f(B(f^{-1}(x')))$ is E-connected, as f is continuous as a mapping from $(X, \lim(\Lambda))$ to $(X', \lim(\Lambda'))$ and $B(f^{-1}(x'))$ is E-connected. $x \in X$ and all $B \in \mathbb{B}$, $B(x)$ is *E*-connected. By uniform continuity of f , the $Y((f \times f)(W) \ge \alpha$ and $(f \times f)(W) \le \alpha f \times f)(f \times f)(\Delta x)$, $\mathbb{A}(X \times$

We now look at the behaviour of uniform local E-connectedness with respect to quotient spaces and product spaces. First we need two lemmas.

Lemma 6.5. Let $(X, \lim) \in |SL-LIM|$ and let $A, B \subseteq X \times X$ with $\Delta_X \subseteq A$. If $B(x)$ and $A(z)$ are E-connected for all $z \in X$, then $(A \circ B)(x)$ is E-connected.

Proof. This proof goes back to Vainio [24]. It is not difficult to show that $(A \circ$ $B(x) = \bigcup_{z \in B(x)} A(z)$. As $\Delta_X \subseteq A$, we moreover conlcude $B(x) \subseteq (A \circ B)(x)$ and hence $(A \circ B)(x) = \bigcup_{z \in B(x)} (A(z) \cup B(x))$. Again, as $\Delta_X \subseteq A$, we conclude that $A(z) \cap B(x) \neq \emptyset$ and hence $A(z) \cup B(x)$ is E-connected for all $z \in B(x)$. Consequently also $(A \circ B)(x) = \bigcup_{z \in B(x)} A(z)$ is E-connected.

Lemma 6.6. Let $B \subseteq X \times X$, $x \in X$ and let $f : X \longrightarrow Y$ be a mapping. Then $(f \times f)(B)(f(x)) = \bigcup_{z: f(z) = f(x)} f(B(z)).$ Moreover, if $\Delta_X \subseteq B$, then $f(x) \in$ $f(B(z))$ whenever $f(z) = f(x)$.

Proof. Let first $y \in f(B(z))$ and $f(z) = f(x)$. Then there is $b \in X$ such that $(b, z) \in B$ and $f(b) = y$. Hence $(y, f(x)) = (f(b), f(z)) \in (f \times f)(B)$, i.e. $y \in B$ $(f \times f)(B)(f(x))$. Conversely, let $y \in (f \times f)(B)(f(x))$. Then $(y, f(x)) \in (f \times f)(B)$. Hence there is $(a, b) \in B$ such that $f(a) = y$ and $f(b) = f(x)$. We conclude $a \in B(b)$ and, consequently, $y = f(a) \in f(B(b))$. From $f(b) = f(x)$ we conclude $y \in \bigcup_{z: f(z) = f(x)} f(B(z)).$

Theorem 6.7. Let the lattice L be completely distributive and let $\bot \in L$ be prime. Let $(X, \Lambda) \in |SL\text{-}UCS|$ be uniformly locally E-connected and let $f: X \longrightarrow X'$ be surjective. Then the quotient space (X', Λ_f) is uniformly locally E-connected.

Proof. Let $\alpha \in L$ and let $\Lambda_f(\Phi') \geq \alpha$. Let $\beta \lhd \alpha$. Then there are $\Phi_{k_1}^{\beta},...,\Phi_{kn_k}^{\beta}$ ($k =$ 1, 2, ..., *m*) with $\bigwedge_{k=1}^{m} (f \times f)(\Phi_{k1}^{\beta}) \circ \cdots \circ (f \times f)(\Phi_{kn_k}^{\beta}) \leq \Phi'$ such that $\bigwedge_{k=1}^{m} \Lambda(\Phi_{k1}^{\beta}) \wedge$

 $\ldots \wedge \Lambda(\Phi_{kn_k}^{\beta}) \geq \beta$. For each Φ_{kl}^{β} there is $\Psi_{kl}^{\beta} \leq \Phi_{kl}^{\beta} \wedge [\Delta_X]$ such that $\Lambda(\Psi_{kl}^{\beta}) \geq \beta$ and which has, for $\perp < \delta \leq \beta$, a δ -base \mathbb{B}_{kl} such that $B(x)$ is E-connected for each $x \in X$ and each $B \in \mathbb{B}_{kl}$. In particular, $(f \times f)(\Psi_{kl}^{\beta}) \leq (f \times f)([\Delta_X]) = [\Delta_{X'}],$ as f is surjective. We define $\Psi^{\beta} = \bigwedge_{k=1}^{m} (f \times f)(\Psi^{\beta}_{k1}) \circ \cdots \circ (f \times f)(\Psi^{\beta}_{kn_k}).$ Then $\Psi^{\beta} \leq \Phi \wedge [\Delta_{X'}]$ and $\Lambda_f(\Psi^{\beta}) \geq \beta$, as f is uniformly continuous.

We show that Ψ^{β} also has, for $\bot < \delta \leq \alpha$, a δ -base \mathbb{B}^{β} with $B(x')$ E-connected for all $x' \in X'$ and all $B \in \mathbb{B}^{\beta}$. Let $\Psi(\top_B) \geq \delta$. Then $(f \times f)(\Psi_{kl}^{\beta})(\top_B) =$ $\Psi_{kl}^{\beta}(\top_{(f\times f)^{\leftarrow}(B)})\geq \delta$ for all $k=1,...,m$ and $l=1,...,n_k$. Hence there are sets $C_{kl}^{\beta} \subseteq (f \times f)^{\leftarrow}(B)$ with $\Psi_{kl}^{\beta}(\top_{C_{kl}}) \geq \delta$. From $[\Delta_X] \geq \Psi_{kl}^{\beta}$ we conclude that $\Delta_X \subseteq C_{kl}^{\beta}$ and, by the surjectivity of f, then $\Delta_{X'} \subseteq (f \times f)(C_{kl}^{\beta}) \subseteq B$. Hence $\delta \le (f \times f)(\Psi_{k1}^{\beta}) \circ \cdots \circ (f \times f)(\Psi_{kn_k}^{\beta})(\top_{(f \times f)(C_{k1})} \circ \cdots \circ \top_{(f \times f)(C_{kn_k})}) = (f \times$ $f)(\Psi_{k1}^{\beta})\circ\cdots\circ(f\times f)(\Psi_{kn_k}^{\beta})(\top_{(f\times f)(C_{k1})\circ\cdots\circ(f\times f)(C_{kn_k})}).$ By Lemma 6.5 and Lemma 6.6, the sets $((f \times f)(C_{k_1}) \circ \cdots \circ (f \times f)(C_{kn_k}))(x')$ are E-connected for all $x' \in X'$ and, as all these sets contain $\Delta_{X'}$ as a subset, so are $D^{\beta}(x') = (\bigcup_{k=1}^{m} (f \times f)(C_{k1}) \circ$ $\cdots \circ (f \times f)(C_{kn_k}))) (x')$ and $\Psi^{\beta}(\top_{D^{\beta}}) \ge \delta$.

We define now $\Psi = \bigvee_{\beta \triangleleft \alpha} \Psi^{\beta}$. This stratified L-filter exists and is $\leq \Phi \wedge [\Delta_{X'}]$. Moreover, $\Lambda_f(\Psi) \geq \Lambda_f(\Psi^{\beta}) \geq \beta$ for all $\beta \lhd \alpha$, and hence $\Lambda_f(\Psi) \geq \alpha$. We show that for $\perp < \delta \leq \alpha$, Ψ has a δ -base $\mathbb B$ with $B(x')$ E-connected for all $x' \in X'$ and all $B \in \mathbb{B}$. Let $\Psi(\top_B) \ge \delta \rhd \eta$. Then there are $\beta_1^{\eta}, \dots, \beta_n^{\eta} \lhd \alpha$ and $B_1^{\eta}, \dots, B_n^{\eta} \subseteq X' \times X'$ such that $B_1^{\eta} \cap ... \cap B_n^{\eta} \subseteq B$ and $\Psi^{\beta_1^n}(\top_{B_1^n}) \wedge ... \wedge \Psi^{\beta_n^n}(\top_{B_n^n}) \geq \eta$. We have seen above that each $\Psi^{\beta_i^n}$ has a suitable η -base and hence there are $C_1^{\eta} \subseteq B_1^{\eta}, ..., C_n^{\eta} \subseteq B_n^{\eta}$ such that $\Psi^{\beta_1^n}(\mathcal{T}_{C_1^n}) \geq \eta, ..., \Psi^{\beta_n^n}(\mathcal{T}_{C_n^n}) \geq \eta$ and $C_1^\eta(x'), ..., C_n^\eta(x')$ are E-connected for all $x' \in X'$. Again, $\Delta_{X'} \subseteq C_1^n, ..., C_n^n$. We define $C_1 = \bigcup_{\eta \prec \delta} C_1^n, ..., C_n = \bigcup_{\eta \prec \delta} C_n^n$. Then, for $l = 1, ..., n$ we have $\Psi^{\beta_i^n}(\mathcal{T}_{C_l}) \geq \eta$ for all $\eta \lhd \delta$, i.e. $\Psi^{\beta_i^n}(\mathcal{T}_{C_l}) \geq \delta$ and $C_l(x')$ is E-connected for all $x' \in X'$. The set $C = C_1 \cup ... \cup C_n \subseteq B$ satisfies that $C(x')$ is E-connected for all $x' \in X'$ and $\Psi(\top_C) \geq \Psi^{\beta_1^n}(\top_{C_1}) \wedge ... \wedge \Psi^{\beta_n^n}(\top_{C_n}) \geq \delta$. Hence Ψ has a δ -base as desired and (X', Λ_f) is uniformly locally E-connected. \Box $C_{kl}^{\vee} \subseteq (f \times f)^{\infty}(B)$ with $\Psi_{kl}^{\vee}(\top c_{ki}) \geq \delta$. From $[\Delta_X] \geq \Psi_{kl}^{\vee}$ we conclude the $\Delta_X \subseteq (f \times f)(C_{kl}) \cap \Delta_Y$ ($\Gamma_{ij}^{\vee}(\top c, f)(C_{kl}) \cap \Delta_Y$) $\Delta_X \subseteq (f \times f)(C_{kl}) \cap \Delta_Y$ ($f \times f(C_{kl}) \cap \Delta_Y$) $\Delta_Y \subseteq (f \times f)(C_{kl}) \cap \Delta_Y$). By Le

Theorem 6.8. Let the lattice L be completely distributive and let E be a class of T2-spaces. Let $(X_i, \Lambda_i) \in |SL-UCS|$ for all $i \in J$. If all (X_i, Λ_i) are uniformly locally E-connected and all but finitely many $(X_i, \text{lim}(\Lambda_i))$ are E-connected, then the product space $(\prod_{i\in J} X_i, \pi - \Lambda)$ is uniformly locally E-connected.

Proof. We denote $X = \prod_{i \in J} X_i$. Let $\alpha \in L$ and let $\Phi \in \mathcal{F}_L^s(X \times X)$ such that $\pi - \Lambda(\Phi) \geq \alpha$. Then, for all $i \in J$, $\Lambda_i((p_i \times p_i)(\Phi)) \geq \alpha$ and hence, for each $i \in J$, there is $\Psi_i \in \mathcal{F}_L^s(X_i)$ with $\Psi_i \leq (p_i \times p_i)(\Phi) \wedge [\Delta_{X_i}]$ and $\Lambda_i(\Psi_i) \geq \alpha$ which has, for $\bot < \delta \leq \alpha$, a δ -base \mathbb{B}_i such that $B_i(x_i)$ is E-connected for each $B_i \in \mathbb{B}_i$ and each $x_i \in X_i$. We define $\Psi = \bigotimes_{i \in J} \Psi_i \in \mathcal{F}_L^s(X \times X)$. Then $\pi - \Lambda(\Psi) =$ $\bigwedge_{i\in J} \Lambda_i((p_i \times p_i)(\bigotimes_{i\in J} \Psi_i)) \ge \bigwedge_{i\in J} \Lambda_i(\Psi_i) \ge \alpha$ and $\Psi \le \bigotimes_{i\in J} ((p_i \times p_i)(\Phi)) \le \Phi$ and $\Psi \leq \bigotimes_{i \in J} [\Delta_{X_i}] \leq [\Delta_X]$, i.e. $\Psi \leq \Phi \wedge [\Delta_X]$. We show that, for $\bot < \delta \leq \alpha$, Ψ has a δ-base $\mathbb B$ with $B((x_i))$ E-connected for all $B \in \mathbb B$ and all $(x_i) \in X$. Let $\Psi(\top_B) \ge \delta$ and let $\eta \lhd \delta$. We may assume $\eta > \bot$. Then $\prod_{i \in J} \Psi_i(\top_{\nu \leftarrow (B)}) \rhd \eta$ and by Lemma 2.1 there are $U_i^{\eta} \subseteq X_i \times X_i$, $U_i^{\eta} \neq X_i \times X_i$ for only finitely many $i \in J$ with

 $\prod_{i\in J} U_i^{\eta} \subseteq \nu^{\leftarrow}(B)$ and $\bigwedge_{i\in J} \Psi_i(\top_{U_i^{\eta}}) \geq \eta$. Hence, for all $i \in J$, $\Psi_i(\top_{U_i^{\eta}}) \geq \eta$ and there are sets $B_i^{\eta} \subseteq U_i^{\eta}$ such that $B_i^{\eta}(x_i)$ is E-connected for all $x_i \in X_i$. We may assume that for all but finitely many $i \in J$, $B_i^{\eta} = X_i \times X_i$. Moreover we have $\Delta_{X_i} \subseteq$ B_i^{η} for all $i \in J$. It is not difficult to show that $\prod_{i \in J} B_i^{\eta}(x_i) = \nu(\prod_{i \in J} B_i^{\eta})(x_i)$ and, as E consists of T2-spaces, these sets are E-connected. Moreover, we have $\nu(\prod_{i\in J}B_i^{\eta})\subseteq \nu(\prod_{i\in J}U_i^{\eta})\subseteq \nu(\nu^{\leftarrow}(B))\subseteq B$ and we have $\bigotimes_{i\in J}\Psi_i(\nu(\top_{\prod_{i\in J}B_i^{\eta}}))\geq$ $\prod_{i\in J} \Psi_i(\top_{\prod_{i\in J} B_i^n}) \geq \bigwedge_{i\in J} \Psi_i(\top_{B_i^n}) \geq \eta$. From $\Delta_{X_i} \subseteq B_i^n$ we conclude that $\Delta_X \subseteq \nu(\prod_{i \in J} \overline{B_i}^{\gamma}).$ Hence, if we define $B = \bigcup_{\eta \lhd \delta} \nu(\prod_{i \in J} B_i^{\eta}),$ then $B((x_i)) =$ $\bigcup_{\eta\vartriangleleft\delta}\nu(\prod_{i\in J}B_i^{\eta})(x_i))$ is E-connected. As $\Psi(\top_B)\geq\eta$ for all $\eta\vartriangleleft\delta$, we obtain $\Psi(\top_B) \ge \delta$ and the proof is complete.

7. Conclusions

We extended in this paper Preuß' E-connectedness to stratified L-uniform convergence spaces and studied a suitable definition of uniform local E-connectedness for such spaces, generalizing a definition and results from Vainio [24]. The preservation of local E-connectedness under products (even for $L = \{0, 1\}$) has not been shown before.

In the theory of classical uniform convergence spaces there is a further connectedness notion that plays a role in fixed point theorems, see Kneis [18]. Generalizing a definition from [18] we call a stratified L-uniform convergence space well-chained if for all $x, y \in X$ there is $\Phi_{xy} \in \mathcal{F}_L^s(X \times X)$ such that for $N \subseteq X \times X$, there is a natural number n with $(x, y) \in N^n$ whenever $\Lambda(\Phi_{xy}) \leq \Phi_{xy}(\top_N)$. For $L = \{0, 1\}$ this definition coincides with the definition given by Kneis [18]. In SL-UNIF, then (X, \mathcal{U}) is well-chained if and only if it is strongly uniformly connected. In general, we only have that a well-chained space $(X, \Lambda) \in |SL-UCS|$ is strongly uniformly connected. This can be seen with Theorem 4.6. It would be interesting to know if the class WC of well-chained uniform convergence spaces coincides with the class UCE of uniformly E-connected spaces for a suitable class E. The following result sheds some light into this question. We call a space (X, Λ) totally unchained if the only well-chained sets $A \subseteq \overline{X}$ (i.e. well-chained subspaces $(A, \Lambda|_A)$) are one-point sets. For instance, the space $(\{0,1\}, \Lambda_{\delta}^s)$ is totally unchained. *J_{ngds}* $\epsilon \sqrt{1 + \epsilon} P_i / (\sqrt{\epsilon_i})$ is ω -connected. As $\epsilon \sqrt{1 + \epsilon} \ge \eta$ for an $\eta \le \delta$, we obter
 $\Psi(\top_B) \ge \delta$ and the proof is complete.

7. **Conclusions**

We extended in this paper Preuß' E-connectedness to stratified

Lemma 7.1. We have $WC \subseteq UC\mathbb{E}$ if and only if all spaces in \mathbb{E} are totally unchained.

Proof. Let $WC \subseteq UC\mathbb{E}$ and let $(E, \Lambda_E) \in \mathbb{E}$ and $A \subseteq E$ be well-chained. Then the inclusion mapping $i_A : A \longrightarrow E$ is uniformly continuous and hence constant, i.e. A is a one-point set. Conversely, let (X, Λ) be well-chained and let $f : (X, \Lambda) \longrightarrow$ (E, Λ_E) be uniformly continuous. It is not difficult to see that then $f(X) \subseteq E$ is well-chained too and hence, by assumption, $f(X) = \{a\}$, i.e. f is constant.

REFERENCES

[1] J. Adámek, H. Herrlich, and G.E. Strecker, Abstract and Concrete Categories, Wiley, New York, 1989.

Uniform Connectedness and Uniform Local Connectedness for Lattice-valued Uniform ... 111

- [2] G. Cantor, *Über unendliche lineare Punktmannichfaltigkeiten*, Math. Ann., **21** (1883), 545– 591.
- [3] A. Craig and G. Jäger, A common framework for lattice-valued uniform spaces and probabilistic uniform limit spaces, Fuzzy Sets and Systems, 160 (2009), $1177 - 1203$.
- [4] J. Fang, *Lattice-valued semiuniform convergence spaces*, Fuzzy Sets and Systems, **195** (2012), 33–57.
- [5] W. Gähler, Grundstrukturen der Analysis I, Birkhäuser Verlag, Basel and Stuttgart, 1977.
- [6] J. Gutiérrez García, A unified approach to the concept of fuzzy L-uniform space, Thesis, Universidad del Pais Vasco, Bilbao, Spain, 2000.
- [7] J. Gutiérrez García, M.A. de Prada Vicente and A. P. Šostak, A unified approach to the concept of fuzzy L-uniform space, In: S. E. Rodabaugh, E. P. Klement (Eds.), Topological and algebraic structures in fuzzy sets, Kluwer, Dordrecht, (2003), 81–114.
- [8] F. Hausdorff, Grundz¨uge der Mengenlehre, Leipzig, 1914.
- [9] U. Höhle and A. P. Sostak, Axiomatic foundations of fixed-basis fuzzy topology, In: U. Höhle, S.E. Rodabauch (Eds.), Mathematics of Fuzzy Sets. Logic, Topology and Measure Theory, Kluwer, Boston/Dordrecht/London (1999), 123–272. ond algebraic structures in fuzzy sets, Kluwer, Dordcecht, (2003), 81–114.
 ARchive of Machine for Machine is the Magnether, the piggs, 1914.

[8] *P.* Hastabach (f. Gradiator) and algebraic structures in fuzzy sets, Klu
- [10] G. Jäger, A category of L-fuzzy convergence spaces, Quaestiones Math., 24 (2001), 501–517.
- [11] G. Jäger, Subcategories of lattice-valued convergence spaces, Fuzzy Sets and Systems, 156 (2005), 1–24.
- [12] G. Jäger and M. H. Burton, *Stratified L-uniform convergence spaces*, Quaest. Math., 28 $(2005), 11 - 36.$
- [13] G. Jäger, Lattice-valued convergence spaces and regularity, Fuzzy Sets and Systems, 159 (2008), 2488–2502.
- [14] G. Jäger, Level spaces for lattice-valued uniform convergence spaces, Quaest. Math., 31 (2008), 255–277.
- [15] G. Jäger, Compactness in lattice-valued function spaces, Fuzzy Sets and Systems, 161 (2010), 2962–2974.
- [16] G. Jäger, Lattice-valued Cauchy spaces and completion, Quaest. Math., 33 (2010), 53–74.
- [17] G. Jäger, Connectedness and local connectedness for lattice-valued convergence spaces, Fuzzy Sets and Systems, to appear, doi:10.1016/j.fss.2015.11.013.
- [18] G. Kneis, Contributions to the theory of pseudo-uniform spaces, Math. Nachrichten, 89 (1979), 149–163.
- [19] S. G. Mrówka and W. J. Pervin, *On uniform connectedness*, Proc. Amer. Math. Soc., 15 (1964), 446–449.
- [20] G. Preuß, E-Zusammenhängende Räume, Manuscripta Mathematica, 3 (1970), 331–342.
- [21] G. Preuß, Trennung und Zusammenhang, Monatshefte für Mathematik, 74(1970), 70–87.
- [22] W. W. Taylor, Fixed-point theorems for nonexpansive mappings in linear topological spaces, J. Math. Anal. Appl., 40 (1972), 164–173.
- [23] R. Vainio, A note on products of connected convergence spaces, Acta Acad. Aboensis, Ser. B, $36(2)$ (1976), 1-4.
- [24] R. Vainio, The locally connected and the uniformly locally connected coreflector in general convergence theory, Acta Acad. Aboensis, Ser. B, $39(1)$ (1979), 1-13.
- [25] R. Vainio, On connectedness in limit space theory, in: Convergence structures and applications II, Abhandlungen der Akad. d. Wissenschaften der DDR, Berlin (1984), 227–232.

Gunther Jager, School of Mechanical Engineering, University of Applied Sciences ¨ STRALSUND, 18435 STRALSUND, GERMANY

E-mail address: gunther.jaeger@fh-stralsund.de

Archive of SID

UNIFORM CONNECTEDNESS AND UNIFORM LOCAL CONNECTEDNESS FOR LATTICE-VALUED UNIFORM CONVERGENCE SPACES

G. JAGER

همبندي يكنواخت وهمبندي موضعي يكنواخت براي فضاهاي همگراي يكنواخت شبكه مقدار

چكيده. ما مفهوم E- همبندي Preu β را براي رسته فضاهاي همگراي يكنواخت شبكه مقدار و فضاهاي يكنواخت شبكه مقداربه كار مي بريم. يك فضا بطور يكنواخت E- مرتبط است اگر تنها توابع متصل يكنواخت از يك فضا به فضاي ديگر در خانواده E توابع ثابت باشند. ما نظريه اصلي براي مجموعه هاي E- همبند ، از جمله قضيه حاصلضرب را گسترش مي دهيم. بعلاوه ، E- همبند موضعي را تعريف و بررسي مي كنيم ، و يك تعريف كلاسيك از نظريه فضاهاي همگرا يكنواخت را به حالت شبكه – مقدار تعميم مي دهيم. بخصوص ، نشان داده شده است كه اگر شبكه زمينه كاملاً توزيعپذير باشد، فضاي خارج قسمتي يك فضاي بطور يكنواخت E- همبند موضعي و حاصلضربهاي فضاهاي بطور يكنواخت E- همبند موضعي، بطوريكنواخت E- همبند موضعي هستند.