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A SATISFACTORY STRATEGY OF MULTIOBJECTIVE TWO

PERSON MATRIX GAMES WITH FUZZY PAYOFFS

H. BIGDELI AND H. HASSANPOUR

Abstract. The multiobjective two person matrix game problem with fuzzy

payoffs is considered in this paper. It is assumed that fuzzy payoffs are tri-
angular fuzzy numbers. The problem is converted to several multiobjective

matrix game problems with interval payoffs by using the α-cuts of fuzzy pay-

offs. By solving these problems some α-Pareto optimal strategies with some
interval outcomes are obtained. An interactive algorithm is presented to ob-

tain a satisfactory strategy of players. Validity and applicability of the method

is illustrated by a practical example.

1. Introduction

Game theory is a formal way to analyze interaction among a group of rational de-
cision makers who behave strategically. Games are broadly classified into two major
categories: cooperative and noncooperative games (for example, see [16], [26], [28]).
Two person zero-sum finite games, which often are called matrix games for short,
are an important kind of noncooperative games. Matrix games have been exten-
sively studied and successfully applied to many fields such as economics, finance,
business competition, voting, auctions, research and development races, cartel be-
havior and e-commerce as well as advertising.
Research on game theory in fuzzy environment has been accumulating since the
mid 1970s. Butnariu [5], was the first to study two person noncooperative games
in a fuzzy environment, claiming that all of one player’s strategies are not equally
possible and the grade of membership of a strategy depends on the behavior of
the opponent. He also considered the case where the set of strategies of the player
could be seen as a fuzzy set. Subsequently, he examined n-person noncooperative
games in a fuzzy invironment and presented the concept of equilibrium solutions
for such games [6]. Buckley [4] analyzed the behavior of decision makers using
two person fuzzy games similar to Butnariu [5]. Billot [3] defined the individ-
ual relations of preference by a procedure different from Butnaria’s definition of
preference and examined equilibrium solutions of n-person noncooperative games.
Campos [7] introduced two person zero-sum games with fuzzy payoffs. The prob-
lem treated by Campos was a single-objective game, and a max-min problem was
formulated by using the fuzzy mathematical programming method. Bector and
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Chandra [1] proposed linear programming (LP) methods for solving fuzzy matrix
games based on certain duality of LP with fuzzy parameters. Maeda [24] defined
three kinds of minimax equilibrium strategies based on the fuzzy max order and
proposed a bi-matrix game method for solving a particular type of fuzzy matrix
games. Li ( [20], [21]) proposed the two-level LP method for solving matrix games
with payoffs of triangular fuzzy numbers (TFNs), which was called Li’s model by
Bector and Chandra [1] and Larbani [19]. Clemente and Fernandez [9] presented a
new methodology for the analysis of fuzzy payoff matrix games. They provided a
method to solve these problems to find Pareto optimal security strategies. Collins
and Hu [10] considered interval-valued matrix games and extended the results of
classical strictly determined matrix games to fuzzily determined interval matrix
games. Li [22] introduced an approach to compute fuzzy values of matrix games
with single objective and payoffs of triangular fuzzy numbers. However, his method
does not give the optimal strategies of players. Chandra and Aggarwal [8] wrote
a note on the work of Li [22] for solving the two person zero-sum games with
payoffs of triangular fuzzy numbers and proposed a new methodology for solving
such games. Li and Nan [23] proposed an interval-valued programming approach
to matrix games with payoffs of triangular intuitionistic fuzzy numbers. Dutta and
Gupta [13] extended Maeda’s [24] and Cunlin and Qiang’s [12] fuzzy matrix game
models with symmetric and asymmetric triangular fuzzy numbers. Seikh et al. [30]
presented an approach to solve matrix game with fuzzy payoffs. Also they stud-
ied matrix games with intuitionistic fuzzy payoffs [31] and presented application of
intuitionistic fuzzy mathematical programming with exponential membership and
quadratic non-membership functions in matrix games [32].
Games with multiple non-comparable objectives are called multiobjective games
or games with vector payoffs. For multiobjective two person zero-sum games, Ze-
leny [33] introduced a parameter vector, a vector of weighting coefficients, which
varied parametrically to analyze such games. Cook [11] also introduced a goal
vector and formulated such games as goal programming problems. Fernandez and
Puerto [15] showed that the set of efficient solutions of multiobjective linear pro-
gramming problem derived from a zero-sum multiobjective matrix game coincides
with the set of Pareto optimal security strategies for one of the players in the orig-
inal game. Fahem and Radjef [14] investigated the concept of properly efficient
equilibrium solution for a multicriteria noncooperative strategic game. Nishizaki
and Sakawa [27] considered multiobjective two person zero-sum games with fuzzy
payoffs and fuzzy goals. Kumar [18] proposed a max-min solution approach for
multiobjective matrix games with fuzzy goals.
In this paper, we consider fuzzy matrix games with multiple payoffs in which play-
ers’ payoffs are fuzzy numbers and players’ pure and mixed strategies are crisp. The
remainder of the paper is organized as follows. In section 2, some preliminaries,
containing necessary notations and definitions of fuzzy sets, interval arithmetic and
zero-sum games are presented. In section 3, a method is proposed for computing
fuzzy values of two person zero-sum multiobjective games with fuzzy payoffs, which
is generalization of the work of Seikh et al. [30], which solved the same problem in
single objective case, without obtaining a unique strategy for players. In section 4,
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an interactive algorithm is presented to solve the mentioned problem which com-
putes a satisfactory strategy of game for players. Finally, conclusion is made in
section 5.

2. Preliminaries

2.1. Fuzzy Sets and Interval Arithmetic. In this subsection, we recall some
definitions and preliminaries of fuzzy sets according to [29].

Definition 2.1. Let X denote a universal set. A fuzzy subset ã of X is defined
by its membership function µã : X → [0, 1], which assigns to each element x ∈ X a
real number µã(x) in the interval [0, 1].

In the above definition, µã(x) is the grade of membership of x in the set ã.

Definition 2.2. The support of ã, denoted by supp(ã), is the set of points x ∈ X
at which µã(x) is positive.

Definition 2.3. ã is said to be normal if there is x ∈ X such that µã(x) = 1.

Definition 2.4. The α-cut of the fuzzy set ã, denoted by ãα, is an ordinary set
defined by ãα = {x |µã(x) ≥ α} when α ∈ (0, 1], and ã0 = closure {x |µã(x) > 0}.

Definition 2.5. ã is said to be a convex fuzzy set if its α-cuts are convex.

Definition 2.6. A fuzzy number is a convex normalized fuzzy set of the real line
R1 whose membership function is piecewise continuous.

From the definition of a fuzzy number ã, it is significant to note that each α-cut
ãα of a fuzzy number ã is a closed interval [aα

L, aα
R].

Definition 2.7. A triangular fuzzy number (TFN) ã = (al, am, ar) is a special
fuzzy number, whose membership function is given by

µã(x) =

 (x− al)/(am − al) al ≤ x ≤ am
(ar − x)/(ar − am) am ≤ x ≤ ar
0 otherwise

(1)

where am is the mean of ã, and al and ar are the left and right end points of
supp(ã), respectively.

For any triangular fuzzy number ã = (al, am, ar), it is easily derived from (1)
that

[
aLα, a

R
α

]
= αã1 + (1−α)ã0, which means that any α-cut of a triangular fuzzy

number is directly obtained from its 1-cut and 0-cut.
Let a =

[
aL, aR

]
be an interval. The interval a can also be represented in the form

a = 〈aC , aW 〉 = {x ∈ R |aC − aW ≤ x ≤ aC + aW } ,
where aC = 1

2 (aR + aL) and aW = 1
2 (aR − aL) are the center and half-width of a,

respectively.
Different order relations between intervals have been presented in different re-
searches [25]. In this paper we use the following definition, in which a and b are
two intervals and x is a non-negative real variable. A brief comparison on different
interval orders and features of this ordering are presented in [25].
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Definition 2.8. [25]. The satisfactory crisp equivalent forms of interval inequality
constraints ax≤Ib and ax≥Ib are defined as

ax≤Ib⇔

{
aRx ≤ bR
(ax)C−bC
(ax)W+bW

≤ β , ax≥Ib⇔

{
aLx ≥ bL
bC−(ax)C
(ax)W+bW

≤ β

where ≤I and ≥I denote the interval number inequalities and β ∈ [0, 1] represents
the minimal acceptance degree of the inequality constraints which may be allowed
to violate.

2.2. Solving Interval Linear Programming Problems. In this subsection, we
explain a method for solving linear programming problems with interval coefficients
according to [25] and [30]. Consider the following interval linear programming
problem

max
n∑
j=1

cjxj

s.t.
n∑
j=1

aijxj≥Ibi i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n (2)

where, the coefficients in the objective function and the constraints and the right
hand side values are intervals. Assuming a pessimistic procedure, the problem
transforms to a bi-objective mathematical programming problem. In the maximiz-
ing case, the central value and the lower bound of the interval objective function
are maximized. There exists several solution methods for the obtained bi-objective
problem. In this paper we use the weighted average approach which gives Pareto
optimal solutions [29]. According to the mentioned method and Definition 2.8, the
problem (2) is converted into the following classical linear programming problem

max
n∑
j=1

(
3cLj +cRj

4 )xj

s.t.
n∑
j=1

aLijxj ≥ bLi i = 1, . . . ,m

n∑
j=1

{
(1 + β)aRij + (1− β)aLij

}
xj ≥ (1 + β)bLi + (1− β)bRi i = 1, . . . ,m

xj ≥ 0 j = 1, . . . , n

2.3. Zero-Sum Game. Let two players in a two person zero-sum game be denoted
by Players I and II. Assume that I = {1, . . . ,m} and J = {1, . . . , n} are the sets
of pure strategies of Players I and II, respectively. When Player I chooses the pure
strategy i and Player II chooses the pure strategy j, then aij is the payoff for Player
I and −aij is the payoff for Player II. The two person zero-sum matrix game G in
normal form can be represented as a payoff matrix A = [aij ]m×n . Consider the
game G with no saddle point, i.e. maxi minj aij 6= minj maxi aij . To solve such a
game, Neumann and Morgenstern [26] introduced the concept of mixed strategy for
Players I and II. Mixed strategy spaces are denoted for Players I and II as follows,
respectively:
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X = {x ∈ Rm|
m∑
i=1

xi = 1, xi ≥ 0, i = 1, . . . ,m}, (3)

Y = {y ∈ Rn|
n∑
j=1

yj = 1, yj ≥ 0, j = 1, . . . , n}. (4)

In fact the mixed strategies for Players I and II are the probability distributions
on the sets I and J, respectively. It is conventional to assume that Player I is a
maximizing player and Player II is a minimizing player. Further, for x ∈ X, y ∈ Y ,
the scalar xTAy is the expected payoff to Player I and as the game G is zero sum,
the expected payoff to Player II is −xTAy. Neumann and Morgenstern [26] showed
that for a two person zero-sum game G with payoff matrix A, we have

maxx∈X miny∈Y xTAy = miny∈Y maxx∈X xTAy.

A pair of strategies (x∗, y∗) satisfying the above equation is called an equilibrium
solution.

3. Multiobjective Two Person Zero-Sum Game with Fuzzy Payoffs

In this section, we consider a multiobjective game problem in fuzzy environment.
We introduce fuzzy payoffs to express imprecision of information in decision making
problems.

Definition 3.1. (Zero-sum game with fuzzy payoffs [27]). When Player I chooses
a pure strategy i ∈ I and Player II chooses a pure strategy j ∈ J , let ãij be a fuzzy
payoff for Player I and −ãij be a fuzzy payoff for Player II. Let the fuzzy payoff ãij
be represented by the triangular fuzzy numbers

ãij = (alij , a
m
ij , a

r
ij), (5)

The two person zero-sum fuzzy game can be represented by the fuzzy payoff matrix

Ã =

 ã11 . . . ã1n

...
. . .

...
ãm1 . . . ãmn

 .
(6)

The game defined by (6) is called a two person zero-sum game with triangular
fuzzy payoffs. Note that −ãij = (−arij ,−amij ,−alij) is the fuzzy payoff for Player II.

When one player chooses a strategy, his payoff is represented by a triangular
fuzzy number. The outcome of the game has a zero-sum structure such that, when
one player receives a gain, the other player suffers an equal loss.
Solution concepts of two person zero-sum game with fuzzy payoffs are defined in
different papers (for example see [1], [9], [27]).
Assume that each player has p objectives. The following multiple fuzzy payoff
matrices represent a multiobjective two person zero-sum game with fuzzy payoffs:

Ã1 =

 ã1
11 . . . ã1

1n
...

. . .
...

ã1
m1 . . . ã1

mn

 , . . . , Ãp =

 ãp11 . . . ãp1n
...

. . .
...

ãpm1 . . . ãpmn


(7)
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where Ãk is the payoff matrix of the game with respect to the k-th objective
function, for k = 1, . . . , p. The mixed strategy spaces for Players I and II are given
by (3) and (4), respectively.
Let each ãkij be a triangular fuzzy number as (ãklij , ã

km
ij , ã

kr
ij ). We use the concept

of α-cuts to convert the game with fuzzy payoffs to a game with interval payoffs.
For each α ∈ [0, 1], the α-cuts of triangular fuzzy numbers ãkij are the intervals

(ãkij)α = [(ãkLij )
α
, (ãkRij )

α
] = [αakmij + (1− α)aklij , αa

km
ij + (1− α)akrij ].

For a fixed value of α, we denote by Ãkα =
[
(ãkij)α

]
, the matrix containing α-cuts of

the elements of individual matrix Ãk for k = 1, . . . , p. Assume that we have a fixed
value of α. Choosing x ∈ X and y ∈ Y by Players I and II, respectively, implies
that the expected payoff in level α (α-level expected payoff) of the game is

vα(x, y) = xT Ãαy = [v1
α(x, y), . . . , vpα(x, y)] (8)

where Ãα = [Ã1
α, . . . , Ã

p
α] and

vα
k(x, y) = xT Ãkαy = xT [(ãkij)α]y = [xT (ãkLij )

α
y, xT (ãkRij )

α
y] , k = 1, . . . , p.

It should be emphasized here that by taking any value in the intervals (ãkij)α =

[(ãkLij )
α
, (ãkRij )

α
], we have a (crisp) multiobjective matrix game. Naturally, Player

II’s payoff is −(ãkij)α = [−(ãkRij )
α
,−(ãkLij )

α
].

Player I (the maximizer) has to find the maximum outcome against any strategy of
Player II (the minimizer). Thus, for each strategy x ∈ X of Player I, the security
levels in level α (α-security levels) of Player I are interval payoffs which can be
guaranteed against any response of Player II. Therefore, the α-security levels for
Players I and II with respect to k-th objective function are defined as follows,
respectively:

(V k)α(x) = miny∈Y vkα(x, y) k = 1, . . . , p, (9)

(V̄ k)α(y) = maxx∈X vkα(x, y) k = 1, . . . , p. (10)

For a strategy x ∈ X and a given value of α, the k-th α-security level of Player
I is given by (9), which is a linear programming problem with interval objective
function. Thus, from a viewpoint of logic, the values of objective functions of these
problems should be intervals as well. The α-security levels are p-tuples denoted by

V α(x) = ((V 1)α(x), . . . , (V p)α(x)) , (11)

V̄α(y) = ((V̄ 1)α(y), . . . , (V̄ p)α(y)) . (12)

The above concept allows us to analyze multiobjective matrix games with fuzzy
payoffs under the rationale of worst case behavior of the opponent. Here, we state
solution process of game for Player I. A similar process can be easily introduced
for Player II. For a given value of α, Player I has to choose x such that the α-
security levels of the game are maximized. Hence, Player I faces with the following
multiobjective mathematical programming problem

maxx∈X V α(x) (13)
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or equivalently,

max (miny∈Y v1
α(x, y), . . . , miny∈Y vpα(x, y))

s.t.
m∑
i=1

xi = 1

xi ≥ 0 i = 1, . . . ,m. (14)

Using the usual transformation of minimax problems to linear problems [29], the
above problem is converted to the following multiobjective mathematical program-
ming problem

max ((v1)α, . . . , (v
p)α)

s.t.
n∑
j=1

m∑
i=1

xi(ã
1
ij)αyj≥I(v

1)α ∀y ∈ Y

...
n∑
j=1

m∑
i=1

xi(ã
p
ij)αyj≥I(v

p)α ∀y ∈ Y

m∑
i=1

xi = 1

xi ≥ 0 i = 1, . . . ,m. (15)

The problem (15) is a multiobjective mathematical programming problem in which
each element y ∈ Y corresponds to exactly p constraints. Thus, the problem
contains an infinite number of constraints. Consider the set of extreme points of Y ,
that is, S = {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}. Obviously, the constraints
corresponding to the elements of S are as follows:

m∑
i=1

(ã1
ij)αxi≥I(v

1)α j = 1, . . . , n

...
m∑
i=1

(ãpij)αxi≥I(v
p)α j = 1, . . . , n

On the other hand, the other constraints (namely, the constraints corresponding
to the elements of Y \S) are redundant, because ≥I is preserved under convex
combinations and consequently, each of these constraints can be written as a convex
combination of the above constraints. Therefore, the problem (15) is equivalent to
the following problem which have a finite number of constraints.

max ((v1)α, . . . , (v
p)α)

s.t.
m∑
i=1

(ã1
ij)αxi≥I(v

1)α j = 1, . . . , n

...
m∑
i=1

(ãpij)αxi≥I(v
p)α j = 1, . . . , n

m∑
i=1

xi = 1

xi ≥ 0 i = 1, . . . ,m. (16)

To solve the above problem, we use weighted sum method as follows:
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max
p∑
k=1

λk(vk)α

s.t.
m∑
i=1

(ã1
ij)
α
xi≥I (v1)α j = 1, . . . , n

.

.

.
m∑
i=1

(ã
p
ij

)
α
xi≥I (vp)α j = 1, . . . , n

m∑
i=1

xi = 1

xi ≥ 0 i = 1, . . . ,m (17)

where λ ∈ Λ =

{
λ ∈ Rp

∣∣∣∣λ ≥ 0,
p∑
k=1

λk = 1

}
. The component λk of the vector λ =

(λ1, ..., λp) ∈ Λ in the problem (17) can be interpreted as the relative importance of
the k-th objective function to Player I. The problem (17) is a linear programming
problem, where (ãkij)α and (vk)α, k = 1, . . . , p are intervals. Using the explained

method in subsection 2.2, the problem (17) is converted into the following linear
programming problem (PI-α)

max
p∑
k=1

λk(
3(vkL)α+(vkR)α

4
)

s.t.
m∑
i=1

(ã1L
ij )

α
xi ≥ (v1L)α j = 1, . . . , n

m∑
i=1

{
(1 + β)(ã1R

ij )
α

+ (1− β)(ã1L
ij )

α

}
xi ≥ (1 + β)(v1L)α + (1− β)(v1R)α j = 1, . . . , n

.

.

.
m∑
i=1

(ã
pL
ij )

α
xi ≥ (vpL)α j = 1, . . . , n

m∑
i=1

{
(1 + β)(ã

pR
ij )

α
+ (1− β)(ã

pL
ij )

α

}
xi ≥ (1 + β)(vpL)α + (1− β)(vpR)α j = 1, . . . , n

(vkL)α ≤ (vkR)α k = 1, . . . , p
m∑
i=1

xi = 1

xi ≥ 0 i = 1, . . . ,m

where the parameters α and β are given by Player I. We take β = 0, which indicates
that the inequality constraints are not allowed to violate. By solving the problem
(PI-α) for a given value of α, the Pareto optimal strategy x∗ in level α (we call
it α-Pareto optimal strategy) and the corresponding left and right end points of
α-cuts of security levels (vk)α for Player I are obtained.
By a similar process, we can obtain the following linear programming problem (PII-
α) to find an α-Pareto optimal strategy of Player II and the corresponding left and
right end points of α-cuts of security levels (v̄k)α, for a fixed value of α.

min
p∑
k=1

λk(
3(v̄kR)α+(v̄kL)α

4
)

s.t.
n∑
j=1

(ã1R
ij )

α
yj ≤ (v̄1R)α i = 1, . . . ,m

n∑
j=1

{
(1 + β)(ã1L

ij )
α

+ (1− β)(ã1R
ij )

α

}
yj ≤ (1− β)(v̄1L)α + (1 + β)(v̄1R)α i = 1, . . . ,m

.

.

.
n∑
j=1

(ã
pR
ij )

α
yj ≤ (v̄pR)α i = 1, . . . ,m

n∑
j=1

{
(1 + β)(ã

pL
ij )

α
+ (1− β)(ã

pR
ij )

α

}
yj ≤ (1− β)(v̄pL)α + (1 + β)(v̄pR)α i = 1, . . . ,m

(v̄kL)α ≤ (v̄kR)α k = 1, . . . , p
n∑
j=1

yj = 1

yj ≥ 0 j = 1, . . . , n
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where λk, k = 1, . . . , p can be interpreted as the relative importance of the k-th
objective function to Player II.
The weights λ1, . . . , λp in the problems (PI-α) and (PII-α) which indicate the pref-
erence degrees of different objective functions are given by players. If players can
not give the weights λ1, . . . , λp in problems (PI-α) and (PII-α), generally multi-
attribute decision making methods such as AHP and TOPSIS [17] can be used to
determine these weights. Belenson and Kapur [2] used two person zero-sum game
with mixed strategies for finding weights without decision makers preferences.

Theorem 3.2. Let ṽk, k = 1, . . . , p be the fuzzy set defined through the following
family of ordinary sets: {

[(vkL)α, (v
kR)α] |α ∈ [0, 1]

}
where (vkL)α and (vkR)α are obtained by solving the problem (PI-α). Then ṽk is a
fuzzy number.

Proof. Since miny∈Y vkLα (x, y) ≤ miny∈Y vkRα (x, y) for each α, we have (vkL)α ≤
(vkR)α. Also, it is easy to verify that (vkL)α ≤ (vkL)α′ and (vkR)α′ ≤ (vkR)α,

for each α, α
′ ∈ [0, 1] with α ≤ α

′
. Therefore, [(vkL)α′ , (v

kR)α′ ] ⊆ [(vkL)α, (v
kR)α]

if α ≤ α
′
; i.e. the intervals [(vkL)α, (v

kR)α] are nested. This guarantees that the
intervals [(vkL)α, (v

kR)α] can be used to construct a fuzzy number. �

Remark 3.3. The proposed method in this section can also be used for multiob-
jective matrix game problems with interval payoffs. In fact, it is enough to solve
the problem (PI-α) and (PII-α), with given interval payoffs instead of the α-cuts
of fuzzy payoffs.

4. An Interactive Algorithm for Computing Satisfactory Strategy

In Section 3, we proposed a method for computing the fuzzy values of multi-
objective matrix games with fuzzy payoffs. However, this method presents several
strategies for Player I. Because for each α ∈ [0, 1] we solve a problem, which gives
a strategy. Decision analyst has to choose one strategy among them to present to
Player I. In this section, we propose an interactive algorithm to choose a strategy
preferred by Player I when the fuzzy payoffs are triangular fuzzy numbers.
For a given multiobjective matrix game with triangular fuzzy payoffs and an initial
vector λ to show the relative importance of the objectives, suppose that we have
computed α-security levels for α = 0, 1 by solving the problem (PI-α) and also, we

have constructed the fuzzy values ṽk = (vkl, vkm, vkr) by these α-security levels for
k = 1, 2, . . . , p. When α = 0, the security levels of the game of Player I are the
widest intervals. Thus it is impossible that the α-security levels of the game for
Player I falls outside of these intervals. For α = 1, the security levels for Player I are
the most likely values. If Player I is satisfied with the 1-security levels or 0-security
levels, then we present the corresponding strategy to him and stop. Otherwise, we
begin algorithm by the obtained solution with α = 0. This strategy corresponds
to p intervals [(vkL)α, (v

kR)α] of α-security levels for k = 1, 2, . . . , p. Thus (vkL)α
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and (vkR)α present respectively the least and most amount of α-security level to
the k-th objective and obviously,

vkl ≤ (vkL)α ≤ vkm, vkm ≤ (vkR)α ≤ vkr. (18)

Since Player I is maximizer, we can define his satisfactory strategy as follows.

Definition 4.1. We say that a strategy x is satisfactory for Player I, if Player I is
satisfied with the least amounts of all its α-security levels.

Similarly, since Player II is minimizer, we can define his satisfactory strategy as
follows.

Definition 4.2. We say that a strategy y is satisfactory for Player II, if Player II
is satisfied with the most amounts of all its α-security levels.

To find a satisfactory strategy x, we consider the following situations separately:

(1) Player I is satisfied with the least amounts of all α-security levels.
(2) Player I is satisfied with the most amounts of all α-security levels but

is not satisfied with the least amounts of α-security levels for some k ∈
{1, 2, . . . , p}. Furthermore, his desired values of these least amounts for the
k-th objective belong to [vkl, vkm].

(3) Player I is not satisfied with the least and most amount of some α-security
levels and he asks a new value of some (vkL)α and/or some (vkR)α.

In case (1), since Player I maximizes gain floor, if he is satisfied with the least
amounts of all α-security levels, then he obviously satisfied with the most amounts
of them. The obtained strategy is the satisfactory strategy of Player I.
In case (2), we can improve the least amount of each α-security level by increasing
the value of α. However, we cannot increase α arbitrarily. Because the most
amount of each α-security level is decreased by increasing α (see Figure 1). Thus
we have to choose a new value of α to satisfy Player I relatively. Let us explain
how to determine the new value of α in more details. Suppose that Player I is not
satisfied with (vkL)α for some k ∈ {1, 2, . . . , p}. We denote by K the index set of
such objectives. For each k ∈ K, we ask Player I to determine his desired value
of (vkL)α denoted by (vkL)∗α. If (vkL)∗α /∈ [(vkL)α, v

km] for some k ∈ K, then the
third case occurs. Otherwise, achieving the desired values is possible by increasing

the value of α. For a fixed k ∈ K, we increase α to α′k =
(vkL)∗α−v

kl

vkm−vkl which is the

value of α related to the desired value (vkL)∗α (see Figure 1 in which the desired
value is represented by vL

α′
).

Finally, we set the new value of α to α′ = maxk∈Kα
′
k, to achieve all desired

values. Then, we inform Player I that increasing α to α′, decreases the most
amount (vkR)α to (vkR)α′ = vkr + α′(vkm − vkr). If he does not accept, then we
recommend him to decrease the desired values (vkL)∗α’s to find a new value of α
less than α′. This process is repeated until a suitable value of α is found. Then,
we solve the problem (PI-α) for the obtained value of α to present the satisfactory
strategy to him.
In case (3), assume that Player I asks a new value v̂α = [v̂Lα, v̂

R
α ] for some α-security
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Figure 1. The Change of Lower Bound of α-security Level and

Computing the New Value of α

levels. In this case, we can not modify α like case (2) because (vkL)∗α /∈ [(vkL)α, v
km]

and/or (vkR)∗α /∈ [vkm, vkr] for some k ∈ K. In this situation to attain specified
security levels by Player I, we propose the following goal programming problem

minD(vα, v̂α)
s.t. The constraints of problem (PI-α)

(vkL)α = (vkL)∗α k ∈ {1, . . . , p} \K
(vkR)α = (vkR)∗α k ∈ {1, . . . , p} \K̄ (19)

where D(.) is an interval distance function to compute the difference between objec-
tive functions (v)α and the desired values (v̂)α, K and K̄ are respectively the index
sets of objectives whose least and most α-security levels have not satisfied Player I.
Here, the distance function D(.) can be considered as the maximum deviations of
individual goals (one can also use norm-1 for the distance between intervals). Thus
the above problem is rewritten as follows:

min maxk∈K{D((vk)α, (v̂
k)α)}

s.t. The constraints of problem (PI-α)
(vkL)α = (vkL)∗α k ∈ {1, . . . , p} \K
(vkR)α = (vkR)∗α k ∈ {1, . . . , p} \K̄ (20)

where

D((vk)α, (v̂
k)α) = max{

∣∣∣(vkL)α − (v̂kL)α

∣∣∣ , ∣∣∣(vkR)α − (v̂kR)α

∣∣∣}.
(21)

Therefore, the optimal solution of (20) can be obtained by solving the following
problem

min maxk∈K

{
(v̂kL)α − (vkL)α, (v̂

kR)α − (vkR)α

}
s.t. The constraints of problem (PI-α)

(vkL)α = (vkL)∗α k ∈ {1, . . . , p} \K
(vkR)α = (vkR)∗α k ∈ {1, . . . , p} \K̄. (22)
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or equivalently

min γ
s.t. γ + (vkL)α ≥ (v̂kL)α k ∈ K

γ + (vkR)α ≥ (v̂kR)α k ∈ K
The constraints of problem (22). (23)

From the aforementioned discussion, the process of solving multiobjective two per-
son zero-sum games with triangular fuzzy number payoffs is summarized as follows.

Interactive Algorithm for Fuzzy Multiobjective Matrix Game

Inputs:
p: The number of objectives
m: The number of strategies for Player I
n: The number of strategies for Player II
Ãk: The payoff matrix corresponding to the k-th objective function of the

game problem for k = 1, 2, . . . , p.
λ = (λ1, . . . , λp): The objectives weights (the relative importance of objective

functions)

Step 1: Set Ã = [Ã1, . . . , Ãp] as the payoff matrix of the game problem.
Step 2: Solve the linear programming problem (PI-α) for α = 0 and α = 1

and hereby obtain ṽk = [(vkL)α, (v
kR)α] for k = 1, . . . , p and the corre-

sponding strategies of Player I.
Step 3: If Player I is satisfied with at least one of the obtained solutions (0-

security levels or 1-security levels) in Step 2, then stop. The corresponding
strategy is satisfactory. Otherwise, consider the obtained solution with
α = 0 and go to Step 4.

Step 4: If Player I is satisfied with the most amounts of all α-security levels
but he wants to increase the least amounts of some α-security levels to
(vkL)∗α ∈ [vkl, vkm], and is satisfied with reducing the most amounts of all
the corresponding α-security levels (we denote by K the index set of such
objectives), go to Step 5. Otherwise go to Step 6.

Step 5: Substitute α by α′ = maxk∈Kα
′
k where α′k =

(vkL)∗α−v
kl

vkm−vkl . Solve linear

programming problem (PI-α) for the new value of α. If Player I is satisfied
with the least and most amounts of all α-security levels, then give Player
I the obtained strategy. Otherwise, ask Player I the new least amounts of
α-security levels and go to Step 4.

Step 6: If Player I want to change the least amounts of some objectives to
(vkL)∗α where (vkL)∗α /∈ [vkl, vkm] or he want to change the most amount of
some objectives to (vkR)∗α where (vkR)∗α /∈ [vkm, vkr] or he want to change
both the least and the most amount of some objectives, then solve the
linear programming problem (23) and give Player I a relatively satisfactory
strategy and stop.

Outputs: A satisfactory strategy of Player I and the corresponding α-security
levels.
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The above algorithm can be used to obtain satisfactory strategy of Player II after
some minor modifications.
Now, we illustrate the proposed method by a numerical example. Since the mul-
tiobjective two person matrix game with fuzzy payoffs has not been considered in
previous researches, there is no numerical example with fuzzy payoffs in previous
researches. So, we took the following example from [34], and changed its payoffs to
triangular fuzzy numbers.

4.1. Numerical Example. Suppose that there are two companies I and II aiming
to enhance the sales amount and market share of a product in a targeted mar-
ket (a target market is a specific group of people to whom you are trying to sell
your products or services.) under the circumstance that the demand amount of the
product in the targeted market basically is fixed. In other words, the sales amount
and market share of one company are increased while the sales amount and market
share of another company are decreased. The two companies consider two different
strategies to increase the sales amount and market share: strategy I (to reduce the
price), strategy II (advertisement).
The above problem may be regarded as a fuzzy matrix game. Namely, the com-
panies I and II are considered as Players I and II, respectively. Due to the lack
of information, the managers are not able to evaluate the sales amount and mar-
ket share of companies exactly. In order to handle such the uncertain situation,
triangular fuzzy numbers are used to express the estimated values of sales amount
and market share of the product. The marketing research department of company
I establishes the following payoff matrices

Ã1 =

[
(175, 180, 190) (150, 156, 158)
(80, 90, 100) (175, 180, 190)

]
,

Ã2 =

[
(125, 130, 135) (120, 130, 135)
(120, 130, 135) (150, 160, 170)

]
.

This problem is a biobjective two person zero-sum game.
Assume that the importance of objective functions to Player I are the same. So we
set λ1 = λ2 = 0.5.

The problem (PI-α) for these data and β = 0 is as follows:

max 3
8

((v1L)α + (v2L)α) + 1
8

((v1R)α + (v2R)α)
s.t.

(175 + 5α)x1 + (80 + 10α)x2 ≥ (v1L)α
(150 + 6α)x1 + (175 + 5α)x2 ≥ (v1L)α
(125 + 5α)x1 + (120 + 10α)x2 ≥ (v2L)α
(120 + 10α)x1 + (150 + 10α)x2 ≥ (v2L)α
(365− 5α)x1 + 180x2 ≥ (v1L)α + (v1R)α
(308 + 4α)x1 + (365− 5α)x2 ≥ (v1L)α + (v1R)α
260x1 + (255 + 5α)x2 ≥ (v2L)α + (v2R)α
(255 + 5α)x1 + 320x2 ≥ (v2L)α + (v2R)α
(v1L)α ≤ (v1R)α
(v2L)α ≤ (v2R)α
x1 + x2 = 1
x1, x2 ≥ 0

(24)

The upper and lower bounds of α-cut of the security levels of the game for Player
I and the corresponding α-Pareto optimal strategy for different values of α ∈ [0, 1]
are shown in the Table 1 (the solutions for α = 0.1, . . . , α = 0.9 are presented for
more comparison of the results by the reader).
It can be easily seen from Table 1 that when α = 0, the α-cut of the security levels of
the game for Player I are the intervals [155.2083, 164.6667] and [123.9583, 136.0417]
respectively, which are the widest intervals. For α = 1, the α-security levels of
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α x∗1 x∗2 (v1)α =
[
(v1L)α, (v

1R)α
]

(v2)α =
[
(v2L)α, (v

2R)α
]

0 0.7916667 0.2083333 [155.2083,164.6667] [123.9583,135]
0.1 0.7914573 0.2085427 [155.7927,164.3065] [123.9583,134.5]
0.2 0.7912458 0.2087542 [156.3771,163.9461] [125.1650,134]
0.3 0.7910321 0.2089679 [156.9615,163.5854] [125.9615,133.5]
0.4 0.7908163 0.2091837 [157.5459,163.2245] [126.3724,133]
0.5 0.7905983 0.2094017 [158.1303,162.8632] [126.9765,132.5]
0.6 0.7903780 0.2096220 [158.7148,162.5017] [127.5808,132]
0.7 0.79015 0.2098446 [159.2992,162.1399] [128.1852,131.5]
0.8 0.7899306 0.2100694 [159.8837,161.7778] [128.7899,131]
0.9 0.7897033 0.2102967 [160.4682,161.4154] [129.3949,130.5]
1 0.7894737 0.2105263 [161.0526,161.0526] [130,130]

Table 1. The Mixed Strategies and α-security Levels for Different

Values of α in the Numerical Example

the game for Player I are 161.0526 and 130, respectively, which are the most likely
values. Therefore, the fuzzy values of the game for Player I are obtained as follows:

ṽ1 = ((v1L)0, (v
1R)1, (v

1R)0) = (155.2083, 161.0526, 164.6667)

ṽ2 = ((v2L)0, (v
2R)1, (v

2R)0) = (123.9583, 130, 135)

which are triangular fuzzy numbers.
Assume that Player I is not satisfied with the obtained 0-security levels and

1-security levels. We begin algorithm with α = 0. For α = 0, the α-Pareto
optimal strategy for Player I is x∗ = (0.7916667, 0.2083333) and 0-security levels
are the intervals [155.2083, 164.6667] and [123.9583, 135]. Assume that Player I is
not satisfied with the lower bounds of 0-security levels and wants to increase them
from 155.2083 and 123.9583 to 160 and 125, respectively. Then, as discussed in
the algorithm, we have α = max {0.82, 0.17}. Hence, we solve the problem (24) for
α = 0.82. The new security levels of the game for Player I are (ṽ1)α = [160, 161.705]

and (ṽ2)α = [128.911, 130.9]. If Player I satisfied with the obtained solutions stop.
Assume that Player I is not satisfied with the obtained security levels and he present
the new intervals [163, 170] and [135, 140] for two objective functions, respectively.
Note that 163 /∈ [160, 161.705] and 135 /∈ [128.911, 130.9]. Therefore, according to
the algorithm (Step 6), in this case we solve the following problem:

min γ
s.t.

γ + (v1L)α ≥ 163

γ + (v1R)α ≥ 170

γ + (v2L)α ≥ 135

γ + (v2R)α ≥ 140

(175 + 5α)x1 + (80 + 10α)x2 ≥ (v1L)α
(150 + 6α)x1 + (175 + 5α)x2 ≥ (v1L)α
(125 + 5α)x1 + (120 + 10α)x2 ≥ (v2L)α
(120 + 10α)x1 + (150 + 10α)x2 ≥ (v2L)α
(365− 5α)x1 + 180x2 ≥ (v1L)α + (v1R)α
(308 + 4α)x1 + (365− 5α)x2 ≥ (v1L)α + (v1R)α
260x1 + (255 + 5α)x2 ≥ (v2L)α + (v2R)α
(255 + 5α)x1 + 320x2 ≥ (v2L)α + (v2R)α
(v1L)α ≤ (v1R)α
(v2L)α ≤ (v2R)α
x1 + x2 = 1
x1, x2 ≥ 0 (25)

Using the simplex method, we obtain x∗ = (0.86, 0.14) and stop. This means
that Player I by choosing his first strategy with about 86% chance can get the
specified intervals of gain-floor for the objectives.
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Similarly, for Player II, assume that the importance of objective functions are the
same and λ1 = λ2 = 0.5. The problem (PII-α) for these data and β = 0 is as
follows:

min 3
8

((v̄1R)α + (v̄2R)α) + 1
8

((v̄1L)α + (v̄2L)α)
s.t.

(190− 10α)y1 + (158− 2α)y2 ≤ (v̄1R)α
(100− 10α)y1 + (190− 10α)y2 ≤ (v̄1R)α
(135− 5α)y1 + (135− 5α)y2 ≤ (v̄2R)α
(135− 5α)y1 + (170− 10α)y2 ≤ (v̄2R)α
(365− 5α)y1 + (308 + 4α)y2 ≤ (v̄1L)α + (v̄1R)α
180y1 + (365− 5α)y2 ≤ (v̄1L)α + (v̄1R)α
260y1 + (255 + 5α)y2 ≤ (v̄2L)α + (v̄2R)α
(260 + 5α)y1 + 320y2 ≤ (v̄2L)α + (v̄2R)α
(v̄1L)α ≤ (v̄1R)α
(v̄2L)α ≤ (v̄2R)α
y1 + y2 = 1
y1, y2 ≥ 0

(26)

For α = 0, the α-Pareto optimal strategy for Player II is y∗ = (1, 0) and 0-security
levels are the intervals [175, 190] and [125, 135] respectively. When α = 1, the α-
Pareto optimal strategy for Player II is y∗ = (0.92, 0.08) and 1-security levels are
178.15 and 132.31, respectively. Therefore, the fuzzy values of the game for Player
II are obtained as follows:

˜̄v1 = ((v̄1L)0, (v̄
1R)1, (v̄

1R)0) = (175, 178.15, 190)
˜̄v2 = ((v̄2L)0, (v̄

2R)1, (v̄
2R)0) = (125, 132.31, 135)

which are triangular fuzzy numbers. Thus, we can use interactive algorithm from
the point of view Player II.
The above problems have been solved by Lingo software.

5. Conclusion

The problem of zero-sum multiobjective game with fuzzy payoffs has not been
considered in previouse researches, based on the best knowledge of the authors. In
this paper, a method is presented to find a satisfactory strategy and security levels
in such problems. The fuzzy payoffs in this research are considered to be triangular
fuzzy numbers. The problem is converted to a multiobjective game problem with
interval payoffs by considering the concept of α-cuts, and its solutions are obtained
by solving an interval multiobjective linear programming problem. The obtained
strategy for a given α is called α-Pareto optimal strategy, and its corresponding
objective values are called α-security levels of players. It is shown that the security
levels for players are triangular fuzzy numbers. Finally, an interactive algorithm
is proposed to compute a strategy that players are satisfied with its corresponding
α-security levels. The main advantage of this method is that it does not require
any defuzzification. Note that, when a defuzzification is used, the fuzzy aspect of
payoffs are actually lost, which is not desirable. The proposed method in this pa-
per can be applied to interval-valued matrix games simply. The major limitation in
ours interactive approach is considering triangular fuzzy number payoffs. Applying
the proposed method to other kinds of fuzzy number payoffs needs more researches,
which can be our future work.
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