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TIME-VARYING FUZZY SETS BASED ON A GAUSSIAN

MEMBERSHIP FUNCTIONS FOR DEVELOPING FUZZY

CONTROLLER

S. ZIANI

Abstract. The paper presents a novel type of fuzzy sets, called time-Varying

Fuzzy Sets (VFS). These fuzzy sets are based on the Gaussian membership

functions, they are depended on the error and they are characterized by the
displacement of the kernels to both right and left side of the universe of dis-

course, the two extremes kernels of the universe are fixed for all time. In this

work we focus only on the midpoint movement of the universe, all points of
supports (kernels) are shifted by the same distance and in the same direction

excepted the two extremes points of supports are always fixed for all compu-

tation time. To show the effectiveness of this approach we used these VFS
to develop a PDC (Parallel Distributed Compensation) fuzzy controller for a

nonlinear and certain system in continuous time described by the T-S fuzzy
model, the parameters of the functions defining the midpoint movements are

optimized by a PSO (Particle Swarm Optimization) approach.

1. Introduction

Fuzzy controller′s design depends mainly on the IF-THEN rules based on fuzzy
sets and membership functions, which contain the linguistic elements, that charac-
terize the functioning of the industrial process. In fact one cannot exactly evaluate
the length of an element of fuzzy sets. For example pressure′s linguistic variables
are ’Low’, ’Medium’ and ’High’, these linguistics values of fuzzy sets do not have
a well-defined numerical range at all the time and they also depend on the pro-
cess. In general applications, we approximate the linguistics values of fuzzy sets
by a proper numerical range, where the membership functions are fixed constant
during the computation time, called Fixed Fuzzy Sets (FFS), conventionally this
type of fuzzy sets is known as type-1 fuzzy sets [29, 42, 39, 28, 30, 37, 6]. The
type-2 fuzzy sets is a set in which we also have uncertainty on the membership
function [40, 24, 41].
A number of researchers are interested in fuzzy controllers based on the FFS [19,
1, 10, 18], where TS model [29, 42, 39, 28, 30, 37, 6, 24, 41, 40, 25, 20, 38] and
PDC (Parallel Distributed Compensation) fuzzy controller [25, 20, 38] are used.
The interest in TS system is due to the fact that the stability and performance
characteristics of the system can be analyzed using Lyapunov function approach,
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which is easy to implement and can be expressed as a convex optimization problem
in LMI formalism [8, 2, 17, 32]. In PDC scheme a linear control is designed for each
local linear system, the overall controller is then a fuzzy blending of all local linear
controllers, which is usually nonlinear.
In the context of the Self Organizing Fuzzy Control (S.O.F.C.) [21, 26, 12, 4, 11,
22, 23, 27, 3, 44, 43], we introduce in this work a novel fuzzy set based on a Gauss-
ian membership function, we propose that the range of the linguistics values of
these fuzzy sets vary during the computation time, called time-Varying Fuzzy Sets
(VFS) [44, 43]. This VFS is based on the displacements of all support points in
both left and right directions of the universe of discourse via a temporal functions
depending on the error, without altering the universe of discourse. We can imagine
the displacements of the membership functions in VFS which are varied in time
as a spring movement. In this note we focus only on the midpoint movement of
the FFS universe which includes the classical three membership functions (Small,
Medium and Big). The displacements of the midpoint in both left and right side
are directed by the premise variable and the parameters of the functions defining
the midpoint movements are optimized by a PSO approach [15, 9, 14].
By applying this VFS for designing a PDC fuzzy controller for nonlinear system,
we use a decay rate controller and relaxed stability conditions [16, 7, 35, 31, 13, 5,
33, 36, 34]. An application for the control of the inverted pendulum is presented to
show the robustness of the PDC fuzzy controller based on the VFS.
The paper is organized as follows, the T-S fuzzy model and stability using Lya-
punov approach and PDC fuzzy controller are recalled in Fundamentals basics
section. Section 3 discusses the time-varying fuzzy sets. Section 4 presents the
proposed algorithm design. A simulation example is provided in Section 5. Finally,
a conclusion is given in Section 6.

2. Fundamental Basics

2.1. The TS Fuzzy Model. Consider a nonlinear system described by the T-S
fuzzy model [39, 5]: Plant rule i : IF z1(t) is Mi1 and ... and zp(t) is Mip THEN{

ẋ(t) = Ai.x(t) +Bi.u(t)

y(t) = Ci.x(t) i = 1...r (1)

Where :
Mij is the fuzzy set, and r is the number of IF-THEN rules, z(t)=[ z1(t) , z2(t), ...,
zp(t)] are the premise variable Ai ∈ Rnxn , Bi ∈ Rnxm and Ci ∈ Rnx1 are system
matrices where m 6 n , x ∈ Rn is the state , u ∈ Rm is the control constrained as:

‖ u(t) ‖2< ϕ (2)

The output y(t) constrained as follow :

‖ y(t) ‖2< ρ (3)

The considered fuzzy model can be written as :
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ẋ(t) =

∑n
i=1 wi(Ai.x(t) +Bi.u(t))∑n

i=1 wi(t)
(4)

Where: wi is defined as :

wi(z(t)) =

r∏
j=1

Mij(zj(t)) (5)

Mij is membership function of the jth fuzzy set in the ith rule. Let us define

hi(z(t)) =
wi(z(t))∑r
i=1 wi(z(t))

(6)
r∑
i=1

hi(z(t)) =1

hi(z(t)) >0 i = 1, ..., r
(7)

for every input x(t) and u(t), the global output is obtained by the following :
ẋ(t) =

r∑
i=1

hi(z(t)).{Ai.x(t) +Bi.u(t)}

y(t) =

r∑
i=1

hi(z(t)).{Ci.x(t)} i = 1...r
(8)

Where matrices Ai, Bi are constant of appropriate size and satisfy the following
assumption: Each pair (Ai, Bi) is stabilizable.

2.2. Parallel Distributed Compensation Controller. To stabilize the system
represented by (8) we use a PDC controller defined by [38, 20, 25] :
Control rule i :
If z1(t) is Mi1 and ... and zp(t)is Mip, then

u(t) = −Ki.x(t) i = 1, ..., r (9)

, where : Ki : is the controller stabilizing the ith subsystem. The global control
will be given by :

u(t) =−
∑r
i=1 wi(z(t)).Ki.x(t)∑r

i=1 wi(z(t))

=−
r∑
i=1

hi(z(t)).Ki.x(t) i = 1, ..., r
(10)

2.3. Quadratic Stability Via Lyapunov Approach. To guaranty the synthe-
sizable fuzzy controller stability we use theorems giving the sufficient conditions of
Lyapunov quadratic stability those exploits LMI formalism [16, 35, 5, 33, 36, 34],
see Appendix.
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3. The time-Varying Fuzzy Sets (VFS)

3.1. Definition and Presentation of the VFS. On the fuzzy sets form there is
no confusion in defining the two extremes numerical ranges of their corresponding
linguistics values. Around the midpoint of the universe of discourse there is always a
wide margin for intersection of linguistics values. Indeed, it is difficult to determine
exactly their numerical ranges and also to maintain their fixed constant for all
computation time. Hence, we propose that the ranges of the fuzzy sets varies in
time on the universe of discourse [Z ,Z ], this approach called time-Varying Fuzzy
Sets (VFS) [44, 43].

Figure 1. Exemple of Intersection of the Membership Functions

Let us define the e(t) error :

e(t) = x(t)− xd(t) (11)

Where :
x(t): current system state, xd(t): desired system state.

If the error e(t) is big then you need a high effort, and you must decrease this
effort if the error is small when approaching the desired state by an adequate ac-
celeration. For example, consider the fuzzy set (Low, High), if the range of one
linguistic value decreases by one step, the other range increases by the same quan-
tity.
To carry out this objective, we propose to adjust the midpoint of the universe of
discourse defined by α, shown in figures 2 and 3. If the midpoint is shifted in one
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side by a well computed distance, all other points which define the membership
functions are shifted in the same direction and by the same distance. The displace-
ments of this midpoint are characterized by a continuous function depending on
the error where [43]:

α(t) = f(e(t)) / α(t) ∈ [α , α] ⊂
]
Z , Z

[
(12)

Figure 2. The Gaussian Membership Functions with the Time-
varying Midpoint α(t) (2D) (µ: Membership Grade, Z: Premise
Variable, RR(t) : Right Range, RL(t) : Left Range, α(t) : Mid-
point)

Figure 3. The Gaussian Membership Functions with Time-
varying Midpoint (3D)

Through figures 2 and 3, if the midpoint is shifted towards the left (α(t0), α(t1),
..., α(ti)), (the decrease of the left range) it causes a higher membership grades on
the left side (µz1(t0) < µz1(t1) < ... < µz1(ti)) and the increase of these member-
ship grades generates an increase of the control law, see equation (10).
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Figure 4. Footprint of Shifting ? FOS ?

Figure 5. The Variation of the Gaussian Membership Grades
Generated by the Time-varying Midpoint

Figure 4 represents the area of the membership functions covered by the shifting of
the time-varying midpoint, called Footprint of Shifting ”FOS”.
In the case where α(t) is displaced to the left side as shown in figure 5, the mem-
bership grades of the premise variable z2(t) is considerably increased, while those
of the premise variable z1(t) are slightly decreased.

3.2. Relation Between the Control Law and the Membership Grades.
The linguistics ranges are inversely proportional to membership grades, figures 2
and 5, which are directly proportional to the control law defined by PDC fuzzy
controller, see proof.

Proof. This section presents a proof of the relation between the control effort and
the grade of the membership functions. From equation (6) we have :

hi =
wi∑r
i=1 wi

=
wi

w1 + w2 + ..+ wi + ..+ wr
≥ 0 (13)

W = w1 + w2 + ..+ wi−1 + wi+1..+ wr > 0 (14)
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for w
′

i we have h
′

i =
w

′

i

W + w
′
i

(15)

then h
′

i − hi =
w

′

i

W + w
′
i

− wi
W + wi

=
W

(W + wi).(W + w
′
i)
.(w

′

i − wi) (16)

So if w
′

i − wi > 0 then h
′

i − hi > 0 (17)

So, the increase of Wi generates an increase in hi, and from equation (10) the
increase of hi generates an increase in the control effort u(t). �

Corollary 3.1. In PDC fuzzy controller if the membership grade is increased then
the control effort is increased.

4. Algorithm Design for VFS

To design an algorithm for the VFS appraoch we propose five steps defined as
follow :

(1) Setting of α(t) midpoint into the algorithm of fuzzy system ;
(2) Defining the functions giving the α(t) displacements;
(3) Defining the direction criterion of the α(t) displacements ;
(4) Determining the effect of the α(t) function on the stability ;
(5) Identification of the parameters of α(t) functions.

In the following, we explain each step of this algorithm using a Gaussian mem-
bership functions to develop a PDC fuzzy controller for a non linear system in
continuous time described by TS fuzzy model.

4.1. Setting of α(t) Midpoint Into the Algorithm of Fuzzy System. Let
us consider Gaussian membership functions in figure 6 that caracterize the three
membership functions : Small, Medium and Big.

The grade of membership fucntion is given by :

M(t) = exp

(
β

[z(t)− α]2

[σ]2

)
(18)

where : β : negative coefficient, σ : variance, α : center (midpoint).
In FFS appraoch these three parameters ( β, σ, α) are fixed constant for all com-

putation time. Now, the following example, figure 7, illustrate the VFS approach.
The membership functions representation whose α(t) is time-varying midpoint. For
example, when α(t) is shifted to the left side (α(t) is shifted from 0 to -0.75 for
Medium membership function), both extreme points of support {(-1.5,0), (1.5,0)}
and extremes core points {(-1.5,1), (1.5,1)} of the universe of discourse are fixed
constant for all time. This generates a new membership function that could be
either Gaussian or Rayleigh functions.
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Figure 6. Membership Functions with α Constant

Note, here, that the Rayleigh function is product by the compression to the left
side and the extension to right side of a Gaussian function, this looks like the move-
ment of a spring. These obtained membership functions presented in figure 7 are

Figure 7. Membership Functions with α Time-varying

characterized by (βi Di [σi αi]).
where :

Di : The universe for each membership function
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σi : The variance for each membership function
αi : The center for each membership function
βi : The coefficient for each membership function.

So, the parameters (βi, σi, αi, Di), which characterize the new desired membership
function, are inevitably time-varying parameters.
To calculate the grades of the premise variable Mi(zi(t)) of each membership func-
tion we propose the following equations:

(1) Small membership function :

MS(t) = exp

(
βS

[zi(t)− α(t)]2

[σS(t)]2

)
(19)

(2) Big membership function :

MB(t) = exp

(
βB

[zi(t)− α(t)]2

[σB(t)]2

)
(20)

(3) Medium membership function :

MM (t) =


exp

(
βM

[zi(t)− α(t)]2

[σMR(t)]2

)
if zi(t) > α(t)

exp

(
βM

[zi(t)− α(t)]2

[σML(t)]2

)
if zi(t) < α(t) (21)

We define the time-varying variance of each membership function separately
as follows :

σS(t) = σS0
α(t)− zi

α(t− 1)− zi
> 0

σB(t) = σB0
α(t)− zi

α(t− 1)− zi
> 0

σMR(t) = σM0
α(t)− zi

α(t− 1)− zi
> 0

σML(t) = σM0
α(t)− zi

α(t− 1)− zi
> 0 (22)

Where:

α(t) ∈ [α, α] ⊂]zi, zi[ (23)

with :
βS , βM and βB are well defined negative constants coefficients.
σS0 , σM0 and σB0 are positive constants.
σS(t) and σB(t): respectively represent the time-varying variance of

the SMALL and BIG membership functions, figure 6.
σMR(t) and σML(t): respectively represent the time-varying variance
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of both right and left side of the Medium membership function, figure 6.
Generally, all membership functions do not have a Gaussian function, they
are not symmetri and they have a look at a Rayleigh function.

Zi and Zi represent the minimum and the maximum of zi(t) for x(t) ∈
[x, x]

MS(t) , MB(t) and MM (t) are the membership grades of zi(t) with
α(t).

Remark 4.1. For any shifting of the MEDIUM membership function in
both right or left side σML and σMR are decreased, but if the shifting is in
left side σS is decreased and σB is increased.

4.2. Defining the Functions Giving the α(t) Displacements. Let αR(t) be
the right displacement of the midpoint on the universe, ensured by a function
depending on the error as :

αR(t) = fR(e(t)) = θ1R(t).
(
1− e−θ2R(t).|e(t)|

)
(24)

where :
θ1R(t) , θ2R(t) are the maximum and the growth rate of the αR(t), respec-

tively.
αL(t) is the left displacement of the midpoint on the universe, ensured by:

αL(t) = fL(e(t)) = −θ1L(t).
(
1− e−θ2L(t).|e(t)|

)
(25)

where :
θ1L(t), θ2L(t): are the minimum and the decay rate of the αL(t), respectively.

this is shown in figure 8.

4.3. Defining the Direction Criterion of the α(t) Displacements. The di-
rection criterion depends on the relation between the membership grades and the
control law based on the absolute error distance e(t). In this note, we use a PDC
fuzzy controller based on the relationship (10). The displacement α(t) midpoint to
both left or right side is directed by the position of the premise variable Z(t). If the
premise variable is set to the left side of the midpoint then α(t) must approach to
the minimum α by the function defined in relationship (25). On the other hand, if
the premise variable is set to the right side of the midpoint then α(t) must approach
to the maximum α by the function defined in relationship (24). The relationship
(23) is must always be checked.

We propose that the displacements α(t) will follow the premise variable Z(t)
by an acceleration determined by the output Ym(t) of a Mamdani fuzzy model
reference whose inputs are error and change in error as shown in figures 9 and 10.
The switch function between both right and left displacement is illustrated in figure
8 and is given by this sub-program :

if α(t) < z(t+ 1) then α(t+ 1) = αR(t+ 1)

else α(t+ 1) = αL(t+ 1)

end if
(26)

www.SID.ir

WWW.SID.IR
WWW.SID.IR


Arc
hive

 of
 S

ID

Time-varying Fuzzy Sets Based on a Gaussian Membership Functions for ... 25

Figure 8. Direction of the Displacement of the Time-varying Midpoint

4.4. Determining the Effect of α(t) Functions on the Stability. The sub-
systems [Ai Bi; Ci 0] of T-S [39, 6] do not change as the value of α(t), and also
the criteria of the stability (Stability theorems [5, 33, 36, 34]) do not change). To
ensure stability used in this note, see Appendix, it is necessary to ensure that the
equation (23) is always checked.

4.5. Identification of α(t) Parameters. The overall configuration of the closed
loop system with VFS is shown in figure 9, in the following we describe each sub-
system.

with :
Ym(t): The output of the Mamdani model reference,

e(t): error, ea(t): Adaptive error,

r(t): Reference, y(t): System output.

u(t): Control law, 4e(t): Change in error,

αL(t): The left displacement function of the midpoint,

αR (t): The right displacement function of the midpoint,

α(t): The general displacement function of the midpoint,

z1(t), ..., zn(t) : Premise variable vector ,

α1(t), ... , αi(t) : The vector of the midpoint function.

(1) Representation of the closed loop system with VFS : Figure 9
presents the S.O.F.C. of the VFS approach, which is composed of a self-
organizing part that includes a classical Model Reference Adaptive Control
and a traditional PDC fuzzy controller.

(2) The reference model : The reference model is defined by the output
Ym(t) of a Mamdani fuzzy system, which is based on the triangular mem-
bership fucntion (for example). As indicated above it represent the accel-
eration of the midpoint displacements presented in figure 10.
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Figure 9. Closed Loop System with Time-varying Fuzzy Sets

(3) The rule-base of α(t) displacements : Based on figure 10, as an exam-
ple, we can define in Table 1 the rule-base of the system.

e(t) / 4e(t) S M B
4S L Mo G
4M L Mo G
4B Mo G G

Table 1. RULE BASE (S:Small, M:Medium, B:Big,

L:Litle, Mo:Moderate, G:Great.)

(4) The approach of the Particle Swarm Optimization PSO : The PSO
method is a member of wide category of swarm intelligence methods for
solving the optimization problems. It is a population based search algo-
rithm where each individual is referred to as particle and represents a can-
didate solution. Each particle in PSO flies through the search space with
an adaptable velocity that is dynamically modified according to its own
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Figure 10. Reference model representation

flying experience and also to the flying experience of the other particles. In
PSO all particles strive to improve themselves by imitating traits of their
successful peers. Further, each particle has a memory and hence it is capa-
ble of remembering the best position in the search space ever visited by it.
The position corresponding to the best fitness of one particle is known as
pbest and the overall best out of all the particles in the population is called
gbest [9, 14, 15].

The velocity and the position of each particle can be calculated using
the current velocity and the distances from the pbestj,g to gbestg as shown
in the following formulas :

v
(ite+1)
j,g = Iw ∗ v(ite)

j,g + c1 ∗ r1 ∗ (pbestj,g − x(ite)
j,g )+

c2 ∗ r2 ∗ (gbestg − x(ite)
j,g ) (27)

x
(ite+1)
j,g = x

(ite)
j,g + v

(ite+1)
j,g (28)

with :
j=1,2,...,n , g=1,2,...,m, Iw : inertia weight factor,
n: number of particles in the swarm,
m: number of components for the vector vj and xj ,
ite: number of iterations (generations),

v
(ite)
j,g : the gth component of the velocity of the particle j at iteration t,

c1, c2: cognitive and social acceleration factors, respectively,
r1, r2: random numbers uniformly distributed in the range [0, 1],

x
(ite)
j,g : the gth component of the position of particle at iteration t,

pbestj : pbest of particle j ; gbestg: gbest of group.
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The jth particle in the swarm is represented by a d-dimensional vector
xj=(xj,1 , xj,2 , ..., xj,d) and its rate of position change (velocity) is denoted
by another d-dimensional vector vj=(vj,1 , vj,2 , ..., vj,d). The best previ-
ous position of the jth particle is represented as pbestj=(pbestj,1 , pbestj,2
, ..., pbestj,d). The index of best particle among all of the particles in the
swarm is represented by the gbestg. In PSO, each particle moves in the
search space with a velocity according to its own previous best solution
and its group′s previous best solution. The velocity update in a PSO con-
sists of three parts; namely momentum, cognitive and social parts equation
(27). The balance among these parts determines the performance of a PSO
algorithm. The parameters c1 and c2 determine the relative pull of pbest
and gbest and the parameters r1 and r2 help in stochastically varying these
pulls. In the above equations, superscripts denote the iteration number.
Figue 11 shows the velocity and the position in two-dimensional parameter
space.

Figure 11. Description of Velocity and Position Updates in PSO
for 2-dimensional Parameter Space

Based on the closed loop system with VFS illustrated in figure 9, we
have :

ea(t) = α(t)− Ym(t) (29)

The general form of α(t) midpoint function is given by :

α(t) = θ1(t)(1− e−θ2(t).e(t)) (30)

The objective for using PSO approach is to find the parameters θ1(t)
and θ2(t) as the objective function J is optimized, which is defined by :

J = min
(
e2a(t) + e2(t)

)
= min

[
(α(t)− Ym(t))2 + e2(t)

]
= min

[(
θ1(t)(1− e−θ2(t).e(t))− Ym(t)

)2

+(x(t)− xd(t))2
] (31)
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The final optimization problem is given by :

min
(θij(t): / i=1,2 ; j=R,L)

(
e2
a(t) + e2(t)

)
(32)

subject
Z < α(t) < Z

θij(t) > 0, / i = 1, 2 ; j = R, L

σl(t) > 0, / l = S, M, B (33)

Remark 4.2. The purpose of the inclusion of these constraints is to guar-
antee the stability of the closed loop system, which depends on the universe
of α(t) ∈ [α, α] ⊂]zi, zi[, or θ1(t) and θ2(t) should be limited and can not
escape.

5. Simulation Example

5.1. Simulation System.

(1) System description : To illustrate the idea of this note, we consider the
problem of an inverted pendulum on a cart [39]:

x1(t) =x2(t)

x2(t) =
g.sin(x1(t))− a.m.x2

2(t). sin(2.x1(t))
2 − h(t)

4.l/3− a.m.l.cos2(x1(t))

h(t) =a.cos(x1(t)).u(t) (34)

We approximate the system by the following two-rule fuzzy model :

A1 =

[
0 1
g

4lm−aml 0

]
B1 =

[
0
a

4.l.m/3−a.m.l

]
A2 =

[
0 1

2.g
Π(4.l/3−a.m.lγ2) 0

]
B2 =

[
0
−a.γ

4.l/3−a.m.l.γ2

]
C1 =

[
1 0

]
C2 =

[
1 0

] (35)

(2) Initialization parameters :
−Π/2 < x1(t) < Π/2

x(0)=

[
Π/3

0

]
(3) Reference model parameters : We can use the rule-base of the Mam-

dani reference model defined in Table 1 as follow :
Se=01%.|x1(0)|=0.5o , Me=03%.|x1(0)|=1.5o

Be=06%.|x1(0)|=3.0o, S4e = 01%.Se,
M4e = 03%.Me, B4e = 06%.Be

The movements acceleration are dependent of the universe, we can take
the maximum of the range :
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li = 0, mo = 0.785, gr = 1.57

(4) Membership fucntion parameters : The membership functions are
shown in Figure 6, with:
σS0 = σB0 = σM0 = 0.9
βS = βB = βM = −0.5

(5) PSO parameters :
n=49: number of particles in swarm , ite=100: number of iterations
c1 = c2 = 2; r1 = r2 = random[0, 1]

Iw = wmax.
(wmax−wmin)

itermax
.iter : inertia weight factor [9]

θ1L(0) = θ1R(0) = 1, θ2L(0) = θ2R(0) = 0
v1 = 1, v2 = 0: initial parameters

(6) Simulation results : Figures 12 to 21 represent the obtained responses :

Figure 12. x1(t) Response (- VFS, - - FFS)

5.2. Comments and Comparison. The fuzzy system with the VFS approach
gives a good stability and the dynamic specifications are better than the system
with the FFS. Our results are improved compared to the results found in [39, 26]
particularly the settling time in [26, 3]. In figure. 14 the VFS requests relatively
high effort, that reflects accurately that the VFS approach has given the necessary
power and enough time to the controller for stabilizing the system. We can observe
that the effect of α(t) function is in the transient and converge to the final stability
midpoint, see figure. 21. From the figure 21 and in the transient, the α(t) follows the
acceleration movement Ym defined by the Mamdani fuzzy model reference which
defined by the rule-base.
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Figure 13. x2(t) Response (- VFS, - - FFS)

Figure 14. Control Effort Response (- VFS, - - FFS)

In the end, we define the Footprint of Shifting (FOS), which represents the area
covered by the variation of fuzzy sets, which itself is an interval-valued fuzzy set,
figure 22. The initial α(0) is set to the midpoint of the universe. Through the
response of the figure 21, we can compute the universe of discourse of α(t):

FOS = α+ | α |= 0 + 1.57 = 1.57 ∈]−Π/2,Π/2[ (36)

The FOS, which represents the area covered by the shifting of the membership
functions during simulation, is illustate in figure 22.
Also through the response of the figure 21, we can observe that α(t) is bounded in
the universe of discourse. Hence the stability is checked by this VFS approach.

www.SID.ir

WWW.SID.IR
WWW.SID.IR


Arc
hive

 of
 S

ID

32 S. Ziani

Figure 15. θ1R(t) Response

Figure 16. θ2R(t) Response

6. Conclusion

The basic principle of the VFS approach is based on the absolute error that
is proportional to the effort, in the case of PDC controller. If error is high VFS
system responds with great effort and if the error is small the system requires a
small effort.The role of the α(t) function (midpoint in this work) is to ensure an
adequate effort depending on the error and what time to apply this effort.
The following points summarize some characteristics of the VFS approach which
are verified in this work :
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Figure 17. Adaptive Error ea(t)

Figure 18. Time-varying σS(t) Response (Small Membership Function)

−→ The VFS approach is built on the rule base that defines accelerator of the
movement functions of the midpoint, when it is very important to give a
high or low control effort.

−→ The VFS approach is built on the criterion of the direction of shifting to
accelerate or decelerate the movement.

−→ The types of functions provided to represent the midpoint movement must
be bounded.

−→ VFS is an approach that encompasses a fuzzy system with more rules.
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Figure 19. Time-varying σB(t) Response (Big Membership Function)

Figure 20. Time-varying σM (t) Response (Medium Membership Function)

−→ Through the VFS approach the ranges of the linguistics values of the fuzzy
sets change in time according to the variation of the linguistics values of
the error.

−→ The effect on the α(t) (midpoint particular case )is in the transient after
it stabilized at the final stability midpoint, which depends on the proposed
reference model (rule base).

−→ This approach has an inconvenient that present in the chattering phenom-
enon of control law. We can reduce these oscillations by taking in consid-
eration some preventive measures : well defined criteria of direction, well
defined universe, well defined rule-base,... .
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Figure 21. α(t) Response (- -) and Ym Reference (— )

Figure 22. FOS Generated by VFS Based on the Gaussian
Membership Functions

−→ Finally, the following table presents a comparison between three fuzzy sets:

As perspective, in this paper we have studied a particular case of VFS, where
the movement of all points (support points and core points), which define the
membership functions, are shifted in the same direction and by the same distance.
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Type of fuzzy set Vertical interval FOU Horizontal interval FOS
Type-1 fuzzy set FOU = 0 , ∀t FOS = 0 , ∀t
Type-2 fuzzy set FOU 6= 0 , ∀t FOS = 0 , ∀t

VFS FOU 6= 0 , ∀t FOS 6=0 , ∀t

Table 2. Comparison Between Three Fuzzy Sets

In general case each point, which define the VFS, can be displaced in different
direction and by different distance. The closed loop system with VFS could be
complicate. Also we can applied this VFS in the case of type-2 fuzzy sets.

7. Appendix

Theorem 7.1. Decay rate controller design using relaxed stability conditions: The
condition that V̇ (x) + 2.β.V (x(t)) ≤ 0 for all trajectories is equivalent to [7, 35, 31,
13] :

∃P > 0,∃Q > 0 GTiiP + PGii + (s− 1)Q+ 2βP < 0, β > 0 (37)

(
Gij +Gji

2

)T
P + P

Gij +Gji
2

−Q+ 2βP 6 0 (38)

i < j s.t. hi ∩ hj 6= φ where : 1 < s < r

We can find the Ki controller by this optimization problem :
max(X,Z,Y1,...,Yr)β



−XATi −AiX +BiYi + Y Ti B
T
i − (s− 1)Z − 2βX > 0

i = 1, 2, .., r

−XATi −AiX −XATj −AjX +BiYj+

Y Tj B
T
i +BjYi + Y Ti B

T
j + 2Z − 4βX > 0

X > 0 , Y > 0 i < j s.t. hi ∩ hj 6= φ

where Ki = YiX
−1 , X = P−1 , Z = XQX

(39)

Theorem 7.2. Assume that the initial condition x(o) is known then [7, 35, 31, 13]:

• The constraint on control input ‖u(t)‖2< ϕ for t>0 can be represented by :

[
1 x(0)T

x(0) X

]
> 0 (40)

[
X Y Ti
Y Ti ϕ2.I

]
> 0 (41)
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• The constraint on output ‖y(t)‖2< ρ for t>0 can be represented by :[
1 x(0)T

x(0) X

]
> 0 (42)[

X XCTi
XCTi ρ2.I

]
> 0 (43)

where :

Ki = YiX
−1 X = P−1 (44)
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 S. ZIANI 
  مجموعه هاي فازي تابع زمان بر اساس توابع عضويت گوسي   

    براي گسترش يك كنترل كننده فازي
مي كند كه مجموعه هاي فازي تابع زمان  اين مقاله نوع جديدي از مجموعه هاي فازي را معرفي .دهيچك  

)VFS(  ناميده مي شوند. اساس اين مجموعه هاي فازي توابع عضويت گوسي مي باشند، آنها وابسته به
خطا هستند و با جابجايي هسته ها به چپ و راست عالم سخن توصيف مي شوند، دو هسته اكسترمم عالم 

ها بر حركت نقطه مياني عالم تمركز مي كنيم، تمام نقاط تكيه براي هميشه ثابت شده اند. در اين كار ما تن
به جز دو نقطه اكسترمم مجزا كه گاهها ( هسته ها ) با يك فاصله و در يك جهت انتقال داده شده اند. 

ها را به كار  VFSهمواره در تمام مدت محاسبه ثابت مي مانند. براي اينكه تأثير اين رويكرد را نشان دهيم 
( جبران توزيع شده موازي ) كنترل كننده فازي براي يك سيستم مطمئن و غير  PDS تا يك  مي بريم

را گسترش دهيم. پارامترهاي توابعي كه نقطه  S – Tخطي در زمان پيوسته توصيف شده توسط مدل فازي 
  . ( بهينه سازي ازدحام ذره ) بهينه مي شوند PSO مياني حركات را تعريف مي كنند توسط يك روش 
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