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A COMMON FRAMEWORK FOR LATTICE-VALUED,

PROBABILISTIC AND APPROACH UNIFORM

(CONVERGENCE) SPACES

G. JÄGER

Abstract. We develop a general framework for various lattice-valued, prob-

abilistic and approach uniform convergence spaces. To this end, we use the

concept of s-stratified LM -filter, where L and M are suitable frames. A strat-
ified LMN-uniform convergence tower is then a family of structures indexed

by a quantale N . For different choices of L,M and N we obtain the lattice-

valued, probabilistic and approach uniform convergence spaces as examples.
We show that the resulting category sLMN -UCTS is topological, well-fibred

and Cartesian closed. We furthermore define stratified LMN-uniform tower

spaces and show that the category of these spaces is isomorphic to the subcat-
egory of stratified LMN-principal uniform convergence tower spaces. Finally

we study the underlying stratified LMN -convergence tower spaces.

1. Introduction

Over the last decades many generalizations of Cook and Fischer’s uniform con-
vergence spaces [5] were introduced such as, in particular, probabilistic uniform
convergence spaces [24, 2], approach uniform convergence spaces [21] and lattice-
valued uniform convergence spaces [20, 6]. Similarly, generalizations of uniform
spaces [3] like probabilistic uniform spaces [9, 2], approach uniform spaces [21] and
lattice-valued uniform spaces [11, 12] were studied. All these generalizations have
big similarities and it seems therefore desirable to establish one common frame-
work, in which all of them can be studied simultaneously. This is the purpose of
the present paper. Based on the concept of s-stratified LM -filters, that contains
many existing concepts of (lattice-valued) filters, we define what we call s-stratified
LMN -uniform convergence tower spaces. The category of these spaces is shown
to be well-fibred, topological and Cartesian closed, i.e. it has nice properties. For
suitable choices of the lattices L,M and the quantale N we obtain as special in-
stances the categories of uniform convergence spaces mentioned above. Likewise,
the concept of an s-stratified uniform tower space encompasses as special cases the
uniform spaces mentioned above. Furthermore, we study in our general frame-
work the underlying convergence spaces. These can be described with the general
framework of s-stratified LMN -convergence tower spaces introduced recently [18].
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The paper is organised as follows. In a preliminary section we describe the
lattice background that we use and introduce basic notations about L-sets. The
third section is devoted to a review of s-stratified LM -filters. We introduce in
particular LM -filters on X × X. The fourth section then describes the category
sLMN -UCTS of s-stratified LMN -uniform convergence tower spaces, gives many
examples and states the important categorical properties. Section 5 then studies
the category of s-stratified LMN -uniform tower spaces and its relationship to the
category sLMN -UCTS. The sixth section is devoted to the underlying s-stratified
LMN -convergence tower spaces and finally, in Section 7, we draw some conclusions.

2. Preliminaries

We consider in the paper frames L = (L,∧,∨), i.e. complete lattices that satisfy
the distributive law

∨
i∈J(α ∧ βi) = α ∧

∨
i∈J βi for all α, βi ∈ L, (i ∈ J). In a

complete lattice L we can define the wedge-below relation αCβ if for all D ⊆ L with
β ≤

∨
D there is δ ∈ D such that α ≤ δ. A complete lattice is called completely

distributive, if for each α ∈ L, we have α =
∨
{β ∈ L : β C α}. For more results

on lattices see e.g. [10].
The triple (L,≤, ∗), where (L,≤) is a complete lattice, is called a quantale if

(L, ∗) is a semigroup, and ∗ is distributive over arbitrary joins, i.e.

(
∨
i∈J

αi) ∗ β =
∨
i∈J

(αi ∗ β) and β ∗ (
∨
i∈J

αi) =
∨
i∈J

(β ∗ αi).

A quantale (L, ∗) is called commutative if (L, ∗) is a commutative semigroup and it
is called integral if the top element of L acts as the unit, i.e. if α ∗ > = > ∗ α = α
for all α ∈ L. We consider in this paper only commutative and integral quantales.

Example 2.1. A triangular norm or t-norm is a binary operation ∗ on the unit
interval [0, 1] which is associative, commutative, non-decreasing in each argument
and which has 1 as the unit. The triple ([0, 1],≤, ∗) can be considered as a quantale
if the t-norm is left-continuous. The three most commonly used (left-continuous)
t-norms are:

• the minimum t-norm: α ∗ β = α ∧ β,
• the product t-norm: α ∗ β = α · β,
• the Lukasiewicz t-norm: α ∗ β = (α+ β − 1) ∨ 0.

Example 2.2. The interval [0,∞] with the opposite order and addition as the
quantale operation α ∗ β = α + β (extended by α + ∞ = ∞ + a = ∞ for all
α, β ∈ [0,∞]) is a quantale.

Example 2.3. A function ϕ : [0,∞] −→ [0, 1], which is non-decreasing, left-
continuous on (0,∞) and satisfies ϕ(0) = 0 and ϕ(∞) = 1 is called a distance
distribution function [26]. The set of all distance distribution functions is denoted
by ∆+. For example, for each 0 ≤ a <∞ the functions

εa(x) =

{
0 if 0 ≤ x ≤ a
1 if a < x ≤ ∞ and ε∞(x) =

{
0 if 0 ≤ x <∞
1 if x =∞
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are in ∆+. The set ∆+ is ordered pointwise, i.e. for ϕ,ψ ∈ ∆+ we define ϕ ≤ ψ if
for all x ≥ 0 we have ϕ(x) ≤ ψ(x). The bottom element of ∆+ is then ε∞ and the
top element is ε0. The set ∆+ with this order then becomes a complete lattice. A
binary operation, ∗ : ∆+ × ∆+ −→ ∆+, which is commutative, associative, non-
decreasing in each place and that satisfies the boundary condition ϕ ∗ ε0 = ϕ for
all ϕ ∈ ∆+, is called a triangle function [26]. A triangle function is called sup-
continuous [26], if (

∨
i∈I ϕi) ∗ ψ =

∨
i∈I(ϕi ∗ ψ) for all ϕi, ψ ∈ ∆+, (i ∈ I), i.e. if

(∆+,≤, ∗) is a quantale.

For a complete lattice L with top element >L and bottom element ⊥L and a
set X, we denote the power set of X by P(X) and the set of all L-sets on X,
a, b, c, ... : X −→ L, by LX . A constant L-set with value α ∈ L is denoted by αX .
In particular, we write >LX , resp. ⊥LX , for the constant L-sets with value >L, resp.
⊥L. The lattice operations are extended pointwise from L to LX , i.e. we define
(a ∧ b)(x) = a(x) ∧ b(x), (a ∨ b)(x) = a(x) ∨ b(x), (

∧
i∈J ai)(x) =

∧
i∈J(ai(x)),

(
∨
i∈J ai)(x) =

∨
i∈J(ai(x)). For a mapping f : X −→ Y and a ∈ LX and b ∈ LY

the image of a under f , f(a) ∈ LY , is defined by f(a)(y) =
∨
f(x)=y a(x) and the

preimage of b under f , f←(b) ∈ LX , is defined by f←(b)(x) = b(f(x)). If a ∈ LX
and s : L −→M is a mapping between the frames L,M , then we define s(a) ∈MX

by s(a)(x) = s(a(x)), x ∈ X.
For notions from category theory, we refer to the textbook [1].

3. Stratified LM-filters

In this section, we review and extend results from [17].
Let L,M be frames. We consider a mapping s : L −→ M with the properties

(S1) s(⊥L) = ⊥M ; (S2) s(>L) = >M and (S3) s(α ∧ β) = s(α) ∧ s(β) for all
α, β ∈ L. We call such a mapping a stratification mapping. Note that, by the
property (S3), a stratification mapping is non-decreasing.

Example 3.1. (1) Every frame morphism s : L −→M is a stratification map-
ping.

(2) The pointwisely smallest stratification mapping is given by

s0(α) =

{
>M if α = >L
⊥M if α 6= >L .

(3) If ⊥L is prime, then the pointwisely largest stratification mapping is given

by s1(α) =

{
⊥M if α = ⊥L
>M if α 6= ⊥L .

In the sequel, we fix a stratification mapping s : L −→M .

Definition 3.2. A mapping F : LX −→M is an s-stratified LM -filter on X if
(F1) F(⊥LX) = ⊥M and F(>LX) = >M ;
(F2) F(a) ≤ F(b) whenever a ≤ b;
(F3) F(a) ∧ F(b) ≤ F(a ∧ b) for all a, b ∈ LX ;
(Fs) s(α) ≤ F(αX) for all α ∈ L.
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Note that the stratification condition (Fs) is equivalent to s(α)∧F(a) ≤ F(αX ∧
a) for all α ∈ L, a ∈ LX . We denote the set of all s-stratified LM -filters on X by
FsLM (X).

Example 3.3. (1) We define, for a ∈ LX , [x]s(a) = s(a(x)). Then [x]s ∈
FsLM (X) is called the s-stratified point LM -filter of x. Note that in the
case X = {x}, F ∈ FsLM (X) implies [x]s(a) = s(a(x)) ≤ F(a(x)) = F(a)
for a ∈ LX , i.e. [x]s ≤ F . If the stratification mapping s is clear, we also
simply write [x] for [x]s.

(2) L = M , s = idL. A stratified L-filter [14] is an idL-stratified LL-filter.
(3) L = M = {0, 1}. A filter F ∈ F(X) can be identified with an s0-stratified

LM -filter. (In this case, s0 = id{0,1} is the only possible stratification
mapping.)

(4) L = {0, 1}. An s-stratified LM -filter is an M -filter of ordinary subsets,
[13]. (The property (M3) is always true for any mapping s that satisfies
(M1) and (M2).)

(5) L = [0, 1], M = {0, 1}. An s-stratified LM -filter can be identified with a
prefilter [22]. Note that only s = s0 is possible in order that all prefilters
are s-stratified. As a consequence we have to define the point prefilter by
[x]s0 = {a ∈ [0, 1]X : a(x) = 1}.

For a mapping f : X −→ Y and F ∈ FsLM (X) we define f(F) ∈ FsLM (Y ) by
f(F)(b) = F(f←(b)).

We consider now a further stratification mapping, t : M −→ L.
For Fj ∈ FsLM (X) (j ∈ J), consider for a ∈ LX the M -set on J , F(·)(a) with

F(·)(a)(j) = Fj(a). Define further t(F(·)(a))(j) := t(Fj(a)) ∈ L. Then t(F(·)(a)) ∈
LJ . For G ∈ FsLM (J) we can then form G(F(·))(a) := G(t(F(·))(a)).

Lemma 3.4. [18] Let s : L −→ M and t : M −→ L be stratification mappings
with s ◦ t ◦ s ≥ s. For sets J,X and G ∈ FsLM (J) and Fj ∈ FsLM (X) (j ∈ J), then
G(F(·)) ∈ FsLM (X).

We call G(F(·)) the s-stratified LM -diagonal filter of (G, (Fj)j∈J), see [16, 18].
For two s-stratified LM -filters F ∈ FsLM (X),G ∈ FsLM (Y ) we define their prod-

uct, F × G : LX×Y −→M , by

F × G(a) =
∨
{F(f) ∧ G(g) : f × g ≤ a}, (a ∈ LX×Y )

with f × g(x, y) = f(x) ∧ g(y) for f ∈ LX and g ∈ LY , see [15, 18].

Lemma 3.5. [18] Let s : L −→ M and t : M −→ L be stratification mappings
such that s ◦ t ≥ idM and t ◦ s ≥ idL. If F ∈ FsLM (X),G ∈ FsLM (Y ) then
F × G ∈ FsLM (X × Y ).

We denote s-stratified LM -filters on X × X by Φ,Ψ : LX×X −→ M . For
Φ,Ψ ∈ FsLM (X×X) we define Φ−1 by Φ−1(a) = Φ(a−1) with a−1(x, y) = a(y, x) for
all (x, y) ∈ X×X. Further, we define Φ◦Ψ by Φ◦Ψ(a) =

∨
{Φ(b)∧Ψ(c) : b◦c ≤ a}

with b ◦ c(x, y) =
∨
z∈X b(x, z) ∧ c(z, y) for all (x, y) ∈ X ×X. Finally, we denote

[∆] = [∆X ] =
∧
x∈X [(x, x)] ∈ FsLM (X ×X).
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Lemma 3.6. Let Φ,Ψ ∈ FsLM (X ×X). Then

(1) Φ−1 ∈ FsLM (X ×X);
(2) Φ◦Ψ ∈ FsLM (X×X) if and only if b◦c = ⊥LX×X implies Φ(b)∧Ψ(c) = ⊥M .

The proof in [20] can easily be adapted. Also almost all other properties of these
constructions that are shown in [20] carry over to our more general situation. We
will later explicitely use the following results.

Lemma 3.7. Let L,M be frames and let s : L −→M be a stratification mapping.
Then for all x, y, z ∈ X

(i) [(x, y)]−1 = [(y, x)];
(ii) [(x, y)] ◦ [(y, z)] ≤ [(x, z)];

Proof. (1) is easy and left for the reader. We prove (2). Let d ∈ LX×X . Then
[(x, y)] ◦ [(y, z)](d) =

∨
a◦b≤d s(a(x, y)) ∧ s(b(y, z)) =

∨
a◦b≤d s(a(x, y) ∧ b(y, z)) ≤∧

a◦b≤d s(a ◦ b(x, z)) ≤ s(d(x, z)) = [(x, z)](d). �

Let X be a set, F ∈ FsLM (X), x ∈ X. We define Fx : LX×X −→M by

Fx(d) = F
(
d(·, x)

)
, for d ∈ LX×X ,

see [6]. Then Fx ∈ FsLM (X ×X).

Lemma 3.8. [6] Let x, y ∈ X and F ,G ∈ FsLM (X) and let f : X −→ Y . Then

(i) [x]y = [(x, y)],
(ii) Fx ∧ Gx = (F ∧ G)x,

(iii) (f × f)(Fx) = f(F)f(x).

Let Ψ ∈ FsLM (X×X) and let x ∈ X. We define Ψ(x) : LX −→M by Ψ(x)(a) =∨
{Ψ(d) : d(·, x) ≤ a}. Then Ψ(x) ∈ FsLM (X) if and only if Ψ(d) = ⊥M whenever

d(·, x) = ⊥LX , see [19]. We note that if Ψ ≤ [∆X ], then d(·, x) = ⊥LX implies Ψ(d) ≤∧
y∈X s(d(y, y)) ≤ s(d(x, x)) = s(⊥L) = ⊥M . Hence, in this case, Ψ(x) ∈ FsLM (X).

Lemma 3.9. Let Φ,Ψ ∈ FsLM (X×X), F ∈ FsLM (X), x ∈ X and let f : X −→ X ′.
The following hold.

(1) If Φ ≤ Ψ, then Φ(x) ≤ Ψ(x),
(2) (Φ ∧Ψ)(x) ≤ Φ(x) ∧Ψ(x),
(3) [∆X ](x) = [x],
(4) F ≥ Φ(x) ⇐⇒ Fx ≥ Φ,
(5) Φ ≤ (Φ(x))x,
(6) (Fx)(x) ≤ F ,
(7) (f × f)(Φ)(f(x)) ≤ f(Φ(x)).

Proof. (1), (2) and (3) are easy, see [19]. The properties (5) and (6) follow directly
from (4). For (4), let first d ∈ LX×X . Then Φ(d) ≤

∨
{Φ(e) : e(·, x) ≤ d(·, x)} =

Φ(x)(d(·, x)) ≤ F(d(·, x)) = Fx(d). Conversely, let a ∈ LX . Then Φ(x)(a) =∨
{Φ(d) : d(·, x) ≤ a} ≤ {F(d(·, x)) : d(·, x) ≤ a} ≤ F(a). For property (7)

let c ∈ LX′×X′ and b ∈ LX′ . If c(·, f(x)) ≤ b, then for all y ∈ X we have (f ×
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f)←(c)(y, x) = c(f(y), f(x)) ≤ b(f(y)) = f←(b)(y), i.e. we have (f ×f)←(c)(·, x) ≤
f←(b). Hence we obtain

(f × f)(Φ)(f(x))(b) =
∨
{(f × f)(Φ)(c) : c(·, f(x)) ≤ b}

≤
∨
{Φ((f × f)←(c)) : (f × f)←(c)(·, x) ≤ f←(b)}

≤
∨
{Φ(d) : d(·, x) ≤ f←(b)}

= Φ(x)(f←(b)) = f(Φ(x))(b).

�
In [18] we gave the following definition.

Definition 3.10. [18] Let L,M be frames, let N be a complete lattice and let
s : L −→ M be a stratification mapping. A pair (X, q), of a set X and q = (qα :
FsLM (X) −→ P(X))α∈N , is an s-stratified LMN -convergence tower space if

(CT1) x ∈ qα([x]s) for all x ∈ X, α ∈ N ;
(CT2) qα(F) ⊆ qα(G) whenever F ≤ G;
(CT3) qβ(F) ⊆ qα(F) whenever α ≤ β;
(CT4) q⊥N (F) = X for all F ∈ FsLM (X).

A mapping f : (X, q) −→ (X ′, q′) between two s-stratified LMN -convergence
tower spaces is called continuous if f(qα(F)) ⊆ q′α(f(F)) for all α ∈ N , F ∈
FsLM (X). We denote the category with objects the s-stratified LMN -convergence
tower spaces and morphisms the continuous mappings by sLMN -CTS.

A space (X, q) ∈ |sLMN -CTS| is called left-continuous if

(CTL)
⋂
β∈A

qβ(F) ⊆ q∨A(F) whenever A ⊆ N .

4. The Category sLMN-UCTS

Definition 4.1. Let L,M be frames, let (N, ∗) be a quantale and let s : L −→M
be a stratification mapping. A pair (X,Λ), of a set X and Λ = (Λα)α∈N , Λα ⊆
FsLM (X ×X), is an s-stratified LMN -uniform convergence tower space if
(UCT1) [(x, x)] ∈ Λα for all x ∈ X, α ∈ N ;
(UCT2) Ψ ∈ Λα whenever Φ ≤ Ψ and Φ ∈ Λα;
(UCT3) Φ−1 ∈ Λα whenever Φ ∈ Λα;
(UCT4) Φ ∧Ψ ∈ Λα whenever Φ,Ψ ∈ Λα;
(UCT5) Φ ∈ Λβ whenever Φ ∈ Λα and β ≤ α;
(UCT6) Λ⊥N = FsLM (X ×X);
(UCT7) Φ ◦Ψ ∈ Λα∗β whenever Φ ∈ Λα, Ψ ∈ Λβ and Φ ◦Ψ ∈ FsLM (X ×X).

A mapping f : (X,Λ) −→ (X ′,Λ′) is called uniformly continuous if (f × f)(Φ) ∈
Λ′α whenever Φ ∈ Λα. We denote the category with objects the s-stratified LMN -
uniform convergence tower spaces and morphisms the uniformly continuous map-
pings by sLMN -UCTS.

A space (X,Λ) ∈ |sLMN -UCTS| is called left-continuous if
(UCTL) Φ ∈ Λ∨

A whenever A ⊆ N and Φ ∈ Λα for all α ∈ A.

Note: Left-continuous s-stratified LMN -uniform convergence tower spaces can
be identified with s-stratified LMN -uniform convergence spaces. To this end,
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we define for a left-continuous s-stratified LMN -uniform convergence tower space
(X,Λ) the mapping Λ : FsLM (X ×X) −→ N by Λ(Φ) =

∨
{α ∈ N : Φ ∈ Λα}. We

then have the following properties:
(UC1) Λ([(x, x)]) = >N for all x ∈ X;
(UC2) Λ(Φ) ≤ Λ(Ψ) whenever Φ ≤ Ψ;
(UC3) Λ(Φ) ≤ Λ(Φ−1);
(UC4) Λ(Φ) ∧ Λ(Ψ) ≤ Λ(Φ ∧Ψ);
(UC5) Λ(Φ) ∗ Λ(Ψ) ≤ Λ(Φ ◦Ψ) whenever Φ ◦Ψ ∈ FsLM (X ×X).
The pair (X,Λ) is then called an s-stratified LMN -uniform convergence space, see
also [6, 20].

Example 4.2. Let L = M = N = {0, 1}. Then an s-stratified LMN -uniform
convergence tower space is a uniform convergence space in the definition of Cook
and Fischer [5], as improved by Wyler [27].

Example 4.3. Let L = M = N . Then a left-continuous idL-stratified LMN -
uniform convergence tower space is a stratified L-uniform convergence space in the
definition of Jäger and Burton [20]. If we consider N = (L, ∗) with a quantale
operation, then a left-continuous idL-stratified LLN -uniform convergence space is
a stratified L-uniform convergence space in the definition of Craig and Jäger [6]
with the enriched cl-premonoid (L,∧, ∗).

Example 4.4. Let L = M = {0, 1} and N = [0, 1] with a left-continuous t-norm
∗. Then an s-stratified LMN -uniform convergence tower space is a probabilitistic
uniform convergence space in the definition of Nusser [24].

Example 4.5. Let L = M = {0, 1} and N = ∆+ the lattice of distance distribution
functions with a sup-continuous triangle function ∗. Then an s-stratified LMN -
uniform convergence tower space is a probabilistic uniform convergence space in
the definition of Ahsanullah and Jäger [2].

Example 4.6. Let L = M = {0, 1} and let N = [0,∞] with the opposite order and
∗ = + the extended addition. Then a left-continuous s-stratified LMN -uniform
convergence tower space is an approach uniform convergence space in the definition
of Lee and Windels [21]. If we use ∗ = ∨ as the quantale operation, then we obtain
an ultra-approach uniform convergence space [21].

Theorem 4.7 (Categorical properties I). The category sLMN -UCTS is well-fibred
and topological over SET , i.e. it is a topological category in the sense of Preuss
[25].

Proof. The proof is routine and we only present initial structures. For a source
(fi : X −→ (Xi,Λi))i∈J the initial structure Λ on X is given by

Φ ∈ Λα ⇐⇒ (fi × fi)(Φ) ∈ Λiα ∀i ∈ J.
Furthermore, as a consequence of the stratification axiom (LFS), we have [(x, x)]s ≤
Φ for all s-stratified LM -filters Φ ∈ FsLM ({x}×{x}) on a one-point set. Hence, by

(UCT1) and (UCT2), there is only one structure Λ on {x}. Clearly the class of all
structures on a set X is a set. �
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As a consequence, we have subspaces and product spaces.

Theorem 4.8 (Categorical properties II). Let s : L −→ M and t : M −→ L be
stratification mappings such that s◦t ≥ idM and t◦s ≥ idL and let N be a complete
Heyting algebra, i.e. ∗ = ∧. Then the category sLMN -UCTS is Cartesian closed.

Proof. The proof is a bit tedious but can in principle be adapted from the proof
in [20]. We note that because sLMN -UCTS is a well-fibred topolocial category,
the Cartesian closedness is equivalent to the existence of function spaces, see [1].
So we simply state these function space structures. We denote UC(X,X ′) =
{f : (X,Λ) −→ (X ′,Λ′) : f uniformly continuous}, the evaluation mapping
ev : UC(X,X ′) × X −→ X ′ defined by ev(f, x) = f(x) and η : (UC(X,X ′) ×
UC(X,X ′)) × (X × X) −→ (UC(X,X ′) × X) × (UC(X,X ′) × X), defined by
η((f, g), (x, x′)) = ((f, x), (g(x′)). We then define the s-stratified LMN -uniform
convergence tower space (UC(X,X ′),Λuc) by putting for Φ ∈ FsLM (UC(X,X ′) ×
UC(X,X ′))

Φ ∈ Λucα ⇐⇒ (ev × ev)(η(Φ×F)) ∈ Λ′β whenever β ≤ α and F ∈ Λβ .

�
5. The Category sLMN-UTS

Let L,M be frames, let (N, ∗) be a quantale and let s : L −→M be a stratifica-
tion mapping. A pair (X,U), of a set X and U = (Uα)α∈N , Uα ∈ FsLM (X ×X), is
an s-stratified LMN -uniform tower space if for all α, β ∈ N
(UT1) Uα ≤ [∆], where [∆](d) =

∧
x∈X s(d(x, x));

(UT2) Uα ≤ U−1
α ;

(UT3) Uα∗β ≤ Uα ◦ Uβ ;
(UT4) Uα ≤ Uβ whenever α ≤ β;
(UT5) U⊥N =

∧
FsLM (X ×X).

A mapping f : (X,U) −→ (X ′,U ′) is called uniformly continuous if U ′α ≤
(f × f)(Uα) for all α ∈ N . The category with objects the s-stratified LMN -
uniform tower spaces and uniformly continuous mappings as morphisms is denoted
by sLMN -UTS.

A space (X,U) ∈ |sLMN -UTS| is called left-continuous if
(UTLC) U∨A ≤

∨
α∈A Uα whenever A ⊆ N .

We note that if N is a complete Heyting algebra, i.e. if ∗ = ∧, then the axiom
(UT3) is equivalent to the requirement Uα ≤ Uα ◦ Uα for all α ∈ N .

Example 5.1. Let L = M = N = {0, 1}, then an s-stratified LMN -uniform tower
space is a uniform space in the definition of Bourbaki [3].

Example 5.2. Let L = M = {0, 1} and N = [0, 1] with a left-continuous t-norm.
Then an s-stratified LMN -uniform tower space is a probabilistic uniform space in
the definition of Florescu [9]. If the t-norm is the minimum, then these spaces can
be identified with the generalized uniform spaces of Burton et al. [4].

Example 5.3. Let L = M = {0, 1} and let N = [0,∞] with the opposite order
and with the (extended) addition as quantale operation. Then a left-continuous
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s-stratified LMN -uniform tower space is an approach uniform space [23, 21]. If the
quantale operation is the maximum, then the resulting approach uniform spaces
are called level-uniform in [21].

Example 5.4. Let L = M = {0, 1} and let N = ∆+ be the set of distance dis-
tribution functions with a sup-continuous triangle function as quantale operation.
Then an s-stratified LMN -uniform tower space is a probabilistic uniform space in
the definition of Ahsanullah and Jäger [2].

Example 5.5. Let L = M be frames and N = {0, 1}. Then an idL-stratified
LMN -uniform tower space is a stratified L-uniform space in the definition of
Gutiérrez Garćıa [11, 12].

Example 5.6 (L-continuity space). A value quantale [8] is a completely distributive
lattice (L,≤) with a quantale operation ∗ such that ⊥C> and α∨βC> whenever
α, β C >. Examples for value quantales are ([0,∞],+) or (∆+, ∗) with a sup-
continuous triangle function, see [8]. It should be noted that Flagg [8] uses the
opposite order. For a value quantale L, an L-continuity space [8] is a pair (X, d)
of a set X and a mapping d : X × X −→ L which is reflexive, i.e. d(x, x) = >
for all x ∈ X, and transitive, i.e. d(x, y) ∗ d(y, z) ≤ d(x, z) for all x, y, z ∈ X. We
additionally demand that d is symmetric, i.e. that d(x, y) = d(y, x) for all x, y ∈ X.

In case L = [0,∞] with the opposite order and extended addition as quantale
operation, a symmetric L-continuity space is a pseudometric space. If L = ∆+

and ∗ is a sup-continuous triangle function, a symmetric L-continuity space is a
probabilistic pseudometric space, see [8].

For a symmetric L-continuity space (X, d) we define now, for ε ∈ L, the set
Uε = {(x, y) ∈ X ×X : d(x, y) ≥ ε}. It is then not difficult to show that ∆ ⊆ Uε,
that Uε ⊆ Uδ, whenever δ ≤ ε, that Uε ∩ Uδ = Uε∨δ, that Uε = U−1

ε and that
Uε ◦ Uδ ⊆ Uε∗δ. Hence, if we define Udα = [{Uε : ε ≤ α}], i.e. Udα is the filter

on X × X generated by the sets Uε with ε ≤ α, then (X,Ud) is an s0-stratified
{0, 1}{0, 1}L-uniform tower space.

We are now going to show that the category of s-stratified LMN -uniform tower
spaces is isomorphic to a subcategory of the category of s-stratified LMN -uniform
convergence tower spaces.

Let first (X,U) ∈ |sLMN -UTS|. If we define Φ ∈ ΛUα if Φ ≥ Uα, then

(X,ΛU ) ∈ |sLMN -PUCTS|. It is also clear that uniformly continuous map-
pings between s-stratified LMN -uniform tower spaces are uniformly continuous as
mappings between the corresponding s-stratified LMN -uniform convergence tower
spaces.

Let (X,Λ) ∈ |sLMN -UCTS|. We define, for α ∈ N , the s-stratified α-LM -

entourage filter by UΛ
α =

∧
Φ∈Λα

Φ. We call (X,Λ) a principal s-stratified LMN -
uniform convergence tower space if the axiom

(PUCT) Φ ∈ Λα if and only if Φ ≥ UΛ
α

is satisfied. The subcategory of sLMN -UCTS consisting of the principal s-stratified
LMN -uniform convergence tower space is denoted by sLMN -PUCTS.
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Lemma 5.7. Let (X,Λ) ∈ |sLMN -PUCTS|. Then (X,UΛ) ∈ |sLMN -UTS|.

Proof. (UT1) We have [(x, x)] ∈ Λα for all x ∈ X and hence UΛ
α ≤ [(x, x)] for all

x ∈ X. Consequently, by (PUCT), UΛ
α ≤

∧
x∈X [(x, x)] = [∆]. (UT2) We have

UΛ
α ∈ Λα and hence, by (UCT3), (UΛ

α )−1
α ∈ Λα, from which, again using (PUCT),

UΛ
α ≤ (UΛ

α )−1
α follows. For (UT3) we note that because of (UT1) UΛ

α ◦ UΛ
β always

exists. Hence, using (PUCT) and (UCT7), it follows that UΛ
α ◦ UΛ

β ∈ Λα∗β and

therefore UΛ
α∗β ≤ UΛ

α ◦ UΛ
β . Similarly, from UΛ

β ∈ Λβ and α ≤ β, we conclude with

(UCT3) that UΛ
β ∈ Λα and again (PUCT) leads to UΛ

α ≤ UΛ
β , i.e. (UT4) is valid.

(UT5) finally is a direct consequence of (UCT6). �

Lemma 5.8. Let (X,Λ), (X ′,Λ′) ∈ |sLMN -PUCTS| and let f : (X,Λ) −→
(X ′,Λ′) be uniformly continuous. Then f : (X,UΛ) −→ (X ′,UΛ′) is uniformly
continuous.

Proof. We have (f × f)(UΛ
α ) = (f × f)(

∧
Φ∈Λα

Φ) =
∧

Φ∈Λα
(f × f)(Φ)

≥
∧

(f×f)(Φ)∈Λ′α
(f × f)(Φ) ≥ UΛ′

α . �

Theorem 5.9. The categories sLMN -UTS and sLMN -PUCTS are isomorphic.

Proof. We define two functors.

A :


sLMN -PUCTS −→ sLMN -UTS

(X,Λ) 7−→ (X,UΛ)
f 7−→ f

and

B :


sLMN -UTS −→ sLMN -PUCTS

(X,U) 7−→ (X,ΛU )
f 7−→ f

.

Because U (ΛU )
α =

∧
Φ∈ΛUα

Φ =
∧

Φ≥Uα Φ = Uα and Φ ∈ Λ
(UΛ)
α ⇐⇒ Φ ≥ UΛ

α ⇐⇒
Φ ∈ Λα (because (X,Λ) is principal), these functors are isomorphism functors. �

Lemma 5.10. Let L,M,N be frames and let s : L −→ M be a stratification
mapping. Then sLMN -PUCTS is a reflective subcategory of sLMN -UCTS.

Proof. For (X,Λ) ∈ |sLMN -UCTS| and for α ∈ N we denote UΛ
α =

∧
Φ∈Λα

Φ.

Then UΛ
α ≤ [∆], UΛ

α ≤ (UΛ
α )−1 and α ≤ β implies UΛ

α ≤ UΛ
β . We define J Λ

α = {Φ ∈
FsLM (X ×X) : Φ ≤ UΛ

α , Φ ≤ Φ ◦ Φ}. Then [X ×X] ∈ J Λ
α , i.e. J Λ

α is not empty.
Furthermore U∗α =

∧
Φ∈JΛ

α
Φ ∈ FsLM (X ×X). It is not difficult to show that U∗α ∈

J Λ
α and hence U∗α ≤ U∗α ◦ U∗α. Furthermore, U∗α ≤ UΛ

α ≤ [∆] and also U∗α = (U∗α)−1.
We define now Φ ∈ Λ∗α if Φ ≥ U∗α. Clearly then (X,Λ∗) ∈ |sLMN -PUCTS| and

for Φ ∈ Λα we have Φ ≥ UΛ
α ≥ U∗α, i.e. Φ ∈ Λ∗α. Hence, the identity mapping

idX : (X,Λ) −→ (X,Λ∗) is uniformly continuous. If f : (X,Λ) −→ (X ′,Λ′) is

uniformly continuous in sLMN -PUCTS, then f : (X,Λ∗) −→ (X ′,Λ′∗) is also
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uniformly continuous as a mapping in sLMN -PUCTS. In fact, let Φ ≤ UΛ′
α such

that Φ ≤ Φ ◦ Φ. Then Φ ≤ (f × f)(UΛaα) and hence (f × f)−1(Φ) exists and

(f×f)−1(Φ) ≤ UΛ
α . As (f×f)−1(Φ) ≤ (f×f)−1(Φ◦Φ) ≤ (f×f)−1(Φ)◦(f×f)−1(Φ)

we see that (f × f)−1(Φ) ∈ J Λaα and therefore (f × f)−1(Φ) ≤ U∗α. We conclude

from this that Φ ≤ (f × f)(U∗α) and because Φ ∈ J Λ′
α was arbitrary, we conclude

(f × f)(U∗α) ≥ U ′∗α . Hence we can define a functor

K :


sLMN -UCTS −→ sLMN -PUCTS

(X,Λ) 7−→ (X,Λ∗)
f 7−→ f

.

If we denote the embedding functor E : sLMN -PUCTS −→ sLMN -UCTS, then
for (X,Λ) ∈ |sLMN -PUCTS| we have Λα = Λ∗α for all α ∈ N . This follows from

the idempotency of ∧ as in this case UΛ
α ∈ J Λ

α . Hence K ◦ E = idsLMN-PUCTS .
We have seen above that E ◦K ≥ idsLMN-UCTS and hence the claim follows. �

We can state the last result in the following form:

Theorem 5.11. If (N,∧) is a complete Heyting algebra, then sLMN -UTS is
isomorphic to a reflective subcategory of sLMN -UCTS.

6. The Underlying sLMN-convergence Tower Space

We define for (X,Λ) ∈ |sLMN -UCTS|, x ∈ qΛ
α(F) ⇐⇒ Fx ∈ Λα. The

following result is straightforward.

Theorem 6.1. Let (X,Λ), (X ′,Λ′) ∈ |sLMN -UCTS|. Then

(i) (X, qΛ) is an s-stratified LMN -convergence tower space;

(ii) (X, qΛ) is left-continuous whenever (X,Λ) is left-continuous;

(iii) f : (X, qΛ) −→ (X ′, qΛ′) is continuous whenever f : (X,Λ) −→ (X ′,Λ′) is
uniformly continuous.

Hence we have a forgetful functor

F : sLMN -UCTS −→ sLMN -CTS.

Theorem 6.2. The functor F preserves initial constructions.

Proof. Let (fi : X −→ (Xi,Λi))i∈J be a source and the initial space (X,Λ), i.e.

Φ ∈ Λα if (fi × fi)(Φ) ∈ Λα for all i ∈ J . For the source (fi : X −→ (Xi, qΛi))i∈J

and the initial space (X, q) we then have x ∈ qα(F) if and only if fi(x) ∈ qΛi
α (fi(F))

for all i ∈ J , if and only if (fi × fi)(Fx) = (fi(F))fi(x) ∈ Λiα for all i ∈ J if and

only if Fx ∈ Λα. This is equivalent to x ∈ qΛ
α(F). �

The s-stratified LMN -convergence tower space (X, qΛ) underlying an s-stratified
LMN -uniform convergence tower space (X,Λ) has some strong properties. We
call (X, q) ∈ |sLMN -CTS| symmetric if, for all x, y ∈ X, y ∈ qα([x]) whenever
x ∈ qα([y]). It is called, for a quantale operation ∗ on N , ∗-transitive if, for all
x, y, z ∈ X, x ∈ cα∗β([z]) whenever x ∈ cα([y]) and y ∈ cβ([z]).
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Lemma 6.3. Let L,M be frames, s : L −→ M a stratification mapping and let
(N, ∗) be a quantale. Let (X,Λ) be an s-stratified LMN -uniform convergence tower
space.

(i) (X, qΛ) satisfies the axiom (CTLIM) qΛ
α(F) ∩ qΛ

α(G) ⊆ qΛ
α(F ∧ G);

(ii) (X, qΛ) is symmetric;

(iii) (X, qΛ) is transitiv.

Proof. Property (i) follows from (UCT3), property (ii) follows from (UCT3) and
[(x, y)]−1 = [(y, x)] and property (iii) follows from (UCT2), (UCT5) and [(x, y)] ◦
[(y, z)] ≤ [(x, z)]. �

Let now (X,U) ∈ |sLMN -UTS|. We define the α-LM -neighbourhood filter of
x ∈ X by Uxα = Uα(x). Then, for a ∈ LX we have Uxα(a) =

∨
{Uα(d) : d(·, x) ≤ a}.

Proposition 6.4. Let (X,U) ∈ |sLMN -UTS| and for α ∈ N and x ∈ X define
Uxα = Uα(x). Then

(LNT0) Uxα ∈ FsLM (X);
(LNT1) Uxα ≤ [x];
(LNT2) Uxα ≤ Uxβ whenever α ≤ β;
(LNT3) Uxα ≤ Uxα(U

(·)
α ) in case (N,∧) is a complete Heyting algebra and if there is a

stratification mapping t : M −→ L with s ◦ t ◦ s ≥ s.

Proof. (LNT0) and (LNT2) are easy and not presented. For (LNT1) we remark
that from d(y, x) ≤ a(y) for all y ∈ X it follows that s(d(x, x)) ≤ s(a(x)) and hence,
with Uα ≤ [∆], we obtain Uxα(a) ≤

∨
{s(d(x, x)) : d(·, x) ≤ a} ≤ s(a(x)) = [x](a).

For (LNT3) let t(d(·, x)) ≤ U (·)
α (a). If b, c ∈ LX×X such that b ◦ c ≤ d, then∨

z∈X b(·, z) ∧ c(z, x) ≤ d(·, x) and in particular b(·, x) ∧ c(x, x) ≤ d(·, x). We
conclude from this

Uα(d) ≤ Uα ◦ Uα(d)

≤
∨

b(·,x)∧c(x,x)≤d(·,x)

Uα(b) ∧ Uα(c)

Using Uα(c) ≤ [∆](c) ≤ s(c(x, x)), we obtain

Uα(d) ≤
∨

b(·,x)∧c(x,x)≤d(·,x)

Uα(b) ∧ s(c(x, x))

≤
∨

b(·,x)∧c(x,x)≤d(·,x)

Uα(b ∧ (c(x, x))X)

≤
∨

e(·,x)≤d(·,x)

Uα(e)

≤
∨

t(e(·,x))≤t(d(·,x))

Uα(e)

≤
∨

t(e(·,x))≤U(·)
α (a)

Uα(e)

= Uxα(t(U (·)
α (a))).

�
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Proposition 6.5. (X,U), (X ′,U ′) ∈ |sLMN -UTS| and let f : (X,U) −→ (X ′,U ′)
be uniformly continuous. Then for all α ∈ N and all x ∈ X we have U

′f(x)
α ≤ f(Uxα).

Proof. We have U ′α ≤ (f ×f)(Uα) and hence, by Lemma 3.9(7), we obtain U
′f(x)
α =

U ′α(f(x)) ≤ (f × f)(Uα)(f(x)) ≤ f(Uα(x)) = f(Uxα). �

We call a pair (X, (Ux)x∈X) with Ux = (Uxα)α∈N that satisfies the axioms (NT0),
(NT1) and (NT2) an s-stratified LMN -neighbourhood tower space. If ∗ = ∧ and ad-
ditionally (LNT3) is satisfied, then we call (X, (Ux)x∈X) topological. (For ∗ 6= ∧ we
have to formulate (LNT3) differently, however, the paper [18] does not contain this
general set-up.) For an s-stratified LMN -neighbourhood tower space (X, (Ux)x∈X)

we define x ∈ q(Ux)x∈X
α (F) ⇐⇒ F ≥ Uxα. If the s-stratified LMN -neighbourhood

space is clear, we simply write qα(F) for q
(Ux)x∈X
α (F). It is clear then that (X, q) is

an s-stratified LMN -pretopological convergence tower space and that, in case that
(X, (Ux)x∈X) satisfies the axiom (LNT3) and (N,∧) is a complete Heyting algebra,
(X, q) is then an s-stratified LMN -topological convergence tower space, i.e. that
it satisfies the Kowalsky axiom, see [18]. If we define morphisms as in Proposi-
tion 6.5, then we can define the category sLMN -NTS with objects the s-stratified
LMN -neighbourhood tower spaces. It is not difficult to show that this category is
isomoprhic to the category of pretopological sLMN -convergence tower spaces.

Remark 6.6. We now have two ways for defining an s-stratified LMN -convergence
tower space for an s-stratified LMN -uniform tower space (X,U). We can first go to

the induced s-stratified LMN -uniform convergence tower space (X,ΛU ) and then

consider the underlying s-stratified LMN -convergence tower space (X, qΛU ). Al-
ternatively, we can go to the induced s-stratfied LMN -neighbourhood tower space
(X, (Ux)x∈X) and then consider the generated s-stratified LMN -pretopological

convergence tower space (X, q(Ux)x∈X ). We have x ∈ qΛU

α (F) if and only if Fx ≥ Uα.

Using Lemma 3.9(4) this is equivalent to F ≥ Uxα, i.e. to x ∈ q(Ux)x∈X (F). So we
obtain in both ways the same s-stratified LMN -convergence tower space.

Example 6.7. Let L = M = N be completely distributive and consider the strat-
ification mapping s = idL. We consider an s-stratified LMN -uniform tower space
(X,U) that satisfies additionally the axioms

(LUT0) U> = [∆];
(LUTRC)

∧
j∈J Uαj ≤ U∧j∈J αj .

We call the condition (LUTRC) the right-continuity condition. We consider fur-

ther the opposite order on N , i.e. we consider N = Lop. Then the underlying
s-stratified LMN -neighbourhood tower space satisfies the axioms

(N1) Uxα ∈ FsLL(X);
(N2) α ≤op β implies Uxβ ≤ Uxα;

(N3) Uxα ≤ [x];

(N4) Uxα ≤ Uxα(U (·)
α );

(N5) Ux⊥op = [x];
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(N6) a(x) ≤ Uxαi(a) for all x ∈ X and all i ∈ J implies a(x) ≤ Ux∨op
i∈J αi

(a) for all

x ∈ X.
We only need to prove (N5) and (N6).
For (N5), we have because U> = [∆] that U⊥op(a) =

∨
{
∧
y∈X s(d(y, y)) : d(·, x) ≤

a}. We define dx ∈ LX×X by dx(u, v) = a(x) if u = v and dx(u, v) = ⊥ if u 6= v.
Then d(u, x) = a(x) if u = x and d(u, x) = ⊥ ≤ a(u) if u 6= x, i.e. we have
d(·, x) ≤ a and hence Ux⊥op(a) ≥ a(x) = [x](a).
For (N6) we use the complete distributivity of L. If a(x) ≤ Uxαi(a) for all i ∈ J

and all x ∈ X, then let γ C a(x). Then for all i ∈ J there is di ∈ LX×X such
that di(·, x) ≤ a and Uαi(di) ≥ γ. We define d =

∨
i∈J di. Then d(·, x) ≤ a

and Uαi(d) ≥ γ for all i ∈ J and hence also
∧
i∈J Uαi(d) ≥ γ. Using (LUTRC)

then U∨op
i∈J αi

(d) = U∧
i∈J αi

(d) ≥ γ. Hence γ ≤
∨
{U∨op

i∈J αi
(d) : d(·, x) ≤ a} =

Ux∨op
i∈J αi

(a). As L is completely distributive, we obtain a(x) ≤ Ux∨op
i∈J αi

(a).

Defining N (x, a, α) = Uxα(a), this shows that for an idL-stratified LLL-uniform
tower space that satisfies (LUT0) and (LUTRC) the underlying idL-stratified LLLop-
neighbourhood space is an enriched L-fuzzy topological space in the definition of
Höhle and Šostak, see Definition 8.1.8 and Proposition 8.1.9 together with Theo-
rem 8.1.2 in [14]. In this sense are idL-stratified LLL-uniform tower spaces that
satisfy the additional axioms (LUT0) and (LUTRC) natural candidates for uniform
structures that belong to stratified L-fuzzy topological spaces.

7. Conclusions

We introduced in this paper s-stratified LMN -uniform convergence spaces. The
category of these spaces is topological and Cartesian closed. Furthermore, for spe-
cial choices of the lattices L,M and the quantale N , many existing concepts of
uniform convergence spaces, like lattice-valued, probabilistic and approach uniform
convergence spaces, are covered as examples. This shows that a theory of such
spaces is rich in examples and has good properties. Rather than developping the-
ories for the particular instances it seems desirable to develop the theory for these
very general spaces and obtain the corresponding theories for the examples as sub-
cases. So there are two routes that can be followed. Firstly, one can develop e.g. a
theory of Cauchy filters and completions for these spaces or, secondly, one can look
at suitable generalizations, like e.g. Cauchy tower spaces or semi-uniform conver-
gence tower spaces. A class of spaces that is at present not contained in our general
framework are suitable tower spaces that contain e.g. the stratified L-ordered semi-
uniform convergence spaces of Fang [7] as examples.
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A COMMON FRAMEWORK FOR LATTICE-VALUED, PROBABILISTIC AND APPROACH UNIFORM (CONVERGENCE) SPACES 

 G. JÄGER 
مقدار، احتمالاتي با رويكرد  –يك چارچوب مشترك براي فضاهاي ( همگراي ) شبكه  

  يكسان
چون شبكه مقدار، احتمالاتي وبا رويكرد يكسان يك چارچوب براي فضاهاي همگراي متفاوتي . دهيچك 

 و Lطبقه بندي شده را به كار مي بريم كه  -Sفيلتر  -LMكلي را توسعه مي دهيم. براي اين كار، مفهوم 
M  قاب هاي متناسب مي باشند. در اين صورت يك برج همگرايLMN –  متحد الشكل ، خانواده اي از

انديس گذاري شده است. براي هر انتخاب متفاوت از  quantale , Nيك ساختارهايي است كه توسط 
L  ،M  وN   .مثالهايي از فضاهاي همگراي شبكه مقدار، احتمالاتي و با رويكرد يكسان بدست مي آوريم  

لايه اي و بسته  –توپولوژيكي، خوش ،  sLMN- UCTSسته هاي بدست آمدهرنشان مي دهيم كه 
متحد الشكل طبقه بتدي شده را تعريف مي كنيم و نشان  – LMNضاهاي برجي دكارتي است. بعلاوه، ف

اساسي طبقه بندي  – LMNمي دهيم كه رسته اين فضاها با زير رسته فضاهاي برجي همگراي يكنواخت 
همگراي طبقه بندي شده زمينه را مورد مطالعه  – LMNشده يكريخت مي باشد. بالاخره، فضاهاي برجي 

  قرار مي دهيم. 
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