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A COMMON FRAMEWORK FOR LATTICE-VALUED,
PROBABILISTIC AND APPROACH UNIFORM
(CONVERGENCE) SPACES

G. JAGER

ABSTRACT. We develop a general framework for various lattice-valued, prob-
abilistic and approach uniform convergence spaces. To this end, we use the
concept of s-stratified LM-filter, where L and M are suitable frames. A strat-
ified LM N-uniform convergence tower is then a family of structures indexed
by a quantale N. For different choices of L, M and N we obtain the lattice-
valued, probabilistic and approach uniform convergence spaces as examples.
We show that the resulting category sLM N-UCT'S is topological, well-fibred
and Cartesian closed. We furthermore define stratified LM N-uniform tower
spaces and show that the category of these spaces is isomorphic to the subcat-
egory of stratified LM N-principal uniform convergence tower spaces. Finally
we study the underlying stratified L M N-convergence tower spaces.

1. Introduction

Over the last decades many generalizations of Cook and Fischer’s uniform con-
vergence spaces [5] were introduced such as, in particular, probabilistic uniform
convergence spaces [24, 2], approach uniform convergence spaces [21] and lattice-
valued uniform convergence spaces [20, 6]. Similarly, generalizations of uniform
spaces [3] like probabilistic uniform spaces [9, 2], approach uniform spaces [21] and
lattice-valued uniform spaces [11, 12] were studied. All these generalizations have
big similarities and it seems therefore desirable to establish one common frame-
work, in which all of them can be studied simultaneously. This is the purpose of
the present paper. Based on the concept of s-stratified LM-filters, that contains
many existing concepts of (lattice-valued) filters, we define what we call s-stratified
LM N-uniform convergence tower spaces. The category of these spaces is shown
to be well-fibred, topological and Cartesian closed, i.e. it has nice properties. For
suitable choices of the lattices L, M and the quantale N we obtain as special in-
stances the categories of uniform convergence spaces mentioned above. Likewise,
the concept of an s-stratified uniform tower space encompasses as special cases the
uniform spaces mentioned above. Furthermore, we study in our general frame-
work the underlying convergence spaces. These can be described with the general
framework of s-stratified LM N-convergence tower spaces introduced recently [18].
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The paper is organised as follows. In a preliminary section we describe the
lattice background that we use and introduce basic notations about L-sets. The
third section is devoted to a review of s-stratified LM-filters. We introduce in
particular LM-filters on X x X. The fourth section then describes the category
SLMN-UCTS of s-stratified LM N-uniform convergence tower spaces, gives many
examples and states the important categorical properties. Section 5 then studies
the category of s-stratified LM N-uniform tower spaces and its relationship to the
category sSLM N-UCT'S. The sixth section is devoted to the underlying s-stratified
LM N-convergence tower spaces and finally, in Section 7, we draw some conclusions.

2. Preliminaries

We consider in the paper frames L = (L, A, V), i.e. complete lattices that satisfy
the distributive law \/,_ (@ A ;) = a A\, Bi for all o, B € L, (i € J). In a
complete lattice L we can define the wedge-below relation a<tf if for all D C L with
B <\ D there is § € D such that a < §. A complete lattice is called completely
distributive, if for each o € L, we have o = \/{ € L : B < a}. For more results
on lattices see e.g. [10].

The triple (L, <,x), where (L,<) is a complete lattice, is called a quantale if
(L, *) is a semigroup, and = is distributive over-arbitrary joins, i.e.

(\/ a;)* 3= \/(ai xf3) and | Bx (\/ ;) = \/(5*0&1)

ieJ ieJ icJ ieJ
A quantale (L, %) is called commutative if (L, x) is a commutative semigroup and it
is called integral if the top element of L acts as the unit, i.e. if ax T =T *xa =«
for all & € L. We consider in this paper only commutative and integral quantales.

Example 2.1. A triangular norm or t-norm is a binary operation % on the unit
interval [0, 1] which is associative, commutative, non-decreasing in each argument
and which has 1 as the unit. The triple ([0, 1], <, %) can be considered as a quantale
if the t-norm is left-continuous. The three most commonly used (left-continuous)
t-norms are:

e theminimum t-norm: a* 8 =a A S,
e _the product t-norm: ax 8=« - j3,
e the Lukasiewicz t-norm: a* 8= (a+ 5 —1) V0.

Example 2.2. The interval [0,00] with the opposite order and addition as the
quantale operation a * § = a + 8 (extended by o + 0o = 0o + a = oo for all
a, B € [0,00]) is a quantale.

Example 2.3. A function ¢ : [0,00] — [0,1], which is non-decreasing, left-
continuous on (0,00) and satisfies ¢(0) = 0 and p(oc0) = 1 is called a distance
distribution function [26]. The set of all distance distribution functions is denoted
by AT. For example, for each 0 < a < co the functions

0 ifo<z<a
1 fa<zxr<oo

0 f0<z<oo

a(z) = and Eoo(x) = { 1 ifr—oo
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are in AT, The set AT is ordered pointwise, i.e. for ¢, 9% € A" we define ¢ < 7 if
for all z > 0 we have p(x) < ¢(z). The bottom element of AT is then e, and the
top element is £9. The set AT with this order then becomes a complete lattice. A
binary operation, * : At x AT — AT, which is commutative, associative, non-
decreasing in each place and that satisfies the boundary condition ¢ % ey = ¢ for
all o € AT, is called a triangle function [26]. A triangle function is called sup-
continuous [26], if (\/;c; i) * ¥ = Ve (@i x¢) for all p;,¢p € AT, (i € I), ie. if
(AT, <, %) is a quantale.

For a complete lattice L with top element TZ and bottom element L* and a
set X, we denote the power set of X by P(X) and the set of all-L-sets on X,
a,b,c,...: X — L, by LX. A constant L-set with value a € L is denoted by ax.
In particular, we write Tg(, resp. J_f(, for the constant L-sets with value T, resp.
1L, The lattice operations are extended pointwise from L to L¥, i.e. we define
(a A b)(@) = alx) Ab(), (aV b)) = a(2) v bla), (At i) (@) = e, (as(a)),
(V;es ai)(@) = Ve (ai(x)). For a mapping f: X — Y and'a € L™ and b e LY
the image of a under f, f(a) € LY, is defined by f(a)(y) = V¢@)=y a(z) and the
preimage of b under f, f<(b) € LX, is defined by f< (b)(z)=b(f(z)). If a € LX
and s : L — M is a mapping between the frames L, M, then we define s(a) € MX
by s(a)(z) = s(a(x)), z € X.

For notions from category theory, we refer to the textbook [1].

3. Stratified LM -filters

In this section, we review and extend results from [17].

Let L, M be frames. We consider a mapping s : L — M with the properties
(S1) s(LL) = LM: (S2) s(TL) = TM and (S3) s(a A B) = s(a) A s(B) for all
a,B € L. We call such a mapping a stratification mapping. Note that, by the
property (S3), a stratification mapping is non-decreasing.

Example 3.1. (1) Every frame morphism s : L — M is a stratification map-
ping.
(2) The pointwisely smallest stratification mapping is given by
T jfa=TL
80(0‘):{ 1M ifa £ TE
(3) If L% is prime, then the pointwisely largest stratification mapping is given
by Sl(a):{ 1M fa= 1L
T™ ifa# LE

In the sequel, we fix a stratification mapping s : L — M.

Definition 3.2. A mapping F : LX — M is an s-stratified LM -filter on X if
(F1) F(L%) = 1M and F(TL) = TM;

(F2) F(a) < F(b) whenever a < b;

(F3) F(a) A F(b) < F(aAb) for all a,b e LX;

(Fs) s(a) < Flax) for all w € L.
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Note that the stratification condition (Fs) is equivalent to s(a) AF(a) < F(ax A
a) for all @ € L, a € LX. We denote the set of all s-stratified LM-filters on X by

Finr(X)-

Example 3.3. (1) We define, for a € LX, [z]s(a) = s(a(x)). Then [z]5 €
2 (X)) is called the s-stratified point LM -filter of x. Note that in the
case X = {z}, F € F},,;(X) implies [z]s(a) = s(a(x)) < F(a(z)) = F(a)
for a € LX, ie. [x], < F. If the stratification mapping s is clear, we also
simply write [z] for [x]s.

(2) L=M, s=idg. A stratified L-filter [14] is an id-stratified LL-filter.

(3) L=M = {0,1}. A filter F € F(X) can be identified with an'sp=stratified
LM-filter. (In this case, so = idjo,} is the only possible stratification
mapping.)

(4) L = {0,1}. An s-stratified LM-filter is an M-filter of ordinary subsets,
[13]. (The property (M3) is always true for any-mapping s that satisfies
(M1) and (M2).)

(5) L =10,1], M = {0,1}. An s-stratified LM-filter can be identified with a
prefilter [22]. Note that only s = sq is pessible in order that all prefilters
are s-stratified. As a consequence we have to define the point prefilter by
[7]s, = {a € [0,1]% : a(z) =1}

For a mapping f : X — Y and F € Fj,,(X) we define f(F) € F7,,(Y) by
FF)(b) = F(f(b)).

We consider now a further stratification mapping, t : M — L.

For F; € Fi,(X) (j € J), considerfor @ € L~ the M-set on J, F(.y(a) with
Fy(a)(j) = Fj(a). Define further t(Fy(a))(j) := t(F;(a)) € L. Then t(Fy(a)) €
L7. For G € F3,,;(J) we ¢an then form G(F(.))(a) := G(t(F(,)(a)).

Lemma 3.4. [18] Let s.: L — M and t : M — L be stratification mappings
with sotos > s. For sets J,X and G € F},,(J) and F; € F}(X) (j € J), then
9(F)) € Fim(X),

We call G(F(.y) the s=stratified LM -diagonal filter of (G, (F;);c), see [16, 18].
For two s-stratified LM-filters F € F;,,(X),G € F},,;(Y) we define their prod-
uct, F x G : LX*XY — M, by

FxG(a) =\/[{F()NG(g) : fxg<a},  (aeL™)
with f'X g(x,y) = f(x) Ag(y) for f € LX and g € LY, see [15, 18].

Lemma 3.5. [18] Let s : L — M and t : M — L be stratification mappings
such that sot > idy and tos > idy. If F € Fiy(X),G € Fipy(Y) then
FxGeFiy(XxY).

We denote s-stratified LM-filters on X x X by &, ¥ : LX*X — M. For
O, e F3 /(X xX) we define ! by &~ (a) = ®(a~!) with a1 (x,y) = a(y, z) for
all (z,y) € X x X. Further, we define ®oW¥ by ®oW¥(a) = \/{P(b)A¥(c) : boc < a}
with bo c(z,y) = V.cx b(x,2) Ac(z,y) for all (z,y) € X x X. Finally, we denote
[A] = [Ax] = Asex|(z,2)] € Ffp (X x X).
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Lemma 3.6. Let ®,V € F},,(X x X). Then
(1) @' e Fi (X x X);
(2) ®oV € F3,,(X x X) if and only if boc = L% implies ®(b)A¥(c) = LM,
The proof in [20] can easily be adapted. Also almost all other properties of these

constructions that are shown in [20] carry over to our more general situation. We
will later explicitely use the following results.

Lemma 3.7. Let L, M be frames and let s : L — M be a stratification mapping.
Then for all x,y,z € X

() (2, 9)]™" = [(y,2));

(i) [(z,9)l o [(y, 2)] < [(x, 2)];
Proof. (1) is easy and left for the reader. We prove (2). Let d € LX*X. Then
[z, 9)] o [(y: 2)](d) = Vaop<as(a(@,9)) As(b(y,2)) = Vaepzaslalz,y) Ably, z)) <
Naov<a s(a o bz, 2)) < s(d(z, 2)) = [(x, 2)](d). O

Let X be a set, F € Fj,,(X),z € X. We define F, : LX*X — M by
Fu(d) = f(d(-,z)), for d € LX*X,
see [6]. Then F, € Fi,,(X x X).

Lemma 3.8. [6] Let z,y € X and F,G € F; (X)) and let f : X — Y. Then

(i) [z]y = [(z,y)],
(ii) Foe NGy = (FAG),,
(iil) (f x F)(Fz) = f(F)p@)-

Let U € F3,,(X x X) and let 7€ X. We define ¥(z) : LX — M by ¥(z)(a) =
V{¥(d) : d(-,x) < a}. Then W(z) € F§,,;(X) if and only if ¥(d) = L whenever
d(-,x) = L% see [19]. We note that if ¥ < [Ax], then d(-,z) = 1% implies ¥(d) <
Nyex s(dy,y)) < s(d(@,z)) = s(LE) = LM, Hence, in this case, ¥(z) € F§,,(X).

Lemma 3.9. Let @,V € F} (X xX), Fe Fiy(X),z € X and let f : X — X'.
The following hold.

(1) If & <, then D(x) < W(x),

(2) (PAW)(7) < O(x) A U(x),

(3) [Ax](z) = [,

) F>0(z) < Fp, >

(5) @ < (2(x))a:

(6) (Fo)(z) < F,

(M) (f x H(@)(f(z)) < f(@(z))
Proof. (1), (2) and (3) are easy, see [19]. The properties (5) and (6) follow directly
from (4). For (4), let first d € LX*X. Then ®(d) < \/{®(e) : e(-,z) <d(-,z)} =
@(m)(d(,x)) < F(d(-,z)) = Fu(d). Conversely, let a € LX. Then ®(z)(a) =
V{®(d) : d(,z) < a} <{F(d(,2)) : d(z) < a} < F(a). For property (7)

)
letceLXXX and b € LX'. If ¢(-, f(z)) < b, then for all y € X we have (f x
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Ny, x) = c(f(y), f(x) <b(f(y)) = fT(0)(y), i.e. we have (f x f)7(c)(-,2) <

f(b). Hence we obtain

(f x H@(F@)B) = > H@)(e) : el flx)) < b}
< VH{((f x HT(©) = (fx HT(@(2) < F0)}
< \H{®(@) : d(-x) < (b))
= D()(fT(0) = F(@(x))(b).

In [18] we gave the following definition.

Definition 3.10. [18] Let L, M be frames, let N be a complete lattice and let
s : L — M be a stratification mapping. A pair (X,q), of a set X and § = (g4 :
Fin(X) — P(X))aen, is an s-stratified LM N -convergence tower space if

)
CT1) z € go([z]s) for all z € X, o € N;
CT2) ¢u(F) C ¢a(G) whenever F < G;
CT3) qg(F) C ga(F) whenever a < ;
CT4) qlN(.F) = X for all F € F7,,(X).

A mapping f : (X,q) — (X', ¢') between two s-stratified LM N-convergence
tower spaces is called continuous if f(go(F)) C ¢, (f(F)) for all « € N, F €
Fi 4 (X). We denote the category with objects the s-stratified LM N-convergence
tower spaces and morphisms the continuous mappings by sLM N-CT'S.

A space (X,q) € |sLMN-CTS)| iscalled left-continuous if
(CTL) ﬂ q5(F) € qy a(F) whenever A C N.
BeA

A~ N

47 The Category sLMN-UCTS

Definition 4.1. Let L, M be frames, let (IV,*) be a quantale and let s : L — M
be a stratification mapping.. A pair (X, A), of a set X and A = (Ay)aen, Ao C
Fiy(X x X), is an s-stratified LM N -uniform convergence tower space if

(UCT1) [(z,x)] € Ay forall z € X, a € N;

(UCT2) ¥ € A, whenever ® < ¥ and ® € A,;

(UCT3) @t € A, whenever ® € A,;

(UCT4) ® AU € A, whenever , U € A,;

(UCT5) ® € Ag whenever @ € A, and 8 < o

(UCT6) A v = Fj (X x X);

(UCTT7) @ o ¥ € Ayyp whenever & € Ay, ¥ € Agand Do ¥ € Fj (X x X).

A mapping f: (X,A) — (X', N) is called uniformly continuous if (f x f)(®) €
A!, whenever ® € Aa. We denote the category with objects the s-stratified LM N-
uniform convergence tower spaces and morphisms the uniformly continuous map-
pings by sLMN-UCT'S.

A space (X,A) € [sLMN-UCTS| is called left-continuous if
(UCTL) @ € Ayy 4 whenever A C N and ® € A, for all o € A.

Note: Left-continuous s-stratified LM N-uniform convergence tower spaces can
be identified with s-stratified LM N-uniform convergence spaces. To this end,
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we define for a left-continuous s-stratified LM N-uniform convergence tower space
(X, A) the mapping A : F5,,(X x X) — N by A(®) =\/{a e N : dcA,}. We
then have the following properties:

(UC1) A([(z,2)]) = TV for all x € X;

(UC2) A(®) < A(P) whenever & < T;

(UC3) A(®) < A(®);

(UC4) A(®) AA(T) < A(PAD);

(UC5) A(D) * A(T) < A(P o ¥) whenever Po ¥ € Fi, (X x X).

The pair (X, A) is then called an s-stratified LM N -uniform convergence space, see
also [6, 20].

Example 4.2. Let L = M = N = {0,1}. Then an s-stratified LM N-uniform
convergence tower space is a uniform convergence space in the definition of Cook
and Fischer [5], as improved by Wyler [27].

Example 4.3. Let L = M = N. Then a left-continuous id-stratified LM N-
uniform convergence tower space is a stratified L-uniform convergence space in the
definition of Jager and Burton [20]. If we consider N = (L,x) with a quantale
operation, then a left-continuous idy-stratified LLN-uniform convergence space is
a stratified L-uniform convergence space in the. definition of Craig and Jager [6]
with the enriched cl-premonoid (L, A, *).

Example 4.4. Let L = M = {0,1} and N = [0,1] with a left-continuous t-norm
*. Then an s-stratified LM N-uniform convergence tower space is a probabilitistic
uniform convergence space in the definition of Nusser [24].

Example 4.5. Let L = M = {0,1} and N = AT the lattice of distance distribution
functions with a sup-continuous. triangle function *. Then an s-stratified LM N-
uniform convergence tower<space is'a probabilistic uniform convergence space in
the definition of Ahsanullah and Jéger [2].

Example 4.6. Let L = M ={0,1} and let N = [0, oo] with the opposite order and
x = + the extended addition. Then a left-continuous s-stratified LM N-uniform
convergence tower space is an approach uniform convergence space in the definition
of Lee and Windels [21]. If we use * = V as the quantale operation, then we obtain
an ultra-approach uniform convergence space [21].

Theorem 4.7 (Categorical properties I). The category sLM N-UCT'S is well-fibred
and topological over SET, i.e. it is a topological category in the sense of Preuss
[25].

Proof. The proof is routine and we only present initial structures. For a source
(fi : X — (X4, AY))ies the initial structure A on X is given by

DA, <= (fixfi)®)eA Vie

Furthermore, as a consequence of the stratification axiom (LFS), we have [(z, )]s <
® for all s-stratified LM-filters ® € F7,,({z} x {}) on a one-point set. Hence, by

(UCT1) and (UCT2), there is only one structure A on {z}. Clearly the class of all
structures on a set X is a set. |
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As a consequence, we have subspaces and product spaces.

Theorem 4.8 (Categorical properties II). Let s : L — M andt : M — L be
stratification mappings such that sot > idy; and tos > idy, and let N be a complete
Heyting algebra, i.e. x = A. Then the category sLMN-UCTS is Cartesian closed.

Proof. The proof is a bit tedious but can in principle be adapted from the proof
n [20]. We note that because sLMN-UCTS is a well-fibred topolocial category,
the Cartesian closedness is equivalent to the existence of function spaces, see [1].
So we simply state these function space structures. We denote UC(X, X’) =
{f : (X,A) — (X',A’) : f uniformly continuous}, the evaluation mapping
ev : UC(X,X') x X — X’ defined by ev(f,z) = f(z) and n :(UC(X;X’) x
UC(X,X") x (X xX) — (UC(X,X') x X) x (UC(X,X') x X), defined by
n((f,9), (x,2") = ((f,z),(g(z")). We then define the s-stratified LM N-uniform
convergence tower space (UC(X, X'), A%¢) by putting for ®.€ F3,, (UC(X, X') x
UC(X,X")

D e Ay = (ev xev)(n(® x F)) € Aj; whenever < a and F € Ag.

O
5. The Category sLMN-UTS

Let L, M be frames, let (N, x) be a quantale and let s : L — M be a stratifica-
tion mapping. A pair (X,U), of aset X and U = (Up)aen, Ua € Fi (X x X), is
an s-stratified LM N -uniform tower space if for all'a;, 3 € N
(UT1) Uy < [A], where [A](d) = N\, éx s(d(z, 2));

(UT2) U, <UTY;

(UT3) Upsp < Uy o Ug;

(UT4) U, < Up whenever a.< [3;
(UT5) Uy v = A\ Fi (X x X).

A mapping f :(X,U) ~— (X',U) is called uniformly continuous if U’ <
(f x f)(Uy) for all & € N. The category with objects the s-stratified LM N-
uniform tower spaces and uniformly continuous mappings as morphisms is denoted
by sSLMN-UTS.

A space (X,U) € |sLMN-UTS]| is called left-continuous if
(UTLC) Uy 4 £V 4ea Ua whenever A C N.

We note that if N is a complete Heyting algebra, i.e. if x = A, then the axiom
(UT3) is-equivalent to the requirement U, < U, oU, for all « € N.

Example 5.1. Let L = M = N = {0, 1}, then an s-stratified LM N-uniform tower
space is a uniform space in the definition of Bourbaki [3].

Example 5.2. Let L = M = {0,1} and N = [0, 1] with a left-continuous t-norm.
Then an s-stratified LM N-uniform tower space is a probabilistic uniform space in
the definition of Florescu [9]. If the t-norm is the minimum, then these spaces can
be identified with the generalized uniform spaces of Burton et al. [4].

Example 5.3. Let L = M = {0,1} and let N = [0, 00] with the opposite order
and with the (extended) addition as quantale operation. Then a left-continuous
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s-stratified LM N-uniform tower space is an approach uniform space [23, 21]. If the
quantale operation is the maximum, then the resulting approach uniform spaces
are called level-uniform in [21].

Example 5.4. Let L = M = {0,1} and let N = A" be the set of distance dis-
tribution functions with a sup-continuous triangle function as quantale operation.
Then an s-stratified LM N-uniform tower space is a probabilistic uniform space in
the definition of Ahsanullah and Jéger [2].

Example 5.5. Let L = M be frames and N = {0,1}. Then an id-stratified
LM N-uniform tower space is a stratified L-uniform space in the definition of
Gutiérrez Garcfa [11, 12].

Example 5.6 (L-continuity space). A value quantale [8] is a completely distributive
lattice (L, <) with a quantale operation * such that 1 < T and @V 8 < T whenever
a,8 <1 T. Examples for value quantales are ([0,00],+) or (AT, *) with a sup-
continuous triangle function, see [8]. It should be noted that Flagg [8] uses the
opposite order. For a value quantale L, an L-continuity space [8] is a pair (X,d)
of a set X and a mapping d : X x X — L which is reflezive, i.e. d(z,z) = T
for all z € X, and transitive, i.e. d(z,y) * d(y, z) < d(z, z) for all x,y,z € X. We
additionally demand that d is symmetric, i.e. that d(z,y) = d(y,z) for all z,y € X.

In case L = [0, 00] with the opposite order and extended addition as quantale
operation, a symmetric L-continuity space is a pseudometric space. If L = AT
and * is a sup-continuous triangle function, a symmetric L-continuity space is a
probabilistic pseudometric space, see [8]:

For a symmetric L-continuity space (X;d) we define now, for ¢ € L, the set
Ue ={(z,y) € X x X : d(x,y)> €}. It is then not difficult to show that A C U,,
that U, C Us, whenever 6<< ¢, that U. N Us = U.ys, that U, = U;l and that
U. o Us C U.s. Henceyif we define U = [{U. : e < a}], i.e. U is the filter
on X x X generated by the sets U, with € < «a, then (X,U?) is an sg-stratified
{0,1}{0, 1} L-uniform tower space.

We are now going to show that the category of s-stratified LM N-uniform tower
spaces is isomorphic to a subcategory of the category of s-stratified LM N-uniform
convergence tower spaces.

Let first (X,U) € |sLMN-UTS|. If we define ® € AY if & > U,, then

(X,AY) € |sLMN-PUCTS|. It is also clear that uniformly continuous map-
pings between s-stratified LM N-uniform tower spaces are uniformly continuous as
mappings between the corresponding s-stratified LM N-uniform convergence tower
spaces.

Let (X,A) € [sSLMN-UCTS|. We define, for a € N, the s-stratified a-LM -
entourage filter by U> = Noea, ® We call (X, A) a principal s-stratified LM N -
uniform convergence tower space if the axiom
(PUCT) @ € A, if and only if ® > U2
is satisfied. The subcategory of sSLM N-UCT'S consisting of the principal s-stratified
LM N-uniform convergence tower space is denoted by sLM N-PUCT'S.
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Lemma 5.7. Let (X,A) € [sLMN-PUCTS)|. Then (X, Zxﬁ) € |sLMN-UTS].

Proof. (UT1) We have [(z,z)] € A, for all z € X and hence UL < [(z,2)] for all
z € X. Consequently, by (PUCT), U} < A,cxl(z,2)] = [A]. (UT2) We have
L{é € A, and hence, by (UCT3), UM € Ay, from which, again using (PUCT),
Ud < UMt follows. For (UT3) we note that because of (UT1) U2 oL{é‘ always
exists. Hence, using (PUCT) and (UCT?T), it follows that 22 o Z/IBK € Ayyp and
therefore Ug* 5 < U§ ) L{?. Similarly, from LlﬁK € Ag and a < 3, we conclude with
(UCT3) that L{BK € A, and again (PUCT) leads to U2 < L{ﬂx, i.e. (UT4) is valid.
(UT5) finally is a direct consequence of (UCT6). O
Lemma 5.8. Let (X,A), (X',A) € |sSLMN-PUCTS| and let f : (X,A) —
(X', ) be uniformly continuous. Then f : (X,UN) — (X, UN) is umiformly
coOntINUOUS.

Proof. We have (f x D)UY = (/% DAser, D= Aper,(f x 1)@
> Nirxpy@yen, (F X (@) > Uy 0

Theorem 5.9. The categories SLMN-UTS and sLMN-PUCTS' are isomorphic.

Proof. We define two functors.
sLMN-PUCTS — sLMN-UTS

A: (X,A) — (X,Ub)
f — f
and
sLMN-UTS —s sLMN-PUCTS
B: (X,U) — (X, AU)
f — f

(AY) ©™) X
Because Uy = /\cbeAg(I) = /\'i’zua ® =U, and ® € Ay = O >U} =
® € A, (because (X, A) is principal), these functors are isomorphism functors. [J
Lemma 5.10. Let L, M, N be frames and let s : L — M be a stratification
mapping. Then sSLMN-PUCTS is a reflective subcategory of sLMN-UCTS.
Proof. For (X,A) € |[sSLMN-UCTS| and for « € N we denote U} = Noea, @
Then U} < [A], U} < UX)~! and a < B implies U2 < UL We define J2 = {® €
Fiu(X xX) : @ <UD, & < ®od}. Then [X x X] € TN, ie. JA is not empty.
Furthermore Uy = Age ;5 @ € F7 (X x X). Tt is not difficult to show that U, €
JA and hence U* < UF o U, Furthermore, U* < L{gé[A} and also U = (Uz)~L.
We define now ® € A}, if & > U;. Clearly then (X,A*) € [sSLMN-PUCTS| and
for ® € A, we have ® > UL > U* ie. ® € A¥. Hence, the identity mapping
idx : (X,A) — (X, A*) is uniformly continuous. If f : (X,A) — (X', A) is
uniformly continuous in sLMN-PUCTS, then f : (X,A*) — (X', A’*) is also
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uniformly continuous as a mapping in sSLMN-PUCTS. In fact, let & < Z/{? such
that ® < ® o ®. Then ® < (f x f)(U"an) and hence (f x f)~!(®) exists and
(Fx ) (®) UL As (fx )1 (@) < (Fx ) (Do®) < (fxf)H(®)o(f 1)1 (®)
we see that (f x f)~1(®) € J"a, and therefore (f x f)~1(®) < U*. We conclude

from this that ® < (f x f)(U?) and because ® € JA" was arbitrary, we conclude

(f x f)(U) > U*. Hence we can define a functor

sLMN-UCTS — sLMN-PUCTS
K (X, A) — (X, A%)
f — f
If we denote the embedding functor £ : sLM N-PUCTS — sLMN-UCTS, then
for (X,A) € |sSLMN-PUCTS| we have A, = A* for all &« € N. This follows from

the idempotency of A as in this case ng € \75. Hence K oE = idsppn<PUucTs-
We have seen above that F o K > idsrpn-uors and hence the elaim follows. [

We can state the last result in the following form:

Theorem 5.11. If (N,A) is a complete Heyting algebra, then sLMN-UTS is
isomorphic to a reflective subcategory of sLMN-UCTS.

6. The Underlying sLM N-convergence Tower Space

We define for (X,A) € |sLMN-UCTS|, z € ¢*(F) <= F, € A,. The
following result is straightforward.

Theorem 6.1. Let (X,A), (X', ) € |sLMN-UCTS|. Then

(i) (X, qu) is an s-stratified LM N -convergence tower space;
(i) (X, qu) is left-continuous whenever (X, A) is left-continuous;
(iil) f: (X, qu) — (X’,ﬁ) is continuous whenever f : (X,A) — (X', \’) is
uniformly continuous.
Hence we have a forgetful functor

F:sLMN-UCTS — sLMN-CTS.
Theorem 6.2. The functor F' preserves initial constructions.
Proof. Let (fi: X — (X4, A%))ics be a source and the initial space (X,A), i.e.
D e A, if (f; x fi)(®) € A, for all ¢ € J. For the source (f; : X — (Xiijﬁ))ieJ

and the initial space (X, ) we then have z € ¢, (F) if and only if f;(z) € ¢ (fi(F))
for all i € J, if and only if (f; x fi)(Fz) = (fi(F))fi(x) € Al for all i € J if and

only if F, € Ay. This is equivalent to z € ¢2(F). O

The s-stratified LM N-convergence tower space (X, qK) underlying an s-stratified
LM N-uniform convergence tower space (X,A) has some strong properties. We
call (X,q) € |sLMN-CTS| symmetric if, for all x,y € X, y € qo([z]) whenever
x € qo([y]). Tt is called, for a quantale operation x on N, x-transitive if, for all
z,y,2 € X, ¥ € caxp([2]) whenever = € co([y]) and y € cg([2]).
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Lemma 6.3. Let L, M be frames, s : L — M a stratification mapping and let
(N, *) be a quantale. Let (X, A) be an s-stratified LM N -uniform convergence tower
space.

(i) (

(i) (
(iii) (X,q
Proof. Property (i) follows from (UCT3), property (ii) follows from (UCT3) and
[(z,9)]"* = [(y, )] and property (iii) follows from (UCT2), (UCT5) and [(z,y)] o
[(y, 2)] < [(=, 2)]. O

Let now (X,U) € |sLMN-UTS|. We define the a-LM -neighbourhood filter of
r € X by U =U,(x). Then, for a € LX we have UZ(a) = \/{U(d) : d(-,z) < a}.

satisfies the aziom (CTLIM) ¢X(F) N ¢ (G) C X (F A G);

)
) is symmetric;
)

> 5
e

X,
X,
X,

>

s transitiv.

Proposition 6.4. Let (X,U) € [sLMN-UTS| and for € N and x € X define
UZ =Uy(x). Then
(LNTO) U5 € Fin(X);
(LNT1) U2 < [a];
(LNT2) Uy < U5 whenever a < fB;
(LNT3) Uz <uzUs’) in case (N,A) is a complete Heyting algebra and if there is a
stratification mapping t : M — L with sotos> s.

Proof. (LNTO0) and (LNT2) are easy and not presented. For (LNT1) we remark
that from d(y, z) < a(y) for all y € X it follows that s(d(z,z)) < s(a(x)) and hence,
with U, < [A], we obtain UZ(a) < \[{s(d(z,x)) : d(-,z) < a} < s(a(z)) = [z](a).
For (LNT3) let ¢(d(-,z)) < U$(a). If bye € LX*X guch that boc < d, then
V.ex b(,2) Ac(z,x) < d(-,#).and in particular b(-,z) A c(z,z) < d(-,z). We
conclude from this

Z/{a (d) ua o Z/la (d)

<
< \ Ua (b) AlUa(c)
b(-,z)Ae(z,z)<d(-,x)

Using U, (c) £ [Al(c) < s(e(x, x)), we obtain
Ua(d)

IN

Ua (b) N s(c(, )
b(-,z)Ae(z,z)<d(-,z)

IA

Ua (b A (el ) x)
b(-,x)Ae(z,z)<d(-,z)

\/  Uale)

e(-,z)<d(,z)

IN

IN

U (e)
t(e()) SH(d(2))
\V} Ua(€)
t(e(m)<Ul) (a)
= UHU (a))).

IA
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Proposition 6.5. (X,U), (X', U’') € [sLMN-UTS| and let f : (X 7) — (X, U")
be uniformly continuous. Then for alla € N and allx € X we hcwel/l @) < fux).

Proof. We have U/, < (f x f)(Uo) and hence, by Lemma 3.9(7), we obtain U@ =
Uy (f(2)) < (f X [)Ua)(f(2)) < fUa(z)) = fUZ). U

We call a pair (X, (U®) e x) with UT = (U?)4en that satisfies the axioms (NTO),
(NT1) and (NT2) an s-stratified LM N -neighbourhood tower space. If * = A and ad-
ditionally (LNT3) is satisfied, then we call (X, (U*).cx) topological. (For * # A we
have to formulate (LNT3) differently, however, the paper [18] does not contain this
general set-up.) For an s-stratified LM N-neighbourhood tower space (X, (U*) e x)

we define x € q(u Joex (F) < F >UZ. If the s-stratified LM N-neighbourhood

space is clear, we simply write g, (F) for q(w)”ex (F). It is clear then that (X,7q) is
an s-stratified LM N-pretopological convergence tower space-and that, in‘case that
(X, (UT)zex ) satisfies the axiom (LNT3) and (N, A) is a‘complete Heyting algebra,
(X,q) is then an s-stratified LM N-topological convergence tower space, i.e. that
it satisfies the Kowalsky axiom, see [18]. If we define morphisms as in Proposi-
tion 6.5, then we can define the category sLM N-NT'S withobjects the s-stratified
LM N-neighbourhood tower spaces. It is not difficult to show that this category is
isomoprhic to the category of pretopological sL M IN-convergence tower spaces.

Remark 6.6. We now have two ways for defining an s-stratified LM N-convergence
tower space for an s-stratified LM N-uniform tower space (X,U). We can first go to

the induced s-stratified LM N-uniform convergence tower space (X, AY) and then

consider the underlying s-stratified LM N=convergence tower space (X, qﬁ). Al-
ternatively, we can go to the induced s-stratfied LM N-neighbourhood tower space

(X, (U*)zex) and then consider the generated s-stratified LM N-pretopological
convergence tower space (X, ¢ zex). We have z € qgu (F) if and only if F, > U,.

Using Lemma 3.9(4) this is equivalent to F > UZ, i.c. to z € ¢¥")=ex (F). So we
obtain in both ways the same s-stratified LM N-convergence tower space.

Example 6.7. Let L = M = N be completely distributive and consider the strat-
iﬁca}_ion mapping s = idy,. We consider an s-stratified LM N-uniform tower space
(X,U) that satisfies additionally the axioms

(LUTO) % — [A);

(LUTRC) /\jEJUaJ. < Z/l/\jeJ a;-

We call the condition (LUTRC) the right-continuity condition. We consider fur-
ther the opposite order on N, i.e. we consider N = L°. Then the underlying
s-stratified LM N-neighbourhood tower space satisfies the axioms
(N1) Ug € Fp (X);

(N2) a <° 3 implies U < Uy;

(N3) Ug < [x};

(N4) U,
(N5)


WWW.SID.IR
WWW.SID.IR

80 G. Jager

(N6) a(x) < US (a) for all z € X and all i € J implies a(z) < U\f”/?gJai (a) for all
zcX.

We only need to prove (N5) and (N6).

For (N5), we have because Ut = [A] that U er (a) = V{A cx s(d(y,y)) @ d(-,z) <
a}. We define d, € LX*X by d,(u,v) = a(z) if u = v and d,(u,v) = L if u # v.
Then d(u,z) = a(z) if u = z and d(u,z) = L < a(u) if v # z, i.e. we have
d(-,z) < a and hence U7 ., (a) > a(z) = [z](a).

For (N6) we use the complete distributivity of L. If a(x) < UZ (a) for all i € J
and all x € X, then let v < a(x). Then for all i € J there is d; € L¥*¥ such
that d;(-,2) < a and Ua,(d;) > v. We define d = \/,.;d;. Thend(-,z) < a
and Uy, (d) > ~ for all i € J and hence also A, ;Ua,(d) > ~. Using (LUTRC)
then Uyjor . (d) = Up,_ a,(d) = 7. Hence v < \{Uyer o,(d) d(-,2) < a} =
U@?& o,(@). As L is completely distributive, we obtain a(z) < L{\”‘/?& 0T
Defining N (z,a,a) = U*(a), this shows that for an idr-stratified LLL-uniform
tower space that satisfies (LUTO) and (LUTRC) the underlyingidp-stratified LLL°P-
neighbourhood space is an enriched L-fuzzy topological space in the definition of
Hohle and Sostak, see Definition 8.1.8 and Proposition 8.1.9 together with Theo-
rem 8.1.2 in [14]. In this sense are idp-stratified LLL-uniform tower spaces that
satisfy the additional axioms (LUTO0) and (LUTRC) natural candidates for uniform
structures that belong to stratified L-fuzzy topological spaces.

7. Conclusions

We introduced in this paper s-stratified LM N-uniform convergence spaces. The
category of these spaces is topological and Cartesian closed. Furthermore, for spe-
cial choices of the lattices L, M and the quantale N, many existing concepts of
uniform convergence spaces; like lattice-valued, probabilistic and approach uniform
convergence spaces; are covered as examples. This shows that a theory of such
spaces is rich in examples and has good properties. Rather than developping the-
ories for the particular instances it seems desirable to develop the theory for these
very general spaces and obtain the corresponding theories for the examples as sub-
cases. So there are two routes that can be followed. Firstly, one can develop e.g. a
theory of Cauchy filters and completions for these spaces or, secondly, one can look
at suitable generalizations, like e.g. Cauchy tower spaces or semi-uniform conver-
gence tower spaces. A class of spaces that is at present not contained in our general
framework are suitable tower spaces that contain e.g. the stratified L-ordered semi-
uniform' convergence spaces of Fang [7] as examples.
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