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GRADED DIUNIFORMITIES

R. EKMEKÇİ AND R. ERTÜRK

Abstract. Graded ditopological texture spaces have been presented and dis-
cussed in categorical aspects by Lawrence M. Brown and Alexander Šostak

in [7]. In this paper, the authors generalize the structure of diuniformity in

ditopological texture spaces defined in [13] to the graded ditopological texture
spaces and investigate graded ditopologies generated by graded diuniformities.

The autors also compare the properties of diuniformities and graded diunifor-

mities.

1. Introduction

Uniform spaces are significant tools for investigation of topological spaces in
many respects. Many concepts and properties such as uniform continuity, com-
pleteness and uniform convergence are defined by using uniform structure. So,
setting and investigating uniform structure in a topological structure is reasonable
and necessary for the deeper understanding of the topological structure.

The concept of fuzzy topological space was defined in 1968 by C.Chang as ordi-
nary subset of the family of all fuzzy subsets of a given set in [8]. As a more suitable
approach to the idea of fuzzyness, in 1985, Šostak and Kubiak independently re-
defined fuzzy topology where a fuzzy subset has a degree of openness rather than
being open or not [16, 11] (for historical developments and basic ideas of the theory
of fuzzy topology see [17]).

In classical topolgy the notion of open set is usually taken as primitive with that
of closed set being auxiliary. However, since the closed sets are easily obtained as
the complements of open sets they often play an important, sometimes dominating
role in topological arguments. A similar situation holds for topologies on lattices
where an order reversing involution plays the role of set complement. It is the case,
however, that there may be no order reversing involution available, or that the pres-
ence of such an involution is otherwise irrelevant to the topic under consideration.
To deal with such cases it is natural to consider a topological structure consisting
of a priori unrelated families of open sets and of closed sets. This was the approach
adapted from the beginning for the topological structures on textures, originally
introduced as a point-based representation for fuzzy sets [2, 3]. These topological
structures were given the name of a dichotomous topology, or ditopology for short.
They consist of a family τ of open sets and a generally unrelated family κ of closed
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sets. Hence, both the open and the closed sets are regarded as primitive concepts
for a ditopology.

A ditopology (τ, κ) on the discrete texture (X,P(X)) gives rise to a bitopological
space (X, τ, κc). This link with bitopological spaces has had a powerful influence
on the development of the theory of ditopological texture spaces, but it should be
emphasized that a ditopology and a bitopology are conceptually different. Indeed,
a bitopology consists of two separate topological structures (complete with their
open and closed sets) whose interrelations we wish to study, whereas a ditopology
represents a single topological structure.

Ditopological texture spaces were introduced by L. M. Brown as a natural ex-
tention of the work of the second autor on the representation of lattice-valued
topologies by bitopologies in [10]. The concept of ditopology is more general than
general topology, bitopology and fuzzy topology in Chang’s sense. An adequate
introduction to the theory of texture spaces and ditopological texture spaces may
be obtained from [2, 3, 4, 5, 6]. Diuniform texture spaces were introduced by S.

Özçağ and L. M. Brown in [13] and then several papers have been published on
this subject such as [14, 15].

Recently, L. M. Brown and A. Šostak have presented the concept ”graded di-
topology” on textures as an extention of the concept of ditopology to the case where
openness and closedness are given in terms of a priori unrelated grading functions
[7]. The concept of graded ditopology is more general than ditopology and fuzzy
topology in Šostak’s sence. Two sorts of neighborhood structure on graded ditopo-
logical texture spaces are presented and investigated by the authors in [9].

The aim of this work is to generalize the structure of diuniformity in ditopolog-
ical texture spaces defined in [13] to the graded ditopological texture spaces and
investigate graded ditopologies generated by graded diuniformities. We also com-
pare the properties of diuniformities and graded diuniformities and finally study
categorical perspective of this new structure.

2. Preliminaries

We recall various concepts and properties from [3, 4, 5, 6] under the following
subtitle.
2.1. Ditopological Texture Spaces: Let S be a set. A texturing S on S is a
subset of P(S) which is a point separating (i.e. for all s, t ∈ S, s 6= t there exists
a set A ∈ S such that s ∈ A, t 6∈ A or s 6∈ A, t ∈ A), complete, completely
distributive lattice with respect to inclusion which contains S, ∅ and for which
meet

∧
coincides with intersection

⋂
and finite joins

∨
with unions

⋃
. The pair

(S,S) is then called a texture or a texture space.
In general, a texturing of S need not be closed under set complementation, but

it may be that there exist a mapping σ : S → S satisfying σ(σ(A)) = A and
A ⊆ B ⇒ σ(B) ⊆ σ(A) for all A,B ∈ S. In this case σ is called a complementation
on (S,S) and (S,S, σ) is said to be a complemented texture.

For any texture (S,S), many properties are conveniently defined in terms of the
p− sets

Ps =
⋂
{A ∈ S | s ∈ A}

www.SID.ir

WWW.SID.IR
WWW.SID.IR


Arc
hive

 of
 S

ID

Graded Diuniformities 85

and the q − sets

Qs =
∨
{A ∈ S | s 6∈ A} =

∨
{Pu | u ∈ S, s 6∈ Pu}.

A texture (S,S) is called a plain texture if it satisfies any of the following equiv-
alent conditions:

(1) Ps * Qs for all s ∈ S
(2) A =

∨
i∈I Ai =

⋃
i∈I Ai for all Ai ∈ S, i ∈ I

Recall that M ∈ S is called a molecule in S if M 6= ∅ and M ⊆ A ∪ B, A,B ∈ S
implies M ⊆ A or M ⊆ B. The sets Ps, s ∈ S are molecules, and the texture (S,S)
is called ”simple” if all molecules of S are in the form {Ps | s ∈ S}. For a set A ∈ S,
the core of A (denoted by A[) is defined by

A[ =
⋂{⋃

{Ai | i ∈ I} |{Ai | i ∈ I} ⊆ S, A =
∨
{Ai | i ∈ I}

}
.

Theorem 2.1. [4] In any texture space (S,S), the following statements hold:

(1) s 6∈ A⇒ A ⊆ Qs ⇒ s 6∈ A[ for all s ∈ S, A ∈ S.
(2) A[ = {s | A * Qs} for all A ∈ S.

(3) For Aj ∈ S, j ∈ J we have (
∨
j∈J Aj)

[ =
⋃
j∈J A

[
j.

(4) A is the smallest element of S containing A[ for all A ∈ S.
(5) For A,B ∈ S, if A * B then there exists s ∈ S with A * Qs and Ps * B.
(6) A =

⋂
{Qs | Ps * A} for all A ∈ S.

(7) A =
∨
{Ps | A * Qs} for all A ∈ S.

Example 2.2. (1) If P(X) is the powerset of a set X, then (X,P(X)) is the
discrete texture on X. For x ∈ X, Px = {x} and Qx = X \ {x}. The mapping
πX : P(X) → P(X), πX(Y ) = X \ Y for Y ⊆ X is a complementation on the
texture (X,P(X)).
(2) Setting I = [0, 1], J = {[0, r), [0, r] | r ∈ I} gives the unit interval texture
(I,J ). For r ∈ I, Pr = [0, r] and Qr = [0, r). And the mapping ι : J → J ,
ι[0, r] = [0, 1− r), ι[0, r) = [0, 1− r] is a complementation on this texture.
(3) The texture (L,L, λ) is defined by L = (0, 1], L = {(0, r] | r ∈ [0, 1]}, λ((0, r]) =
(0, 1− r]. For r ∈ L, Pr = (0, r] = Qr.
(4) S = {∅, {a, b}, {b}, {b, c}, S} is a simple texturing of S = {a, b, c}. Pa = {a, b},
Pb = {b}, Pc = {b, c}. It is not possible to define a complementation on (S,S).
(5) If (S,S), (V,V) are textures, the product texturing S ⊗ V of S × V consists
of arbitrary intersections of sets of the form (A × V ) ∪ (S × B), A ∈ S, B ∈ V,
and (S × V,S ⊗ V) is called the product of (S,S) and (V,V). For s ∈ S, v ∈ V ,
P(s,v) = Ps × Pv and Q(s,v) = (Qs × V ) ∪ (S × Qv). The p-sets and q-sets of the

product (S,P(S))× (V,V) will be denoted by P (s,v) and Q(s,v) respectively.

Proposition 2.3. [18] For the product textures P(S) ⊗ V and P(V ) ⊗ S, the fol-
lowing properties are satisfied.

(1) P (s,v) * Q(s,v′) ⇔ Pv * Qv′

(2) P (v,s) * Q(v,s′) ⇔ Ps * Qs′
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A dichotomous topology, or ditopology for short, on a texture (S,S) is a pair
(τ, κ) of subsets of S, where the set of open sets τ satisfies

(T1) S, ∅ ∈ τ
(T2) G1, G2 ∈ τ ⇒ G1 ∩G2 ∈ τ
(T3) Gi ∈ τ, i ∈ I ⇒

∨
iGi ∈ τ

and the set of closed sets κ satisfies

(CT1) S, ∅ ∈ κ
(CT2) K1,K2 ∈ κ⇒ K1 ∪K2 ∈ κ
(CT3) Ki ∈ κ, i ∈ I ⇒

⋂
iKi ∈ κ.

Hence a ditopology is essentially a ”topology” for which there is no a priori relation
between the open and closed sets.

Definition 2.4. [6] Let (τ, κ) be a ditopology on (S,S).

(1) Let s ∈ S[. Then a set N ∈ S is called a neighborhood of s if there exists
G ∈ τ satisfying Ps ⊆ G ⊆ N * Qs.

(2) Let s ∈ S. Then a set M ∈ S is called a coneighborhood of s if there exists
K ∈ κ satisfying Ps *M ⊆ K ⊆ Qs.

If the set of nhds (conhds) of s is denoted by η(s) (µ(s)) respectively, then (η, µ) is
called dinhd system of (τ, κ).

2.2. Direlational Uniformities and the Uniform Ditopology. [4, 12, 13] Let
(S,S) and (V,V) be textures. P (s,v), Q(s,v) will denote the p-sets and q-sets for

the texture (S × V,P(S) ⊗ V) and P (v,s), Q(v,s) will denote the p-sets and q-sets

for the texture (V × S,P(V )⊗ S).

Definition 2.5. [4] Let (S,S) and (V,V) be textures. Then

(1) r ∈ P(S)⊗ V is called a relation on (S,S) to (V,V) if it satisfies
R1 r * Q(s, v), Ps′ * Qs ⇒ r * Q(s′, v).

R2 r * Q(s, v)⇒ ∃s′ ∈ S such that Ps * Qs′ and r * Q(s′, v).
(2) R ∈ P(S)⊗ V is called a co-relation on (S,S) to (V,V) if it satisfies

CR1 P (s, v) * R, Ps * Qs′ ⇒ P (s′, v) * R.

CR2 P (s, v) * R⇒ ∃s′ ∈ S such that Ps′ * Qs and P (s′, v) * R.
(3) A pair (r,R), where r is a relation and R a co-relation on (S,S) to (V,V)

is called a direlation on (S,S) to (V,V).

The direlations can be ordered as follows: for direlations (p, P ), (q,Q) on (S,S)
to (V,V) it is written (p, P ) v (q,Q) if and only if p ⊆ q and Q ⊆ P .

For a texture (S,S), i = iS =
∨
{P (s,s) | s ∈ S} is a relation and I = IS =⋂

{Q(s,s) | s ∈ S} is a co-relation on (S,S) to (S,S). That is, (i, I) is a direlation

and we call it the identity direlation on (S,S).
Let (r,R) be a direlation on (S,S) to (V,V). The inverses of r and R are defined

by r← =
⋂
{Q(v,s) | r * Q(s,v)} and R← =

∨
{P (v,s) | P (s,v) * R} where R← is

a relation and r← is a co-relation on (V,V) to (S,S). The direlation (r,R)← =
(R←, r←) is called the inverse of (r,R).
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For A ∈ S, r→A =
⋂
{Qv | ∀s, r * Q(s,v) ⇒ A ⊆ Qs} is called the A-section of

r and R→A =
∨
{Pv | ∀s, P (s,v) * R⇒ Ps ⊆ A} is called the A-section of R.

For B ∈ V, r←B =
∨
{Ps | ∀v, r * Q(s,v) ⇒ Pv ⊆ B} is called the B-presection

of r and R←B =
⋂
{Qs | ∀v, P (s,v) * R ⇒ B ⊆ Qv} is called the B-presection of

R.
The family of direlations on a texture space (S,S) will be denoted by DRS or if

there is no confision just by DR.
For a direlation (d,D), d→Pt and D→Qt will be denoted by d[t] and D[t] respec-

tively.

Lemma 2.6. [4, 18] Let r, r1, r2 be relations, R,R1, R2 co-relations on (S,S) to
(V,V) with r1 ⊆ r2, R1 ⊆ R2, A1, A2 ∈ S, A1 ⊆ A2, B1, B2 ∈ V, B1 ⊆ B2, Aj ∈ S,
j ∈ J , Bk ∈ V, k ∈ K.

(1) r * Q(s,v) ⇔ P (v,s) * r← and P (s,v) * R ⇔ R← * Q(v,s) for all s ∈ S,
v ∈ V .

(2) r→1 A1 ⊆ r→2 A2, R→1 A1 ⊆ R→2 A2, r←2 B1 ⊆ r←1 B2, R←2 B1 ⊆ R←1 B2

(3) r→(
∨
j∈J Aj) =

∨
j∈J r

→Aj, R
→(
⋂
j∈J Aj) =

⋂
j∈J R

→Aj, r
←(
⋂
k∈K Bk) =⋂

k∈K r
←Bk, R←(

∨
k∈K Bk) =

∨
k∈K R

←Bk.

(4) r * Q(s,v) ⇔ r→Ps * Qv and P (s,v) * R⇔ Pv * R→Qs.

Definition 2.7. [4] Let (S,S), (V,V) and (Y,Y) be textures.

(1) If p is a relation on (S,S) to (V,V) and q is a relation on (V,V) to (Y,Y)
then their composition is the relation q ◦ p on (S,S) to (Y,Y) defined by

q ◦ p =
∨
{P (s,y) | ∃v ∈ V with p * Q(s,v) and q * Q(v,y)}.

(2) If P is a co-relation on (S,S) to (V,V) and Q is a co-relation on (V,V) to
(Y,Y) then their composition is the co-relation Q ◦ P on (S,S) to (Y,Y)
defined by

Q ◦ P =
⋂
{Q(s,y) | ∃v ∈ V with P (s,v) * P and P (v,y) * Q}.

(3) The composition of direlations (p, P ) and (q,Q) is the direlation (q,Q) ◦
(p, P ) defined by (q,Q) ◦ (p, P ) = (q ◦ p,Q ◦ P ).

Also it is shown in [4] that the composition of direlations is associative and
[(q,Q) ◦ (p, P )]← = (p, P )← ◦ (q,Q)←.

Definition 2.8. [4] Let (f, F ) be a direlation from (S,S) to (V,V). Then (f, F ) is
called a difunction from (S,S) to (V,V) if it satisfies the following two conditions:

(DF1) For s, s′ ∈ S, Ps * Qs′ ⇒ ∃v ∈ V with f * Q(s,v) and P (s′,v) * F .

(DF2) For v, v′ ∈ V and s ∈ S, f * Q(s,v) and P (s,v′) * F ⇒ Pv′ * Qv.

It is clear that (iS , IS) is a difunction on (S,S) and we call it the identity difunction
on (S,S).

Definition 2.9. [12] Let (p, P ) and (q,Q) be direlations on (S,S) to (V,V). Then

p u q =
∨
{P (s,v) | ∃t ∈ S with Ps * Qt and p, q * Q(t,v)},
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P tQ =
⋂
{Q(s,v) | ∃t ∈ S with Pt * Qs and P (t,v) * P,Q},

(p, P ) u (q,Q) = (p u q, P tQ).

Proposition 2.10. [12] Let (p, P ) and (q,Q) be direlations on (S,S) to (V,V).
Then

(1) p u q is a relation on (S,S) to (V,V). It is the greatest lower bound of p
and q in the set of all relations on (S,S) to (V,V), ordered by inclusion.

(2) P tQ is a co-relation on (S,S) to (V,V). It is the least upper bound of P
and Q in the set of all co-relations on (S,S) to (V,V), ordered by inclusion.

(3) The direlation (p, P )u(q,Q) is the greatest lower bound of (p, P ) and (q,Q)
in the set of all direlations on (S,S) to (V,V), ordered by the relation v.

(4) (p u q)← = p← t q← and (P tQ)← = P← uQ←.
(5) For A ∈ S, (p u q)→(A) ⊆ p→(A) ∩ q→(A) and P→(A) ∪ Q→(A) ⊆ (P t

Q)→(A).
(6) For B ∈ V, p←(B) ∪ q←(B) ⊆ (p u q)←(B) and (P tQ)←(B) ⊆ P←(B) ∩

Q←(B).
(7) Let (p1, P1), (p2, P2) be direlations on (S,S) to (V,V) and (q1, Q1), (q2, Q2)

be direlations on (V,V) to (Y,Y). Then ((q1, Q1) u (q2, Q2)) ◦ ((p1, P1) u
(p2, P2)) v ((q1, Q1) ◦ (p1, P1)) u ((q2, Q2) ◦ (p2, P2)).

Definition 2.11. [13] Let (S,S) be a texture and U a nonempty family of direla-
tions on (S,S), i.e. ∅ 6= U ⊆ DRS . If U satisfies the conditions

(U1) (i, I) v (d,D) for all (d,D) ∈ U ,
(U2) (d,D) ∈ U , (e, E) ∈ DR and (d,D) v (e, E) implies (e, E) ∈ U ,
(U3) (d,D), (e, E) ∈ U implies (d,D) u (e, E) ∈ U ,
(U4) Given for all (d,D) ∈ U there exists (e, E) ∈ U satisfying (e, E) ◦ (e, E) v

(d,D),
(U5) Given for all (d,D) ∈ U there exists (c, C) ∈ U satisfying (c, C)← v (d,D),

then U is called a direlational uniformity on (S,S) and the triple (S,S,U) is known
as a direlational uniform texture space. We’ll use ”diuniformity” and ”diuniform
texture spaces” instead of the terms ”direlational uniformity” and ”direlational
uniform texture space” respectively.

Example 2.12. [13] Let (I,J ) be the unit interval texture. For ε > 0 define
dε = {(r, s) | r, s ∈ I, s < r + ε}, Dε = {(r, s) | r, s ∈ I, s ≤ r − ε}. Then the
family UI = {(d,D) | (d,D) ∈ DR and there exist ε > 0 with (dε, Dε) v (d,D)} is
a diuniformity on (I,J ).

Proposition 2.13. [13] Let (S,S,U) be a diuniform texture space. Then the family
(ηU (s), µU (s)), s ∈ S[, defined by

ηU (s) = {N ∈ S | N * Qs, Ps * Qt ⇒ ∃(d,D) ∈ U , d[t] ⊆ N}

µU (s) = {M ∈ S | Ps *M, Pt * Qs ⇒ ∃(d,D) ∈ U , M ⊆ D[t]}

is the dineighborhood system for a ditopology on (S,S).
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Definition 2.14. [13] Let (S,S,U) be a diuniform texture space and ηU (s), µU (s)
defined as above. The ditopology with dineighborhood system {(ηU (s), µU (s) | s ∈
S[} is called the uniform ditopology induced by U and we denote it by (τU , κU ).

2.3. Graded Ditopological Texture Spaces. [7] Let (S,S), (V,V) be textures
and consider T ,K : S → V satisfying

(GT1) T (S) = T (∅) = V
(GT2) T (A1) ∩ T (A2) ⊆ T (A1 ∩A2) ∀A1, A2 ∈ S
(GT3)

⋂
j∈J T (Aj) ⊆ T (

∨
j∈J Aj) ∀Aj ∈ S, j ∈ J

and

(GCT1) K(S) = K(∅) = V
(GCT2) K(A1) ∩ K(A2) ⊆ K(A1 ∪A2) ∀A1, A2 ∈ S
(GCT3)

⋂
j∈J K(Aj) ⊆ K(

⋂
j∈J Aj) ∀Aj ∈ S, j ∈ J

Then T is called a (V,V)-graded topology, K a (V,V)-graded cotopology and (T ,K)
a (V,V)-graded ditopology on (S,S). The tuple (S,S, T ,K, V,V) is called a graded
ditopological texture space. For v ∈ V we define

T v = {A ∈ S | Pv ⊆ T (A)}, Kv = {A ∈ S | Pv ⊆ K(A)}.
Then (T v,Kv) is a ditopology on (S,S) for each v ∈ V . That is, if (S,S, T ,K, V,V)
is any graded ditopological texture space then there exists a ditopology (T v,Kv)
on (S,S) for each v ∈ V .

If (S,S, σ) is a complemented texture space and (T ,K) a (V,V)-graded ditopol-
ogy on (S,S), then (K◦σ, T ◦σ) is also a (V,V)-graded ditopology on (S,S). Besides
(T ,K) is called complemented if (T ,K) = (K ◦ σ, T ◦ σ).

Example 2.15. [7] Let (S,S, τ, κ) be a ditopological texture space and (V,V) the
discrete texture on a singleton. Take (V,V) = (1,P(1)) (The notation 1 denotes
the set {0}) and define τg : S → P(1) by τg(A) = 1 ⇔ A ∈ τ . Then τg is a
(V,V)-graded topology on (S,S). Likewise, κg defined by κg(A) = 1⇔ A ∈ κ is a
(V,V)-graded cotopology on (S,S) and (τg, κg) is called the graded ditopology on
(S,S) corresponding to ditopology (τ, κ).

Therefore graded ditopological texture spaces are more general than ditopologi-
cal texture spaces.

The graded dineighborhood systems of the graded ditopological texture spaces
were defined in [9]. To avoid a long preliminaries we will give the following equiva-
lent proposition instead of the definition.

Proposition 2.16. [9] Let (T ,K) be a (V,V)-graded ditopology on texture (S,S)
and N : S[ → VS , M : S → VS mappings where N(s) = Ns : S → V for each
s ∈ S[ and M(s) = Ms : S → V for each s ∈ S. Then (N,M) is a graded dinhd
system of the graded ditopological texture space (S,S, T ,K, V,V) iff

Ns(A) =

{
sup{T (B) : Ps ⊆ B ⊆ A * Qs, B ∈ S}, A * Qs
∅, A ⊆ Qs

(1)

for each s ∈ S[, A ∈ S and
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Ms(A) =

{
sup{K(B) : Ps * A ⊆ B ⊆ Qs, B ∈ S}, Ps * A
∅, Ps ⊆ A

(2)

for each s ∈ S, A ∈ S.

Theorem 2.17. [9] Let (T ,K) be a (V,V)-graded ditopology on a texture space
(S,S). If (N,M) is the graded dinhd system of the graded ditopological texture
space (S,S, T ,K, V,V), then the following properties hold for all A,A1, A2 ∈ S:
(1) For each s ∈ S[;

(N1) Ns(A) 6= ∅ ⇒ A * Qs
(N2) Ns(∅) = ∅ and Ns(S) = V
(N3) A1 ⊆ A2 ⇒ Ns(A1) ⊆ Ns(A2)
(N4) A1 ∩A2 * Qs ⇒ Ns(A1) ∧Ns(A2) ⊆ Ns(A1 ∩A2)
(N5) Ns(A) ⊆ sup{

∧
s′∈B[ Ns′(B) : Ps ⊆ B ⊆ A * Qs, B ∈ S}

(2) For each s ∈ S;
(M1) Ms(A) 6= ∅ ⇒ Ps * A
(M2) Ms(S) = ∅ and Ms(∅) = V
(M3) A1 ⊆ A2 ⇒Ms(A2) ⊆Ms(A1)
(M4) Ms(A1) ∧Ms(A2) ⊆Ms(A1 ∪A2)
(M5) Ms(A) ⊆ sup{

∧
s′∈(S\B)Ms′(B) : Ps * A ⊆ B ⊆ Qs, B ∈ S}

Theorem 2.18. [9] If the mappings N : S[ → VS , M : S → VS satisfy the
conditions N1−N4 and M1−M4 in Theorem 2.17. respectively then the mappings
TN ,KM : S → V, defined by

TN (A) =
⋂
s∈A[

Ns(A) (3)

KM (A) =
⋂

s∈S\A

Ms(A) (4)

where A ∈ S, form a (V,V)-graded ditopology on texture (S,S).

3. The Least Upper Bound of Direlations

The greatest lower bound of two direlations is defined in [12]. We’ll need the
least upper bound of any family of direlations in the next section, so we’ll define it
and give some properties of it in this section. We begin to define with the extention
of the greatest lower bound of two direlations to the greatest lower bound of any
family of direlations. The extention of Proposition 2.10. to ”any family” case will
be given as Proposition 3.2. with similar proof of Proposition 2.10.

Definition 3.1. Let (pi, Pi)i∈I be direlations on (S,S) to (V,V). Then
l

i∈I
pi =

∨
{P (s,v) | ∃t ∈ S with Ps * Qt and ∀i ∈ I, pi * Q(t,v)} (5)⊔

i∈I
Pi =

⋂
{Q(s,v) | ∃t ∈ S with Pt * Qs and ∀i ∈ I, P (t,v) * Pi} (6)
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l

i∈I
(pi, Pi) = (

l

i∈I
pi,
⊔
i∈I

Pi). (7)

Proposition 3.2. Let (pi, Pi)i∈I be direlations on (S,S) to (V,V). Then

(1)
d
i∈I pi is a relation on (S,S) to (V,V). It is the greatest lower bound of
{pi}i∈I in the set of all relations on (S,S) to (V,V), ordered by inclusion.

(2)
⊔
i∈I Pi is a co-relation on (S,S) to (V,V). It is the least upper bound of
{Pi}i∈I in the set of all co-relations on (S,S) to (V,V), ordered by inclusion.

(3) The direlation
d
i∈I(pi, Pi)i∈I is the greatest lower bound of (pi, Pi)i∈I in

the set of all direlations on (S,S) to (V,V), ordered by the relation v.
(4) (

d
i∈I pi)

← =
⊔
i∈I p

←
i and (

⊔
i∈I Pi)

← =
d
i∈I P

←
i .

(5) For A ∈ S, (
d
i∈I pi)(A) ⊆

⋂
i∈I pi(A) and

∨
i∈I Pi(A) ⊆ (

⊔
i∈I Pi)(A).

(6) For B ∈ V,
∨
i∈I p

←
i (B) ⊆ (

d
i∈I pi)

←(B) and (
⊔

i∈I Pi)
←(B) ⊆

⋂
i∈I P

←
i (B).

(7) Let (pi, Pi)i∈I be direlations on (S,S) to (V,V) and (qi, Qi)i∈I be direlations
on (V,V) to (Y,Y). Then (

d
i∈I(qi, Qi)) ◦ (

d
i∈I(pi, Pi)) v

d
i∈I((qi, Qi) ◦

(pi, Pi)).

Proof. (1) At first, to show that
d
i∈I pi is a relation on (S,S) to (V,V) we will

show that
d
i∈I pi satisfies the conditions (R1-R2) in Definition 2.5.

R1: Let
d
i∈I pi * Q(s, v) and Ps′ * Qs. Since

d
i∈I pi * Q(s, v), there exists

t ∈ S, v′ ∈ V such that Ps * Qt, ”∀i ∈ I, pi * Q(t, v′)”, and P (s, v′) * Q(s, v).
Now, considering Ps′ * Qs we have Ps ⊆ Ps′ and so ”∃t ∈ S : Ps′ * Qt and

∀i ∈ I, pi * Q(t, v′)”. Hence, we get

P (s′, v′) ∈ {P (s, v) | ∃t ∈ S with Ps * Qt and ∀i ∈ I, pi * Q(t, v)}. (8)

On the other hand, P (s, v′) * Q(s, v) ⇒ Pv′ * Qv ⇒ P (s′, v′) * Q(s′, v).

Therefore, considering (8) we have
d
i∈I pi * Q(s′, v).

R2: Let
d
i∈I pi * Q(s, v). Then there exists t ∈ S such that Ps * Qt and

”∀i ∈ I, pi * Q(t, v′)”; P (s, v′) * Q(s, v). From P (s, v′) * Q(s, v) we have

Pv′ * Qv. Considering this with ”Ps * Qt” we get P (s, v′) * Q(t, v) and sod
i∈I pi * Q(t, v). Therefore we obtain that ∃t ∈ S : Ps * Qt,

d
i∈I pi * Q(t, v).

Suppose that
d
i∈I pi * pj for some j ∈ I. Then there exist s ∈ S, v ∈ V such

that
d
i∈I pi * Q(s,v) and P (s,v) * pj . From (5) and Proposition 2.3. (1), there

exist v′ ∈ V , t ∈ S such that Pv′ * Qv, Ps * Qt and pi * Q(t,v′) for all i ∈ I.

Since pj is a relation, from (R1) we get pj * Q(s,v′). Also we have Qv ⊆ Qv′ from

Pv′ * Qv. So, we obtain pj * Q(s,v) and it follows that P (s,v) ⊆ pj . But this result

contradicts with P (s,v) * pj . Therefore we get
d
i∈I pi ⊆ pj for all j ∈ I, that isd

i∈I pi is a lower bound of {pi}i∈I .
Let r be a relation with r ⊆ pi for each i ∈ I. Suppose that r *

d
i∈I pi. Then

there exist s ∈ S, v ∈ V such that r * Q(s,v) and P (s,v) *
d
i∈I pi. Since r is a

relation, using (R2), there exists s′ ∈ S such that Ps * Qs′ and r * Q(s′,v). So we

get pi * Q(s′,v) since r ⊆ pi for each i ∈ I. Hence we obtain P (s,v) ⊆
d
i∈I pi by (5)

but this result contradicts with P (s,v) *
d
i∈I pi. Therefore

d
i∈I pi is the greatest
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lower bound of {pi}i∈I .
(2) Similar to (1).
(3) It is clear from (1) and (2).
(4) Suppose that (

d
i∈I pi)

← *
⊔
i∈I p

←
i . Then there exist s ∈ S, v ∈ V such

that (
d
i∈I pi)

← * Q(v,s) and P (v,s) *
⊔
i∈I p

←
i . From (6), there exist s′ ∈ S with

P (v,s) * Q(v,s′) and t ∈ V such that Pt * Qv, P (t,s′) * p←i for each i ∈ I. Using

Lemma 2.6., we get pi * Q(s′,t). So, from Ps * Qs′ and (5) we have P (s,t) ⊆
d
i∈I pi.

Hence, considering Pv ⊆ Pt obtained the contradiction P (s,v) ⊆
d
i∈I pi.

Now, suppose that
⊔
i∈I p

←
i * (

d
i∈I pi)

←. Then there exist s ∈ S, v ∈ V such

that
⊔
i∈I p

←
i * Q(v,s) and P (v,s) * (

d
i∈I pi)

←. From Lemma 2.6. we get
d
i∈I pi *

Q(s,v) and considering (5) there exist v′ ∈ V , t ∈ S such that P (s,v′) * Q(s,v),

Ps * Qt, pi * Q(t,v′) for each i ∈ I. Considering Lemma 2.6., we get P (v′,t) * p←i
for each i ∈ I and so by using (6) we have

⊔
i∈I p

←
i ⊆ Q(v,t). Since Qt ⊆ Qs, it

follows that
⊔
i∈I p

←
i ⊆ Q(v,s) which contradicts with

⊔
i∈I p

←
i * Q(v,s). Hence we

get
⊔
i∈I p

←
i = (

d
i∈I pi)

←. Similarly it can be shown that (
⊔
i∈I Pi)

← =
d
i∈I P

←
i .

(5) In the contrary, let it be (
d
i∈I pi)(A) *

⋂
i∈I pi(A). Then we have (

d
i∈I pi)(A)

* Qv and Pv *
⋂
i∈I pi(A) for some v ∈ V . Since (

d
i∈I pi)(A) * Qv there ex-

ists a s ∈ S such that (
d
i∈I pi) * Q(s,v) and A * Qs. So there exist v′ ∈ V ,

t ∈ S such that P (s,v′) * Q(s,v), Ps * Qt and pi * Q(t,v) for each i ∈ I. Now

we get pi * Q(s,v) for each i ∈ I by (R1). Further we have at least a j ∈ I with

Pv * pj(A). So there exists u ∈ V with Pv * Qu so that pj * Q(s′,u) ⇒ A ⊆ Q′s
for each s′ ∈ S. Since pj * Q(s,v) and Q(s,u) ⊆ Q(s,v) we get pj * Q(s,u). Hence,

considering ”pj * Q(s′,u) ⇒ A ⊆ Q′s for each s′ ∈ S” we obtain A ⊆ Qs which

contradicts with A * Qs.
Similarly, it can be shown that

∨
i∈I Pi(A) ⊆ (

⊔
i∈I Pi)(A).

(6) It is clear from (4) and (5).
(7) To show that (

d
i∈I(qi, Qi)) ◦ (

d
i∈I(pi, Pi)) v

d
i∈I((qi, Qi) ◦ (pi, Pi)) and

equivalently (
d
i∈I qi ◦

d
i∈I pi,

⊔
i∈I Qi ◦

⊔
i∈I Pi) v (

d
i∈I(qi ◦pi),

⊔
i∈I(Qi ◦Pi)) we

must show that (
d
i∈I qi) ◦ (

d
i∈I pi) ⊆

d
i∈I(qi ◦ pi) and

⊔
i∈I(Qi ◦Pi) ⊆ (

⊔
i∈I Qi ◦⊔

i∈I Pi). Firstly, suppose that (
d
i∈I qi) ◦ (

d
i∈I pi) *

d
i∈I(qi ◦ pi). Then there

exist s ∈ S, y ∈ Y such that (
d
i∈I qi)◦ (

d
i∈I pi) * Q(s,y) and P (s,y) *

d
i∈I(qi ◦pi)

and so, there exist v ∈ V such that
d
i∈I pi * Q(s,v) and

d
i∈I qi * Q(v,y).

Now, considering
d
i∈I pi * Q(s,v) and (5), there exist v′ ∈ V , t ∈ S with

Ps * Qt such that P (s,v′) * Q(s,v) and pi * Q(t,v′) for each i ∈ I. Similarly,

from
d
i∈I qi * Q(v,y) and (6), there exist y′ ∈ Y , v′′ ∈ V with Pv * Qv′′ such

that P (v,y′) * Q(v,y) and qi * Q(v′′,y′) for each i ∈ I. Since P (s,v′) * Q(s,v) we

have Pv′ * Qv and so Pv ⊆ Pv′ . So, considering Pv * Qv′′ and Pv ⊆ Pv′ we

get Pv′ * Qv′′ . Since qi * Q(v′′,y′) for each i ∈ I and Pv′ * Qv′′ , by (R1), we

obtain that qi * Q(v′,y′) for each i ∈ I and since ”pi * Q(t,v′) for each i ∈ I” we

get qi ◦ pi * Q(t,y′) that is P (t,y′) ⊆ qi ◦ pi for each i ∈ I. On the other hand,
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since P (v,y′) * Q(v,y) we have Py′ * Qy and so P (t,y′) * Q(t,y). Hence, we get

qi ◦ pi * Q(t,y) for each i ∈ I. Since Ps * Qt and (R1) we get P (s,y) ⊆
d
i∈I(qi ◦ pi)

which contradicts with P (s,y) *
d
i∈I(qi ◦ pi).

It can be also shown that
⊔
i∈I(Qi ◦ Pi) ⊆ (

⊔
i∈I Qi) ◦ (

⊔
i∈I Pi) in the same

way. �

Definition 3.3. Let (pi, Pi)i∈I be direlations on (S,S) to (V,V). Then⊔
i∈I

pi =
l
{q | ∀i ∈ I, pi ⊆ q, q is a relation from (S,S) to (V,V)},

l

i∈I
Pi =

⊔
{Q | ∀i ∈ I, Q ⊆ Pi, Q is a corelation from (S,S) to (V,V)},

⊔
i∈I

(pi, Pi)i∈I = (
⊔
i∈I

pi,
l

i∈I
Pi).

Proposition 3.4. Let (pi, Pi)i∈I be direlations on (S,S) to (V,V). Then

(1)
⊔
i∈I pi is a relation on (S,S) to (V,V). It is the least upper bound of
{pi}i∈I in the set of all relations on (S,S) to (V,V), ordered by inclusion.

(2)
d
i∈I Pi is a co-relation on (S,S) to (V,V). It is the greatest lower bound of
{Pi}i∈I in the set of all co-relations on (S,S) to (V,V), ordered by inclusion.

(3) The direlation
⊔
i∈I(pi, Pi)i∈I is the least upper bound of (pi, Pi)i∈I in the

set of all direlations on (S,S) to (V,V), ordered by the relation v.
(4) (

⊔
i∈I pi)

← =
d
i∈I p

←
i and (

d
i∈I Pi)

← =
⊔
i∈I P

←
i .

(5) Let (pi, Pi)i∈I be direlations on (S,S) to (V,V) and (qi, Qi)i∈I be direlations
on (V,V) to (Y,Y). Then (

⊔
i∈I(qi, Qi)) ◦ (

⊔
i∈I(pi, Pi)) v

⊔
i∈I((qi, Qi) ◦

(pi, Pi)).

Proof. (1), (2) and (3) are straightforward from Definition 3.3.
(4) (

⊔
i∈I pi)

← = (
d
{q | ∀i ∈ I, pi ⊆ q})← =

⊔
{q← | ∀i ∈ I, q← ⊆ p←i } =d

i∈I p
←
i .

(
d
i∈I Pi)

← = (
⊔
{Q | ∀i ∈ I, Q ⊆ Pi})← =

d
{Q← | ∀i ∈ I, P←i ⊆ Q←} =⊔

i∈I P
←
i .

(5) From Definition 3.3. and Proposition 3.2. we get: (
⊔
i∈I qi) ◦ (

⊔
i∈I pi) =

(
d
{q | ∀i ∈ I, qi ⊆ q}) ◦ (

d
{p | ∀i ∈ I, pi ⊆ p}) v

d
{(q ◦ p) | ∀i ∈ I, qi ⊆

q and pi ⊆ p} v
d
{(q ◦ p) | ∀i ∈ I, (qi ◦ pi) ⊆ (q ◦ p)} =

⊔
i∈I(qi ◦ pi). Similarly it

can be shown that
d
i∈I(Qi ◦ Pi) v (

d
i∈I Qi) ◦ (

d
i∈I Pi). �

4. Graded Diuniformity and Uniform Graded Ditopology

Definition 4.1. Let (S,S), (V,V) be textures and DR denote the family of all
direlations on (S,S). A mapping U : DR→ V is called a (V,V)-graded diuniformity
on (S,S) if it satisfies:

(GU1) U(d,D) 6= ∅ ⇒ (i, I) v (d,D) for all (d,D) ∈ DR
(GU2) (d,D) v (e, E)⇒ U(d,D) ⊆ U(e, E) for all (d,D), (e, E) ∈ DR
(GU3) U(d,D) ∧ U(e, E) ⊆ U((d,D) u (e, E)) for all (d,D), (e, E) ∈ DR
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(GU4) ∀(d,D) ∈ DR ∃(e, E) ∈ DR : U(d,D) ⊆ U(e, E) and (e, E)◦(e, E) v (d,D)
(GU5) ∀(d,D) ∈ DR ∃(c, C) ∈ DR : U(d,D) ⊆ U(c, C) and (c, C)← v (d,D)
(GU6)

∨
{U(d,D) | (d,D) ∈ DR} = V .

In this case the tuple (S,S,U, V,V) is called a graded (direlational) diuniform tex-
ture space. From now on, we call graded direlational diuniform texture space just
by graded diuniform texture space.

Proposition 4.2. Let (S,S,U, V,V) be a graded diuniform texture space. For each
s ∈ S[ the mapping NU

s : S → V defined by

NU
s (A) =

{ ⋂
Ps*Qt

∨
d[t]⊆A U(d,D), A * Qs

∅, A ⊆ Qs
for all A ∈ S, holds the properties (N1) − (N4) of Theorem 2.17. For each s ∈ S
the mapping MU

s : S → V defined by

MU
s (A) =

{ ⋂
Pt*Qs

∨
A⊆D[t] U(d,D), Ps * A

∅, Ps ⊆ A

for all A ∈ S, holds the properties (M1)− (M4) of Theorem 2.17.

Proof. (N1) and (N2) are clear. (N3): Let A1, A2 ∈ S, A1 ⊆ A2. If A1 = ∅ then
NU
s (A1) = ∅ ⊆ NU

s (A2). If A1 6= ∅ then we have

NU
s (A1) =

⋂
Ps*Qt

∨
d[t]⊆A1

U(d,D) ⊆
⋂

Ps*Qt

∨
d[t]⊆A2

U(d,D) = NU
s (A2).

(N4): Let A1, A2 ∈ S, A1 ∩A2 6= ∅. So, using (GU3) we get

NU
s (A1) ∧NU

s (A2) = (
⋂

Ps*Qt

∨
d[t]⊆A1

U(d,D)) ∧ (
⋂

Ps*Qt

∨
e[t]⊆A2

U(e, E))

=
⋂

Ps*Qt

(
∨

d[t]⊆A1

U(d,D) ∧
∨

e[t]⊆A2

U(e, E)) =
⋂

Ps*Qt

(
∨

d[t]⊆A1, e[t]⊆A2

(U(d,D) ∧ U(e, E)))

⊆
⋂

Ps*Qt

(
∨

d[t]⊆A1, e[t]⊆A2

U((d,D) u (e, E)) ⊆
⋂

Ps*Qt

(
∨

k[t]⊆A1∩A2

U(k,K) = NU
s (A1 ∩A2)

since (d u e)[t] = (d u e)→Pt ⊆ d→Pt ∩ e→Pt ⊆ d[t] ∩ e[t] ⊆ A1 ∩ A2 and (d,D) u
(e, E) = (d u e,D t E) ∈ DR.

Similarly it can be shown that MU
s holds the properties (M1)−(M4) of Theorem

2.17. �

Corollary 4.3. Let (S,S,U, V,V) be a graded diuniform texture space. Then the
mappings TU,KU : S → V defined by

TU(A) =
⋂
s∈A[

NU
s (A) =

⋂
s∈A[

⋂
Ps*Qt

∨
d[t]⊆A

U(d,D), (9)

KU(A) =
⋂

s∈S\A

MU
s (A) =

⋂
s∈S\A

⋂
Pt*Qs

∨
A⊆D[t]

U(d,D) (10)
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where A ∈ S, form a (V,V)-graded ditopology (TU,KU) on (S,S).

Proof. It is clear from Theorem 2.18. �

Corollary 4.4. The mappings TU,KU : S → V defined in Corollary 4.3. may also
be written as

TU(A) =
⋂
t∈A[

∨
d[t]⊆A

U(d,D), KU(A) =
⋂

t∈S\A

∨
A⊆D[t]

U(d,D)
(11)

where A ∈ S.

Proof. If we define the sets Z1 = {t ∈ S | A * Qs, Ps * Qt for some s ∈ S},
Z2 = {t ∈ S | Ps * A, Pt * Qs for some s ∈ S} then we have Z1 = A[ and
Z2 = S \A by Theorem 2.1 (5). So, for each A ∈ S,

TU(A) =
⋂

s∈A[

N
U
s (A) =

⋂
s∈A[

⋂
Ps*Qt

∨
d[t]⊆A

U(d,D) =
⋂

t∈Z1

∨
d[t]⊆A

U(d,D) =
⋂

t∈A[

∨
d[t]⊆A

U(d,D),

KU(A) =
⋂

s∈S\A
M

U
s (A) =

⋂
s∈S\A

⋂
Pt*Qs

∨
A⊆D[t]

U(d,D) =
⋂

t∈Z2

∨
A⊆D[t]

U(d,D) =
⋂

t∈S\A

∨
A⊆D[t]

U(d,D)

is obtained. �

Definition 4.5. A graded ditopolgy generated by a graded diuniformity as in
Corollary 4.3. is called a uniform graded ditopology.

Example 4.6. (1) Let (S,S,U, V,V) be a graded diuniform texture space. Then
the set Uv = {(d,D) ∈ DR | Pv ⊆ U(d,D)} 6= ∅ is a diuniformity on (S,S) for each
v ∈ V [.

(2) If U is a diuniformity on (S,S) then the mapping UU : DR → P(1) defined
by

UU (d,D) =

{
1, (d,D) ∈ U
∅, (d,D) 6∈ U

is a (1,P(1))-graded diuniformity on (S,S).

Thus, graded diuniformities which we introduced in Definition 4.1. are more
general than diuniformities on texture spaces.

Definition 4.7. Let (S,S), (V,V) be textures and Uv diuniformity on (S,S) for
each v ∈ V . The family {Uv}v∈V is called V-compatible if Uv =

⋂
{Uv′ | Pv * Qv′}

for each v ∈ V .

Proposition 4.8. Let (S,S), (V,V) be textures. If {Uv}v∈V is a V-compatible
family of diuniformities on (S,S) then∨

{Pv | (d,D) ∈ Uv} =
⋂
{Qv | (d,D) 6∈ Uv} (12)

for each (d,D) ∈ DR.
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Proof. Suppose that
∨
{Pv | (d,D) ∈ Uv} *

⋂
{Qv | (d,D) 6∈ Uv}. Then there

exists v ∈ V with (d,D) ∈ Uv such that Pv *
⋂
{Qv | (d,D) 6∈ Uv}. So we get that

Pv * Qt and (d,D) 6∈ Ut for a t ∈ V . Since {Uv}v∈V is V-compatible, we obtain
that Uv ⊆ Ut and this implies the contradiction (d,D) 6∈ Uv.

Now we suppose that
⋂
{Qv | (d,D) 6∈ Uv} *

∨
{Pv | (d,D) ∈ Uv}. Then there

exists t ∈ V such that
⋂
{Qv | (d,D) 6∈ Uv} * Qt and Pt *

∨
{Pv | (d,D) ∈ Uv}. So

we get the contradiction (d,D) ∈ Ut and (d,D) 6∈ Ut. Hence we have the equality∨
{Pv | (d,D) ∈ Uv} =

⋂
{Qv | (d,D) 6∈ Uv}. �

Theorem 4.9. Let (S,S), (V,V) be textures and {Uv}v∈V be a V-compatible family
of diuniformities on (S,S). Then the mapping U : DR→ V defined by

U(d,D) =
∨
{Pv | (d,D) ∈ Uv}, (d,D) ∈ DR (13)

is a (V,V)-graded diuniformity on (S,S).

Proof. To show that U(d,D) is a (V,V)-graded diuniformity on (S,S) we will show
that the properties of Definition 4.1. are satisfied.

GU1: Let (d,D) ∈ DR. U(d,D) 6= ∅ ⇒ ∃v ∈ V so that (d,D) ∈ Uv ⇒ (i, I) v
(d,D).

GU2: Let (d,D), (e, E) ∈ DR, (d,D) v (e, E). If U(d,D) = ∅ then (GU2)
holds. So, let U(d,D) 6= ∅. Then we have (d,D) ∈ Uv for some v ∈ V . We get
U(d,D) =

∨
{Pv | (d,D) ∈ Uv} ⊆

∨
{Pv | (e, E) ∈ Uv} = U(e, E) since ”(d,D) ∈

Uv ⇒ (e, E) ∈ Uv” for each v ∈ V .
GU3: Let (d,D), (e, E) ∈ DR. If U(d,D) = ∅ or U(e, E) = ∅ then (GU3) is hold.

So, let U(d,D) 6= ∅ and U(e, E) 6= ∅. Then we have (d,D) ∈ Uv and (e, E) ∈ Uu
for some v, u ∈ V . Since ”(d,D), (e, E) ∈ Uv ⇒ (d,D) u (e, E) ∈ Uv” for all v ∈ V
from Definition 2.11 (U3), we have the fact ”(d,D) u (e, E) 6∈ Uv ⇒ (d,D) 6∈ Uv or
(e, E) 6∈ Uv” for all v ∈ V . Using this fact we obtain

U(d,D) ∩ U(e, E) =
⋂
{Qv | (d,D) 6∈ Uv} ∩

⋂
{Qv | (e, E) 6∈ Uv}

=
⋂
{Qv | (d,D) 6∈ Uv or (e, E) 6∈ Uv}

⊆
⋂
{Qv | (d,D) u (e, E) 6∈ Uv} = U((d,D) u (e, E)).

GU4: Let (d,D) ∈ DR. Since Uv is a diuniformity, we have ”(d,D) ∈ Uv ⇒
∃(e, E)v = (ev, Ev) ∈ Uv : (e, E)v ◦ (e, E)v v (d,D)” for each v ∈ V . If we set
(e, E) =

⊔
v∈V (e, E)v, then (e, E) ∈ DR and using the fact ”(d,D) ∈ Uv ⇒ (e, E) ∈

Uv” we have Uv(d,D) ⊆ Uv(e, E). Moreover, considering Proposition 3.4. (5), we
get (e, E) ◦ (e, E) =

⊔
v∈V (e, E)v ◦

⊔
v∈V (e, E)v v

⊔
v∈V ((e, E)v ◦ (e, E)v) v (d,D).

GU5: Let (d,D) ∈ DR. Since Uv is a diuniformity, we have ”(d,D) ∈ Uv ⇒
∃(c, C)v = (cv, Cv) ∈ Uv : (c, C)←v v (d,D)” for each v ∈ V . If we set (c, C) =⊔
v∈V (c, C)v, then (c, C) ∈ DR and considering Proposition 3.4. (4),

(c, C)← = (
⊔
v∈V

cv,
l

v∈V
Cv)
← = (

⊔
v∈V

C←v ,
l

v∈V
c←v ) =

⊔
v∈V

(c, C)←v v (d,D).

GU6: Since Uv 6= ∅ for each v ∈ V we have
∨
{U(d,D) | (d,D) ∈ DR} =∨

{
∨
{Pv | (d,D) ∈ Uv} | (d,D) ∈ DR} = V . �
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One can obtain diuniformities from a graded diuniformitiy as in Example 4.6.
and Theorem 4.9. also shows that a family of diuniformities under some conditions
form a graded diuniformity. In this context, the relationship between the uniform
ditopologies generated by the family of diuniformities and the uniform graded di-
topology generated by the graded diuniformity is given in the next proposition.

Proposition 4.10. Let (S,S), (V,V) be textures and {Uv}v∈V be a V-compatible
family of diuniformities on (S,S). Then (τUv , κUv ) ⊆ (T vU ,KvU) and in case of the
texture V is plain (τUv , κUv ) = (T vU ,KvU) for each v ∈ V where U is the (V,V)-graded
diuniformity on (S,S) generated by the family {Uv}v∈V by (13).

Proof. At first, we will see that τUv ⊆ T vU .

A ∈ τUv ⇒ ∀s ∈ A[ A ∈ ηUv (s)

⇒ ”A * Qs, Ps * Qt ⇒ ∃(d,D) ∈ Uv : d[t] ⊆ A”

⇒ Pv ⊆
⋂
s∈A[

⋂
Ps*Qt

∨
d[t]⊆A

U(d,D) = TU(A)⇒ A ∈ T vU

Now, if V is plain then we have ”Pv ⊆
∨
d[t]⊆A U(d,D) =

⋃
d[t]⊆A U(d,D) ⇒

∃(d,D) ∈ DR : d[t] ⊆ A, Pv ⊆ U(d,D)” and so T vU ⊆ τUv .
Using similar method, it can be seen that κUv ⊆ KvU and in case of V is plain

κUv = KvU for each v ∈ V . �

5. Graded Uniform Bicontinuity and the Category dfGDiU

We begin this section with continuity concepts and their some basic properties
in ditopological texture spaces, diuniform texture spaces and graded ditopologi-
cal texture spaces. We also need the concept of inverse of a direlation under a
difunction defined in [13]. Our reference for category theory is [1].

Definition 5.1. [5] Let (Sk,Sk, τk, κk), k = 1, 2 be ditopological texture spaces
and (f, F ) : (S1,S1)→ (S2,S2) a difunction. (f, F ) is called continuous if

∀A ∈ τ2, F←A ∈ τ1
and cocontinuous if

∀A ∈ κ2, f←A ∈ κ1.

The difunction (f, F ) is called bicontinuous if it is both continuous and cocontinu-
ous.

Theorem 5.2. [5] Ditopological texture spaces and bicontinuous difunctions form
a category denoted by dfDiTop.

Proposition 5.3. [13] Let (S,S), (V,V) be texture spaces, (d,D) a relation on
(V,V) and (f, F ) : (S,S)→ (V,V) a difunction.

(1) For the sets

(f, F )−1(d) =
∨
{P (s1,s2) | ∃Ps1 * Qs′1

: P (s′1,v1)
* F, f * Q(s2,v2)

⇒ P (v1,v2) ⊆ d}
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and

(f, F )−1(D) =
⋂
{Q(s1,s2)

| ∃Ps′1
* Qs1 : f * Q(s′1,v1)

, P (s2,v2) * F ⇒ D ⊆ Q(v1,v2)
},

(f, F )−1(d,D) = ((f, F )−1(d), (f, F )−1(D))

is a direlation on (S,S).

(2) (f, F )−1(iV , IV ) = (iS , IS)
(3) (iS , IS)−1(d,D) = (d,D) for all (d,D) ∈ DRS.

Definition 5.4. [13] Let (Sk,Sk,Uk), k = 1, 2 be diuniform texture spaces and
(f, F ) : (S1,S1) → (S2,S2) a difunction. (f, F ) is called U1 − U2 uniformly bicon-
tinuous if (f, F )−1(d,D) ∈ U1 for each (d,D) ∈ U2.

Theorem 5.5. [15] The class of diuniform texture spaces and uniformly bicontin-
uous difunctions between them form a category denoted by dfDiU. Considering
Definition 2.14., the functor F′ : dfDiU→ dfDiTop is defined by

F′((f, F ) : (S1,S1,U1)→ (S2,S2,U2)) = ((f, F ) : (S1,S1, τU1 , κU1)→ (S2,S2, τU2 , κU2)).

Definition 5.6. [7] Let (Sk,Sk, Tk,Kk, Vk,Vk), k = 1, 2 be graded ditopological
texture spaces, (f, F ) : (S1,S1)→ (S2,S2), (h,H) : (V1,V1)→ (V2,V2) difunctions.
For the pair ((f, F ), (h,H)), (f, F ) is called continuous with respect to (h,H) if

∀A ∈ S2, H←T2(A) ⊆ T1(F←A)

and cocontinuous with respect to (h,H) if

∀A ∈ S2, h←K2(A) ⊆ K1(f←A).

The difunction (f, F ) is called bicontinuous with respect to (h,H) if it is both
continuous and cocontinuous with respect to (h,H).

Proposition 5.7. [7] For the above notations, the followings are equivalent:

(1) (f, F ) is bicontinuous with respect to (h,H).
(2) (f, F ) is (T v11 ,Kv11 ) − (T v22 ,Kv22 ) bicontinuous for all v1 ∈ V1, v2 ∈ V2

satisfying Pv1 ⊆ H←Pv2 .
(3) (f, F ) is (T v11 ,Kv11 ) − (T v22 ,Kv22 ) bicontinuous for all v1 ∈ V1, v2 ∈ V2

satisfying H←Pv2 * Qv1 .

Theorem 5.8. [7] The class of graded ditopological texture spaces and relatively
bicontinuous difunction pairs between them form a category denoted by dfGDiTop.
Considering Example 2.15., the functor G′ : dfDiTop→ dfGDiTop defined by

G′((f, F ) : (S1,S1, τ1, κ1)→ (S2,S2, τ2, κ2))

= (((f, F ), (i, I)) : (S1,S1, τg1 , κ
g
1, 1,P(1))→ (((f, F ), (i, I)) : (S1,S1, τg2 , κ

g
2, 1,P(1)))

is an embedding.

Lemma 5.9. [12] (6.13. Prop.) Let (Sk,Sk), k = 1, 2 be texture spaces, (f, F ) :
(S1,S1)→ (S2,S2) a difunction and (d,D) ∈ DRS2

. If P (s1,s2) * F and d[s2] ⊆ A
for s1 ∈ S1, s2 ∈ S2, A ∈ S2 then (f, F )−1(d)[s1] ⊆ F←A.
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Definition 5.10. Let (Sk,Sk,Uk, Vk,Vk), k = 1, 2 be graded diuniform texture
spaces and (f, F ) : (S1,S1) → (S2,S2), (h,H) : (V1,V1) → (V2,V2) difunctions. If
H←(U2(d,D)) ⊆ U1((f, F )−1(d,D)) for each (d,D) ∈ DRS2

then (f, F ) is called
U1 - U2 uniformly bicontinuous with respect to (h,H).

Example 5.11. Let (S,S,U, V,V) be graded diuniform texture spaces and (iS , IS) :
(S,S) → (S,S), (iV , IV ) : (V,V) → (V,V) identity difunctions. For each (d,D) ∈
DRS we have I←V (U(d,D)) = U(d,D) = U((iS , IS)−1(d,D)). Hence (iS , IS) is
uniformly bicontinuous with respect to (iV , IV ).

Proposition 5.12. Relatively uniformly bicontinuity is preserved under composi-
tion of difunctions.

Proof. Let (Sj ,Sj ,Uj , Vj ,Vj), j = 1, 2, 3 be graded diuniform texture spaces, (f, F ) :
(S1,S1) → (S2,S2), (h,H) : (V1,V1) → (V2,V2), (g,G) : (S2,S2) → (S3,S3),
(k,K) : (V2,V2)→ (V3,V3) difunctions where (f, F ) is uniformly bicontinouos with
respect to (h,H) and (g,G) is uniformly bicontinouos with respect to (k,K). For
each (d,D) ∈ DRS3 we have

(K ◦H)←(U3(d,D)) = H←(K←U3(d,D)) ⊆ H←(U2(g,G)−1(d,D))

⊆ U1((f, F )−1((g,G)−1(d,D))) = U1(((g,G)◦(f, F ))−1(d,D)) = U1((g◦f,G◦F )−1(d,D))

So, (g ◦ f,G ◦ F ) is uniformly bicontinuous with respect to (k ◦ h,K ◦H). �

Corollary 5.13. Graded diuniform texture spaces and relatively uniformly bicon-
tionuous difunction pairs between them form a category that we will denote by
dfGDiU.

Proof. It is clear from Example 5.11. and Proposition 5.12. �

Theorem 5.14. For the above notations, the functor G : dfDiU → dfGDiU
defined by

G((f, F ) : (S1,S1,U1)→ (S2,S2,U2)

= ((f, F ), (i1, I1)) : (S1,S1,UU1 , 1,P(1))→ (S2,S2,UU2 , 1,P(1))

is an embedding of the category dfDiU as a full subcategory dfGDiU(1,P(1)) of the
category dfGDiU.

Proof. If a difunction (f, F ) : (S1,S1,U1) → (S2,S2,U2) is uniformly bicontinuous
then it is clearly UU1 − UU2 uniformly bicontinuous with respect to (i1, I1). So G
is a functor. G is also a full embedding from Example 4.6. (2), Definition 5.4. and
Definition 5.10. �

Theorem 5.15. Let (Sk,Sk,Uk, Vk,Vk), k = 1, 2 be graded diuniform texture spaces
and (f, F ) : (S1,S1) → (S2,S2), (h,H) : (V1,V1) → (V2,V2) difunctions. If
(f, F ) is U1 - U2 uniform bicontinuous with respect to (h,H) then it is (TU1

,KU1
)

- (TU2
,KU2

) bicontinuous with respect to (h,H).

Proof. Let (f, F ) be U1 - U2 uniform bicontinuous with respect to (h,H). We will
show that A ∈ T v2U2

⇒ F←A ∈ T v1U1
for all v1 ∈ V1, v2 ∈ V2 satisfying Pv1 ⊆ H←Pv2 .
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So, let Pv1 ⊆ H←Pv2 and Pv2 ⊆ TU2
(A). Using Corollary 4.4. and Lemma 2.6.(3)

we get

Pv1 ⊆ H
←Pv2 ⊆ H

←(TU2(A)) = h←(
⋂

t∈A[

∨
d[t]⊆A

U2(d,D)) =
⋂

t∈A[

h←(
∨

d[t]⊆A

U2(d,D))

=
⋂

t∈A[

H←(
∨

d[t]⊆A

U2(d,D)) =
⋂

t∈A[

∨
d[t]⊆A

H←(U2(d,D)) ⊆
⋂

t∈A[

∨
d[t]⊆A

U1((f, F )−1(d,D)).

Therefore

∀t ∈ A[ ⇒ ∃(d,D) ∈ DRS2 : d[t] ⊆ A and Pv1 ⊆ U1((f, F )−1(d,D)) (14)

is obtained.
Now, to show that Pv1 ⊆ TU1

(F←A) we recall Corollary 4.4. Let F←A * Qs1 .

Then there exists a s2 ∈ S2 such that P (s1,s2) * F and A * Qs2 . Since s2 ∈ A[,
considering (14) there exists a (d,D) ∈ DRS2 such that d[s2] ⊆ A and Pv1 ⊆
U1((f, F )−1(d,D)). Besides, we have (e, E) = (f, F )−1(d,D) ∈ DRS1 by Proposi-
tion 5.3. and e[s1] ⊆ F←A by Lemma 5.9. Hence we obtain Pv1 ⊆ TU1

(F←A) and
so that (f, F ) is (TU1

,KU1
) - (TU2

,KU2
) continuous with respect to (h,H).

The cocontinuity part of the proof is similar. �

Corollary 5.16. For the above notations, F : dfGDiU→ dfGDiTop defined by

F(((f, F ), (h,H)) : (S1,S1,U1, V1,V1)→ (S2,S2,U2, V2,V2))

= ((f, F ), (h,H)) : (S1,S1, TU1
,KU1

, V1,V1)→ (S2,S2, TU2
,KU2

, V2,V2)

is a faithful and full functor.

Proof. At first note that from Corollary 4.3. and Theorem 5.15. it follows that F
is a functor. Moreover, from the definition of F, it is a faithful and full functor. �

From Theorem 5.5, 5.8, 5.14. and Corollary 5.16. we obtain the following dia-
gram.

dfDiU

G

��

F′
// dfDiTop

G′

��

dfGDiU
F
// dfGDiTop

Proposition 5.17. For the above notations, the followings are equivalent:

(1) (f, F ) is uniformly bicontinuous with respect to (h,H).
(2) (f, F ) is Uv11 −U

v2
2 uniformly bicontinuous for all v1 ∈ V [1 , v2 ∈ V [2 satisfying

Pv1 ⊆ H←Pv2 .
(3) (f, F ) is Uv11 −U

v2
2 uniformly bicontinuous for all v1 ∈ V [1 , v2 ∈ V [2 satisfying

H←Pv2 * Qv1 .

Proof. (1) ⇒ (2) : Let (f, F ) be uniformly bicontinuous with respect to (h,H),
Pv1 ⊆ H←Pv2 and (d,D) ∈ U2

v2 . Then we have Pv2 ⊆ U2(d,D) and so, Pv1 ⊆
H←Pv2 ⊆ H←U2(d,D) by Lemma 2.6. (2). Since (f, F ) is uniformly bicontinuous
with respect to (h,H), we get Pv1 ⊆ H←U2(d,D) ⊆ U1((f, F )−1(d,D)) and hence

www.SID.ir

WWW.SID.IR
WWW.SID.IR


Arc
hive

 of
 S

ID

Graded Diuniformities 101

(f, F )−1(d,D) ∈ U1
v1 .

(2)⇒ (3) : It is obvious since ”H←Pv2 * Qv1 ⇒ Pv1 ⊆ H←Pv2”.
(3)⇒ (1) : Let (3) be satisfied and suppose that (f, F ) is not uniformly bicontinuous
with respect to (h,H). Then there exists (d,D) ∈ DRS2

such that H←U2(d,D) *
U1((f, F )−1(d,D)). So H←U2(d,D) * Qv1 and Pv1 * U1((f, F )−1(d,D)) for a

v1 ∈ V [1 . Since H←U2(d,D) * Qv1 there exists v2 ∈ V [2 such that P (v1,v2) * H and

U2(d,D) * Qv2 . We have H← * Q(v2,v1) by Lemma 2.6. (1) and so (H←)→Pv2 *
Qv1 by Lemma 2.6. (4). So, H←Pv2 = (H←)→Pv2 * Qv1 and since (3), (f, F ) is
Uv11 − Uv22 uniformly bicontinuous.

On the other hand, since U2(d,D) * Qv2 we get Pv2 ⊆ U2(d,D) and so (d,D) ∈
Uv22 . Since (f, F ) is Uv11 −Uv22 uniformly bicontinuous, we have (f, F )−1(d,D) ∈ Uv11

and so Pv1 ⊆ U1((f, F )−1(d,D)) which contradicts with Pv1 * U1((f, F )−1(d,D)).
�

Theorem 5.18. For a graded diuniform texture space (S,S,U, V,V), (τUv , κUv ) ⊆
(T vU ,KvU) for each v ∈ V [ and in case of the texture V is plain (τUv , κUv ) = (T vU ,KvU)

for each v ∈ V = V [.

Proof. Let A ∈ S. A ∈ τUv ⇐⇒ ∀s ∈ A[, A ∈ ηUv (s)
Prop. 2.13.⇐⇒ ”A * Qs, Ps *

Qt ⇒ ∃(d,D) ∈ Uv : d[t] ⊆ A” ⇐⇒ ”A * Qs, Ps * Qt ⇒ ∃(d,D) ∈ DR :

d[t] ⊆ A and Pv ⊆ U(d,D)”
(9)

=⇒ A ∈ T vU and so, we have τUv ⊆ T vU . If V is plain,

since
∨
d[t]⊆A U(d,D) =

⋃
d[t]⊆A U(d,D) we get A ∈ T vU

(9)
=⇒ ”A * Qs, Ps * Qt ⇒

∃(d,D) ∈ DR : d[t] ⊆ A and Pv ⊆ U(d,D)”. Hence τUv = T vU .

On the other hand, A ∈ κUv ⇐⇒ ∀s ∈ S \ A, A ∈ µUv (s)
Prop. 2.13.⇐⇒ ”Ps *

A, Pt * Qs ⇒ ∃(d,D) ∈ Uv : A ⊆ D[t]” ⇐⇒ ”Ps * A, Pt * Qs ⇒ ∃(d,D) ∈
DR : A ⊆ D[t] and Pv ⊆ U(d,D)”

(10)
=⇒ A ∈ KvU and so, we have κUv ⊆ KvU. If V is

plain, since
∨
d[t]⊆A U(d,D) =

⋃
d[t]⊆A U(d,D) we get A ∈ KvU

(10)
=⇒ ”Ps * A, Pt *

Qs ⇒ ∃(d,D) ∈ DR : A ⊆ D[t] and Pv ⊆ U(d,D)”. Hence κUv = KvU. �

6. Conclusion

Uniform properties such as uniform continuity and uniform convergence are de-
fined in uniform spaces. So, uniform spaces are useful for an investigation of topo-
logical spaces. In this work, graded diuniformities are introduced and its relations
with diuniformities and graded ditopologies are investigated. Moreover, the cat-
egory of this new structure dfGDiU is formed and its relations with some other
categories are given.

Graded diuniformities are a generalization of diuniformities to the graded case.
Hence, each diuniformity is an example of a graded diuniformity. However it’s
not that easy to find a graded diuniformity which is not a diuniformity. We will
continue to study to find such further examples. On the other hand, a family of
diuniformities generates a graded diuniformity under some conditions (see Theorem
4.9.).

As expected, each graded diuniformity induces a graded ditopology called as
uniform graded ditopology (see Corollary 4.3., 4.4.). Thus, a functor can be defined
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from dfGDiU to dfGDiTop (see Corollary 5.16.). In this paper, basic categorical
properties of graded diuniformities are discussed without the relations with many
other categories (e.g. with the category of texture spaces). So, in a later work,
we intend to study further categorical properties, relations and problems, such as
the problem recommended by one of the referees: Is dfGDiU topological over the
category of sets or others?

Obviously, the structure of graded diuniformity can be helpful to define and
investigate the other uniform concepts in graded ditopological texture spaces.

Acknowledgements. The authors would like to thank the referees for their valu-
able comments which helped to improve this paper.
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R. EKMEKÇI AND R. ERTÜRK  يكريختي هاي دو گانه مدرج  
  

  Lawrenceتوسط [7 ]در ارائه گرديده اند مدرجي كه فضاهاي تركيب توپولوژيكي دوگانه . دهيچک
 ،Brown  ، Alexander Sostak له ، مؤلفين از منظر رسته اي مورد بررسي قرار گرفته اند. در اين مقا

تعريف شده است به  [13]ساختار يكريختي دوگانه در فضاهاي تركيب توپولوژيكي دو گانه را كه در 
توليد شده  دو گانه مدرج هاي  توپولوژيدو گانه مدرج تعميم مي دهند و  توپولوژيكيفضاهاي تركيب 

نين خواص يكريختي هاي مدرج را مورد مطالعه قرار مي دهند. آنها همچ دوگانه هاي يكريختيتوسط 
  دوگانه و يكريختي هاي مدرج را مورد مقايسه قرار مي دهند. 
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