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GRADED DIUNIFORMITIES

R. EKMEKCI AND R. ERTURK

ABSTRACT. Graded ditopological texture spaces have been presented and dis-
cussed in categorical aspects by Lawrence M. Brown and Alexander Sostak
in [7]. In this paper, the authors generalize the structure of diuniformity in
ditopological texture spaces defined in [13] to the graded ditopological texture
spaces and investigate graded ditopologies generated by graded diuniformities.
The autors also compare the properties of diuniformities and graded diunifor-
mities.

1. Introduction

Uniform spaces are significant tools for investigation of topological spaces in
many respects. Many concepts and properties such as uniform continuity, com-
pleteness and uniform convergence are defined by using uniform structure. So,
setting and investigating uniform structure in a topological structure is reasonable
and necessary for the deeper understanding of the topological structure.

The concept of fuzzy topological space was defined in 1968 by C.Chang as ordi-
nary subset of the family of all fuzzy subsets of a given set in [8]. As a more suitable
approach to the idea of fuzzyness, in 1985, Sostak and Kubiak independently re-
defined fuzzy topology where a fuzzy subset has a degree of openness rather than
being open or not [16, 11] (for historical developments and basic ideas of the theory
of fuzzy topology see [17]).

In classical topolgy the notion of open set is usually taken as primitive with that
of closed set being auxiliary. However, since the closed sets are easily obtained as
the complements-of open sets they often play an important, sometimes dominating
role in topological arguments. A similar situation holds for topologies on lattices
where an order reversing involution plays the role of set complement. It is the case,
however, that there may be no order reversing involution available, or that the pres-
ence of such an involution is otherwise irrelevant to the topic under consideration.
To deal with such cases it is natural to consider a topological structure consisting
of a priori unrelated families of open sets and of closed sets. This was the approach
adapted from the beginning for the topological structures on textures, originally
introduced as a point-based representation for fuzzy sets [2, 3]. These topological
structures were given the name of a dichotomous topology, or ditopology for short.
They consist of a family 7 of open sets and a generally unrelated family x of closed
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sets. Hence, both the open and the closed sets are regarded as primitive concepts
for a ditopology.

A ditopology (7, k) on the discrete texture (X, P(X)) gives rise to a bitopological
space (X, 7,x°). This link with bitopological spaces has had a powerful influence
on the development of the theory of ditopological texture spaces, but it should be
emphasized that a ditopology and a bitopology are conceptually different. Indeed,
a bitopology consists of two separate topological structures (complete with their
open and closed sets) whose interrelations we wish to study, whereas a ditopology
represents a single topological structure.

Ditopological texture spaces were introduced by L. M. Brown as a natural ex-
tention of the work of the second autor on the representation of lattice-valued
topologies by bitopologies in [10]. The concept of ditopology is more general than
general topology, bitopology and fuzzy topology in Chang’s sense. An adequate
introduction to the theory of texture spaces and ditopological texture spaces may
be obtained from [2, 3, 4, 5, 6]. Diuniform texture spaces were introduced by S.
Ozcag and L. M. Brown in [13] and then several papers have been published on
this subject such as [14, 15].

Recently, L. M. Brown and A. Sostak have presented the concept ”graded di-
topology” on textures as an extention of the concept of ditopology to the case where
openness and closedness are given in terms of a priori unrelated grading functions
[7]. The concept of graded ditopology is more general than ditopology and fuzzy
topology in Sostak’s sence. Two sorts of neighborhood structure on graded ditopo-
logical texture spaces are presented and investigated by the authors in [9)].

The aim of this work is to generalize the structure of diuniformity in ditopolog-
ical texture spaces defined in [13] to the graded ditopological texture spaces and
investigate graded ditopologies generated by graded diuniformities. We also com-
pare the properties of diuniformities and graded diuniformities and finally study
categorical perspective of this new structure.

2. Preliminaries

We recall various concepts and properties from [3, 4, 5, 6] under the following

subtitle.
2.1. Ditopological Texture Spaces: Let S be a set. A texturing S on S is a

subset of P(S) whichis a point separating (i.e. for all s,¢ € S, s # t there exists
aset A e S suchthat s € A, t € Aors & A, t € A), complete, completely
distributive lattice with respect to inclusion which contains S, () and for which
meet A coincides with intersection () and finite joins \/ with unions |J. The pair
(S,8) is then called a texture or a texture space.

In general, a texturing of S need not be closed under set complementation, but
it may be that there exist a mapping o : § — S satisfying o(c(4)) = A and
ACB=0(B)Co(A)forall A, B € S. In this case o is called a complementation
on (5,8) and (5,8, 0) is said to be a complemented texture.

For any texture (S,S), many properties are conveniently defined in terms of the
» — sets

P.=(){AeS|secA}
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and the ¢ — sets
=\/{4eS|s¢Ay=\/{P.|ue S s¢P,}

A texture (5, 8) is called a plain texture if it satisfies any of the following equiv-
alent conditions:

) Ps £ Qs for all s € S
(2) A=V, Ai=U;c Aiforall A;€ Siel
Recall that M € S is called a molecule in S if M # () and M C AUB, A/Be S
implies M C A or M C B. The sets Ps, s € S are molecules, and the texture (S5, S)
is called ”simple” if all molecules of S are in the form {P; | s € S}. For aset A € S,
the core of A (denoted by A°) is defined by

=({JAilient {AilieTyCS, A= \/{A; |i€l}}.
Theorem 2.1. [4] In any texture space (S,S), the following statements hold:

(1) sg A=>ACQ,=s¢g A forallsc S, AcS:

(2) A" ={s| AL Qs} for all A€ S.

(5) For A; €S, j € J we have (V;c; A N’ :UjeJA?.

(4) A is the smallest element of S containing A° for allA € S.

(5) For A,B €S, if A{ B then there exists s € S with A€ Q, and Ps € B.

(6) A={Qs | Ps £ A} forall A€ S.
(7) A=\V{P; | AL Qs} for all A€ S.

Example 2.2. (1) If P(X) is the powerset of a set X, then (X,P(X)) is the
discrete texture on X. For z € X, P, = {z} and Q, = X \ {z}. The mapping
mx : P(X) = P(X), nx(Y) =X \Y for Y C X is a complementation on the
texture (X, P(X)).

(2) Setting I = [0,1], J.= {[0;#),[0,r] | » € I} gives the unit interval texture
(L,J). Forr € I, P. = [0yr] and @, = [0,7). And the mapping ¢ : J — J,
(0,7] =10,1—r), [0 r) =[0,1— r] is a complementation on this texture.

(3) The texture (L, £,)) is defined by L = (0,1], £ = {(0,7] | » € [0,1]}, A((0,7]) =
(O,l—r].ForreLP (0,7] = Q.-

(4) S = {0,{a,b}, {0}, {b, c},S} is a simple texturing of S = {a,b,c}. P, = {a,b},
P, = {b},P. = {b,c}. Tt is not possible to define a complementation on (S5,S).
(5)-If (S,85),(V,V) are textures, the product texturing S ® V of S x V consists
of arbitrary intersections of sets of the form (A x V)U (S x B), A € §,B € V,
and (S x V,;S ® V) is called the product of (S,S) and (V,V). For s € S,v € V,
Py = Py x Py and Qs0) = (Qs x V) U (S x Q). The p-sets and g-sets of the

product (S, P(S)) x (V,V) will be denoted by P(s.) and Q , respectively.

S’U

Proposition 2.3. [18] For the product textures P(S) ®V and P(V)® S, the fol-
lowing properties are satisfied.

(1) E(S,v) SZ Q(s,v’) < Py SZ Qv

(2) P(U,s) /(Z Q(U,S’) < Py EZ Qs/
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A dichotomous topology, or ditopology for short, on a texture (S,S) is a pair
(1, k) of subsets of S, where the set of open sets 7 satisfies
(T1> S,(Z) eT
(Tg) Gl,Gg eET==G NGy eT
(T3) GieTyicel=\,G, et
and the set of closed sets k satisfies
(CTl) S, @ S
(CTQ) Kl,Kg crk=>Ki UKy €eR
(CTg) K,eriel=> mzKl € K.
Hence a ditopology is essentially a ”topology” for which there is no a priori relation
between the open and closed sets.

Definition 2.4. [6] Let (7, ) be a ditopology on (S,S).
(1) Let s € S°. Then a set N € S is called a neighborhood of s if there exists
G € 7 satisfying P, C G C N ¢ Q..
(2) Let s € S. Then a set M € S is called a coneighborhood of s if there exists
K € k satisfying Py ¢ M C K C Q.
If the set of nhds (conhds) of s is denoted by 7(s) (u(s)) respectively, then (n, u) is
called dinhd system of (7, k).

2.2. Direlational Uniformities and the Uniform Ditopology. [4, 12, 13] Let
(5,8) and (V,V) be textures. P(S’v), @(S’U) will denote the p-sets and qg-sets for
the texture (S x V,P(S) ® V) and P, ), @(U’S) will denote the p-sets and g-sets
for the texture (V x S,P(V)® S).

Definition 2.5. [4] Let (5,S) and (V, V) be textures. Then
(1) r € P(S)®V iscalled a relation on (S,S) to (V, V) if it satisfies
Rl r € Q(s,v), Py £ Qs =1 € Q(s',v).
R2 r ¢ Q(s,v) = Js' € S such that P; € Qs and r € Q(s,v).
(2) ReP(S)®V is called a co-relation on (5,S) to (V,V) if it satisfies
CR1 P(s;v) L R, Ps € Qs = P(s',v) € R.
CR2 P(s,v) ¢ R= 3s' € S such that Py ¢ Q, and P(s',v) ¢ R.
(3) A pair (r,R)y where r is a relation and R a co-relation on (S5,8) to (V,V)
is called a direlation on (S,S) to (V, V).

The direlations can be ordered as follows: for direlations (p, P), (¢,Q) on (S,S)
to (V, V) it is written (p, P) C (¢, Q) if and only if p C g and Q C P.

For a texture (5,8), i = is = \/{P(ss) | s € S} is a relation and I = Ig =
ﬂ{@(s,s) | s € S} is a co-relation on (5,S) to (S,S). That is, (4,1) is a direlation
and we call it the identity direlation on (5,S).

Let (r, R) be a direlation on (5, S) to (V,V). The inverses of r and R are defined
by 7 = Qs | 7 € Qs,0)} and RT = \V/{P(y ) | P(s,v) € R} where R is
a relation and ¢ is a co-relation on (V,V) to (S,S). The direlation (r, R)< =
(R, r%) is called the inverse of (r, R).
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For Ae S, 17 A= Qv | Vs,r € Q) = A C Qs} is called the A-section of
rand R7A=\/{P, | Vs,P(.,) £ R= P, C A} is called the A-section of R.

For B €V, r"B = \/{Ps | Vv,r € Q(s,) = P, C B} is called the B-presection
of r and R"B = ({Qs | Yv,P(sv) £ R = B C Q,} is called the B-presection of
R.

The family of direlations on a texture space (5,S) will be denoted by DRg or if
there is no confision just by DR.

For a direlation (d, D), d~ P, and D~ @Q; will be denoted by d[t] and D[t] respec-
tively.

Lemma 2.6. [4, 18] Let r,r1,r2 be relations, R, R1, Ry co-relations on (S,S) to
(WV) with ry C 79, R1 - RQ, Al,Ag S S, A1 - AQ, Bl,BQ S V, B1 - BQ, A]‘ S S,
jedJ, B,eV, ke K.
(1) r & @(S,U) & P €7 and P,y € R R ¢ @(U’S) for all s € S,
veV.
(2) 17 A1 Cry’Ag, R77A1 C Ry Ag, 5 By C i By, RSBy C Ry Bs
(3) T%(VjeJAJ’) = vjeJ T%AJ" R%(ﬂjGJ AJ’) = njeJ R%AJIF Te(ﬂkeK By) =
ﬂkeﬁr“Bk, R™(Vyex Br) :7\/%1( R Bg.
(4) r¢ Qsw) & 77 Ps ¢ Qy and Py )y L R P, € R Q..
Definition 2.7. [4] Let (S,S), (V,V) and (Y, Y) be textures.
(1) If p is a relation on (5,8) to (V,V)-and ¢ is a relation on (V,V) to (Y,))
then their composition is the relation g o p on (S,S) to (Y,)) defined by

gop= \/{ﬁ(syy) | v eV with p ¢ @(S’v) and g ¢ é(v,y)}.

(2) If P is a co-relation on (S,8)to (V,V) and @ is a co-relation on (V,V) to
(Y,Y) then their composition is-the co-relation @ o P on (S5,S) to (Y,Y)
defined by
Qo P =(WQy |30 €V with Py & P and P, & Q}.

(3) The composition of direlations (p, P) and (¢, Q) is the direlation (¢, Q) o
(p, P) defined by (¢,Q) o (p, P) = (gop,Qo P).

Also it is shown in [4] that the composition of direlations is associative and
(g, Q) 0 (P, D)™ =1p, )" o (¢, Q)"
Definition 2.8. [4] Let (f, F') be a direlation from (5, S) to (V, V). Then (f, F) is
called adifunction from (S,S) to (V,V) if it satisfies the following two conditions:
(DF1) For s,s' € S, Ps € Q¢ = v €V with fJQ Q(s,v) and Py ) € F.
(DF2) For v, € Vand s€ S, f ¢ Q(s,v) and P50 ¢F =P, ZQ,.
It is clear that (ig, Is) is a difunction on (S, S) and we call it the identity difunction
on (S5,S8).
Definition 2.9. [12] Let (p, P) and (g, @) be direlations on (5,S) to (V, V). Then

phlqg= \/{F(s,v) | Jt € S with Rs ,@ Qt and D, q ,¢_ @(t,v)}a
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PUQ = NQs. | Tt € S with P, £ Q, and P,y € P,Q},

(p, P)M(q,Q) = (pNq, PUQ).

Proposition 2.10. [12] Let (p, P) and (q,Q) be direlations on (S,S) to (V,V).
Then

(1) pMyq is a relation on (S,8) to (V,V). It is the greatest lower bound of p
and q in the set of all relations on (S,S) to (V,V), ordered by inclusion.

(2) PUQ is a co-relation on (S,S) to (V,V). It is the least upper bound of P
and @ in the set of all co-relations on (S,S) to (V, V), ordered by inclusion.

(8) The direlation (p, P)M(q, Q) is the greatest lower bound of (p, P) and (q, Q)
in the set of all direlations on (S,S) to (V,V), ordered by the relation C.

(4) (pN@)~ =p~ Uqg" and (PUQ)™ =P NQ".

(5) For Ae S, (pNq)~(A) Cp7(A)Ng7(A) and P7(A)UQ7(A) C (PU
Q) (4).

(6) For BV, p=(B)Ugq(B) C (p7)~(B) and (PQ)~(B).&'P~(B)n
Q- (B).

(7) Let (p1, P1), (p2, P2) be direlations on (S,S) to (V,V) and (g1, Q1), (¢2,Q2)
be direlations on (V,V) to (Y,Y). Then ((¢1,Q1) M (g2, Q2)) o ((p1, P1) M
(p2, P2)) T ((q1, Q1) o (p1, P1)) M (g2, @2) © (p2, P2))s

Definition 2.11. [13] Let (5, S) be a texture and U/ a nonempty family of direla-
tions on (S,S), i.e. § #U C DRg. If U satisfies the conditions

(Uh) (i,1) C (d D) for all (d, D) € U,

(Us) (d,D)elU, (e, F) € DR and(d, D) C (e, E) implies (e, E) € U,

(Us) (d,D), (e, E) € U implies(d, D) (e, E) € U,

(Uy) Given for all (d, D) € U ‘there exists (e E) € U satisfying (e, E) o (e, E) C

(d, D),

(Us) Given for all (d, D) € U there exists (¢, C) € U satisfying (¢, C)* C (d, D),
then U is called a direlational uniformity on (S, S) and the triple (S, S,U) is known
as a direlational uniform texture space. We’ll use ”diuniformity” and ”diuniform
texture spaces” instead of the terms ”direlational uniformity” and ”direlational
uniform texture space” respectively.

Example: 2.12. [13] Let (I,J) be the unit interval texture. For e¢ > 0 define
de = {(r,s) | r,s €], s<r+e}, D.={(r,s) | r,s €I, s < r—e}. Then the
family Uy = {(d; D) | (d, D) € DR and there exist € > 0 with (d., D) C (d, D)} is
a diuniformity on (I, 7).

Proposition 2.13. [13] Let (S,S,U) be a diuniform texture space. Then the family
(W(S)?/’LU(S))7 S Sb7 deﬁned by

mu(s)={NeS|NZQs, P, £ Q.= 3(d,D) €U, d[t] C N}

fu(s) ={M eS| P, ¢ M, P,ZQs= 3(d,D)elU, MCDlt]}
is the dineighborhood system for a ditopology on (S, S).
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Definition 2.14. [13] Let (S, S,U) be a diuniform texture space and ny(s), tze()
defined as above. The ditopology with dineighborhood system {(my(s), py/(s) | s €
5"} is called the uniform ditopology induced by U and we denote it by (72, fzs).

2.3. Graded Ditopological Texture Spaces. [7] Let (5,S), (V,V) be textures
and consider 7, : S — V satisfying

(GTy) T(S) =T =V

(GTQ) T(A1> N T(AQ) - T(Al N A2) VA, Ay €S

(GT3) nje] T(A]) - T(\/jeJ AJ) VA] S S,j eJ
and
(GCTy) K(S)=K(0) =V
(GCTQ) ’C(A1> n IC A ) - (Al U A2> VA, Ay €S
(GCT3) n]eJK( ) K(ﬂJeJAj) VAJ' € S,j eJ
Then T is called a (V, V)-graded topology, K a (V,V)-graded cotopology and (7, K)
a (V,V)-graded ditopology on (S,S). The tuple (S,S,T,K;V,V) is called a graded
ditopological texture space. For v € V' we define

T'={Ae€S|P,CT(A)}, K'={Aec S|P, CKA)}

Then (77,K") is a ditopology on (5, S) for each v € V. That is; if (S,S,7T,K,V,V)
is any graded ditopological texture space then there exists'a ditopology (77,K")
n (5,8) for each v € V.
If (S,S,0) is a complemented texture space and (7, K) a (V,V)-graded ditopol-
ogy on (S, 8), then (Koo, Too) is also a (V, V)-graded ditopology on (5, S). Besides
(T,K) is called complemented if (7,K) = (Koo, T o o).

Example 2.15. [7] Let (S, S, 7, k) be a ditopological texture space and (V, V) the
discrete texture on a singleton. ‘Take (V,V) = (1,P(1)) (The notation 1 denotes
the set {0}) and define 79 :. S — P(1) by 79(A) =1 < A € 7. Then 79 is a
(V,V)-graded topology on (S, S). Likewise, k9 defined by k9(A) =1< A€ kis a
(V,V)-graded cotopology on (S,S) and (79, k9) is called the graded ditopology on
(S,8) corresponding to ditopology (7, k).

Therefore graded ditopological texture spaces are more general than ditopologi-
cal texture spaces.

The graded dineighborhood systems of the graded ditopological texture spaces
were defined in [9]. To avoid a long preliminaries we will give the following equiva-
lent proposition instead of the definition.

Proposition 2.16. [9] Let (T,K) be a (V,V)-graded ditopology on texture (S,S)
and N : §* — VS, M : S — VS mappings where N(s) = N, : S — V for each
s€ S and M(s) = My : S — V for each s € S. Then (N, M) is a graded dinhd
system of the graded ditopological texture space (S,S,T,KC,V,V) iff

for each s € S°, Ae S and
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MS(A):{g?p{]C(B):Psg—AngstBes}a Ilj:%j (2)

for eachse S, A€ S.

Theorem 2.17. [9] Let (T,K) be a (V,V)-graded ditopology on a texture space
(S,8). If (N, M) is the graded dinhd system of the graded ditopological texture
space (S,S,T,KC,V,V), then the following properties hold for all A, A;,As € S:
(1) For each s € S°;
(N1) Ny(A) #D=AZ Qs
(N2) N.(0) = 0 and N.(5) = V
(N3) Al C A2 = NS(Al) - NS(AQ)
(N4) AN As g Qs = NS(Al) AN NS(AQ) C NS(Al n AQ)
(N5) Ny(A) C sup{\ycp Ns(B) : P,C BC AZ Q,,Be S8}
(2) For each s € S;
My(A)#0=P, ¢ A

Theorem 2.18. [9] If the mappings N : Sb— VS, M . S — VS satisfy the
conditions N1— N4 and M1 — M4 in Theorem 2.17. respectively then the mappings
T, Ky : S =V, defined by

Tn(@) =[] N(4) (3)
seAb

Kar(A) = () M.(A) (4)
s€S\A

where A € S, form a (V;V)-graded ditopology on texture (S,S).

3. The Least Upper Bound of Direlations

The greatest lower bound of two direlations is defined in [12]. We’ll need the
least upper bound of any family of direlations in the next section, so we’ll define it
and give some properties of it in this section. We begin to define with the extention
of the greatest lower bound of two direlations to the greatest lower bound of any
family of direlations. The extention of Proposition 2.10. to ”"any family” case will
be given as Proposition 3.2. with similar proof of Proposition 2.10.

Definition 3.1. Let (p;, P;)icr be direlations on (5,S) to (V,V). Then
[pi = \/{P(ew) | Tt € Swith Pe ¢ Qr and Vi € I,p; & Qs 0} (5)
iel

|| P = (@ | 3t € S with P € Qs and Vi € I, Py ) & Pi} (6)

el
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[ i B = ([ |pin || P)- (7)
i€l i€l i€l
Proposition 3.2. Let (p;, P;)iecr be direlations on (S,S) to (V,V). Then
(1) [ pi is a relation on (S,S) to (V,V). It is the greatest lower bound of
{pi}icr in the set of all relations on (S,S) to (V,V), ordered by inclusion.
(2) ;er Pi is a co-relation on (S,S) to (V,V). It is the least upper bound of
{P;}ier in the set of all co-relations on (S,S) to (V,V), ordered by inclusion.
(8) The direlation [, (pi, Pi)icr is the greatest lower bound of (pi, Pi)icr in
the set of all direlations on (S,S) to (V,V), ordered by the relation C.
(4) ([ier i)™ =Lierpi and (Ui P)™ =[Nier P
(5) For A€ S, ([N;e; pi)(A) € Nyerpi(A) and \,c; Pi(A) C (e, Pi)(A).
(6) ForBeV, \/iejp;_(B) C (l_liejpl) ( ) and (|_|161 )T (B) € ﬂie[ P (B).
(7) Let (pi, P;)icr be direlations on (S,S) to (V,V) and (¢;, Qi)ic1 be direlations
n (V,V) to (Y,Y). Then (l_lieI(QiaQi)) o (l_lteI(pu 5)) B HzeI((q“Q )o
Proof. (1) At first, to show that [],.; p; is a relation on (S,S) to (V,V) we will
show that [ ], p; satisfies the conditions (R1-R2) in Definition 2.5.
R1: Let [1,c;pi € Q(s,v) and Py € Q. Since [,c; pi £ Q(s,v), there exists
t €S, v €V such that Py € Q¢, "Vi € I, p; € Q(t,v) ”,andPsv Z Q(s,v).
Now, considering Py ¢ Qs we have Py C Py and so "3t € S : Py ¢ Q; and
Viel, pi € Q(t,v")". Hence, we get

P(s',v") € {P(s,v) | 3t € S with P, € Q,and Vi € I, p; € Q(t,v)}.  (8)

On the other hand, P(s,v’) f@_st :»PU/ ,¢_ Qo = P(s',v') ¢ Q(s',v)
Therefore, considering (8) we have [(,z;9: € Q(s',v)

R2: Let [T,c;pi € Q(s,0). Then there exists ¢ € S such that P, ¢ @, and
"Wioe I, p & Q(t,v'); P(s,v') € Q(s,v). From P(s,v') ¢ Q(s,v) we have
P, ¢ Q.. Considering this Wlth "Py & Q7 we get P(s,v) Q Q(t,v) and so
[Micr pi € Q(t,v). Therefore we obtain that 3t € S : Py € Qy, [,y i € Q(t,v).

Suppose that [ ], pi ¢ pj for some j € I. Then there exist s € S, v € V such
that [N;e; pi & Qs,p) and Prsyy € pj. From (5) and Proposition 2.3. (1), there
exist v' € V, t € S such that P,y € Q,, Ps € Q; and p; ¢ @(t)v,) for all ¢ € I.
Since pj.is a relation, from (R1) we get p; € @(S’v,). Also we have @, C Q. from
P, & Qq. So;we obtain p; € Qs ) and it follows that P ) C p;. But this result
contradicts with F(S,v) ¢ pj. Therefore we get [licrpi € p; for all j € I, that is
[ ;s piis a lower bound of {p;}ier.

Let 7 be a relation with r C p; for each ¢ € I. Suppose that r ¢ [;c;pi- Then
there exist s € S, v € V such that r € Q(,,) and P(s ) € [l pi- Since r is a
relation, using (R2), there exists s’ € S such that Ps ¢ Qo and r € Q(,r - So we
get p; € Q (s vy since 7 C p; for each i € I. Hence we obtain P, .) € [];c;pi by (5)
but this result contradicts with F(S’v) & [N;er pi- Therefore [, p; is the greatest
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lower bound of {p;}ier-

(2) Similar to (1).

(3) It is clear from (1) and ( ).

(4) Suppose that ([1,c; 1)) € e pi- Then there exist s € S, v € V such
that ([,e;pi)" € Qus) and Py o) & |_|ZeIpf From (6), there exist s’ € S with
P € Qq, oy and t € V such that Py € Qu, Py,ey & pi for each i € I. Using
Lemma 2.6., we get p; € Q(y 4. So, from Py € Q. and( ) we have P, 1) C [ic; pi-
Hence, considering P, C P; obtained the contradiction P ) C Hielpi.

Now, suppose that | |;c; pi~ € ([1,e;pi)* - Then there exist s € S, v € V such
that | |,., pi~ ¢ Qv and Py 4 7 ( lelpz)“ From Lemma 2.6. we get [,c; pi €
@(Sﬂl) and considering (5) there exist v € V, t € S such that P (sw) € Q(é )
Py & Qi, pi € Q4,0 for each i € I. Considering Lemma 2.6., we get P(v/ o € of
for each i € I and so by using (6) we have | |,.; p;~ C Q(U 5. Since @ € Qs, it
follows that | |;c; pi~ € Q, s which contradicts with | |, pi~ & Q(v’s) Hence we
get | |;c;pi” = ([,e; pi) . Similarly it can be shown that (Wses ) =1 icr P

(5) In the contrary, let it be ([;c; pi)(A) € ;e pi(A). Then we have ([, pi)(A)
¢ Q, and P, & (;c; pi(A) for some v € V. Since (I_'ielpi)(A) ¢ Q. there ex-
ists a s € S such that ([,c;pi) € Q) and A € Q,. So'there exist v’ € V,
t € S such that Py € Qs Ps € Q¢ and p; € Q) for each i € I. Now
we get p; Q Q(s,0) for each i € I by (R1). Further we have at least a j € I with
P, ¢ p;j(A). So there exists u € V with Py ¢ Q so that p; € Qy..,) = A C Q;
for each s’ € S. Since p; € Q(,,) and Q, .y S Q(s.,) We get p; € Q). Hence,
considering "p; € Qg = A C Q; for each s’ € S” we obtain A C @y which
contradicts with A ¢ Q.

Similarly, it can be shown that \/,.; Pi(A) C (| ;c; Pi)(A).

(6) It is clear from (4) and (5):

(7) To show that ([ ];c (gi, Qi) © (M, (pis Pi)) E [ies (4 Qi) o (pi, Fi)) and
equivalently ([1;c7qi o[ l;cppi, Llicr Qiollicr Pi) E ([Tier(giopi), Lics( zop))
must show that (I—lieI gi) © (Hie[ pi) C I—liEI(Qi op;) and UieI(Qz P;) C (l_lzef Qz
Ll,c; Pi). Firstly, suppose that ([N,c; ) © ([Tie;pi) € [Nics(i © pi). Then there
exist s € S, € ¥ such that ([N;c; @) o (e, pi) € Qs and Pgyy L [Nier(giopi)
and so, there exist v € V such that [,., pi € Q(sw) and [,c; ¢ € Q(v,y)'

Now;. considering [1,c;pi € Qs and (5), there exist ' € V, t € S with
Py & Qq such that P(s oy € Qs and pi € Q(ypy for each i € I. Similarly,
from [N;c; a0 € Qv and (6), there exist y € Y, v” € V with P, € Q,» such
that P,y € Quy) and ¢ & Q(ynyy for each i € 1. Since Py ) € Qs we
have P, ¢ Q, and so P, C P,. So, considering P, ¢ Q. and P, C P, we
get Py & Q. Since ¢ € Q) for each i € T and P, & Qur, by (R1), we
obtain that ¢; € Qs for each i € I and since "p; ¢ @(t o) for each i € I we
get giop; ¢ Q (ty) that is P,y C q; op; for each i € I. On the other hand,
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since Py ) € Qyy) we have Py & Qy and so Py € Q. Hence, we get
giopi € @(t,y) for each i € I. Since Py ¢ Q; and (R1) we get P, ) € [1;c;(qiops)
which contradicts with P,y € [T;c; (4 0 pi).

It can be also shown that | |,;(Qi o P;) C (e Qi) © (Lies Ps) in the same
way. [l

Definition 3.3. Let (p;, P;)icr be direlations on (5,8) to (V,V). Then

I_Ipi = |—|{q | Vi € I, p; Cq, qis arelation from (S,S) to (V,V)},
il

|—| P = |_|{Q |Viel, QC P, Q isa corelation from (S,S) to (V,V)},

icl

|_| ply % ZEI |_|pz7|_|P

i€l i€l i€l

Proposition 3.4. Let (p;, P;)icr be direlations on (S,8) to (V;V). Then
(1) ;erpi is a relation on (S,S) to (V,V). It is the least upper bound of
{pitier in the set of all relations on (S,S) to (V,V), ordered by inclusion.
(2) [;c; Pi is a co-relation on (S,S) to (V, V). It is the greatest lower bound of
{P;}icr in the set of all co-relations on (S,S) to (V,V), ordered by inclusion.
(8) The direlation | |, ;(ps, P;)ier is the least upper bound of (ps, P;)icr in the
set of all direlations on (S,S) to (V,V), ordered by the relation C.
(4) Uierp)™ =T lier i and ([ig; P = Lics P
(5) Let (pi, P;)icr be direlations.on (S, S) to (V,V) and (g, Qi)icr be direlations
n (V. V) to (Y, ). Then (Use, (@i, Qi) © (Uies (pi, P2)) E Lie (g, Qi) ©
(pi, P2))-
Proof. (1), (2) and (3) are straightforward from Definition 3.3.
4) UWierp)™ = (HahVie L pi Cqh)” =He" |Viel ¢= Cpi} =
i pi-
(e P)™ = (HQ | Vie I, Q € P} =THQ™ [Viel, B~ CQ7} =

|—|z€I P<—
(5) From Definition 3.3. and Proposition 3.2. we get: (| |;c; @) o (e pi) =

(He | Vice I, g€ q})o([Hp | Viel, pp Cp}) C[H(gop) |Viel, ¢ C
qand p; CprE[H(gop) [Viel, (giopi) € (qop)} = ;es(qiopi). Similarly it
can be shown that [ ],_;(Q; 0 P;) C ([ ],c; Qi) o ([ 1,c; Pi)- O

4. Graded Diuniformity and Uniform Graded Ditopology

Definition 4.1. Let (S,S), (V,V) be textures and DR denote the family of all

direlations on (S, S). A mapping il : DR — V is called a (V, V)-graded diuniformity
n (5,8) if it satisfies:

(GU1) 8U(d, D) # 0 = (i,1) C (d, D) for all (d, D) € DR

(QU2) (d,D) C (e, E) = 8(d, D) C (e, E) for all (d, D), (e, E) € DR

(GU3) $1(d, D) A 8l(e, E) C $1((d, D) N ( E)) for all (d, D), (e, E) € DR
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(GU4) V(d,D) € DR J(e, E) € DR : U(d, D) C
(GU5) V(d,D) € DR I(c,C) € DR : U(d, D) C
(GU6) \/{Md,D) | (d,D) e DR} =V

In this case the tuple (S,S,4, V, V) is called a graded (direlational) diuniform tex-
ture space. From now on, we call graded direlational diuniform texture space just
by graded diuniform texture space.

$l(e, E) and (e, E)o(e, E) C
(e, C) and (¢, C)* C (d, D)

Proposition 4.2. Let (S,S,4,V,V) be a graded diuniform texture space. For each
s € 8" the mapping NY: 8 —V defined by

wo gy Negg, Vagcatlld, D), AL Qs
wi(a) = { flrga Ve iy

for all A € S, holds the properties (N1) — (N4) of Theorem 2.17. For each s € S
the mapping M : S — V defined by

any [ Negq. Vacpyd, D), PoZ A
MS(A)_{V), P, cA

for all A € S, holds the properties (M1) — (M4) of Theorem 2.17.

Proof. (N1) and (N2) are clear. (N3): Let Ay, As € S, Ay C Ay. If A; = ) then
Nf(Al) =0C Nu(Ag). If Ay # 0 then we have

= V 4@p)c (| \ Wd D) =N (4.

P.ZQ, d[t]CA; P, ¢Q, d[t]C A2
(N4): Let A1,A2 S S A1 N Ag 7é @ SO using (GU3) we get
NS (ADANKA) =( (] V 4@dDYA( ) V e E)

PsZQq dlt]S A1 PsZQq¢ e[t]CA2
=V g4@Dr \/ der)= (N V (8U(d, D) A (e, E)))
P Q¢ d[t]CAx e[t]CAs Ps¢Qy dlt]CA1, e[t]CAs
c ) V  WwdDnEE)c ( Vo Uk K) = N (AN As)
Ps¢Qy d[t]CAL, e[t]CAz Ps@Q klt]CAINA,

since (dMe)[t] = (dMNe)” P, Cd"PNe P, C d[ ]Nelt] € Ay N A and (d, D) M
(e,B)=(dMe;DUE) € DNR.

Similarly it can be shown that M holds the properties (M1)— (M4) of Theorem
2.17. O

Corollary 4.3. Let (S,S8,4,V,V) be a graded diuniform texture space. Then the
mappings Ty, Ky : S — V defined by

A= NND= N V WD), 9)

sEAP s€A® P,¢Q, d[t]CA

Ku(A) = ﬂ ﬂ ﬂ \/ U(d, D) (10)

seS\A sESNA P,ZQ, ACDIt
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where A € S, form a (V,V)-graded ditopology (Ts, Kg) on (S,S).
Proof. 1t is clear from Theorem 2.18. |

Corollary 4.4. The mappings Ty, s : S = V defined in Corollary 4.3. may also
be written as

Tu(A) = ﬂ \/ U(d, D), Ky(A4) = m \/ iU(d, D) (11)
A

te Ab d[t]C teS\A ACDI[t]

where A € S.

Proof. If we define the sets Zy = {t € S | A € Qs, Ps € Q¢ for some s € S},
Zo={te S|P ¢ A P ¢ Qs for some s € S} then we have Z; = A" and
Zy =8\ A by Theorem 2.1 (5). So, for each 4 € S,

TuA = N N'@w= N N \/ wd,D)y=( V u@D= () .\ udD),

seAb seAb PsZQy dlt]CA teZy d[t]CA teAb d[t]CA
KgyA= (N Mi= N N V uwub= V iD= [ \ «dD)
sES\A SE€S\A P, ¢ Qs ACDIt] tEZy ACDIt] teS\A ACDIt]
is obtained. O

Definition 4.5. A graded ditopolgy generated by a graded diuniformity as in
Corollary 4.3. is called a uniform graded ditopology:

Example 4.6. (1) Let (S5, S,4,V,V) be a graded diuniform texture space. Then
the set 4" = {(d, D) € DR | P, C $(dy:D)} # Bis a diuniformity on (S,S) for each
veVP.

(2) If U is a diuniformity on (S,8) then the mapping $f; : DR — P(1) defined
by

1, d,D)eU
ﬂu(d,D){@, (dD)QZ/{

is a (1, P(1))-graded diuniformity on (S, S).

9

Thus, graded diuniformities which we introduced in Definition 4.1. are more
general than diuniformities on texture spaces.

Definition 4.7. Let (5,S), (V,V) be textures and U, diuniformity on (5,S) for
each v € V. The family {U, },cv is called V-compatible if U, = ({Uy | Py € Qu
for each v € V.

Proposition 4.8. Let (S,S), (V,V) be testures. If {Uy}vev is a V-compatible
family of diuniformities on (S,S) then

VAP, | (d,D) et} =({Qu | (d, D) ¢ U} (12)

for each (d, D) € DR.
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Proof. Suppose that \/{P, | (d,D) € U,} € N{Qv | (d,D) & Uy,}. Then there
exists v € V with (d, D) € U, such that P,  (\{Q. | (d, D) & U, }. So we get that
P, ¢ Q¢ and (d,D) ¢ U, for at € V. Since {U, },ev is V-compatible, we obtain
that U, C U; and this implies the contradiction (d, D) & U,.

Now we suppose that ({Q. | (d, D) € U,} € VV{P, | (d,D) € U,}. Then there
exists ¢ € V such that (\{Q, | (d,D) ¢U,} € Q, and P, € \/{P, | (d, D) € U, }. So
we get the contradiction (d, D) € U; and (d, D) € U;. Hence we have the equality
\/{Pv|(d7D)€uv}:n{Qv|(daD)€uv} U

Theorem 4.9. Let (S,S), (V,V) be textures and {Uy, }vey be a V-compatible family
of diuniformities on (S,S). Then the mapping i : DR — V defined by

D) =\/{P, | (d,D) €Uy}, (d,D)€DR (13)
is a (V,V)-graded diuniformity on (S,S).

Proof. To show that LU(d, D) is a (V,V)-graded diuniformity on (.5,8) we will show
that the properties of Definition 4.1. are satisfied.

GUL: Let (d,D) € DR. U(d,D) # 0 = Jv € V sothat (d,D) € U, = (i,I) C
(d, D).

GU2: Let (d,D), (e,E) € DR, (d,D) C (e, E). ¥ 1U(d, D) =  then (GU2)
holds. So, let $(d, D) # 0. Then we have (d, D) € U, for-some v € V. We get
Wd, D) =V{P, | (d,D) € U} C V{P, | (e, E) € U,} = (e, E) since "(d, D) €
U, = (e, E) eU,” for each v € V.

GU3: Let (d, D), (e, E) € DR. If 8(d, D) = 0 or $4(e, E) = @ then (GU3) is hold.
So, let 3U(d, D) #  and U(e, E) # 0. Then we have (d,D) € U,, and (e, E) € U,
for some v,u € V. Since " (d, D), (e,B) € U, = (d, )I‘I(,E)EU”forallveV
from Definition 2.11 (Us), we have the fact ”(d, D) (e, E) ¢ U, = (d,D) € U, or
(e, E) ¢ U,” for all v € V. Using this fact' we obtain

U(d, D) Nil(e, B) = ({@Qu.| (d. D) € U} N[ Qo | (e, B) & Uy}
:m{Qv| d7D)€uv or (67E)€uv}

C ()@ [(d, D)1 (e, E) ¢ Uy} = U((d, D) 1 (e, E)).

GU4: Let (d,D) € ©R. Since U, is a diuniformity, we have ”(d, D) € U, =
(e, E)y = (0, By) €U, : (e,E), 0 (e,E), C (d,D)” for each v € V. If we set
(e, E) = | ey (e, E)y, then (e, E) € DR and using the fact ”(d, D) € U, = (e, E) €
U,” we have Uy(d, D) C U, (e, E). Moreover, considering Proposition 3.4. (5), we
get (e, B)o (6rE) = |,y (e E)a oL, ey (e, ) E Ly (e, E) o (e, E),) £ (d, D).

GUS5: Let (d, D) € ©DR. Since U, is a diuniformity, we have ”(d, D) € U, =
e, Oy = (¢, Cy) €Uy = (¢,C)s C (d, D)” for each v € V. If we set (¢,C) =
Ll,ev (¢, C)y, then (c,C) € DR and con31der1ng Proposition 3.4. (4),

=( e [1e = o [1e) =[Oy £@D).

veV veV veV veV veV

GUG6: Since U, # @ for each v € V we have \/{U(d, D) | (d,D) € DR} =
V{V{P, | (d,D) eU,} | (d,D) e DR} = V. O
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One can obtain diuniformities from a graded diuniformitiy as in Example 4.6.
and Theorem 4.9. also shows that a family of diuniformities under some conditions
form a graded diuniformity. In this context, the relationship between the uniform
ditopologies generated by the family of diuniformities and the uniform graded di-
topology generated by the graded diuniformity is given in the next proposition.

Proposition 4.10. Let (S,S), (V,V) be textures and {Uy}vey be a V-compatible
family of diuniformities on (S,S). Then (tu,,ku,) C (T, K{) and in case of the

texture V is plain (1y, , ku,) = (T, K{|) for each v € V where 3 is the (V,V)-graded
diuniformity on (S,S) generated by the family {Uy}vev by (15).

Proof. At first, we will see that 74, C 7Ty.
Aemy, =Vse A Ae My, ()
="A¢ Qs, Py ¢ Q= 3(d, D) €U, : d[t] C A
=P c () () V WD) =Tu(A) = AcTy
s€A’ P,ZQ, d[t]CA

Now, if V is plain then we have "P, C V4 #(d, D)= Ugyyca t(d, D) =
I(d,D) € DR : d[t] C A, P, C(d,D)” and so T C 7y, -

Using similar method, it can be seen that &y, C K{ and'in case of V is plain
ku, = KC§ for each v € V. g

5. Graded Uniform Bicontinuity and the Category dfGDiU

We begin this section with continuity concepts and their some basic properties
in ditopological texture spaces, diuniform texture spaces and graded ditopologi-
cal texture spaces. We also need the concept of inverse of a direlation under a
difunction defined in [13]. Our reference for category theory is [1].

Definition 5.1. [5] Let (Sk, Sky7,kk), & = 1,2 be ditopological texture spaces
and (f, F) : (S1,81) = (S2,82) a difunction. (f, F) is called continuous if

VAcr, FTAcn
and cocontinuous if
VA € kg, fTAE K.

The difunction (f, F) is called bicontinuous if it is both continuous and cocontinu-
ous.

Theorem 5.2. [5] Ditopological texture spaces and bicontinuous difunctions form
a category denoted by dfDiTop.

Proposition 5.3. [13] Let (S,S), (V,V) be texture spaces, (d,D) a relation on
(V,V) and (f,F): (S,S) — (V,V) a difunction.
(1) For the sets

(f7 F)il(d) = \/{F(sl,SQ) | ElPsl ,¢— Qs'l : ﬁ(s'l,'ul) 7¢_ F7 f fq— Q(SQ,UZ) :>F('U1,U2) g d}
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and

(va)_l(D) = ﬂ{@(sl,sz) ‘ EIPS’I /(Z Qs t f %@(si,vlw ﬁ(smvz) 7¢— F=D g@(vl,vg)}7

(f, F)"H(d, D) = ((f, F)""(d), (f, F)"'(D))
is a direlation on (S,S).

(2) (f,F)"'(iv,Iv) = (is, Is)

(3) (is,Is)"\(d, D) = (d, D) for all (d, D) € DRs.
Definition 5.4. [13] Let (S, Sk,Ux), & = 1,2 be diuniform texture spaces and
(f, F): (S1,81) = (S2,82) a difunction. (f, F) is called U; — Uz uniformly bicon-
tinuous if (f, F)~'(d, D) € U for each (d,D) € Us.
Theorem 5.5. [15] The class of diuniform texture spaces and uniformly bicontin-

wous difunctions between them form a category denoted by dAfDiU. Considering
Definition 2.14., the functor § : dAfDiU — dfDiTop is defined by

Sl((fa F) : (5178172/[1) — (527827u2)) = ((f7 F) : (51781777417"{/”1) - (8258277—1/{27”142))'
Definition 5.6. [7] Let (Sk, Sk, Tk, Kk, Vi, V&), k = 1,2 be graded ditopological

texture spaces, (f, F) : (S1,81) = (S2,S2), (h, H) : (V1,V1) — (Va, Vs) difunctions.
For the pair ((f, F), (h,H)), (f,F) is called continuous with respect to (h, H) if

VA€ Sy, H T:(A) CT(FTA)
and cocontinuous with respect to (h, H) if
VA € Sa, hTKao(4) CKi(fA).

The difunction (f, F) is called bicontinueus with respect to (h, H) if it is both
continuous and cocontinuous with respect to (h, H).

Proposition 5.7. [7] For the above notations, the followings are equivalent:
(1) (f, F) is bicontinuous with respect to (h, H).
(2) (f,F) is (T, KL — (7572, K32) bicontinuous for all v1 € Vi, vy € Vs
satisfying P, € HTP,,.
(3) (f,F) is (T{" K7Y) — (7572, K52) bicontinuous for all vi € Vi, vy € Vo
satisfying H Py, € Qu, -
Theorem 5.8. [7] The class of graded ditopological texture spaces and relatively

bicontinuous difunction pairs between them form a category denoted by dfGDiTop.
Considering Example 2.15., the functor &' : dfDiTop — dfGDiTop defined by

®l((f, F) : (51,81,7'1,/{1) — (52782,7_271432))
= (((fv F),(Z,I)) : (5178177_197’{!1]71’7)(1)) - (((fv F)?(Zvl)) : (317817757537177)(1)))

is an embedding.

Lemma 5.9. [12] (6.13. Prop.) Let (Sk,Sk), k = 1,2 be texture spaces, (f,F) :
(51,81) = (52, 82) a difunction and (d, D) € DRs,. If Py, s,) € F and d[s3] C A
fOT S1 € Sl, So € SQ, A€ S; then (f, F)il(d)[sl] C F¥A.
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Definition 5.10. Let (Sk, Sk, 4k, Vi, Vi), k = 1,2 be graded diuniform texture
spaces and (f, F) : (S1,81) — (S2,82), (h,H) : (V1,V1) — (Va,Vs) difunctions. If
H*(Ya(d, D)) C U ((f, F)~1(d, D)) for each (d,D) € DRg, then (f,F) is called
i - Yy uniformly bicontinuous with respect to (h, H).

Example 5.11. Let (S, S, 4, V, V) be graded diuniform texture spaces and (ig, Ig) :
(S,8) = (5,S), (iv,Iyv) : (V,V) = (V,V) identity difunctions. For each (d, D) €
DRg we have {7 (U(d, D)) = U(d, D) = U((is,Is)""(d,D)). Hence (ig,Is) is
uniformly bicontinuous with respect to (i, Iy).

Proposition 5.12. Relatively uniformly bicontinuity is preserved under composi-
tion of difunctions.

Proof. Let (S;,8;,4;,V;,V;), 5 = 1,2, 3 be graded diuniform texturespaces, (f, F') :
(51,81) = (592,82), (h,H) : (Vi,V1) = (V2,)2), (9,G) : (92,82) — (S53,53),
(k,K) : (Va,Vs) — (V3,Vs) difunctions where (f, F') is uniformly bicontinouos with
respect to (h, H) and (g, G) is uniformly bicontinouos with respect to (k, K). For
each (d, D) € DRg, we have

(K o H)™ (Us(d, D)) = H (K" tls(d, D)) € H" (8k2(g,G) " (d: D))
C (£, F) " ((9,6) 7 (d, D)) =t (((9: G)o(f, F)) ™' (d, D)) = thi((gof, GoF) ™" (d, D))
So, (g o f,G o F) is uniformly bicontinuous with respect to (ko h, K o H). O
Corollary 5.13. Graded diuniform texture spaces and relatively uniformly bicon-

tionuous difunction pairs between them form a category that we will denote by
dfGDiU.

Proof. 1t is clear from Example 5.11. and Proposition 5.12. [

Theorem 5.14. For the above notations, the functor & : dfDiU — dfGDiU
defined by

B((f, F) : (S1,81,Ur) — (52,82, Uz)
= ((fa F)a (ilall)) : (Slaslaulxhv ]-a,P(]-)) - (5275275%1271,7)(1))

is an embedding of the category dfDiU as a full subcategory dfGDiU ; p(1)) of the
category dfGDiU.

Proof. If a difunction (f, F) : (S1,81,U1) — (S2,S2,Us) is uniformly bicontinuous
then it is clearly $l;, — 4y, uniformly bicontinuous with respect to (i1,I1). So &
is a functor. & is also a full embedding from Example 4.6. (2), Definition 5.4. and
Definition 5.10. (]

Theorem 5.15. Let (Sk, Sk, Uk, Vi, Vi), k = 1,2 be graded diuniform texture spaces
and (f,F) : (51,51) — (52,82), (h,H) : (Vi,V1) — (Va,Vs) difunctions. If
(f, F) is Ly - Us uniform bicontinuous with respect to (h, H) then it is (Ty,, Ky, )
- (Ty,, Ky, ) bicontinuous with respect to (h, H).

Proof. Let (f,F) be 4 - tly uniform bicontinuous with respect to (h, H). We will
show that A € 7?> = F<A € T for all vy € V1, vy € Vs satisfying P, C HP,,.
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So, let P,, € H P, and P,, C Ty, (A). Using Corollary 4.4. and Lemma 2.6.(3)
we get

Poy CH TPy CH™(Tuu(A)) =k ([ (@ D)= () r°(\/ (D))
te AP d[t]CA te AP d[t]CA
=N HE(\ w@d)y=) \V H wdD)c (| V WLlfF D)).
te AP d[t]CA tc AP d[t]CA tc AP d[t]CA
Therefore

vt e A" = 3(d, D) € DR, : d[tf] C Aand P,, C L, ((f,F)"'(d. D)) (14)

is obtained.

Now, to show that P,, C Ty, (F< A) we recall Corollary 4.4. Let £~ A € Qs,.
Then there exists a sy € So such that ?(31732) ¢ F and A ¢ Qg,. Since so € AP,
considering (14) there exists a (d, D) € DRg, such that d[s2] C A and P,, C
4, ((f, F)~Y(d, D)). Besides, we have (e, E) = (f, F)~!(d, D) € DRs, by Proposi-
tion 5.3. and e[s;] C F< A by Lemma 5.9. Hence we obtain P,, C T, (F* A) and
so that (f, F) is (Ty,,K«,) - (T, , Ky,) continuous with respect to (h, H).

The cocontinuity part of the proof is similar. ([

Corollary 5.16. For the above notations, § :dfGDiU — dfGDiTop defined by

S(((f,F),(h,H)) : (81,851,841, Vi, V1) = (S2, 82,4z, V2, Vs))
= ((f7 F)ﬂ (th)) : (Slaslvmlvlcﬂlvvl’vl) — (S2782771127’Cﬂ27‘/27v2)
s a faithful and full functor.

Proof. At first note that from Corollary 4.3. and Theorem 5.15. it follows that §
is a functor. Moreover, from the definition of §, it is a faithful and full functor. [

From Theorem 5.5, 5.8, 5.14. and Corollary 5.16. we obtain the following dia-
gram.

dfDiU — 5, dfDiTop

L le
dfGDiU — s dfGDiTop

Proposition 5.17. For the above notations, the followings are equivalent:

(1) (f,.F) is uniformly bicontinuous with respect to (h, H).

(2)(f, F) is 4" — U5 uniformly bicontinuous for allvy € V¥, vy € V3 satisfying
P, CHP,,.

(3) (f, F) is U —U% uniformly bicontinuous for allvy € V¥, vy € V3 satisfying
H Py, € Qu, .

Proof. (1) = (2) : Let (f, F) be uniformly bicontinuous with respect to (h, H),
P, C HP,, and (d,D) € {,"*. Then we have P,, C il,(d, D) and so, P, C
H*P,, C H U,(d, D) by Lemma 2.6. (2). Since (f, F) is uniformly bicontinuous
with respect to (h, H), we get P,, C H,(d, D) C 4, ((f, F)~'(d, D)) and hence
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(f,F)~'(d, D) € 4,

(2)=(3):Itis obvious since "H P, £ Qy,, = P,, CHP,,”.

(3) = (1) : Let (3) be satisfied and suppose that (f, F') is not uniformly bicontinuous
with respect to (h, H). Then there exists (d, D) € DRg, such that H* U, (d, D) ¢
W ((f, F)~Yd,D)). So H"U,(d,D) ¢ Q,, and P, ¢ &, ((f,F)"(d,D)) for a
v € VY. Since H U, (d, D) € Q., there exists vy € V3 such that P, ,,) ¢ H and
U, (d, D) & Qu,. We have H* & Q(,, ,,) by Lemma 2.6. (1) and so (H* )7 P,, ¢
Qy, by Lemma 2.6. (4). So, H" P,, = (H*)7P,, € Q., and since (3), (f,F) is
Ut — 432 uniformly bicontinuous.

On the other hand, since U, (d, D) € Q,, we get P,, C U,(d, D) and so (d,D) €
1432, Since (f, F) is 47* — 4152 umformly bicontinuous, we have (f, F')~1(d D) e Ut
and so P, C 1 ((f, F)’l(d, D)) which contradicts with P,, ¢ 8, ((f5F) ' (d, ))

([
Theorem 5.18. For a graded diuniform texture space (S, S, V, V), (Tyv, kyv) C
(T, K{)) for eachv € V? and in case of the texture V is plain (Tyo, kgw ) = Q)
for eachv eV =V".

Proof Let A€ S. Acryp «Vse A, Aen(s) 22 raqqQ,, P ¢
Q= 3(dD) e : df] C A = "A¢ Q,, P,¢ Q, = 3(d,D) € DR

d[t] € A and P, C i(d, D)” O g T, and 'so, we have Tuv C Ty If V is plain,
since V yca $(d, D) = Uyyca tMd, D) we get A€ Tf = "A € Qs, Ps £ Qv =
A(d, D)€ DR : d[t]C A and P, C3U(d,D)”. Hence 7yo =T .

On the other hand, A € kyv <= Vs € S\ A, A € puyv(s) Prop. 2.13. "p, ¢
A P ¢Q =3dD) el : ACDU < "P ¢ A P¢Q =3dD)e

DR : AC DJt] and P, C $(d, D)” g Ale K| and so, we have kyv C Kf. If V is

plain, since \/d[t]gA (dy; D) = Ud[t]gA iU(d, D) we get A € K a0 "Py ¢ A, P, ¢
Qs = 3(d,D) e DR : AC D[t] and P, C t(d, D)”. Hence ry» = K. O

6. Conclusion

Uniform properties such as uniform continuity and uniform convergence are de-
fined in uniform spaces. So, uniform spaces are useful for an investigation of topo-
logical spaces. In this work, graded diuniformities are introduced and its relations
with diuniformities and graded ditopologies are investigated. Moreover, the cat-
egory of this new structure dfGDiU is formed and its relations with some other
categories are given.

Graded diuniformities are a generalization of diuniformities to the graded case.
Hence, each diuniformity is an example of a graded diuniformity. However it’s
not that easy to find a graded diuniformity which is not a diuniformity. We will
continue to study to find such further examples. On the other hand, a family of
diuniformities generates a graded diuniformity under some conditions (see Theorem
4.9.).

As expected, each graded diuniformity induces a graded ditopology called as
uniform graded ditopology (see Corollary 4.3., 4.4.). Thus, a functor can be defined
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from dfGDiU to dfGDiTop (see Corollary 5.16.). In this paper, basic categorical
properties of graded diuniformities are discussed without the relations with many
other categories (e.g. with the category of texture spaces). So, in a later work,
we intend to study further categorical properties, relations and problems, such as
the problem recommended by one of the referees: Is dfGDiU topological over the
category of sets or others?

Obviously, the structure of graded diuniformity can be helpful to define and
investigate the other uniform concepts in graded ditopological texture spaces.

Acknowledgements. The authors would like to thank the referees for their valu-
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