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STABILITY OF THE JENSEN’S FUNCTIONAL EQUATION IN

MULTI-FUZZY NORMED SPACES

M. KHANEHGIR

Abstract. In this paper, we define the notion of (dual) multi-fuzzy normed

spaces and describe some properties of them. We then investigate Ulam-Hyers
stability of Jensen’s functional equation for mappings from linear spaces into

multi-fuzzy normed spaces. We establish an asymptotic behavior of the Jensen

equation in the framework of multi-fuzzy normed spaces.

1. Introduction

The notion of multi-normed spaces was initiated by H. G. Dales and M. E.
Polyakov [6]. This concept is somewhat similar to the operator sequence space
and has some connections with operator spaces and Banach lattices. An incentive
for the study of multi-normed spaces and many examples are given in [6]. Some
results of multi-normed spaces are stable under fuzzy normed spaces [3, 4]. In this
paper, using some ideas from [6, 18] we first introduce the concept of (dual) multi-
fuzzy normed spaces and then we investigate the Ulam-Hyers stability of Jensen’s
functional equation for mappings from linear spaces into multi-fuzzy normed spaces.

In 1984, A. K. Katsaras [11] defined the notion of fuzzy norm on a linear space
to construct a fuzzy vector topological structure. Thereafter, some mathematicians
introduced and discussed several notions of fuzzy norms from various points of
view [7, 13, 24]. In particular, in 2003 T. Bag and S. K. Samanta [3], following
Cheng and Mordeson [5] gave an idea of a fuzzy norm in such a way that the
corresponding fuzzy metric is of Kramosil and Michalek type [12]. They established
a decomposition theorem of a fuzzy norm into a family of ”crisp norms” and also
described some nice properties of the fuzzy norm in [4].

In 1940, a question that was given by S. M. Ulam [22] concerning the stability of
group homomorphisms gave rise to the stability problem of functional equations.
D. H. Hyers [9] was the first to come out with a partial affirmative answer to solve
the question posed by Ulam on Banach spaces. Hyers’s theorem was extended
by T. Aoki [2] for additive mappings in 1950 and by Th. M. Rassias [20] for
linear mappings by taking into consideration an unbounded Cauchy difference in
1978. Rassias’s paper [20] has significantly influenced in the expansion of what
we now call Ulam-Hyers-Rassias stability of functional equations. Recently, several
fuzzy stability problems of various functional equations and in particular, Jensen
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equation and its generalizations have been studied by some mathematicians; we
refer the interested reader to [1, 8, 10, 14, 15, 17, 18, 21].

2. Preliminaries

Let (E, ‖.‖) be a complex normed space and let k ∈ N. We denote by Ek, the
linear space E ⊕ . . .⊕ E consisting of k-tuples (x1, . . . , xk), where x1, . . . , xk ∈ E.
The linear operations on Ek are defined coordinatewise. The zero element of either
E or Ek is denoted by 0. We denote by Nk the set {1, . . . , k} and denote by Sk the
group of permutations on k symbols. For σ ∈ Sk, x = (x1, . . . , xk) ∈ Ek and α =
(α1, . . . , αk) ∈ Ck define Aσ(x) = (xσ(1), . . . , xσ(k)) and Mα(x) = (α1x1, . . . , αkxk).

Let n ∈ N, we set x[n] = (x1, . . . , xk, . . . , x1, . . . , xk) ∈ Enk, where x[n] consists of
n copies of each block (x1, . . . , xk).
Take k ∈ N and let S be a subset of Nk. For (x1, . . . , xk) ∈ Ek, we setQS(x1, . . . , xk)
= (y1, . . . , yk), where yi = xi (i /∈ S) and yi = 0 (i ∈ S). Thus QS is the projec-
tion onto the complement of S. Indeed, we observe that Q2

S = Q∗S = QS , where
Q∗S(x1, . . . , xk) = (y1, . . . , yk) (we mean by z, the complex conjugate of a complex
number z).

Definition 2.1. [6] Let (E, ‖.‖) be a complex (real) normed space. A multi-norm on
{Ek, k ∈ N} is a sequence {‖.‖k}k∈N of norms on Ek (k ∈ N) such that ‖x‖1 = ‖x‖,
for each x ∈ E and the following axioms (A1)-(A4) are satisfied for each k ∈ N
with k ≥ 2:
(A1) for each σ ∈ Sk and x ∈ Ek we have

‖Aσ(x)‖k = ‖x‖k;

(A2) for each α1, . . . , αk ∈ C (R) and x ∈ Ek we have

‖Mα(x)‖k ≤ ( max
1≤i≤k

|αi|)‖x‖k;

(A3) for each x1, . . . , xk−1 ∈ E we have

‖(x1, . . . , xk−1, 0)‖k = ‖(x1, . . . , xk−1)‖k−1;

(A4) for each x1, . . . , xk−1 ∈ E we have

‖(x1, . . . , xk−1, xk−1)‖k = ‖(x1, . . . , xk−1)‖k−1.

In this case, we say that {(Ek, ‖.‖k), k ∈ N} is a multi-normed space. Now if the
axiom (A4) is replaced by the following axiom, then {(Ek, ‖.‖k), k ∈ N} is called a
dual multi-normed space.
(B4) for each x1, . . . , xk−1 ∈ E, ‖(x1, . . . , xk−1, xk−1)‖k = ‖(x1, . . . , 2xk−1)‖k−1.

Remark 2.2. [6] Suppose that {(Ek, ‖.‖k), k ∈ N} is a (dual) multi-normed space,
and take k ∈ N. The following property is an almost immediate consequence of the
axioms (A1), (A2) and (A3).

max
i∈Nk

‖xi‖ ≤ ‖(x1, . . . , xk)‖k ≤
k∑
i=1

‖xi‖ ≤ kmax
i∈Nk

‖xi‖ (x1, . . . , xk ∈ E). (1)
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Applying (1) one concludes that if (E, ‖.‖) is a Banach space, then (Ek, ‖.‖k) is
a Banach space for each k ∈ N; in this case, {(Ek, ‖.‖k), k ∈ N} is called a (dual)
multi-Banach space.

Definition 2.3. [4] Let X be a real vector space. A function N : X × R → [0, 1]
is a fuzzy norm on X if for all x, y ∈ X and s, t ∈ R, the following conditions hold:
(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c| ) if c 6= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, .) is a non-decreasing function of R and lim

t→∞
N(x, t) = 1;

(N6) for x 6= 0, N(x, .) is continuous on R.

The pair (X,N) is called a fuzzy normed space.

Definition 2.4. Let (X,N) be a fuzzy-normed space. Then
(i) A sequence {xn} in X is said to be convergent if there exists x ∈ X such that
lim
n→∞

N(xn − x, t) = 1 for all t > 0 and we write N - lim
n→∞

xn = x.

(ii) A sequence {xn} in X is called Cauchy if for each 0 < ε < 1 and each δ > 0,
there exists n0 ∈ N such that N(xm − xn, δ) > 1− ε for all n,m ≥ n0.
The fuzzy-normed space (X,N) is complete if every Cauchy sequence in X con-
verges in X. In this case fuzzy normed space is called a fuzzy Banach space.

For more details on this issue see [8, 17, 23] and the bibliography quoted there.

3. Multi-fuzzy Normed Spaces

We begin this section with the notion of (dual) multi-fuzzy normed space.

Definition 3.1. Let (E,N) be a fuzzy normed space. A multi-fuzzy norm on
{Ek, k ∈ N} is a sequence {Nk} such that Nk is a fuzzy norm on Ek (k ∈ N),
N1(x, t) = N(x, t) for each x ∈ E and t ∈ R and the following axioms are satisfied
for each k ∈ N with k ≥ 2:
(MF1) for each σ ∈ Sk, x ∈ Ek and t ∈ R,

Nk(Aσ(x), t) = Nk(x, t);

(MF2) for each α = (α1, . . . , αk) ∈ Rk, x ∈ Ek and t ∈ R,

Nk(Mα(x), t) ≥ Nk(max
i∈Nk

|αi|x, t);

(MF3) for each x1, . . . , xk ∈ E and t ∈ R,

Nk+1((x1, . . . , xk, 0), t) = Nk((x1, . . . , xk), t);

(MF4) for each x1, . . . , xk ∈ E and t ∈ R,

Nk+1((x1, . . . , xk, xk), t) = Nk((x1, . . . , xk), t).

In such a case {(Ek, Nk), k ∈ N} is called a multi-fuzzy normed space. Moreover,
if axiom (MF4) is replaced by the following axiom, then {Nk} is called a dual
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multi-fuzzy norm and {(Ek, Nk), k ∈ N} is called a dual multi-fuzzy normed space.
(DF4) for each x1, . . . , xk ∈ E and t ∈ R,

Nk+1((x1, . . . , xk, xk), t) = Nk((x1, . . . , 2xk), t).

We present the definition just in the case where the index set is N, however there
is also an obvious definition of (dual) multi-fuzzy normed space of level n (n ∈ N),
that is the index set is Nn.

The following examples guarantee the existence of notable source of examples of
(dual) multi-fuzzy normed spaces.

Example 3.2. Let (E,N) be a fuzzy normed space. For each k ∈ N, set

Nk((x1, . . . , xk), t) = min{N(xi, t), i = 1, ..., k}, (x1, . . . , xk ∈ E and t ∈ R).

It is easily verified that, {(Ek, Nk), k ∈ N} is a multi-fuzzy normed space.

Example 3.3. Let {(Ek, Nα
k ), k ∈ N}α be a family of (dual) multi-fuzzy normed

spaces. For each k ∈ N, x1, . . . , xk ∈ E and t ∈ R define

Nk((x1, . . . , xk), t) = inf
α
Nα
k ((x1, . . . , xk), t).

Then {(Ek, Nk), k ∈ N} is a (dual) multi-fuzzy normed space, too.

Example 3.4. Let {(Ek, ‖.‖k), k ∈ N} be a (dual) multi-normed space. For each
x ∈ Ek, t ∈ R and α, β ≥ 0, define N1

k , N
2
k and N3

k by setting

N1
k (x, t) =

{ αt
αt+β‖x‖k , t > 0,

0, t ≤ 0.

N2
k (x, t) =

{
0, t ≤ ‖x‖k,
1, t > ‖x‖k.

N3
k (x, t) =

{
t2−‖x‖2k
t2+‖x‖2k

, t > ‖x‖k,
0, t ≤ ‖x‖k.

It is rutin to check that N1
k , N

2
k and N3

k are (dual) multi-fuzzy normed spaces (see
also [8, 19]).

According to Example 3.4 and also using some examples in [6], one can give
examples that show axioms for multi- and dual multi-fuzzy normed spaces are in-
dependent of each other.
• Independece of the axiom (MF1)
(1) Assume that (E, ‖.‖) is a normed space.

(I) For each k ∈ N, set ‖(x1, . . . , xk)‖k = max{‖x1‖, ‖x2‖
2 , . . . , ‖xk‖

k }, where x1, . . . ,

xk are in E. Let x ∈ E with ‖x‖ = 1, then for some t ∈ R+, N i
2((2x, 3x), t) 6=

N i
2((3x, 2x), t) (i = 1, 2, 3). Clearly {(Ek, N i

k), k ∈ N} (i = 1, 2, 3) is a family of
fuzzy normed spaces in which satisfies axioms (MF2), (MF3) and (MF4), however
it does not satisfy axiom (MF1).
(II) Define ‖x‖1 = ‖x‖ (x ∈ E) and ‖(x1, x2)‖2 = max{‖x1‖, 2‖x2‖}, where
x1, x2 ∈ E. Let x ∈ E with ‖x‖ = 1, then for some t ∈ R+, N i

2((2x, 3x), t) 6=
N i

2((3x, 2x), t) (i = 1, 2, 3). It is relatively easy to see that {(Ek, N i
k), k ∈ N2}
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(i = 1, 2, 3) is a family of fuzzy normed spaces in which satisfies axioms (MF2),
(MF3) and (DF4), however it does not satisfy axiom (MF1).
• Independece of the axiom (MF2)
(2) Let E = R and ‖x‖1 = |x| for each x ∈ E.
(III) Define ‖(x1, . . . , xk)‖k = max{max

i∈Nk

|xi|, max
i,j∈Nk

|xi − xj |}, where k ∈ N and

x1, . . . , xk ∈ E ([6, Example 2.4]). Then {(Ek, N i
k), k ∈ N} (i = 1, 2) is a family

of fuzzy normed spaces in which satisfies axioms (MF1), (MF3) and (MF4) but
(MF2) fails.
(IV ) Define ‖(x, y)‖2 = 1

2 (|x + y| + |x| + |y|), where x, y ∈ E. It is immediately

checked that {(Ek, N i
k), k ∈ N2} (i = 1, 2) is a family of fuzzy normed spaces in

which satisfies axioms (MF1), (MF3) and (DF4) but (MF2) fails.
• Independece of the axiom (MF3)
(3) (V ) Suppose E = R. Set ‖x‖1 = |x| and ‖(x, y)‖2 = 1

2 (|x| + |y|) (x, y ∈ E)

([6, Example 2.5]). Clearly, N i
2((1, 0), t) 6= N i

1(1, t) (i = 1, 2, 3) for some t ∈ R+.
Therefore {(Ek, N i

k), k ∈ N2} (i = 1, 2, 3) is a family of fuzzy normed spaces in
which satisfies axioms (MF1), (MF2) and (MF4) but (MF3) does not hold.
(V I) Assume that E = R2, ‖(x, y)‖1 = |x − y| + |x| + |y| and ‖((x, y), (z, w))‖2 =
|x| + |y| + |z| + |w| + 2 max{|x − y|, |z − w|} (x, y, z, w ∈ R). It is readily verified
that {(Ek, N i

k), k ∈ N2} (i = 1, 2, 3) is a family of fuzzy normed spaces in which
satisfies axioms (MF1), (MF2) and (DF4) but (MF3) is not true.
• Independece of the axiom (MF4) and (DF4)
(4) Let (E, ‖.‖) be a normed space and p > 1. For each k ∈ N, define ‖(x1, . . . , xk)‖k

= (
k∑
i=1

‖xi‖p)
1
p ( [6, Example 2.6]). Then {(Ek, N i

k), k ∈ N} (i = 1, 2, 3) is a family

of fuzzy normed spaces in which satisfies axioms (MF1), (MF2) and (MF3) but
it does not satisfy (MF4) and (DF4).
The following lemma is an immediate consequence of the definition of multi-fuzzy
normed space.

Lemma 3.5. Let {(Ek, Nk), k ∈ N} be a (dual) multi-fuzzy normed space, k, n ∈
N, x1, . . . , xk, xk+1, . . . , xk+n ∈ E and η1, . . . , ηk be real numbers of absolute value
1, then we have
(i) Nk((η1x1, . . . , ηkxk), t) = Nk((x1, . . . , xk), t).
(ii) Nk((x1, . . . , xk), t) ≥ Nk+1((x1, . . . , xk, xk+1), t).
(iii) Nk+n((x1, . . . , xk, xk+1, . . . , xk+n), t) ≥

min{Nk((x1, . . . , xk), αt), Nn((xk+1, . . . , xk+n), βt)},

where α, β ≥ 0 and α+ β = 1.
(iv) min

i∈Nk

N(xi, t) ≥ Nk((x1, . . . , xk), t) ≥ min
i∈Nk

N(kxi, t).

As an important result of the preceding lemma we get the following corollary.

Corollary 3.6. Let {(Ek, Nk), k ∈ N} be a (dual) multi-fuzzy normed space, and
(E,N1) be a fuzzy Banach space. Then for each k ∈ N, (Ek, Nk) is a fuzzy Banach
space, too.
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Proof. Fix an arbitrary k ∈ N. Let {Xn} be a Cauchy sequence in Ek, where
Xn = (xn,1, . . . , xn,k). Also let 0 < ε < 1 and δ > 0 be given, then there exists
n0 ∈ N such that Nk(Xm −Xn, δ) > 1− ε for all n,m ≥ n0. As a result of Lemma
3.5, we observe that for i = 1, . . . , k, N1(xm,i − xn,i, δ) > 1 − ε for all n,m ≥ n0.
Hence {xn,i}, i = 1, . . . , k, is a Cauchy sequence in fuzzy Banach space (E,N1) and
therefore it converges to some xi ∈ E. Thus there exists ni, i = 1, . . . , k for which
N1(xn,i− xi, δ) > 1− ε for all n ≥ ni. Take n′ = max{n1, . . . , nk}. Applying again
Lemma 3.5, we obtain that

Nk((xn,1 − x1, . . . , xn,k − xk), δ) ≥ min
i∈Nk

N1(xn,i − xi,
δ

k
)

≥ 1− ε,
for all n ≥ n′. This proves N - lim

n→∞
Xn = X, where X = (x1, . . . , xk). Therefore

(Ek, Nk) is a fuzzy Banach space. �

In the light of the previous corollary, the following definition is reasonable.

Definition 3.7. Suppose that {(Ek, Nk), k ∈ N} is a (dual) multi-fuzzy normed
space, for which (E,N1) is a fuzzy Banach space, then we say {(Ek, Nk), k ∈ N} is
a (dual) multi-fuzzy Banach space.

Using the similar techniques applied in [6, Lemmata 2.16, 2.19] we get the fol-
lowing two propositions.

Proposition 3.8. Let {(Ek, Nk), k ∈ N} be a multi-fuzzy normed space, k ∈ N
with k ≥ 2, x1, . . . , xk ∈ E, α, β be nonnegative real numbers with α + β =
1 and x = αxk−1 + βxk. Then for each t ∈ R, Nk((x1, . . . , xk−2, x, x), t) ≥
Nk((x1, . . . , xk−2, xk−1, xk), t).

Proposition 3.9. Let {(Ek, Nk), k ∈ N} be a dual multi-fuzzy normed space, k ∈ N
with k ≥ 2, x1, . . . , xk ∈ E and t ∈ R. Then for each t ∈ R, Nk−1((x1, . . . , xk−1 +
xk), t) ≥ Nk((x1, . . . , xk−1, xk), t).

The following proposition is proved in framework of multi-normed spaces ([6,
Proposition 2.7]). Slightly modification in the proof shows this proposition holds
in the category of multi-fuzzy normed spaces.

Proposition 3.10. Let (E,N) be a fuzzy normed space, {Nk} be a sequence such
that Nk is a fuzzy norm on Ek for each k ∈ N and N1(x, t) = N(x, t) for each x ∈ E
and t ∈ R. Also assume that axioms (MF1), (MF2) and (MF4) are satisfied for
each k ∈ N. Then {(Ek, Nk), k ∈ N} is a multi-fuzzy normed space.

Proof. By Definition 3.1, it is enough to show that axiom (MF3) holds. Let k ∈ N
and x = (x1, . . . , xk) be an arbitrary element of Ek. Obviously if x = 0, then
Nk+1((x1, . . . , xk, 0), t) = Nk((x1, . . . , xk), t) by (MF4) (or (N2) ) and so in this
case (MF3) holds. Now assume that x is nonzero and n ∈ N is arbitrary. For
i = 1, ..., n+ 1, let Bi = {(i− 1)k+ 1, . . . , ik} be the subset of Nk(n+1), and QBi be
the projection onto the complement of Bi. From (N4) it follows that

Nk(n+1)(

n+1∑
i=1

QBi
(x[n+1]), (n+ 1)t) ≥ min{Nk(n+1)(QBi

(x[n+1]), t), i = 1, . . . , n+ 1}. (2)
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Since
n+1∑
i=1

QBi(x
[n+1]) = nx[n+1], so the left hand side of (2) is equal to Nk(n+1)(nx

[n+1],

(n+1)t) = Nk((x1, . . . , xk),
n+1
n
t) by (N3), (MF1) and (MF4). On the other hand, the

right hand side of (2) is equal to Nk+1((x1, . . . , xk, 0), t) by (MF1) and (MF4).
Consequently Nk((x1, . . . , xk), n+1

n t) ≥ Nk+1((x1, . . . , xk, 0), t). Since n is arbi-
trary, then let n→∞, by (N6) we get

Nk((x1, . . . , xk), t) ≥ Nk+1((x1, . . . , xk, 0), t). (3)

For the reverse direction applying (MF2) and (MF4), we deduce that

Nk+1((x1, . . . , xk, 0), t) = Nk+1(Mα(x1, . . . , xk, xk), t)

≥ Nk+1((x1, . . . , xk, xk), t)

= Nk((x1, . . . , xk), t), (4)

where α = (1, . . . , 1, 0) ∈ Ck+1. Now from (3) and (4) we achieve our goal. �

In the following, we are going to show that the above result holds for dual multi-
fuzzy norms, too.

Proposition 3.11. Let (E,N) be a fuzzy normed space, {Nk} be a sequence such
that Nk is a fuzzy norm on Ek for each k ∈ N and N1(x, t) = N(x, t) for each x ∈ E
and t ∈ R. Also assume that axioms (MF1), (MF2) and (DF4) are satisfied for
each k ∈ N. Then {(Ek, Nk), k ∈ N} is a dual multi-fuzzy normed space.

Proof. Suppose that x = (x1, . . . , xk) is in Ek (k ∈ N), n is an arbitrary element of
N and t ∈ R. For i = 1, . . . , 2n, let Bi be the subset {(i− 1)k+ 1, . . . , ik} of N(2n)k,
and QBi be the projection onto the complement of Bi. Then we obtain

Nk(x, t) = Nk(2nx, 2nt)

= N2nk((2n − 1)x[2
n], 2n(2n − 1)t) (DF4)

= N2nk(

2n∑
i=1

QBi
(x[2

n]), 2n(2n − 1)t)

≥ min{N2nk(QBi
(x[2

n]), (2n − 1)t), i = 1, . . . , 2n}
= Nk+1((2n − 1)(x1, . . . , xk, 0), (2n − 1)t)

and so
Nk(x, t) ≥ Nk+1((x1, . . . , xk, 0), t). (5)

For the reverse direction assume that x = (x1, . . . , xk, 0). Without loss of generality
we may assume that (using (MF1)) x[2

n] = (x1, . . . , x1, . . . , xk, . . . , xk, 0, . . . , 0),
where the number of repetitions of each item is 2n. For i = 1, . . . , k, let Ci =
{(i−1)2n+1, . . . , i2n} and QCi

be the projection onto the complement of Ci. Also
for i = 1, . . . , k − 2, put
Xi

1 = (x1, . . . , x1, . . . , xi−1, . . . , xi−1, 0, . . . , 0, xi+1, . . . , xi+1, . . . , xk, . . . , xk, 0, . . . , 0),
Xi

2 = (x1, . . . , x1, . . . , xi−1, . . . , xi−1, xi+1, . . . , xi+1, . . . , xk, . . . , xk, 0, . . . , 0),
where the number of repetitions of each item xt, t = 1, . . . , i− 1, i + 1, . . . , k is 2n

and also zero has repeated 2× 2n times,
Xi

3 = (x1, . . . , x1, . . . , xi−1, . . . , xi−1, xi+1, . . . , xi+1, . . . , xk, . . . , xk, 0, . . . , 0),
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Xi
4 = (x1, . . . , x1, . . . , xi−1, . . . , xi−1, xi+1, . . . , xi+1, . . . , xk, . . . , xk, xi, . . . , xi),

X5 = (x1, . . . , x1, . . . , xk, . . . , xk),
where the number of repetitions of each item in Xi

3,Xi
4 and X5 is 2n.

Take A = N2n(k+1)(QCk−1
(x[2

n]) +QCk
(x[2

n]), 2nt). Then

A = N2n(k+1)((2x1, . . . , 2x1, . . . , 2xk−2, . . . , 2xk−2,

xk−1, . . . , xk−1, xk, . . . , xk, 0, . . . , 0), 2nt)

≥ N2n(k+1)(2Mα(x1, . . . , x1, . . . , xk−1, . . . , xk−1, xk, . . . , xk, xk, . . . , xk), 2nt)

≥ Nk+1(2n+1(x1, . . . , xk−1, xk, xk), 2nt)

≥ Nk((x1, . . . , xk),
2n

2n+2
t),

where α = ( 1, . . . , 1︸ ︷︷ ︸
2nk−tuples

, 0, . . . , 0︸ ︷︷ ︸
2n−tuples

). Also, we observe that

N2n(k+1)(
k∑
i=1

QCi
(x[2

n]), 2n(k − 1)t)

≥ min{A,N2n(k+1)(QCi
(x[2

n]), 2nt) : i = 1, . . . , k − 2}

= min{A,N2n(k+1)(X
i
1, 2

nt) : i = 1, . . . , k − 2}

= min{A,N2n(k+1)(X
i
2, 2

nt) : i = 1, . . . , k − 2} (MF1)

= min{A,N2nk(Xi
3, 2

nt) : i = 1, . . . , k − 2} (DF4)

= min{A,N2nk(MβX
i
4, 2

nt) : i = 1, . . . , k − 2}
≥ min{A,N2nk(X5, 2

nt) : i = 1, . . . , k − 2} (MF1), (MF2)

= min{A,N2nk(2n(x1, . . . , xk), 2nt)}

≥ Nk((x1, . . . , xk),
2n

2n+2
t),

where β = ( 1, . . . , 1︸ ︷︷ ︸
2n(k−1)−tuples

, 0, . . . , 0︸ ︷︷ ︸
2n−tuples

).

Furthermore, let x′[2
n] = (x1, . . . , xk, 0, ..., x1, . . . , xk, 0). It is easily verified that

k∑
i=1

QCi
(x[2

n]) = (k − 1)x[2
n]. Take n sufficiently large in which k ≤ 2n, then we

deduce
Nk+1(x,

2n

2n − 1
t) = Nk+1(2nx,

22n

2n − 1
t)

≥ N2n(k+1)(x
′[2n], 2n

2n − 1

2n − 1
t)

= N2n(k+1)(x
′[2n], 2n

k − 1

k − 1
t)

= N2n(k+1)(

k∑
i=1

QCi
(x[2

n]), 2n(k − 1)t)

≥ Nk((x1, . . . , xk),
2n

2n+2
t).

Thus we find that Nk+1(x, 2n

2n−1 t) ≥ Nk((x1, . . . , xk), 2n

2n+2 t). Let n → ∞, it
obtains that

Nk+1((x1, . . . , xk, 0), t) ≥ Nk((x1, . . . , xk), t). (6)
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Now the result follows by (5) and (6). �

4. Ulam-Hyers Stability of the Jensen’s Functional Equation

This section is devoted to establishing Ulam-Hyers stability of the Jensen’s func-
tional equation for mappings from linear spaces into multi-fuzzy normed spaces.
To this end, we extend some results of [18] in the framework of multi-fuzzy normed
spaces.

Theorem 4.1. Let E be a linear space, {(F k, Nk), k ∈ N} be a multi-fuzzy Banach
space, (F,N ′) be a fuzzy normed space and f : E → F be a mapping satisfying
f(0) = 0. Suppose that α is a nonzero fixed vector in F such that

Nk((f(
x1 + y1

2
)− f(x1)

2
− f(y1)

2
, . . . , f(

xk + yk
2

)− f(xk)

2
− f(yk)

2
), t) ≥ N ′(α, t),

(7)

for all x1, ..., xk, y1, ..., yk ∈ E and for all t > 0. Then there exists a unique additive
mapping T : E → F such that

Nk((f(x1)− T (x1), . . . , f(xk)− T (xk)), 2t) ≥ N ′(α, t), (8)

where x1, ..., xk ∈ E and t > 0.

Proof. Substituting yi = 0 for i = 1, · · · , k and replacing x1, ..., xk by 2nx1, ..., 2
nxk

in (7), we get

Nk((
f(2n−1x1)

2n−1
− f(2nx1)

2n
, . . . ,

f(2n−1xk)

2n−1
− f(2nxk)

2n
),

t

2n−1
) ≥ N ′(α, t). (9)

Regarding (9), we conclude that

Nk((
f(2mx1)

2m
− f(2nx1)

2n
, . . . ,

f(2mxk)

2m
− f(2nxk)

2n
), t(

n−1∑
i=m

2−i)) ≥ N ′(α, t),(10)

for nonnegative integer numbers m,n.
Fix nonzero x ∈ E, put x1 = . . . = xk = x in (10) we thus find that

N(
f(2mx)

2m
− f(2nx)

2n
, t(

n−1∑
i=m

2−i)) ≥ N ′(α, t).

Let ε > 0 and δ > 0 be given. Since lim
t→∞

N ′(α, t) = 1, there is some t0 > 0 such that

N ′(α, t0) > 1−ε. Since

∞∑
i=1

t02−i <∞, there is some n0 ∈ N such that

n−1∑
i=m

t02−i < δ

for all m ≥ n0 + 1. Therefore we derive

N(
f(2mx)

2m
− f(2nx)

2n
, δ) ≥ N(

f(2mx)

2m
− f(2nx)

2n
, t0(

n−1∑
i=m

2−i)) ≥ N ′(α, t0) > 1− ε.

It follows that { f(2
nx)

2n } is Cauchy and so is convergent in the complete fuzzy normed
space F . Set

T (x) := N - lim
n→∞

f(2nx)

2n
.
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In view of Lemma 3.5, we deduce

N - lim
n→∞

(
f(2nx1)

2n
, . . . ,

f(2nxk)

2n
) = (T (x1), . . . , T (xk)).

Moreover, if we put m = 0 in (10), we observe that

Nk((f(x1)−
f(2nx1)

2n
, . . . , f(xk)−

f(2nxk)

2n
), t) ≥ N ′(α, t). (11)

Therefore
Nk((f(x1)− T (x1), . . . , f(xk)− T (xk)), 2t) ≥

min{Nk((f(x1)− f(2nx1)

2n
, . . . , f(xk)− f(2nxk)

2n
), t),

Nk((
f(2nx1)

2n
− T (x1), . . . ,

f(2nxk)

2n
− T (xk)), t)}.

The second term on the right hand side of the above inequality tends to 1 as n→∞
and the first term, by (11) is grater than or equal to N ′(α, t). It gives us relation
(8). Next, we will show that T is additive. Let x, y ∈ E. Put x1 = ... = xk = 2nx,
y1 = ... = yk = 2ny and replace t by 2nt in (7) to obtain

Nk(
f( 2n(x+y)

2 )

2n
− 1

2

f(2nx)

2n
− 1

2

f(2ny)

2n
), t) ≥ N ′(α, 2nt). (12)

On the other hand,

N(T (x+y2 )− T (x)
2 − T (y)

2 , 4t) ≥ min
{
N(T (x+y2 )− f(2n( x+y

2 ))

2n , t),

N(T (x)
2 − 1

2
f(2nx)

2n , t), N(T (y)
2 − 1

2
f(2ny)

2n , t), N(
f(2n( x+y

2 ))

2n − 1
2
f(2nx)

2n − 1
2
f(2ny)

2n , t)
}
,

for each x, y ∈ E and t > 0. The first three terms on the right hand side of the
above inequality tend to 1 as n → ∞ and the forth term, by (12) is greater than
or equal to N ′(α, 2nt), which tends to 1 as n→∞. Therefore

N(T (
x+ y

2
)− T (x)

2
− T (y)

2
, 4t) = 1,

for each x, y ∈ E and t > 0. It enforces that T satisfies the Jensen equation and by
virtue of the fact that T (0) = 0, T is additive. To end the proof, let T ′ be another
additive mapping satisfying (8) and x be nonzero element of E, then

N(T ′(x)− T (x), 2t) = N(
T ′(2nx)

2n
− T (2nx)

2n
, 2t)

≥ min{N(T ′(2nx)− f(2nx), 2nt), N(T (2nx)− f(2nx), 2nt)}
≥ N ′(α, 2n−1t).

By taking the limit as n tends to infinity we get T = T ′. This proves the uniqueness
assertion. �

Example 4.2. Let E and F be fuzzy normed space (R, N), where

N(x, t) =

{
1, t > |x|,
0, t ≤ |x|.
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Consider Nk((x1, . . . , xk), t) = min{N(xi, t) : i = 1, . . . , k} ((x1, . . . , xk) ∈ F k, t ∈
R). Then {(F k, Nk), k ∈ N} is a multi-fuzzy Banach space. Also consider f(x) =
sgn(x), (x ∈ R), take α = 4 and N ′ = N . Now, all conditions of Theorem 4.1 are
satisfied and so there is a unique additive mapping T fulfills condition (8).

Next, we show that the condition f(0) = 0 in Theorem 4.1 is necessary.

Example 4.3. In Theorem 4.1, let E and F be fuzzy normed space (R, N), where
N(x, t) = t

t+|x| (x ∈ E or F, t > 0) and Nk((x1, . . . , xk), t) = min{N(xi, t) : i =

1, . . . , k} ((x1, . . . , xk) ∈ F k, t ∈ R). Consider the function f : R → R defined by
f(x) = 10. Also take α = 1 and N ′ = N . Evidently, condition (7) holds. If on
the contrary, there exists an additive mapping T : R→ R satisfying (8), then take
x = n (n ∈ N large enough), we get N(10−nT (1), 2t) ≥ N(1, t) for all t > 0. Hence

2t

2t+ |10− nT (1)|
≥ t

t+ 1
,

(13)

for all t > 0. In turn this proves

|10

n
− T (1)| ≤ 2

n
. (14)

In the light of the relation (14) we conclude that T (1) = 0, which leads to a
contradiction with the condition (13).

Remark 4.4. A significant fact about Ulam-Hyers stability in the setup multi-
fuzzy normed spaces which is interesting in own right is that we can obtain some
results in multi-normed spaces as particular cases in such spaces. For instance [18,
Theorem 1 ] can be obtained from Theorem 4.1, when we consider Banach space
(F, ‖.‖) with the fuzzy norm N(x, t) = t

t+‖x‖ (x ∈ F, t > 0), (F k, Nk) is defined as

Example 3.2 and N ′(α, t) = t
t+‖α‖ .

The following example shows the usefulness of our results. Indeed, we give an
example of a multi-fuzzy normed space such that its topology is not multi-normable.

Example 4.5. Let E be the space of complex-valued continuous functions on the
real line. Then E is not normable [25]. Define

N(f, t) =

{
0, t ≤ 0,

sup{ n
n+1 , ‖f‖n ≤ t}, t > 0,

where ‖.‖n denotes the supremum norm on [−n, n], n ∈ N. By applying a similar
argument as in the proof of [3, Theorem 2.2], one can show that (E,N) is a fuzzy
normed space (see [16]). Now consider {(Ek, Nk), k ∈ N} as Example 3.2. Then it
is a multi-fuzzy normed space which is not multi-normable.

In the following we give a result by utilizing the strategy applied in [18, Page
458]. Note that this theorem in comparison with the similar one in multi-normed
spaces is applicable in a different area.
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Theorem 4.6. Let {(Ek, Nk), k ∈ N} be a multi-fuzzy normed space, {(F k, Nk), k ∈
N} be a multi-fuzzy Banach space and (E,N ′), (F,N ′) be fuzzy normed spaces. Sup-
pose that {βk} is a sequence in E, α is a nonzero fixed vector in F and f : E → F
is a mapping satisfying f(0) = 0 and

Nk
(
(f(

x1 + y1

2
)−

f(x1)

2
−
f(y1)

2
, . . . , f(

xk + yk

2
)−

f(xk)

2
−
f(yk)

2
)),

t

5

)
≥ N ′(α, t),

(15)

for all k ∈ N, x1, . . . , xk, y1, . . . , yk ∈ E and all t > 0 with

min{Nk((x1, . . . , xk), t), Nk((y1, . . . , yk), t)} ≤ N ′(βk, t).
Then there exists a unique additive mapping T : E → F such that

Nk((f(x1)− T (x1), . . . , f(xk)− T (xk)), 2t) ≥ N ′(α, t), (16)

for all x1, . . . , xk ∈ E and all t > 0.

Proof. Fix k ∈ N and x = (x1, . . . , xk) and y = (y1, . . . , yk) in Ek. Assume that
min{Nk(x, t), Nk(y, t)} > N ′(βk, t). Obviously, if x = y = 0, then the condition
(7) of Theorem 4.1 holds. Now if x and y are nonzero, then there exist sufficiently
large natural numbers k1 and k2, in which Nk(x, tk1 ) ≤ N ′(βk, t) and Nk(y, t

k2−1 ) ≤
N ′(βk, t). Put z1 = k1x and z2 = k2y, then Nk(z1 + x, t) ≤ N ′(βk, t) and Nk(z2 −
y, t) ≤ N ′(βk, t). Set

z :=

{
z1 + x, if Nk(x, t) ≤ Nk(y, t),
z2 − y, if Nk(x, t) > Nk(y, t),

for all t > 0. Clearly, Nk(z, t) ≤ N ′(βk, t). Now if Nk(x, t) > Nk(y, t), then
min{Nk(x − z, t), Nk(y + z, t)} ≤ Nk(y + z, t) = Nk(z2, t) ≤ N ′(βk, t), and if
Nk(x, t) ≤ Nk(y, t), then min{Nk(x−z, t), Nk(y+z, t)} ≤ Nk(x−z, t) = Nk(z1, t) ≤
N ′(βk, t). Taking all these considerations into account we observe that, the follow-
ing relations hold.

min{Nk(x, t), Nk(z, t)} ≤ N ′(βk, t).

min{Nk(y, t), Nk(2z, t)} ≤ N ′(βk, t).

min{Nk(y + z, t), Nk(z, t)} ≤ N ′(βk, t).

min{Nk(2z, t), Nk(x− z, t)} ≤ N ′(βk, t).

min{Nk(x− z, t), Nk(y + z, t)} ≤ N ′(βk, t). (17)

If x = 0 and y 6= 0 (or x 6= 0 and y = 0), then an easy verification proves that
(17) holds, too. From (15) and (17) we get

Nk((f(x1+y1
2 )− f(x1)

2 − f(y1)
2 , . . . , f(xk+yk

2 )− f(xk)
2 − f(yk)

2 ), t) ≥
min

{
Nk(f(x1+y1

2 )− f(x1−z1)+f(y1+z1)
2 , . . . , f(xk+yk

2 )− f(xk−zk)+f(yk+zk)
2 , t5 ),

Nk(f(x1+z1
2 )− f(2z1)+f(x1−z1)

2 , . . . , f(xk+zk
2 )− f(2zk)+f(xk−zk)

2 , t5 ),

Nk(f(y1+2z1
2 )− f(y1)+f(2z1)

2 , . . . , f(yk+2zk
2 )− f(yk)+f(2zk)

2 , t5 ),

Nk(f(y1+2z1
2 )− f(y1+z1)+f(z1)

2 , . . . , f(yk+2zk
2 )− f(yk+zk)+f(zk)

2 , t5 ),

Nk(f(x1+z1
2 )− f(x1)+f(z1)

2 , . . . , f(xk+zk
2 )− f(xk)+f(zk)

2 , t5 )
}
≥ N ′(α, t).
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This inequality holds for all k ∈ N, all x1, . . . , xk, y1, . . . , yk ∈ E and all t > 0
(
if

min{Nk(x, t), Nk(y, t)} ≤ N ′(βk, t) we get it immediately by (15)
)
. Now, the result

is deduced from Theorem 4.1. �

Example 4.7. Consider {(Ek, ‖.‖), k ∈ N} and {(F k, ‖.‖), k ∈ N} are multi-
normed space and multi-Banach space, respectively. Equip Ek and F k with the
multi-fuzzy norm N i

k (i = 1 or 2 or 3) as Example 3.2 and take N ′ = N i
1. Suppose

that α is in F and {βk}, k ∈ N is a sequence in E. Now take f : E → F is a
mapping satisfying all conditions of Theorem 4.6. It follows that if

‖
(
f(
x1 + y1

2
)− f(x1) + f(y1)

2
, . . . , f(

xk + yk
2

)− f(xk) + f(yk)

2

)
‖k ≤

‖α‖
5
,

for all k ∈ N and for all x1, . . . , xk, y1, . . . , yk ∈ E with

max
{
‖(x1, . . . , xk)‖k, ‖(y1, . . . , yk)‖k

}
≥ ‖βk‖,

then there exists a unique additive mapping T : E → F such that

sup
k∈N
‖
(
f(x1)− T (x1), . . . , f(xk)− T (xk)

)
‖k ≤ 2‖α‖,

for all x1, . . . , xk ∈ E.

Example 4.8. Let {(Ek, ‖.‖), k ∈ N} and {(F k, ‖.‖), k ∈ N} be as Example 4.7.

Also let N ′(x, t) = t2−‖x‖2
t2+‖x‖2 , x ∈ E or F, when t > ‖x‖. Suppose that α ∈ F and

βk ∈ E (k ∈ N) with ‖α‖ = ‖βk‖ = 1 and f : E → F is a mapping satisfying all
conditions of Theorem 4.6. It follows that if

‖
(
f(
x1 + y1

2
)− f(x1) + f(y1)

2
, . . . , f(

xk + yk
2

)− f(xk) + f(yk)

2

)
‖k ≤

2t

5(t2 − 1)
,

for all k ∈ N, all x1, . . . , xk, y1, . . . , yk ∈ E and all t > 1 with

max
{
‖(x1, . . . , xk)‖k, ‖(y1, . . . , yk)‖k

}
≥ 2t

t2 − 1
,

then there exists a unique additive mapping T : E → F such that

sup
k∈N
‖
(
f(x1)− T (x1), . . . , f(xk)− T (xk)

)
‖k ≤

4t

t2 − 1
,

for all x1, . . . , xk ∈ E and all t > 1.

In the above example, we observe that the stability of Jensen’s functional equa-
tion depends on another parameter t such that for each fixed t > 1 it reduces to
the same result as Example 4.7.

Example 4.9. Under the hypotheses of Example 4.3 except f : R→ R is defined
by f(0) = f( 1

2 ) = 0 and f(x) = 1 elsewhere, α = 100 and βk = 1 (k ∈ N), then all
conditions of Theorem 4.6 hold. Therefore there exists a unique additive mapping
T : R→ R fulfilling condition (16).

Now we are ready to prove our main result.
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Theorem 4.10. Let {(Ek, Nk), k ∈ N} be a multi-fuzzy normed space, {(F k, Nk), k ∈
N} be a multi-fuzzy Banach space and f : E → F be a mapping such that f(0) = 0.
Then f is additive if and only if for all k ∈ N

Nk((f(
x1 + y1

2
)− f(x1)

2
− f(y1)

2
, . . . , f(

xk + yk
2

)− f(xk)

2
− f(yk)

2
),
t

5
)→ 1

(18)

as

min{Nk((x1, . . . , xk), t), Nk((y1, . . . , yk), t)} → 0.

Proof. If f is additive, then evidently (18) holds. Conversely, let (E,N ′) and (F,N ′)
be fuzzy-normed spaces. Fix nonzero vector α in F . Employing the condition (18)
we can find for each n ∈ N a sequence {βnk

} in E such that

Nk((f(
x1 + y1

2
)− f(x1)

2
− f(y1)

2
, . . . , f(

xk + yk
2

)− f(xk)

2
− f(yk)

2
),
t

5
) ≥ N ′(α

n
, t),

for all k ∈ N and all x1, · · · , xk, y1, · · · , yk ∈ E, with

min{Nk((x1, . . . , xk), t), Nk((y1, . . . , yk), t)} ≤ N ′(βnk
, t).

In view of Theorem 4.6, for every n ∈ N there exists a unique additive mapping Tn
such that

N(Tn(x)− f(x), 2t) ≥ N ′(α
n
, t), (19)

for all x ∈ E and all t > 0. Since N(T1(x)− f(x), 2t) ≥ N ′(α, t) and N(Tn(x)−
f(x), 2t) ≥ N ′(αn , t) ≥ N ′(α, t) by the uniqueness of T1 we conclude that Tn = T1
for each n ∈ N. Now tending with n to infinity in (19), we deduce that f = T1 and
hence f is additive. �
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STABILITY OF THE JENSEN'S FUNCTIONAL EQUATION IN MULTI-FUZZY NORMED SPACES 

 M. KHANEHGIR  پايداري معادله تابعي ينسن در فضاهاي چند نرم دار فازي  
مقاله ، مفهوم فضاهاي (دوگان) چند نرم دار فازي را تعريف مي كنيم و بعضي از خواص در اين  .دهيچك  

اريس معادله تابعي ينسن براي نگاشت هايي از فضاهاي  –آن ها را توصيف مي نماييم. سپس پايداري اولام 
در قالب  خطي به توي فضاهاي چند نرم دار فازي را بررسي مي كنيم. يك رفتار مجانبي از معادله ينسن

     فضاهاي چند نرم دار فازي مي سازيم.
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