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THE CATEGORY OF >-CONVERGENCE SPACES AND ITS

CARTESIAN-CLOSEDNESS

Q. YU AND J. FANG

Abstract. In this paper, we define a kind of lattice-valued convergence spaces

based on the notion of >-filters, namely >-convergence spaces, and show the

category of >-convergence spaces is Cartesian-closed. Further, in the lattice
valued context of a complete MV -algebra, a close relation between the cate-

gory of >-convergence spaces and that of strong L-topological spaces is estab-
lished. In details, we show that the category of strong L-topological spaces

is concretely isomorphic to that of strong L-topological >-convergence spaces

categorically and bireflectively embedded in that of >-convergence spaces.

1. Introduction

As pointed out by E. Lowen and R. Lowen in [14], the category of stratified
[0, 1]-topological spaces (or fuzzy topological spaces in the original terminology
of [13]) is not completely satisfactory for certain application in Algebra topology
or Functional analysis, here [0, 1] is the unital interval. The main reason is the
fact that it is not Cartesian-closed and hence there is no natural function space
for the sets of morphisms. In order to overcome this deficiency, by starting from
convergence theory in stratified [0, 1]-topological spaces developed by R. Lowen in
[13], E. Lowen et al. [14, 15] considered fuzzy convergence spaces as a generalization
of Choquet’s convergence spaces [1] and obtained the resulting Cartesian-closed
category containing the category of stratified [0, 1]-topological spaces as a fully
embedded subcategory.

For more general lattice L instead of the unital interval [0, 1], stemming from
stratified L-topological spaces, Jäger [10] developed a theory of convergence based
on the notion of stratified L-filters, where L is a complete Heyting Algebra. The
resulting category, namely the category of stratified L-generalized convergence
spaces, has the desired structural property of Cartesian-closedness and contains
the category of stratified L-topological spaces as an embedded reflective subcate-
gory. The convergence theory was developed to a significant extent in recent years
[3, 18, 19, 11, 12, 16, 20, 21]. On this basis, in the same lattice valued context,
Fang [2] defined a subcategory of the category of stratified L-generalized conver-
gence spaces, namely the category of stratified L-ordered convergence spaces, which
also is Cartesian-closed and contains the category of stratified L-topological spaces
as an embedded reflective subcategory.
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Thus in case of the underlying lattice L being a complete Heyting Algebra, we see
that Jäger and Fang all got nice conclusions. Regretfully, the idempotency about
the meet operation ∧ of L is indispensable for Cartesian-closedness of the resulting
categories in [2, 10]. The requirement of idempotency is not very convenient because
the semigroup operation in most of underlying lattices (e.g., completeMV -algebras)
is not idempotent, but commutative.

Apart from the Cartesian-closedness depending on the idempotency of the meet
operation ∧, all convergence spaces mentioned above, such as fuzzy convergence
space, stratified L-generalized convergence spaces and stratified L-ordered conver-
gence spaces, start from a kind of stratified L-topological spaces. In fact, besides
stratified L-topological spaces, there exists another kind of lattice-valued topolog-
ical spaces, namely strong L-topological spaces introduced by Zhang [22], which
actually are probabilistic topological spaces [8, 9] in a complete MV -algebra.

Hence when the underlying lattice is possessed of a semigroup operation with
non-idempotency, it is necessary to find a kind of lattice-valued convergence spaces
starting from strong L-topological spaces such that the resulting category is Cartesian-
closed and contains the category of strong L-topological spaces as an embedded
reflective subcategory.

By this paper, we try to propose a kind of lattice-valued convergence spaces based
on the notion of >-filters which was introduced by Höhle [9], namely >-convergence
spaces, and show that when the lattice theoretical setting is a completeMV -algebra,
the category of >-convergence spaces is Cartesian-closed and the idempotency of
the semigroup operation is not required here. Further, we also want to establish
a close relation between the category of >-convergence spaces and that of strong
L-topological spaces in case the lattice L is a complete MV -algebra. In fact, we will
show that the category of strong L-topological >-convergence spaces is concretely
isomorphic to that of strong L-topological spaces categorically, and the category of
>-convergence spaces contains that of strong L-topological spaces as an embedded
bireflective subcategory.

The paper is organized as follows: In Section 2, we provide the lattice theoreti-
cal context and recall some notions used in this paper. In Section 3, a concept of
>-convergence spaces is proposed and the category of >-convergence spaces is in-
troduced. Then after showing the category of >-convergence spaces is topological,
the Cartesian-closedness of the category of >-convergence spaces is obtained. In
Section 4, it is presented the relation between the category of >-convergence spaces
and that of strong L-topological spaces.

2. Preliminaries

A triple (L,≤, ∗) is called a complete residuated lattice, if (L,≤) is a complete
lattice with > and ⊥ respectively being the top and the bottom element of L, and
∗ : L×L→ L, called a tensor on L, is a commutative, associative binary operation
such that

(1) ∗ is monotone on each variable,
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(2) For each α ∈ L, the monotone mapping α ∗ (−) : L → L has a right adjoint
α→ (−) : L→ L in the sense that α ∗ β 6 γ ⇐⇒ β 6 α→ γ for all β, γ ∈ L,

(3) The top element > is a unit element for ∗, i.e. > ∗ α = α for all α ∈ L.

For a given complete residuated lattice, the binary operation → on L can be
computed by α→ β =

∨
{γ ∈ L | α∗γ ≤ β} for all α, β ∈ L. The binary operation

→ is called the implication operation with respect to ∗. Some basic properties of
the tensor ∗ and the implication operation → are collected in the following lemma;
they can be found in many works, for instance [4, 19, 22].

Lemma 2.1. Let (L,≤, ∗) be a complete residuated lattice. Then for all α, β, γ, δ ∈
L, {βi}i∈I ⊆ L, the following conditions hold:

(a) > → α = α,
(b) α ∗ (α→ β) ≤ β,
(c) α ≤ β if and only if α→ β = >,
(d) (α→ β) ∗ (β → γ) ≤ α→ γ,
(e) (α→ β) ∗ (γ → δ) ≤ (α ∗ γ)→ (β ∗ δ) and (α→ β) ∧ (γ → δ) ≤ (α ∧ γ)→

(β ∧ δ),
(f) α ∗

∨
i∈I βi =

∨
i∈I(α ∗ βi),

(g) α→
∧
i∈I βi =

∧
i∈I(α→ βi), hence (α→ β) ≤ (α→ γ) whenever β ≤ γ,

(h)
(∨

i∈I βi
)
→ β =

∧
i∈I(βi → β), hence (α → β) ≥ (γ → β) whenever

α ≤ γ.

A complete residuated lattice (L,≤, ∗), denoted by L simply, is called a complete
MV -algebra, if L satisfies the condition:

(MV) α ∨ β = (α→ β)→ β, ∀α, β ∈ L.

A canonical example is the unital interval [0, 1] with the tensor α∗β = max{α+
β − 1, 0}, which means that ([0, 1],≤, ∗) is a complete MV -algebra such that 1 is
the unital element and the implication → with respect to ∗ is given by α → β =
min{1− α+ β, 1} for all α, β ∈ [0, 1].

Throughout this paper, we will assume L to be a complete MV -algebra although
most of results are valid for more general lattice-valued cases.

In this paper, we will often use, without explicitly mentioning, the following
properties of a complete MV -algebra.

Lemma 2.2. [7] For all α ∈ L and {βj}j∈J ⊆ L, then the following properties are
valid:

(M1) α ∧
(∨

j∈J βj
)

=
∨
j∈J(α ∧ βj),

(M2) α ∨
(∧

j∈J βj
)

=
∧
j∈J(α ∨ βj),

(M3) α ∗
(∧

j∈J βj
)

=
∧
j∈J(α ∗ βj),

(M4) α→
(∨

j∈J βj
)

=
∨
j∈J(α→ βj).

An L-subset on a set X is a map from X to L, and the family of all L-subsets
on X will be denoted by LX , called the L-power set of X. For any x ∈ X, A(x) is
interpreted as the degree to which x is in A. By 1X and 0X , we denote the constant
L-subsets on X taking the value > and ⊥, respectively. We don’t distinguish an
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element α ∈ L and the constant function α : X → L such that α(x) = α for all
x ∈ X. As usual, for a universal set X, the set of all subsets of X is denoted by
P(X), called the power set of X.

All algebraic operations on L can be extended to the L-power set LX pointwisely.
That is, for all A, B ∈ LX and x ∈ X,

(1) (A ∧B)(x) = A(x) ∧B(x),
(2) (A ∨B)(x) = A(x) ∨B(x),
(3) (A ∗B)(x) = A(x) ∗B(x),
(4) (A→ B)(x) = A(x)→ B(x).

Let ϕ : X → Y be a map. Define ϕ→ : LX → LY and ϕ← : LY → LX

respectively by ϕ→(A)(y) =
∨

ϕ(x)=y

A(x) for all A ∈ LX and y ∈ Y , ϕ←(B) = B ◦ϕ

for all B ∈ LY .
For a set X, there exists a binary map SX(−,−) : LX × LX → L defined by

SX(A,B) =
∧
x∈X

(
A(x) → B(x)

)
for each pair (A,B) ∈ LX × LX , where → is the

implication operation corresponding to ∗. For all A, B ∈ LX , SX(A,B) can be
interpreted as the degree to which A is a subset of B. It was called fuzzy inclusion
order [22] or subsethood degree [4] of L-subsets.

Lemma 2.3. [2]Let X and Y be nonempty sets. For any A,B,C ∈ LX and
E,F ∈ LY , then the following statements hold:

(1) A ≤ B if and only if > = SX(A,B).
(2) SX(A,B) ≤ SX(B,C)→ SX(A,C).
(3) SX(A,B ∧ C) = SX(A,B) ∧ SX(A,C) and SX(B ∨ C,A) = SX(B,A) ∧
SX(C,A), hence SX(C,A) ≤ SX(B,A) when B ≤ C.

(4) If ϕ : X → Y is a map, then

SX(A,B) ≤ SY (ϕ→(A), ϕ→(B)) and SY (E,F ) ≤ SX(ϕ←(E), ϕ←(F )).

J. Gutiérrez Garćıa and M.A. De Prada Vicente [5, 6] introduced the notion of
characteristic value of a family of L-subsets extending that of characteristic value
of a prefilter in [13] and provided the equivalent form of κ-condition [9]. Thereby
they obtained the equivalent definitions of >-filter and >-filter base as follows.

Definition 2.4. [5, 6] Let X be a nonempty set. A >-filter is a nonempty subset
F of LX with the following properties:

(F1) If A ∈ LX with
∨
C∈F
SX(C,A) = >, then A ∈ F,

(F2) A1 ∧A2 ∈ F for all A1, A2 ∈ F,
(F3)

∨
x∈X

A(x) = > for all A ∈ F.

The set of all >-filters on X is denoted by F>L (X).

Example 2.5. Let [x]> = {A ∈ LX | A(x) = >} for given a point x ∈ X. Then
[x]> is a >-filter, and called the point >-filter of x. In case X = {x}, a single
point set, [x]> is the unique >-filter on the X.
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Definition 2.6. [6] A nonempty subset B of LX is a >-filter base, if it satisfies the
following conditions:

(B1) If B1, B2 ∈ B, then
∨
B∈B
SX(B,B1 ∧B2) = >,

(B2)
∨
x∈X

B(x) = > for all B ∈ B.

Remark 2.7. [6]Every >-filter base B generates a >-filter FB defined by

FB = {A ∈ LX |
∨
B∈B
SX(B,A) = >}.

In this case, B ⊆ FB holds and B is called a base of FB. We could know every
>-filter F is a base of itself. And let B be any base of a >-filter F, then F = {A ∈
LX |

∨
B∈B
SX(B,A) = >} is true.

Definition 2.8. [6] Let ϕ : X → Y be a map, F ∈ F>L (X), G ∈ F>L (Y ).

(1) A >-filter ϕ⇒(F) on Y generated by the >-filter base

{ϕ→(B) ∈ LY | B ∈ F}

is called the image of F under ϕ.
(2) If the class {ϕ←(C) ∈ LX | C ∈ G} satisfies

∨
y∈ϕ(X)

C(y) = > for all C ∈ G,

then {ϕ←(C) ∈ LX | C ∈ G} is a >-filter base on X and a >-filter on
X generated by it is called the inverse image of G under ϕ, denoted by
ϕ⇐(G). In this case, we say the inverse image ϕ⇐(G) exists sometimes.

Remark 2.9. [6] Let ϕ : X → Y be a map, F ∈ F>L (X) and G ∈ F>L (Y ).

(1) By Remark 2.7, we have

ϕ⇒(F) = {C ∈ LY |
∨
B∈F
SY (ϕ→(B), C) = >}.

In fact, ϕ⇒(F) has another expression {C ∈ LY | ϕ←(C) ∈ F}.
(2) From Definition 2.8(2), we know that the inverse image ϕ⇐(G) doesn’t

always exist, but if ϕ⇐(G) exists, we have the following expression

ϕ⇐(G) = {A ∈ LX |
∨
B∈G
SX(ϕ←(B), A) = >}.

(3) The following are satisfied:
(i) if F ⊆ H for H ∈ F>L (X), then ϕ⇒(F) ⊆ ϕ⇒(H),
(ii) ϕ⇐ ◦ ϕ⇒(F) ⊆ F.

For more information on the categorical terminology we refer the reader to
[17]. By a category we mean a construct C whose objects are structured sets,
i.e. pairs (X, ξ) where X is a set and ξ a C-structure on X, whose morphisms
ϕ : (X, ξ) → (Y, η) are suitable maps from X to Y and whose composition is the
usual composition of maps. The forgetful functors will not be mentioned explicitly.
We simply write X for a categorical object (X, ξ) sometimes.
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Definition 2.10. [17] A category C is said to be topological if the following condi-
tions are satisfied:

(1) Existence of initial structures: For any set X, any family
(
(Xi, ξi)

)
i∈I of

C-objects indexed by a class I and any family (fi : X → Xi)i∈I of maps
indexed by I there exists a unique C-structure ξ on X which is initial with
respect to (fi : X → Xi)i∈I in the sense that for any C-object (Y, η), a map
g : (Y, η) → (X, ξ) is a C-morphism iff for every i ∈ I the composite map
fi ◦ g : (Y, η)→ (Xi, ξi) is a C-morphism.

(2) Fibre-smallness: For any set X, the class {ξ | (X, ξ) is a C−object} of all
C-structures with the underlying set X, called C-fibre of X, is a set.

(3) Terminal separator property: For any set X with cardinality at most one,
there exists exactly one C-structure on X.

Definition 2.11. [17] A category C is said to be Cartesian-closed provided that
the following conditions are satisfied:

(1) For each pair (X,Y ) of C-objects there exists a product X × Y in C.
(2) For any C-objects X and Y , there exists some C-object Y X (called power

object) and some C-morphism evX,Y : Y X × X → Y (called evaluation
morphism) such that for each C-object Z and each C-morphism ϕ : Z ×
X → Y , there exists a unique C-morphism ϕ∗ : Z → Y X such that
evX,Y ◦ (ϕ∗ × idX) = ϕ.

Definition 2.12. [17] Let A be a subcategory of a category C. A is said to be
reflective in C provided that for each X ∈ |C| there exists an A-object XA and a
C-morphism γX : X → XA such that for each A-object Y and each C-morphism
ϕ : X → Y there is a unique A-morphism ϕ : XA → Y such that ϕ = ϕ ◦ γX . If
the C-morphism γX : X →XA is bimorphism, then A is said to be bireflective in
C, and γX is called bireflection.

3. The Cartesian-closedness of >-Conv

In this section, we define a kind of lattice-valued convergence spaces based on
the notion of >-filter, namely >-convergence spaces. The class of all >-convergence
spaces and continuous maps forms a category. We prove the category is topological
and Cartesian-closed which are very nice structural properties.

Definition 3.1. Let X be a nonempty set. A map lim : F>L (X)→ P(X) satisfying
the following conditions:

(TC1) ∀x ∈ X, x ∈ lim[x]>,
(TC2) ∀F, G ∈ F>L (X), F ⊆ G⇒ limF ⊆ limG,

is called a>-convergence onX, and the pair (X, lim) is called a>-convergence space.
The set of all >-convergences on X is denoted by C>(X). We say F converges to
x instead of x ∈ limF .

A map ϕ : (X, limX) → (Y, limY ) between >-convergence spaces is said to be

continuous provided that x ∈ limX F means ϕ(x) ∈ limY ϕ⇒(F) for all x ∈ X and
F ∈ F>L (X). The class of all >-convergence spaces and continuous maps forms a
category, which is denoted >-Conv.
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Theorem 3.2. The category >-Conv is topological.

Proof. Firstly, the existence of initial structures can be proved as follows. Let X be
a nonempty set, {(Xj , limj)}j∈J a family of >-convergence spaces and {ϕj : X →
(Xj , limj)}j∈J a family of maps. A structure map limX : F>L (X) → P(X) on X

is defined by limXF = {x ∈ X | ϕj(x) ∈ limjϕ
⇒
j (F), ∀j ∈ J} for all F ∈ F>L (X).

Then it is easy to verify that limX is a >-convergence on X, and we only check its
property of being initial below.

Let (Y, limY ) be a >-convergence space and ψ : Y → X be a map. For any

y ∈ limY G, here y ∈ Y and G ∈ F>L (Y ), we can get

ϕj ◦ ψ : (Y, limY )→ (Xj , limj) is continuous for every j ∈ J
⇐⇒ ϕj

(
ψ(y)

)
= ϕj ◦ ψ(y) ∈ limj(ϕj ◦ ψ)⇒(G) = limjϕ

⇒
j

(
ψ⇒(G)

)
, ∀j ∈ J

⇐⇒ ψ(y) ∈ limXψ⇒(G) (by the definition of limX)

⇐⇒ ψ : (Y, limY )→ (X, limX) is continuous.

Next, since the class of all >-convergences on X belongs to the set 2(P(X)F
>
L (X)),

here 2 = {0, 1}, the >-Conv-fibre of X is a set.
Finally, let X = {x} be a singleton. F>L (X) = {[x]>} holds by Example 2.5.

Then the structure map lim : F>L (X)→ P(X) is only determined by lim[x]> = {x}.
Thus lim is the unique >-convergence on X.

From all above, we get that the category >-Conv is topological. �

Every topological category has products [17], so the condition (1) in Definition
2.11 is automatically fulfilled by the category of >-convergence spaces.

Let (X, limX) and (Y, limY ) be >-convergence spaces and pX : X × Y → X and

pY : X × Y → Y be the projection maps. The product of (X, limX) and (Y, limY )

is denoted by (X × Y, limX × limY ) explicitly. Of course, for any F ∈ F>L (X × Y ),

(x, y) ∈ (limX × limY )F if and only if x ∈ limX p⇒X (F) and y ∈ limY p⇒Y (F).

The set of all continuous mappings from (X, limX) to (Y, limY ) is denoted
by C>(X,Y ). In the category Set of sets and maps, there exists the evalua-
tion map evX,Y : C>(X,Y ) × X → Y defined by evX,Y (ϕ, x) = ϕ(x) for all
(ϕ, x) ∈ C>(X,Y ) ×X. In order to explore the Cartesian-closedness of >-Conv,
we need some lemmas and propositions in preparation for it.

Lemma 3.3. Let Fi ∈ F>L (Xi) and Bi be a base of Fi, here i = 1, 2. Then

B = {B1 ×B2 | B1 ∈ B1 and B2 ∈ B2}
is a >-filter base, where for any Bi ∈ Bi (i=1,2),

B1 ×B2((x1, x2)) = B1(x1) ∧B2(x2), ∀(x1, x2) ∈ X1 ×X2.

Proof. For any A,C ∈ B, there exist A1, C1 ∈ B1 and A2, C2 ∈ B2 such that A =
A1×A2 and C = C1×C2.

∨
Bi∈Bi

SXi
(Bi, Ai) = > (i = 1, 2) follows immediately from

Remark 2.7. From this, we observe that
∨

Bi∈Bi
i=1,2

SX1
(B1, A1)∧SX2

(B2, A2) = >. Since
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for each Bi ∈ Bi (i = 1, 2), SX1×X2(B1×B2, A1×A2) > SX1(B1, A1)∧SX2(B2, A2)
holds owing to Lemma 2.1 (e), we conclude that∨

Bi∈Bi
i=1,2

SX1×X2
(B1 ×B2, A1 ×A2) = >.

Certainly,
∨

Bi∈Bi
i=1,2

SX1×X2
(B1 ×B2, C1 × C2) = >. From all above, we obtain that

∨
Bi∈Bi
i=1,2

SX1×X2

(
B1 ×B2, A ∧ C

)
=
∨

Bi∈Bi
i=1,2

SX1×X2

(
B1 ×B2, (A1 ×A2) ∧ (C1 × C2)

)
=
∨

Bi∈Bi
i=1,2

SX1×X2(B1 ×B2, A1 ×A2) ∧ SX1×X2(B1 ×B2, C1 × C2)

(by using Lemma 2.3 (3))

=>,

i.e. B satisfies (B1).
For any B1 ∈ B1 and B2 ∈ B2, we have∨

xi∈Xi
i=1,2

B1 ×B2((x1, x2)) =
∨

xi∈Xi
i=1,2

B1(x1) ∧B2(x2) = >

since
∨

xi∈Xi

Bi(xi) = > for i = 1, 2 holds by Bi satisfying (B2). Then the condition

(B2) is satisfied by B. �

Let Fi ∈ F>L (Xi) for i = 1, 2. Because every >-filter is a base of itself, from
Lemma 3.3 above, {B1×B2 |Bi ∈ Fi, i = 1, 2} is a >-filter base, which generates a
>-filter, denoted by F1×F2. And from Remark 2.7, F1×F2 can be determined by

F1 × F2 = {A ∈ LX1×X2 |
∨

Bi∈Fi
i=1,2

SX1×X2

(
B1 ×B2, A

)
= >}.

Let ϕi : Xi → Yi (i=1,2) be a map. By Remark 2.7 and Definition 2.8, we know
{ϕ→i (Bi) ∈ LYi | Bi ∈ Fi} is a base of ϕ⇒i (Fi). So

{ϕ→1 (B1)× ϕ→2 (B2) | Bi ∈ Fi, i = 1, 2}
is a >-filter base from Lemma 3.3 and generates a >-filter ϕ⇒1 (F1)× ϕ⇒2 (F2).

In addition, we could check that (ϕ1 × ϕ2)→(B1 × B2) = ϕ→1 (B1) × ϕ→2 (B2) is
true. Then {(ϕ1 × ϕ2)→(B1 ×B2) | Bi ∈ Fi, i = 1, 2} equals

{ϕ→1 (B1)× ϕ→2 (B2) | Bi ∈ Fi, i = 1, 2}
and is also a >-filter base. And it generates a >-filter (ϕ1 × ϕ2)⇒(F1 × F2) by
Definition 2.8. So we can get the following lemma.
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Lemma 3.4. Let ϕ : X1 → Y1 and ψ : X2 → Y2 be two maps, F1 ∈ F>L (X1),
F2 ∈ F>L (X2). Then (ϕ× ψ)⇒(F1 × F2) = ϕ⇒(F1)× ψ⇒(F2).

Lemma 3.5. Let (X × Y, limX × limY ) be the product of two >-Conv-objects

(X, limX) and (Y, limY ). If pX : X × Y → X and pY : X × Y → Y be the
projection maps, then for any F ∈ F>L (X) and G ∈ F>L (Y ) the following are valid:

(1) p⇒X (F×G) = F, (2) p⇒Y (F×G) = G.
Proof. In the proof, we only show the conclusion (1) for example. In general,
p→X (A×B) = A for each A ∈ F, B ∈ G since for all x ∈ X,

p→X (A×B)(x) =
∨

pX(x,y)=x

A×B((x, y)) = A(x) ∧
∨
y∈Y

B(y) = A(x) ∧ > = A(x),

where
∨
y∈Y

B(y) = > owing to B ∈ G. Thus for each C ∈ LX , C ∈ p⇒X (F × G)

if and only if
∨

A∈F,B∈G
SX
(
p→X (A × B), C

)
= >, i.e.

∨
A∈F
SX(A,C) = >, which is

equivalent to C ∈ F. Consequently, p⇒X (F×G) = F. �

Lemma 3.6 (Jäger [10]). If ϕ ∈ C>(X,Y ), then ϕ→(A) = ev→X,Y (1ϕ×A) holds for

any A ∈ LX , here 1ϕ ∈ LC>(X,Y ) such that 1ϕ(ϕ) = > and 1ϕ(ψ) = ⊥ for ψ 6= ϕ.

Now, we begin to confirm the existence of power object and the continuity of
the evaluation map by the following propositions.

Proposition 3.7. Let (X, limX) and (Y, limY ) be two >-Conv-objects. A map

limC : F>L
(
C>(X,Y )

)
→ P

(
C>(X,Y )

)
is defined for all H ∈ F>L

(
C>(X,Y )

)
, by

limCH = {ϕ ∈ C>(X,Y ) | ∀x ∈ X, ∀F ∈ F>L (X),

x ∈ limXF⇒ ϕ(x) ∈ limY ev⇒X,Y (H× F)}.
Then limC is a >-convergence on C>(X,Y ).

Proof. We have to check the map limC satisfies the axioms (TC1) and (TC2). The
axiom (TC2) follows immediately from the definition of limC .

To check the map limC satisfies the axioms (TC1), we have to show ϕ ∈ limC [ϕ]>
holds for each ϕ ∈ C>(X,Y ), where [ϕ]> = {D ∈ LC>(X,Y ) | D(ϕ) = >} is

the point >-filter of ϕ on C>(X,Y ). And it suffices to check x ∈ limX F implies

ϕ(x) ∈ limY ev⇒X,Y ([ϕ]> × F) for all x ∈ X and F ∈ F>L (X) by the definition of

limC . In fact, we firstly observe that for each C ∈ ϕ⇒(F),

> =
∨
A∈F
SY
(
ϕ→(A), C

)
=
∨
A∈F
SY
(
ev→X,Y (1ϕ ×A), C

)
(by Lemma 3.6)

≤
∨

E∈[ϕ]>×F

SY
(
ev→X,Y (E), C

)
(here, 1ϕ ×A ∈ ([ϕ]> × F) for A ∈ F),
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which deduces C ∈ ev⇒X,Y ([ϕ]>×F) by Remark 2.9 (1). Thus from the arbitrariness

of C, ϕ⇒(F) ⊆ ev⇒X,Y ([ϕ]> × F) is obtained.

Finally, since x ∈ limX F means ϕ(x) ∈ limY ϕ⇒(F) by the continuity of ϕ for

each x ∈ X, we have ϕ(x) ∈ limY ϕ⇒(F) ⊆ limY ev⇒X,Y ([ϕ]> × F) by using the

property of limY satisfying the axiom (TC2). �

Proposition 3.8. Let (X, limX) and (Y, limY ) be two >-Conv-objects. Then the

evaluation map evX,Y :
(
C>(X,Y )×X, limC × limX

)
→ (Y, limY ) is continuous.

Proof. Firstly, we point out the fact that ev⇒X,Y
(
p⇒C>(X,Y )(K)×p⇒X (K)

)
⊆ ev⇒X,Y (K)

holds for each K ∈ F>L
(
C>(X,Y ) × X

)
. To confirm the fact, it suffices to show

p⇒C>(X,Y )(K) × p⇒X (K) ⊆ K. Since p→C>(X,Y )(A) × p→X (B) > A ∧ B holds for all

A, B ∈ K, we have∨
C∈K
SC>(X,Y )×X(C,D) ≥

∨
A,B∈K

SC>(X,Y )×X(A ∧B,D)

≥
∨

A,B∈K
SC>(X,Y )×X

(
p→C>(X,Y )(A)× p→X (B), D

)
= >

for every D ∈ p⇒C>(X,Y )(K) × p⇒X (K). Thus whenever D ∈ p⇒C>(X,Y )(K) × p⇒X (K),

D ∈ K follows from (F1), which is to say p⇒C>(X,Y )(K)× p⇒X (K) ⊆ K holds.

Now, we show the continuity of evX,Y as follows:
Take any (ϕ, x) ∈ C>(X,Y ) × X and any K ∈ F>L

(
C>(X,Y ) × X

)
such that

(ϕ, x) ∈ (limC × limX)K. Then ϕ ∈ limC p
⇒
C>(X,Y )(K) and x ∈ limX p⇒X (K) hold.

We have ϕ(x) ∈ limY ev⇒X,Y
(
p⇒C>(X,Y )(K)× p⇒X (K)

)
from this and the definition of

limC . Finally, by using the fact above and the axiom (TC2), we conclude

evX,Y (ϕ, x) = ϕ(x) ∈ limY ev⇒X,Y (K).

Consequently, evX,Y is continuous. �

Lemma 3.9. Let (X, limX), (Y, limY ) and (Z, limZ) be >-convergence spaces. If

the map ψ : (Z ×X, limZ × limX)→ (Y, limY ) is continuous, then for each z ∈ Z,

the map ψ(z,−) : (X, limX)→ (Y, limY ) is also continuous.

Proof. To show the continuity of ψ(z,−) for each z ∈ Z, take any x ∈ X and

F ∈ F>L (X) such that x ∈ limX F. (z, x) ∈ (limZ × limX)([z]> × F) follows from

z ∈ limZ [z]> and Lemma 3.5. Further, by the continuity of ψ, we observe that

ψ(z,−)(x) = ψ(z, x) ∈ limY ψ⇒([z]> × F).

Notice that for A ∈ [z]> and B ∈ F, ψ→(A×B) ≥ ψ(z,−)→(B) holds because

ψ→(A×B)(y) =
∨

ψ(u,v)=y

A(u) ∧B(v) ≥
∨

ψ(z,v)=y

B(v) = ψ(z,−)→(B)(y)
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for all y ∈ Y . From this, we observe that for C ∈ ψ⇒([z]> × F),∨
B∈F
SY
(
ψ(z,−)→(B), C

)
≥

∨
A∈[z]>,B∈F

SY
(
ψ→(A×B), C

)
= >,

which deduces C ∈ ψ(z,−)⇒(F). Thus, ψ⇒([z]> × F) ⊆ ψ(z,−)⇒(F) follows from
the arbitrariness of C. Finally, by the axiom (TC2) we obtain that for each z ∈ Z,

ψ(z,−)(x) ∈ limY ψ⇒([z]> × F) ⊆ limY ψ(z,−)⇒(F).

In sum, the continuity of ψ(z,−) is proved as desired. �

Let (X, limX), (Y, limY ) and (Z, limZ) be >-convergence spaces and

ψ : (Z ×X, limZ × limX)→ (Y, limY )

be a continuous map. We define a map ψ∗ : Z → C>(X,Y ) by ψ∗(z) = ψ(z,−) for
all z ∈ Z. Then by Lemma 3.9, ψ∗ is well-defined and the following lemma confirm
that ψ∗ : (Z, limZ)→

(
C>(X,Y ), limC

)
is continuous.

Lemma 3.10. Let (X, limX), (Y, limY ) and (Z, limZ) be >-convergence spaces. If

ψ : (Z ×X, limZ × limX) → (Y, limY ) is a continuous mapping, then the mapping

ψ∗ : (Z, limZ)→
(
C>(X,Y ), limC

)
is continuous.

Proof. Take any z ∈ Z and G ∈ F>L (Z) such that z ∈ limZ G. We have to show

ψ∗(z) = ψ(z,−) ∈ limCψ
∗⇒(G).

For this, assume that x ∈ limX F, here x ∈ X and F ∈ F>L (X). Then we have

(z, x) ∈ (limZ × limX)(G× F).

Immediately, ψ(z,−)(x) = ψ(z, x) ∈ limY ψ⇒(G×F) follows from the continuity of
ψ. Further by means of evX,Y ◦ (ψ∗ × idX) = ψ and Lemma 3.4, we observe

limY ψ⇒(G× F) = limY
(
evX,Y ◦ (ψ∗ × idX)

)⇒
(G× F) = limY ev⇒X,Y

(
ψ∗
⇒

(G)× F
)
.

Hence ψ∗(z) = ψ(z,−) ∈ limC ψ
∗⇒(G) is obtained from the definition of limC . �

Let (X, limX) and (Y, limY ) be two >-Conv-objects. From Propositions 3.7, 3.8
and Lemma 3.10, there are the >-Conv-object

(
C>(X,Y ), limC

)
and the contin-

uous map evX,Y :
(
C>(X,Y ) × X, limC × limX

)
→ (Y, limY ) such that for each

>-Conv-object (Z, limZ) and each continuous map

ψ : (Z ×X, limZ × limX)→ (Y, limY ),

there exists a unique continuous map ψ∗ : (Z, limZ)→
(
C>(X,Y ), limC

)
satisfying

the equality evX,Y ◦(ψ∗×idX) = ψ. Thus by the definition of Cartesian-closedness,
we obtain the following theorem.

Theorem 3.11. The category >-Conv of >-convergence spaces is Cartesian-closed.
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4. Relation Between >-convergences and Strong L-topologies

In this section, we show that there is a close relation between >-convergences and
strong L-topologies on a universal set X. In details, we will demonstrate that the
category of strong L-topological spaces is concretely isomorphic to that of strong
L-topological >-convergence spaces categorically and embedded in the category
>-Conv of >-convergence spaces as a bireflective subcategory.

Firstly, we recall the definition of strong L-topological spaces [22] as follows.

Definition 4.1. Let X be a nonempty set. A strong L-topological space is a pair
(X, τ), where τ a subset of LX such that the following conditions are satisfied:

(ST1) 0X , 1X ∈ τ,
(ST2) U1 ∧ U2 ∈ τ for all U1, U2 ∈ τ,
(ST3)

∨
j∈J Uj ∈ τ for every family {Uj | j ∈ J} ⊆ τ,

(ST4) α ∗ U ∈ τ for all α ∈ L and U ∈ τ,
(ST5) α→ U ∈ τ for all α ∈ L and U ∈ τ.

If (X, τ) is a strong L-topological space, then τ is called a strong L-topology
on the set X. The set of all strong L-topologies on X is denoted by STL(X). A
map ϕ : (X, τ) → (Y, δ) between strong L-topological spaces is called continuous
map provided that ϕ←(V ) ∈ τ for each V ∈ δ. We denote the category of strong
L-topological spaces and continuous maps by STOP(L).

Definition 4.2. Let X be a nonempty set. If U = {Ux}x∈X is a family of >-filters
satisfying the axiom

(N) ∀x ∈ X, ∀B ∈ Ux, B(x) = >,
we call U a system of >-neighborhoods on X. And if a system of >-neighborhoods
U still satisfies the axiom

(TT) For any x ∈ X and each B ∈ Ux, there exists B∗ ∈ Ux with B∗ ≤ B such
that for every y ∈ X, there exists By ∈ Uy satisfying B∗(y) ≤ SX(By, B),

U is called a strong L-topological system of >-neighborhoods on X.

Example 4.3. (1) Let (X, lim) be a >-convergence space. We denote Ulim =
{Uxlim}x∈X , where Uxlim =

⋂
{F ∈ F>L (X) | x ∈ limF} for each x ∈ X. Then Ulim is

a system of >-neighborhoods.
(2) Let (X, τ) be a strong L-topological space. For each x ∈ X, Uxτ is defined
by Uxτ = {B ∈ LX |

∨
U∈τ

U(x) ∗ SX(U,B) = >}. Then {Uxτ}x∈X is a strong L-

topological system of >-neighborhoods on X. The detailed contents of the proof
see [9].

Definition 4.4. A >-convergence space (X, lim) is said to be strong L-topological
provided that {Uxlim}x∈X satisfies the axioms (TT) and

(TP) x ∈ limUxlim for all x ∈ X.

The set of all strong L-topological >-convergences on X is denoted by STC>(X).
The category of strong L-topological >-convergence spaces and continuous maps is
denoted by >-STConv.
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Example 4.5. Let (X, τ) be a strong L-topological space. The structure map
limτ : F>L (X)→ P(X) induced by τ is defined by

limτF = {x ∈ X | Uxτ ⊆ F}, forall F ∈ F>L (X), (1)

Then (X, limτ) is a strong L-topological >-convergence space.

Höhle [9] demonstrated that a strong L-topological space (X, τ) could induce a
strong L-topological system of >-neighborhoods {Uxτ}x∈X (see Example 4.3 (2)).
Besides, he also showed a strong L-topological system of >-neighborhoods U can
induce a strong L-topology given by

τU = {U ∈ LX | U(x) ≤
∨
B∈Ux

SX(B,U),∀x ∈ X}.

Significantly, for the proofs of the above contents, it is dispensable that the condition
Lemma 2.2 (M4) (i.e. → preserving arbitrary union) which holds in the context of
a complete MV -algebra.

Notice that if (X, lim) is a >-convergence space, {Uxlim}x∈X is a system of >-
neighborhoods on X. Naturally, we can get a strong L-topology

τlim = {U ∈ LX | U(x) ≤
∨

B∈Ux
lim

SX(B,U),∀x ∈ X}. (2)

In fact, there exists a bijection between the set STC>(X) of all strong L-
topological >-convergence structures on a set X and the set STL(X) of all strong
L-topologies on the X. We need a lemma in preparation for it.

Lemma 4.6. Let (X, lim) be a >-convergence space. Then
(1) for every x ∈ X, Uxτlim

⊆ Uxlim is valid.
(2) if (X, lim) is a strong L-topological, then for any x ∈ X, Uxlim = Uxτlim

holds.

Proof. (1) Take any x ∈ X and let B ∈ Uxτlim
, i.e.

∨
U∈τlim

U(x) ∗ SX(U,B) = >

by Example 4.3 (2). From the formula (2) and Lemma 2.3 (2), we observe that
U ∈ τlim means

U(x) ≤
∨

C∈Ux
lim

SX(C,U)

≤
∨

C∈Ux
lim

(
SX(U,B)→ SX(C,B)

)
= SX(U,B)→

∨
C∈Ux

lim

SX(C,B),

which is to say U(x) ∗ SX(U,B) ≤
∨

C∈Ux
lim

SX(C,B). By the arbitrariness of U , we

get > =
∨

U∈τlim

U(x) ∗ SX(U,B) ≤
∨

C∈Ux
lim

SX(C,B). From this and (F1), B ∈ Uxlim

holds, i.e. Uxτlim
⊆ Uxlim is obtained and the proof of the conclusion is completed.

(2) Let (X, lim) be a strong L-topological space. For any x ∈ X, we only need
to show Uxlim ⊆ Uxτlim

by using (1). Now take any B ∈ Uxlim and define B ∈ LX
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by B(y) =
∨

A∈Uy
lim

SX(A,B) for each y ∈ X. Then B(x) = > and B ≤ B follows

respectively from B(x) =
∨

A∈Ux
lim

SX(A,B) ≥ SX(B,B) = > and for each y ∈ X

B(y) =
∨

A∈Uy
lim

SX(A,B) ≤
∨

A∈Uy
lim

(A(y)→ B(y)) =
∨

A∈Uy
lim

(> → B(y)) = B(y).

In the following, we additionally confirm B ∈ τlim is also true by means of the
axiom (TT). In fact, for each y ∈ X, the axiom (TT) tell us A ∈ Uylim implies there
is A∗ ∈ Uylim with A∗ ≤ A such that for all z ∈ X, there exists Az ∈ Uzlim to satisfy

A∗(z) ≤ SX(Az, A). Then we get SX(A,B) ≤ SX(A∗, B) because for all z ∈ X
SX(A,B) ≤ SX(Az, A)→ SX(Az, B)

≤ A∗(z)→ SX(Az, B)

≤ A∗(z)→
( ∨
C∈Uz

lim

SX(C,B)
)

= A∗(z)→ B(z).

From this, we conclude that for all y ∈ X,

B(y) =
∨

A∈Uy
lim

SX(A,B) ≤
∨

A∗∈Uy
lim

SX(A∗, B) ≤
∨

C∈Uy
lim

SX(C,B).

Namely, B ∈ τlim by the definition of τlim. From all above, we have∨
U∈τlim

U(x) ∗ SX(U,B) ≥ B(x) ∗ SX(B,B) = >,

i.e. B ∈ Uxτlim
holds. Finally, Uxlim ⊆ Uxτlim

follows from the arbitrariness of B. �

Theorem 4.7. Let X be a nonempty set.
(1) Given a strong L-topology τ on X, then τlimτ

= τ.
(2) Given a strong L-topological >-convergence lim on X, then limτlim

= lim.

Proof. (1) By the formula (2), we know

τlimτ
= {U ∈ LX | U(x) ≤

∨
A∈Ux

limτ

SX(A,U), ∀x ∈ X}.

From Example 4.3 and the formula (1), we observe that for all x ∈ X,

Uxlimτ
=
⋂
{F ∈ F>L (X) | x ∈ limτF} =

⋂
{F ∈ F>L (X) | Uxτ ⊆ F} = Uxτ.

Above all, τlimτ
= {U ∈ LX | U(x) ≤

∨
A∈Ux

τ

SX(A,U), ∀x ∈ X}. In fact, U ∈ τ if

and only if U(x) ≤
∨

B∈Ux
τ

SX(B,U) holds for every x ∈ X (see [9]). Then τlimτ
= τ

is true.
(2) In order to show limτlim

= lim, take any F ∈ F>L (X).

limτlim
F = {x ∈ X | Uxτlim

⊆ F} = {x ∈ X | Uxlim ⊆ F}
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follows from Lemma 4.6 (2). Further, for each x ∈ X and F ∈ F>L (X), we have

x ∈ limτlim
F⇐⇒ Uxlim ⊆ F⇐⇒ x ∈ limF.

Consequently, limτlim
= lim is true. �

Corollary 4.8. Let X be a nonempty set. Then there is a bijection between the
set of all strong L-topological >-convergences and the set of all strong L-topologies
on X.

In order to explore the relation between the category of strong L-topological
spaces and that of >-convergence spaces, the following theorem is indispensable.

Theorem 4.9. Let (X, τ) and (Y, δ) be strong L-topological spaces, (X, limX) and

(Y, limY ) be >-convergence spaces. Then the following are valid:
(1) If ϕ : (X, τ)→ (Y, δ) is a continuous map, then ϕ : (X, limτ)→ (Y, limδ) is

a continuous map.
(2) If ϕ : (X, limX) → (Y, limY ) is a continuous map, then ϕ : (X, τlimX ) →

(Y, δlimY ) is a continuous map.

Proof. (1) First, we point out the fact given in [9] that a map ϕ : (X, τ)→ (Y, δ) is

continuous if and only if ϕ is continuous at each x ∈ X in the sense that Uϕ(x)δ ⊆
ϕ⇒(Uxτ) holds. Let x ∈ X and F ∈ F>L (X) such that x ∈ limτ F, equivalently
Uxτ ⊆ F. Then ϕ⇒(Uxτ) ⊆ ϕ⇒(F) follows from (i) in Remark 2.9 (3). Because

the mapping ϕ : (X, τ) → (Y, δ) is continuous, which is to say Uϕ(x)δ ⊆ ϕ⇒(Uxτ)

holds from the fact above. Hence Uϕ(x)δ ⊆ ϕ⇒(F) is true, which already means that
ϕ(x) ∈ limδ ϕ

⇒(F). Consequently, the continuity of ϕ from (X, limτ) to (Y, limδ)
is proved as desired.

(2) Firstly, we are going to show that ϕ⇐(Uϕ(x)
limY ) ⊆ Ux

limX holds, here

UxlimX =
⋂
{F ∈ F>L (X) | x ∈ limXF}

defined in Example 4.3 (1). For all C ∈ Uϕ(x)
limY , C(ϕ(x)) = > holds by Example

4.3 (1). So ϕ⇐(Uϕ(x)
limY ) exists from Definition 2.8 (2). For any F ∈ F>L (X) with

x ∈ limX F, by the continuity of ϕ from (X, limX) to (Y, limY ), we have ϕ(x) ∈
limY ϕ⇒(F). Then Uϕ(x)

limY ⊆ ϕ⇒(F) holds. From this and (ii) in Remark 2.9 (3),

ϕ⇐(Uϕ(x)
limY ) ⊆ ϕ⇐ ◦ ϕ⇒(F) ⊆ F

is valid. Hence we get

ϕ⇐(Uϕ(x)
limY ) ⊆

⋂
{F ∈ F>L (X) | x ∈ limXF} = UxlimX .

Now, we prove ϕ : (X, τlimX ) → (Y, δlimY ) is continuous. Take any V ∈ δlimY ,
and hence V

(
ϕ(x)

)
≤

∨
B∈Uϕ(x)

limY

SY (B, V ) for x ∈ X. In this case, we observe that
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A∈Ux

limX

SX
(
A,ϕ←(V )

)
≥

∨
A∈ϕ⇐(Uϕ(x)

limY )

SX
(
A,ϕ←(V )

)
≥

∨
B∈Uϕ(x)

limY

SX
(
ϕ←(B), ϕ←(V )

)
≥

∨
B∈Uϕ(x)

limY

SY (B, V ) (by Lemma 2.3(4))

≥ V
(
ϕ(x)

)
= ϕ←(V )(x),

which is to say ϕ←(V )(x) ≤
∨

A∈Ux
limX

SX
(
A,ϕ←(V )

)
holds for all x ∈ X. By

definition of τlimX , ϕ←(V ) ∈ τlimX holds. Consequently, ϕ : (X, τlimX )→ (Y, δlimY )
is continuous. �

From Corollary 4.8 and Theorem 4.9, the following theorem is obtained.

Theorem 4.10. The category STOP(L) of strong L-topological spaces is concretely
isomorphic to the category >-STConv of strong L-topological >-convergence spaces,
categorically.

The following theorem shows the category >-STConv is bireflective in the cat-
egory >-Conv in some detail.

Theorem 4.11. The category >-STConv of strong L-topological >-convergence
spaces is bireflective in the category >-Conv of >-convergence spaces.

Proof. Let (X, lim) be a >-Conv-object. We claim that idX : (X, lim)→ (X, l̃im)

is the bireflection of (X, lim) w.r.t. >-STConv, where l̃im = limτlim
, i.e. for each

F ∈ F>L (X), l̃imF = {x ∈ X | Uxτlim
⊆ F}. By Example 4.5, we know l̃im is a strong

L-topological >-convergence on X. By Definition 2.12, we need to confirm

(1) idX : (X, lim)→ (X, l̃im) is continuous.

(2) For any continuous map ϕ : (X, lim) → (Y, limY ), where (Y, limY ) is a

>-STConv-object, ϕ : (X, l̃im)→ (Y, limY ) is continuous.

In fact, for the conclusion (1), take any F ∈ F>L (X) and x ∈ X such that
x ∈ limF. Then Uxlim ⊆ F holds. And by Lemma 4.6 (1), Uxτlim

⊆ Uxlim. Hence

we further obtain Uxτlim
⊆ F, i.e. idX(x) = x ∈ l̃imF = l̃im(idX)⇒(F), which can

deduces that idX is continuous.
For the conclusion (2), assume a map ϕ : (X, lim) → (Y, limY ) is continuous,

where (Y, limY ) is a >-STConv-object and hence satisfies limY = limδlimY
by

Theorem 4.7. By Theorem 4.9 (1) and (2), ϕ : (X, τlim)→ (Y, δlimY ) is continuous
first, and then the map ϕ : (X, limτlim

)→ (Y, limδlimY
) is continuous also, which is

to say that ϕ : (X, l̃im)→ (Y, limY ) is continuous. �

By Theorems 4.10 and 4.11, we can get the following corollary.

Corollary 4.12. The category STOP(L) of strong L-topological spaces is embedded
in the category >-Conv of >-convergence spaces as a bireflective subcategory.
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5. Conclusions

In this paper, we proposed the concept of >-convergence spaces based on >-
filters. Afterwards, in the lattice valued context of a complete MV -algebra with-
out the idempotency of the semigroup operation, we proved the category of >-
convergence spaces is topological and further is Cartesian-closed. Additionally,
the category of strong L-topological spaces can be bireflectively embedded in the
category of >-convergence spaces.

Interestingly, we could study the corresponding subcategories of >-Conv by
generalizing the well-known categories of Kent convergence spaces, of limit spaces,
of pseudo-topological spaces to the many-valued setting as well as their categorical
relations. From the paper [3], we have known the category STOP(L) is a reflective
subcategory of the category L-OCS of L-ordered convergence spaces. Then, is
there any link between the category >-Conv and the category L-OCS? We will
study these problems in the future.
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 Q. YU AND J. FANG 
   همگرا و بسته بودن دكارتي آنها – Tرسته فضاهاي  

فيلترها ، يعني فضاهاي  - Tمقدار بر اساس مفهوم  –نوعي از فضاهاي همگراي شبكه در اين مقاله,  .دهيچك  
T – را تعريف مي كنيم و نشان مي دهيم كه رسته فضاهاي  همگراT – بسته دكارتي است. بعلاوه،  همگرا

و رسته  همگرا – Tجبر كامل، رابطه ي نزديكي بين رسته فضاهاي  – MVدر زمينه شبكه مقداري يك 
 – Lر شده است. به تفصيل، نشان مي دهيم كه رسته فضاهاي توپولوژيكي قوي برقرا – Lفضاهاي 

بطور محسوسي يكريخت رسته  توپولوژيكي قوي – Lي همگرا – Tبا رسته فضاهاي  توپولوژيكي قوي
  نشانده مي شود.  همگرا – Tاي است و بطور دو جانبه در فضاهاي 
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