Iranian Journal of Fuzzy Systems Vol. 14, No. 3, (2017) pp. 139-149 139

M-FUZZIFYING MATROIDS INDUCED BY M-FUZZIFYING
CLOSURE OPERATORS

X. XIN AND S. J. YANG

ABSTRACT. In this paper, the notion of closure operators of matroids is gen-
eralized to fuzzy setting which is called M-fuzzifying closure operators, and
some properties of M-fuzzifying closure operators are discussed. The M-
fuzzifying matroid induced by an M-fuzzifying closure operator can induce an
M-fuzzifying closure operator. Finally, the characterizations of M-fuzzifying
acyclic matroids are given.

1. Introduction

Matroids were first introduced by Whitney in 1935s. It can be characterized by
independent sets, circuits, rank functions and so on.

The closure operators play an important role in matroids theory. The definition
of closed set, open set, hyperplane and the relation between finite geometric lattices
and matroids are all induced by closure operators.

Matroids were generalized to fuzzy setting. Shi first introduced the notion of
M-fuzzifying matroids in [4] and (LyM)-fuzzy matroids in [5], where L, M are
completely distributive lattices. The M-fuzzifying rank functions of M-fuzzifying
matroids are also defined in [4]. Since then, there are some references to study the
M-fuzzifying matroids [2, 4,.7, 9, 10, 11, 12, 13, 14, 15, 16, 17].

Wang and Shi [7, 10] gave two.different characterizations of M-fuzzifying ma-
troids by two M-fuzzifying closure operators. However, any of those two definitions
is not a normal way ‘to generalize the notion of closure operators since those two
M-fuzzifying closure operators are not defined on 2F. So the aim of this paper is
to generalize the notion of closure operators of matroids to M-fuzzy setting by a
normal way; and to present a characterization of M-fuzzifying matroids induced by
M-fuzzifying closure operators.

2. Preliminaries

Let E be a non-empty finite set and Z C 2. (E,T) is called a matroid if Z
satisfies
(1) 0 ez;
(2) for arbitrary A, B € 2, A C B and B € T implies A € T;
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(3) for arbitrary A, B € Z, |A| < |B| implies there exists x € B — A such that
AU{z} €.

Let (E,Z) be a matroid and A € 2F. Rz(A) = max{|B|: BC A and B € I} is
called the rank of A.

Let (E,Z) be a matroid where E is a non-empty finite set, and Rz be the rank
function of (E,Z). We define a mapping clz: 2¥ — 2F such that clz(A) = {e € E:
Rz(A) = Rz(AU{e})} for arbitrary A € 2F. Tt simply possible to check that clz
is a closure operator which satisfies the following conditions.

(CL1) A C clz(A) for arbitrary A € 2F.

(CL2) A C B implies clz(A) C clz(B) for arbitrary A, B € 2F.

(CL3) clz(clz(A)) = clz(A) for arbitrary A € 2F.

(CL4) For arbitrary x,y € E, A € 2P 2 € clz(A U {y}) — clz(A) implies y €
cz(AU{x}).

In particular, e € clz(A) if and only if e € A or BU {e} ¢ T for arbitrary
B € B(Z|A), where (A,Z|A) is the matroid that (E,Z) restrict to A andB(Z|A) is
the set of all bases of Z|A. In addition, e € clz(A) — A-is equivalent to that there
exists a B € B(Z|A) such that BU {e} ¢ T.

Conversely, if cl: 2 — 2F is a closure operator, then there exists a matroid
(E,I.) such that clz, = cl. In particular, Z,, = {I € 2F :Va € I,z & cl(I — )}.

For more properties of matroids and corresponding closure operators, the readers
can refer to [3].

A matroid (E,Z) is called a acyclic matroid if {e} € T for arbitrary e € E.

Throughout this paper, (M,V,A, T, 1) is a completely distributive lattice with
the largest element T and the smallest element L. 7’ : M — M” is an order-
reversing involution mapping in M. The set of non-zero co-prime elements of M
is denoted by J(M) and the set of non-unit prime elements of M is denoted by
P(M).

The relation < in L is defined as follows: for a,b € M, a < b if and only if
for every D C M, b < \/ D implies the existence of d € D with a < d. <°
is denoted the dual relation of <. That is, for a,b € M, a <°P b if and only
if for every D C M, A D < b implies the existence of d € D with d < a. We
denote f(a) =4b € M : b < a} and a(a) = {b € M : b <°? a} for a € M. Let
B*(a) = B(a) NJ (M) and a*(a) = a(a) N P(M). Thus, a complete lattice M is
completely distributive if and only if a = \/ B(a) = \/ 8*(a) = A ala) = A a*(a)
for arbitrary a € M [8]. M is a completely distributive lattice implies both 8 and
B* are union-preserving mappings [8].

Throughout this paper, let E be a non-empty finite set and M¥ be the set of
all M-fuzzy sets of E. We often do not distinguish a crisp subset A of E from its
characteristic function y 4. Let M be a completely distributive lattice and A € MF.
For arbitrary a € M, we can define

A ={r€E:Ax) >a}, A® ={z € E: A(z) £ a}.
Lemma 2.1. [1] Let E be a non-empty finite set and A € M¥, we have:
(1) A= \/aeM(a A A[a]) = \/aeJ(M)(a A A[a])
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(2) A= Ager(aVA®D) = Aucpplav A®).
(3) Afa) = Miesa) 4] = Nbes=(a) A1l
(4) Ala) — UbEa(a) A®) — UbEa*(a) A®)

The notion of M-fuzzifying matroids was first given in [4]. It was revised as
follows.

Definition 2.2. [5] Let Z: 2¥ — M be a mapping. If Z satisfies the following
conditions:

(MFI1) Z(0) = T;

(MF12) for arbitrary A, B € 2F, A O B implies Z(A) < Z(B);

(MFI3) for arbitrary A, B € 2¥ and |A| < |B|, \/.c5_4 Z(AU{e}) > Z(A) NZ(B);
then the pair (F,Z) is called an M-fuzzifying matroid.

Lemma 2.3. [4, 5] Let Z: 22 — M be a mapping. Then the following conditions
are equivalent.

(1) (E,I) is an M-fuzzifying matroid.

(2) For arbitrary a € J(M), (E,Z;q)) is a crisp matroid.

(3) For arbitrary a € P(M), (E, (%) is a crisp matroid.

Let N be the set of all natural numbers. A fuzzy natural number is an antitone
map A : N — M satisfying A(0) = T and A, _yA(n) = L. The set of all fuzzy
natural numbers is denoted by N(M). For arbitrary m € N, define m € N(M) such
that m(t) = T when t < m and m(t) = L when ¢t > m + 1[4]. In the sequel, we
shall not distinguish m from m. For more properties of fuzzy natural numbers, the
readers can refer to [4].

Definition 2.4. [4, 5] Let (E,Z) be an M-fuzzifying matroid. The mapping Rz :
2F — N(M) defined by Rz(4)(n) = \/{Z(B) : B C A,|B| > n} is called the M-
fuzzifying rank function of (E,Z)and Rz(A) is called the M-fuzzifying rank of
A.

Let (E,T) be an M-fuzzifying matroid and Rz be the M-fuzzifying rank function.
For arbitrary a€ J(M)and b € P(M), let Ry, and R(®) be the rank functions of
(E,Tiy) and (B,Z"), respectively. Then R, (A4) = (Rz(A))[ [7] and R®)(A) =
(R (A4)) @) ],

3. Definition and Properties of M-fuzzifying Closure Operators

In this section ,we will generalize the notion of closure operators of matroids to
fuzzy setting as follows.

Definition 3.1. A mapping cl: 2 — MF is called an M-fuzzifying closure oper-
ator on E provided that it satisfies the following conditions:

(MFCL1) xa < cl(A) for arbitrary A € 2%.

(MFCL2) A C B implies cl(A) < cl(B).

(MFCL3) cl(A)(z) = /\xng,AgB \/ygB cl(B)(y).
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(MFCL4) cl(AU {z})(y) V cl(A)(x) > cl(AU {y})(z). for arbitrary A € 2F and
z,y € .

Remark 3.2. It is proved in [6] that (MFCL3) is equivalent to (cl((cl(A))[a]))[a] =
(cl(A))[q for arbitrary a € M \ {L} if cl: 28 — MPF is a mapping satisfying
(MFCL1) and (MFCL2). Also, this condition is equivalent to (cl((cl(A))[q)))[a] =
(cl(A))[q) for arbitrary a € J(M).

Lemma 3.3. Let cl: 28 — M¥ be a mapping on E satisfying (MFCL1) and
(MFCL2). Then (MFCL3) is equivalent to the following condition.

(MFCL3*) (cl((cl(A))@))(@) = (cI(A))@) for arbitrary a € P(M).

Proof. Suppose that cl satisfies (MFCL3). Let A € 2F a € P(M) with = ¢
(cl(A))@). Thus cl(A)(z) < a. By (MFCL3), there exists B € 2” such that = ¢ B,
A C Band V, gpcl(B)(y) < a since E is a finite set. This shows (cl(A))(®) C
(cl(B)) = B. Hence we get cl((cl(A)))(z) < cl(B)(x) < a; which implies
(cl((cl(A))@))(@) C (cI(A))(@). Then we obtain that (cl((cl(A))®))(@ = (cI(A))(@
by (cl((cl(A))!)@ 2 (cl(A)) ).

Conversely, if cl satisfies (MFCL3*), then cl(A)(z) < A,gp acp Vyep U(B)(Y)
is trivial. Suppose that cl(A)(z) < b for b € M. Let a € a*(b): Then we have © ¢
(cl(A))® D A. By (MFCL3*), we know that cl((cl(A))®)(y) < a for arbitrary y ¢
(cl(A))(®). This follows that Vg (ecay @ cl((cl(A) ) (y) < a. Hence we obtain

that A,gp ace Vygn cl(B)(y) < a. Therefore we get A,op acp Vygp cl(B)(y) <
b. It shows that cl(A)(z) = A,gp acp Ve d(B)(Y). O

Lemma 3.4. Let cl: 2 — MF be'a mapping. Define mappings cliq): 2F  9F
and cl(: 28 — 2F such that clig(A) = (cl(A))q and @ (A) = (cl(A))®,
respectively. Then the following conditions are equivalent.

(1) ¢l is an M-fuzzifying closure operator on E.

(2) cliq) is a crisp closure operator on E for arbitrary a € J(M).

(3) ¢l is a crisp closure operators on E for arbitrary a € P(M).

Proof. ((1) = (2)) Suppose that ¢l is an M-fuzzifying closure operator and a €
J(M). In order to prove clq) is a crisp closure operator on F, it suffices to prove
(CL4) since (CL1)-(CL3) is trivial. Let z,y € E and A € 2% such that x €
cliq) (AU {y}) — cljg)(A). Then cl(AU{y})(x) > a and cl(A)(x) Z a, which implies
c(AU{x})(y) = a by (MFCL4). Therefore y € clj (AU {z}).

((2) = (1)) Suppose that cl, a crisp closure operator on E for arbitrary a €
J(M). In order to prove cl is an M-fuzzifying closure operator on E, it suffices
to prove (MFCL4) since (MFCL1)-(MFCL3) is trivial. Let A € 2€, 2,y € E and
denote b = cl(AU {y})(x). For arbitrary a € 8*(b), we get z € cl,) (AU {y}). If
T € clig)(A), then cl(AU{x})(y)Vcl(A)(x) > a. Otherwise, we have y € cljq)(AU{z})
by (CL4), which implies cl(A U {z})(y) > a and cl(AU{z})(y) V cl(A)(z) > a. So
cd(AU{z})(y) V cl(A)(@) = V,epeya = b= cl(AU{y})(z). This shows cl is an
M-fuzzifying closure operator.

The proof of (1) < (3) is similar to the proof of (1) < (2). O
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Lemma 3.5. Let cl: 28 — MF be an M-fuzzifying closure operator on E . Then
cd(AU{x}) = cl(A) if and only if cl(A)(x) =T.

Proof. (=) If cl(AU{z}) = cl(A), then it is obvious that cl(A)(z) = T.

(<) If cl(A)(z) = T, then AU{x} C (cl(A))[q for arbitrary a € M \ {L}. This
implies (cl(AU{x}))[q) € (cl(A))[q)- Thus we have (cl(AU{x}))[q) = (cl(A))[q) since
(cl(AU{x}))[q) 2 (cl(A))[q)- This follows cl(AU{x}) = cl(A) by Lemma 2.1. O

Theorem 3.6. Let {cl(a) : a € J(M)} be a family of crisp closure operators on
E satisfying cl(b)(A) = Noep-p) cl(a)(A) for all b € J(M) and arbitrary A € 2F,
Then there exists an M-fuzzifying closure operator cl such that clp) = cl(b) for
arbitrary b € J(M). In addition, cl(A) =\ e ;) (a A cl(a)(A)).

Proof. Let A € 2 and b € J(M). Since cl(b)(A) = Naep- @) cl(@)(A) and B is
a union-preserving mapping, we have cl(b)(A) C cl(c)(A) for arbitrary ¢ € J(M)
with ¢ < b. Denote cl(A) =V ¢ ;i (a A cl(a)(A4)).

If € cl(b)(A), then by the notion of cl, we get cl(A)(x) > b, which implies
MRS Cl[b} (A)

Conversely, If x € clp(A), then cl(A)(z) > b. Hence 8*(cl(A)(x)) 2 £*(b). So
for arbitrary a € 8*(b), we have a € *(cl(A)(z)), which means there exist some
¢ € J(M) such that ¢ A cl(c)(A)(z) > a. This follows ¢ > a and = € cl(c)(A) C
cl(a)(A). Since cl(b)(A) = N,ep-) cl(a)(A), we get z € cl(b)(A).

By Lemma 3.4, ¢l is an M-fuzzifying closure operator. (]

Theorem 3.7. Let {cl(a) : a € P(M)} be a family of crisp closure operators on
E satisfying cl(b)(A) = Uyeqxp) cl(@)(A) for all b € P(M) and arbitrary A € 2F,
Then there exists an M -fuzzifying closure operator ¢l such that cl(®) = cl(b) for
arbitrary b € P(M). In addition, el(A).= \,cpr(aV cl(a)(A)).

Proof. This proof is similar to the proof of Theorem 3.6. (]

4. M-fuzzifying Matroids Induced by M-fuzzifying Closure Operators

In this section, we will consider the relation between M-fuzzifying matroids and
M -fuzzifying closure operators.

Lemma 4.1. Let cl: 28 — MPF be an M-fuzzifying closure operator on E. For
arbitrary A € 2F, define a mapping Lo;: 28 — M as follows,

Ta(A) = N\ (A = {=})(x))"

z€A
Then the following conditions hold.
(1) (Zg)@) = Loy, for arbitrary a € J(M).
(2) (Ze)ia = Lo for arbitrary a € P(M).
(3) (E,Zy) is an M-fuzzifying matroid, which is called an M -fuzzifying matroid
induced by an M -fuzzifying closure operator.
(4) Zq(AU{e}) > Zu(A) A (cl(A)(e)) for arbitrary e € E and A € 2F.


WWW.SID.IR
WWW.SID.IR

144 X. Xin and S. J. Yang

(5) (MF14) For arbitrary a,b € P(M), a < b implies cl(z,,yw (A) C clz,,yo (A) for
arbitrary A € 2F, where cliz,,y@ and cliz o are the closure operators of crisp
matroids (E, (Z,) @) and (E, (Z4)®), respectively.

(6) (MFI4*) For arbitrary a,b € J(M), a < b implies cl(z,,),,,(A) C cl(z,,),, (A) for
arbitrary A € 2%, where CZ(ZCL)[Q] and Cl(zcl)[b] are the closure operators of crisp

matroids (E, (L)) and (E, (L)), respectively.

Proof. (1) For arbitrary A € 2F and a € J(M),
A€y, & x¢&clg(A—{z}) for arbitrary x € A
& (A —{z})(x) # a for arbitrary z € A
& (cl(A—{z})(x)) £ d for arbitrary x € A
& /\ (cl(A—{z})(x)) £ d (since A is a finite set)
€A
o Ae (Th) ).
(2) This proof is similar to the proof of (1).
(3) By (1) and (2), this proof is trivial.
(4) For arbitrary e € E and A € 2F. If e € A, then we have cl(A)(e) = T and
(cl(A)(e))’ = L. This follows that Z,(AU{e}) > Z,(A) A (cl(A)(e)). Ife & A,
then

Za(AU{e}) = A (cl(Au{e} — {z}) (@) A (cUA)(e))

z€A

= A\ (A~ {2}) U{eR)(@)) A (cl(A)(e)) (By (MFCL4))

z€A

> A (A~ {=}) Ufad)(e) A (A~ {z})(2))) A (l(A)(e))

z€A

= A\ (A =z} (@) A (cl(A)(e))’

TEA
=Za(A) A (cl(A)(e))".
(5) According to (1), cliz,y@ = cla and clz, o = clp for arbitrary a,b €
P(M). Tt is obvious that cl(Id)(a) - cl(Id)a)) when a < b.
(6)According to (2), cl(z,,),,, = @) and (T = cl®) for arbitrary a,b € J(M).
It is obvious that CZ(Icz)[a] C Cl(Icl)[b] when a < b.
O

Remark 4.2. There exists an M-fuzzifying matroid that does not satisfy (MFI4)
and (MFI4*).

Example 4.3. Let M = [0,1], E = {z,y,2} and T € [0,1]2”, where

7(0) = 1 Z({a}) = 1; Z({y}) = 1; Z({=}) = 1;
I({a,y}) = 0.8; Z({y, 2}) = 0.8, T({a, 2}) = 0.6; Z(E) = 0.
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It is obvious that (E,7) is a [0, 1]-fuzzifying matroid. However,

Loz = IO = {0, {a}, {y}, {z}, {=, v}, {v, 2} };

czy ({7, 2}) = clzon ({z, 2}) = {z, 2}

Tios =IO = {0,{}, {y}, {z}, {z, v}, {w, 2}, {w, 2} };
clI[O_S]({m, z}) = clgos ({z,2}) = E.

Thus, the [0, 1]-fuzzifying matroid (E,Z) does not satisfy (MFI4) and (MFI4*).

Lemma 4.4. Let (E,Z) be an M-fuzzifying matroid.

(1) If (E,I) satisfies (MFI4), then for arbitrary a € P(M) and A € 2%, the
following condition holds.

czw(A) = [ czw(A).
bea*(a)

(2) If (E,Z) satisfies (MFI4*), then for arbitrary a € J(M) and A € 2, the
following condition holds.

dr,(A) = | dzg,(A).
bepr(a)

Proof. (1) By (MFI4), we know that clz@(A) € Myeqs(a) clzw (4). In order to
prove clz (A) 2 Npeas(a) clze (A), it suffices to prove z & Ny, (q) clze (4)
for arbitrary @ ¢ clzw (A). Since@ & clzwm (A), there exists a B € B(Z(¥)|A)
such that B U {z} € I, where B(Z(¥)|A) is the set of all bases of Z(¥)|A.
By 7(®) = Ubear(a) Z®) | there exists a b € a*(a) such that B € B(Z(®|A) and
BuU{z} € Z®), which implies = ¢ clzw) (A). Thus x ¢ Mbear (@) clza (A). This
shows clzw (A) = Npear(a) clze (A).

(2) This proof is@imilar to the proof of (1). O

Theorem 4.5. Let (E,Z) be an M -fuzzifying matroid and Rz be the M -fuzzifying
rank function of (E,T).
(1) Suppose that (B,T) satisfies (MFI4). Define a mapping clz: 2¥ — MF such
that for arbitrary A € 2 and x € E,
cr(A)(x) = \/{a € J(M) : (Rz(AU {a})) = (Rz(A) ).

Then clz is an M -fuzzifying closure operator on E.
(2) Suppose that (E,T) satisfies (MFI4*). Define a mapping cl’: 2¥ — M¥ such
that for arbitrary A € 2 and x € E,

3 (A) (@) = Na € P(M) : (Rz(AU{2})) = (Rz(A)) ) + 1}.

Then cly is an M -fuzzifying closure operator on E.
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Proof. (1) For an arbitrary a € J(M), since (Rz(A))®) = Ry (A), where R
is the rank function of classical matroid (E,Z(")), we get

clz(A)(z) = \/{a € J(M) : (Rz(AU{z}))(®) = (Rz(A))@)}
=\/{a € J(M) : Ry (AU{z}) = Ry (A)}
= \/{a € J(M): x € clyn(A)}
= \/ (a A clz@) (A) ().
a€J(M)

Denote cl(a)(A) = clrw)(A) for arbitrary a € J(M). Then cl(a) is a crisp
closure operator on E and clz(A) = V¢ ;) (a A cl(a)(A)). Since.a € 57(b) if
and only if o’ € a*(V'), we have cl(b)(A) = () cl(a)(A) by Lemma 4.4.
Thus according to theorem 3.6, clz is an M-fuzzifying closure operator on F.
(2) This proof is similar to the proof of (1). 0

Corollary 4.6. Let (E,Z) be an M -fuzzifying matroid.

(1) If (E,Z) satisfies (MFI4), then (clz)(a) = clz@ for-an arbitrary a € J(M).
(2) If (E,T) satisfies (MFI4*), then (cl%)(®) = clz,,, for arbitrary a € P(M).
Proof. According to the proof of Theorem 4.5, this proof is trivial. (|

Theorem 4.7. Let (E,Z) be an M -fuzzifying matroid.
(1) If (E,Z) satisfies (MF14), then Ze, =Z.
(2) If (E,Z) satisfies (MF14%), then Loy = T.

Proof. (1) In order to prove Z.;, = Zyit suffices to prove (Z., ) = (Z)@ for an
arbitrary a € P(M). Then

A€ (Tu,)\Y =T, (A) £ a
L A4 {))@)) 2 a

zeA
= (clz(A —{z})(x))" £ a for arbitrary x € A
= clz(A —{z})(z) # d for arbitrary z € A
= (Rz(A)@ # (Rz(A — {z}))@ for arbitrary = € A
= Rz (A) # Riw (A — {z}) for arbitrary z € A
= & & clyw (A — {x}) for arbitrary z € A
= Aec (D).
Conversely, A & (Z,) implies A, 4(clz(4 — {z})(z)) < a. So there
exists an element z € A such that (clz(A —{z})(z))’ < a since A is a finite set.

Then clz(A — {z})(z) > a’. For arbitrary b € a*(a), V' € 8*(clz(A — {z})(x))
since b’ € 5*(a’). So there exists an element ¢ € P(M) such that ¥’ < ¢ and
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(Rz(A)©) = (Rz(A — {x})). Thus z € clyw (A — {z}) C czm (A — {z})
and A ¢ (Z)®, which implies A ¢ () by (7)(@ = Ubea*(a)(f)(b).
This follows Z.;, =T.

(2) This proof is similar to the proof of (1). 0

Corollary 4.8. Let (E,Z) be an M-fuzzifying matroid. Then (E,I) satisfies
(MF14) if and only if (E,T) satisfies (MFI4*). In addition, clz = cl}.

Proof. According to Lemma 4.1 and Theorem 4.7, this proof is trivial. O
By Corollary 4.8, now we do not distinguish (MFI4) from (MFI4*) and clz from

cl.

Corollary 4.9. Let (E,T) be an M -fuzzifying matroid induced by an M-fuzzifying

closure operator and a € P(M). Then A\ c ,(clz(A —{x})(x)) & a if and only if
{reA:(Re(A) W = (Rz(A - {z}) @} = 0.

Proof. According to the Theorem 4.7, this proof is trivial. O
Theorem 4.10. Let cl : 28 — MF be an M-fuzzifying closure operator. Then

clr,, =cl.
Proof. We have IClIcz = Z.; by Theorem 4.7. Let.a € J(M). According to Lemma
4.1, we get Iy, = (Icl)(a/) = (Iclzcl)(“/) =Ty N This follows clz,, = dl. O

Definition 4.11. Let (E,Z) be an M-fuzzifying matroid. (F,Z) is called an M-
fuzzifying acyclic matroid if Z({e}) = T for an arbitrary e € E.

Similar to Lemma 2.3, we have the following property.

Lemma 4.12. Let (E,Z) be an M -fuzzifying matroid. Then the following condi-
tions are equivalent.

(1) (E,T) is an M-fuzzifying acyclic matroid.

(2) Rz({e}) = 1 for arbitrary e € E.

(3) (E,Zjq)) is a acyclic matroid for arbitrary a € J(M).

(4) (E, ) is.a acyclic matroid for arbitrary a € P(M).

Proof. This proof is trivial. O

Theorem 4.13. Let (E,Z) be an M -fuzzifying acyclic matroid induced by an M-
fuzzifying closure operator. Then clz satisfies:

(MECES) clz7(0) = 0.

Proof. If (E,T) is acyclic, then clz(0)(z) = \/{a € J(M) : (Rz({z})" = (Rz(0)))} =
\/ @ = L for arbitrary x € E. This implies ciz(0) = 0. O

Theorem 4.14. Let cl: 28 — MP be an M-fuzzifying closure operator on E
satisfying (MFCL5). Then (E,Zy) is an M -fuzzifying acyclic matroid.

Proof. 1f cl satisfies (MFCL5), then Z,({e}) = (cl(@)(e))’ = T for arbitrary e €
E. U
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5. Conclusions

In this paper, we first define the notion of M-fuzzifying closure operators and
discuss the properties of M-fuzzifying closure operators. M-fuzzifying closure oper-
ators can induce M-fuzzifying matroids and those M-fuzzifying matroids also can
induce M-fuzzifying closure operators by two equivalent forms. Finally, we give
the notion of M-fuzzifying acyclic matroids and discuss the M-fuzzifying closure
operators induced by M-fuzzifying acyclic matroids.
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