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SELECTIVE GROUPOIDS AND FRAMEWORKS INDUCED BY

FUZZY SUBSETS

Y. H. KIM, H. S. KIM AND J. NEGGERS

Abstract. In this paper, we show that every selective groupoid induced by a
fuzzy subset is a pogroupoid, and we discuss several properties in quasi ordered

sets by introducing the notion of a framework.

1. Introduction

J. Neggers [7] has defined a pogroupoid and he obtained a functorial connection
between posets and pogroupoids and associated structure mappings. J. Neggers
and H. S. Kim [8] demonstrated that a pogroupoid (X, ·) is modular* if and only if
its associated poset (X,≤) is (C2+1)-free , a condition which corresponds naturally
to the notion of sublattice (in the sense of Kelly-Rival [2, 4]) isomorphic to N5, and
that this is equivalent to the associativity of the pogroupoid. J. Neggers and H. S.
Kim [10] showed that the Jacobi form is 0 precisely when the pogroupoid (X, ·) is
a semigroup, i.e., modular*, precisely when the associated poset (X,≤) is (C2 + 1)-
free . Moreover, they showed that a pg-algebra KS over a field K is a Lie algebra
with respect to the commutator product if and only if its associated poset (X,≤)
is (C2 + 1)-free .

The concept of a fuzzy set was introduced by L. A. Zadeh [15]. A fuzzy subset
of a set X is a function µ : X → [0, 1]. The applications of fuzzy concepts to posets
and groupoids have been investigated by several authors including [1, 5, 11, 13, 14].

J. Neggers and H. S. Kim [12] showed that, for a given pogroupoid (X, ·), the
associated poset (X,≤) is (C2 + 1)-free if and only if the relation Bµ is transitive
for any fuzzy subset µ of X. Also they determined the set C(X, ·) of fuzzy subsets
µ such that µ(x · y) = µ(y · x) for all x, y ∈ X. Furthermore, they introduced two
polynomial invariants associated with fuzzy subsets of finite posets which appear
to be of interest also. H. S. Kim and J. Neggers [6] introduced the notion Bin(X)
of all binary systems(groupoids, algebras) defined on a set X, and showed that it
becomes a semigroup under suitable operation.

As a goal in this paper we seek to make further connections between the various
ways that poset may be identified. Thus, the original study of pogroupoids was
one attempt to give a poset an algebraic structure whose properties revealed those
of posets not otherwise clear in a way analogous to the Hasse diagram of a poset
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for example. Similarly, once a Hasse diagram has been constructed as a particu-
lar digraph, one may then obtain a different groupoid associated with a digraph,
which is then restricted to the particular type corresponding to the Hasse diagram.
The final move made is to make a connection between fuzzy subsets and selective
groupoids which extends the modeling of posets to this level as well. Naturally, in
doing so, one obtains new perspectives and new results as well, as we have shown in
the text that follows. Although posets in the abstract, as special ordered systems,
have already been proven to have many applications, such as scheduling theory
and associated algorithms, it stands to reason that with new classes of descriptions
available, these may be used to provide alternative ways of seeing such concepts
as “schedules” for example, as well as to increase the probability of using the in-
sights obtained in new settings for applied questions and possible answers for these.
Whether and to what extent this will ultimately be the case will be proven out in
the future ultimately. References as give above already support the argument as
we have made them.

In this paper, we extend the existing results connecting posets with pogroupoids
both in general and in specific situations, e.g., the case where the pogroupoids
is (C2 + 1)-free. In particular, a selective groupoid (X, ∗) has the property that
x ∗ y ∈ {x, y} and is able to model posets (X,≤) by the condition x ≤ y provided
x ∗ y = y = y ∗ x. Given the conditions defining a pogroupoid it is clear that such
type of selective groupoid is itself a special type of selective groupoid and thus that
existing theory may be cast into other results involving selective groupoid. And
additional new connection involves special kinds of fuzzy subsets whose induced
selective groupoids are of the special type indicated above. Finally, these obser-
vations are joined with the effects of homomorphisms on groupoids on the special
conditions already mentioned. A useful structure in this theory, introduced in this
paper, is a framework (X, I, F ) for a fuzzy subset µ : X → [0, 1] of X, whose
properties are more closely considered.

2. Preliminaries

A groupoid (X, ·) is said to be a pogroupoid [7] if (i) x ·y ∈ {x, y}; (ii) x · (y ·x) =
y ·x; (iii) (x · y) · (y · z) = (x · y) · z for all x, y, z ∈ X. For a given pogroupoid (X, ·),
its associated poset (X,≤) is defined by the condition x ≤ y iff y ·x = y = x ·y. On
the other hand, for a given poset (X,≤) its associated pogroupoid (X, ·) is defined
by y · x = y if x ≤ y, y · x = x otherwise. This means that there is a natural
isomorphism between the category of pogroupoids and the category of posets. We
call a pogroupoid modular* if it is a semigroup [8]. Given a poset (X,≤) it is Q-free
if there is no full subposet (P,≤) of (X,≤) which is order isomorphic to the poset
(Q,≤). If Cn denotes a chain of length n and if n denotes an antichain of cardinal
number n, while + denotes the disjoint union of posets, then the poset (C2 + 1) (or
C2 + C1) has Hasse-diagram:
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Theorem 2.1. [12] Let (X, ·) be a pogroupoid and let its associated poset (X,≤)
be (C2 + 1)-free. Let µ : X → [0, 1] be a fuzzy subset of X. Define a relation x�µ y
by

x�µ y ⇐⇒ µ(x · y) < µ(y · x), (1)

for all x, y ∈ X. Then (X,�µ) is a poset.

Definition 2.2. A d-algebra [9] is a non-empty set X with a constant 0 and a
binary operation “ ∗ ” satisfying the following axioms:

(I) x ∗ x = 0,
(II) 0 ∗ x = 0,

(III) x ∗ y = 0 and y ∗ x = 0 imply x = y

for all x, y ∈ X.

A BCK-algebra is a d-algebra (X; ∗, 0) satisfying the following additional ax-
ioms:

(IV) (x ∗ (x ∗ y)) ∗ y = 0
(V) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

for all x, y, z ∈ X.

Example 2.3. [3, 9] Let R be the set of all real numbers. Define a binary operation
“∗” on R by x ∗ y := x(x − y), ∀x, y ∈ R. Then x ∗ x = 0 and 0 ∗ x = 0. If
x ∗ y = y ∗ x = 0, then x(x− y) = y(y − x) = 0, and hence x = y. Hence (R; ∗, 0)
is a d-algebra, but not BCK-algebra, since (2 ∗ 0) ∗ 2 6= 0.

Given two groupoids (X, ∗) and (X, •), we define a new binary operation 2 by
x2y := (x∗y)• (y ∗x) for all x, y ∈ X. Then we obtain a new groupoid (X,2), i.e.,
(X,2) = (X, ∗)2(X, •). We denote the collection of all binary systems(groupoid,
algebras) defined on X by Bin(X) [6].

Theorem 2.4. [6] (Bin(X),2) is a semigroup and the left zero semigroup is an
identity.

3. Selective Groupoids Induced by Fuzzy Subsets

Let µ : X → [0, 1] be a fuzzy subset. Define a binary operation “� ” on X by

x� y :=

{
x if µ(x) > µ(y),

y if µ(x) ≤ µ(y). (2)

for all x, y ∈ X. We call such a groupoid (X,�) a selective groupoid induced by
a fuzzy subset µ, and we denote it by (X,�)µ.

Theorem 3.1. Every selective groupoid induced by a fuzzy subset is a pogroupoid.

Proof. Let (X,�)µ be a selective groupoid induced by a fuzzy subset µ : X → [0, 1].
Clearly, we have x� y ∈ {x, y} for any x, y ∈ X. Consider x� (y�x) and y�x. If
µ(y) > µ(x), then x�y = y and y�x = y, and hence x�(y�x) = x�y = y = y�x.
If µ(y) ≤ µ(x), then x� y = x and y� x = x, and hence x� (y� x) = x� x = x =
y � x.
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Consider (x � y) � z and (x � y) � (y � z). We need to check 12 cases for
proving that (x � y) � z = (x � y) � (y � z). (1). If µ(z) < µ(y) < µ(x), then
(x�y)�(y�z) = x�y = x and (x�y)�z = x�z = x. (2). If µ(y) < µ(z) < µ(x),
then (x � y) � (y � z) = x � z = x and (x � y) � z = x � z = x. (3). If
µ(z) < µ(x) < µ(y), then (x� y)� (y� z) = y� y = y and (x� y)� z = y� z = y.
(4). If µ(x) < µ(z) < µ(y), then (x � y) � (y � z) = y � y = y and (x � y) � z =
y � z = y. (5). If µ(y) < µ(x) < µ(z), then (x � y) � (y � z) = x � z = z and
(x�y)�z = x�z = z. (6). If µ(x) < µ(y) < µ(z), then (x�y)�(y�z) = y�z = z
and (x� y)� z = y � z = z. (7). If µ(z) < µ(x) = µ(y), then (x� y)� (y � z) =
y � y = y and (x � y) � z = y � z = y. (8). If µ(z) = µ(y) < µ(x), then
(x�y)�(y�z) = x�z = x and (x�y)�z = x�z = x. (9). If µ(y) < µ(x) = µ(z),
then (x � y) � (y � z) = x � z = z and (x � y) � z = x � z = z. (10). If
µ(x) = µ(z) < µ(y), then (x� y)� (y� z) = y� y = y and (x� y)� z = y� z = y.
(11). If µ(x) < µ(y) = µ(z), then (x� y)� (y � z) = y � z = z and (x� y)� z =
y � z = z. (12). If µ(x) = µ(y) < µ(z), then (x � y) � (y � z) = y � z = z and
(x � y) � z = y � z = z. This proves that (x � y) � z = (x � y) � (y � z) holds.
Hence (X,�)µ is a pogroupoid. �

As we have seen [8], if we define a relation “ ≤µ ” on X by

x ≤µ y ⇐⇒ y � x = y = x� y (3)

where (X,�)µ is a pogroupoid induced by µ. Then (X,≤µ) is a poset, called an
induced poset by a fuzzy subset µ.

Note that, using the notion of the pogroupoid, we can construct a partially
ordered set on a set X by a fuzzy subset µ : X → [0, 1].

Example 3.2. Let X := {a, b, c, d} be a set. Define a map µ : X → [0, 1] by
µ(a) = µ(b) < µ(c) < µ(d). Then we can construct a selective groupoid (X,�)µ
induced by µ as below.

� a b c d
a a b c d
b a b c d
c c c c d
d d d d d

Using formula (3) we obtain the poset (X,≤µ) induced by a fuzzy subset µ as
below.

a b

c

d

(X,≤µ)
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If we define another fuzzy subset ν : X → [0, 1] by ν(a) < ν(b) = ν(c) < ν(d), then
we obtain the selective groupoid (X,�)ν induced by ν is as follows.

� a b c d
a a b c d
b b b c d
c c b c d
d d d d d

Using formula (3) we obtain the poset (X,≤ν) induced by a fuzzy subset ν as below.

a

b c

d

(X,≤ν)

In fact, b�a = a�b = b implies a ≤ν b, c�a = c�a = c implies a ≤ν c. Moreover,
d� α = α� d = d for all α ∈ X shows that α ≤ν d.

Example 3.3. Let (X,≤) be a poset with the following diagram:

a b

c d

(X,≤)

Then its associated pogroupoid (X, ·) is as follows:

· a b c d
a a b c d
b a b c d
c c c c d
d a d c d

Define a map µ : X → [0, 1] by µ(a) = µ(b) < µ(c) < µ(d) as in Example 3.2. Then
µ(d · c) = µ(c) < µ(d) = µ(c · d), i.e, d�µ c, and µ(d · a) = µ(a) < µ(d) = µ(a · d),
i.e, d �µ a. Moreover, µ(a · c) = µ(c · a), µ(a · b) = µ(b · a), µ(b · c) = µ(c · b) and
µ(d ·b) = µ(b ·d). Using the fact we obtain a poset (X,�µ) induced by µ as follows.

a

b

c

d

(X,�µ)
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Since the poset (X,≤) is not (C2 + 1)-free, we can not apply Theorem 2.1. But in
this special case, i.e., for some particularly defined fuzzy subset µ, we could be able
to obtain the poset (X,�µ).

4. Structures of Frameworks by Fuzzy Subsets

A d-algebra (or BCK-algebra) (X, ∗, 0) is said to be interval if X = [0, 1]. Given
an interval d-algebra (X, ∗, 0), we define a binary operation “~” by (u1, u2) ~
(v1, v2) := (u1 ∗ v1, u2 ∗ v2) on X ×X(= X2). It is easy to see that (X2,~, (0, 0))
is also a d-algebra, called a product interval d-algebra.

Given an interval d-algebra (X, ∗, 0), a map F : X2 → [0, 1] is said to be d-order
preserving on (X, ∗, 0) if (u1, u2)~(v1, v2) := (0, 0) implies F (u1, v1)∗F (u2, v2) = 0.
Note that every constant function is always d-order preserving, since x ∗ x = 0 for
all x ∈ [0, 1].

Example 4.1. Let (X, ∗, 0) be an interval d-algebra. If we define a map F : X2 →
[0, 1] by F (x, y) := x, then it is easy to see that F is d-order preserving.

Example 4.2. If we define a binary operation “∗” by x ∗ y := max{0, x − y}
on X = [0, 1], then (X, ∗, 0) is a d-algebra. Define a map F : X2 → [0, 1] by
F (x, y) := 1

2 (x + y). If (x, y) ~ (α, β) = (0, 0), then x ∗ α = 0 = y ∗ β, i.e.,
max{0, x−α} = 0 = max{0, y− β}. This shows that x ≤ α, y ≤ β. It follows that

F (x, y) ∗ F (α, β) = max{0, F (x, y)− F (α, β)}

= max{0, 1

2
(x+ y)− 1

2
(α+ β)}

= max{0, 1

2
(x− α) +

1

2
(y − β)}

= 0

Hence F is d-order preserving on (X, ∗, 0).

Let µ : X → [0, 1] be a fuzzy subset of X. A framework for µ consists of a triple
(X, I, F ) where (i) (X, ·) is a groupoid; (ii) (I = [0, 1], ∗, 0) is an interval d-algebra;
(iii) F is d-order preserving on (I, ∗, 0) such that F (µ(z · y), µ(y · x)) = µ(z · x) =
F (µ(y · x), µ(z · y)) for all x, y, z ∈ X.

Given a framework (X, I, F ) for the fuzzy subset µ : X → [0, 1] of X, we define
a binary relation “Cµ” by, for all x, y ∈ X,

x Cµ y ⇐⇒ µ(y · x) ∗ µ(x · y) = 0 (4)

Remark 4.3. Even though (X,�µ) in Example 3.3 is a poset, the relation “�µ”
defined in Theorem 2.1 may not hold for the transitivity relation in general, since
there are many posets of height ≥ 2 which are not (C2 + 1)-free. Using the notion
of the framework, we discuss the transitivity relation.

Note that a quasi order relation is reflexive and transitive.

Proposition 4.4. If (X, I, F ) is a framework for the fuzzy subset µ, then (X,Cµ)
is a quasi ordered set.
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Proof. Since (I, ∗, 0) is an interval d-algebra, if we let x = y, then µ(y ·x)∗µ(x ·y) =
µ(x · x) ∗ µ(x · x) = 0, proving that x Cµ x for all x ∈ X.

If x Cµ y and y Cµ z, then µ(y · x) ∗µ(x · y) = 0, µ(z · y) ∗µ(y · z) = 0. It follows
that (µ(y · x), µ(z · y))~ (µ(x · y), µ(y · z)) = (0, 0). Since F is d-order preserving,
we obtain µ(z · x) ∗ µ(x · z) = F (µ(y · x), µ(z · y)) ∗ F (µ(x · y), µ(y · z)) = 0. This
proves that x Cµ z. �

Given groupoids (X, ·) and (Y, ?), we consider a groupoid homomorphism ϕ :
(X, ·) → (Y, ?). For any fuzzy subset µ : (Y, ?) → [0, 1], we define a map µϕ :
(X, ·)→ [0, 1] by µϕ(x) := µ(ϕ(x)) for all x ∈ X.

Given a fuzzy subset µ : X → [0, 1], we define a set Ω(µ) by

Ω(µ) := {(X, ·) ∈ Bin(X) |µ(x · y) ≥ min{µ(x), µ(y)}, ∀x, y ∈ X} (5)

It can be easily seen that that (Ω(µ),2) forms a subsemigroup of the semigroup
(Bin(X),2).

Example 4.5. (a). If (X, ·) is the left zero semigroup, i.e., x·y = x for all x, y ∈ X,
then µ(x · y) = µ(x) ≥ min{µ(x), µ(y)} for all fuzzy subset µ, i.e., (X, ·) ∈ Ω(µ) for
all fuzzy subset µ ∈ [0, 1]X .

(b). If X := R, the real numbers, then µ(x) := exp−x
2

has µ(X) = (0, 1], and thus

if (X, ·) ∈ Ω(µ) then µ(x ∗ y) = exp−(x∗y)
2 ≥ min{exp−x

2

, exp−y
2}. It follows that

if |x∗y| ≤ min{|x|, |y|}, then µ(x∗y) ≥ min{µ(x), µ(y)}, with many choices possible
for product x ∗ y. One such choice might be x ∗ y := xy

|(x+1)(y+1)| for example. Thus

2 ∗ 1
2 = 2

9 <
1
2 = min{2, 12}.

Proposition 4.6. If (Y, ?) ∈ Ω(µ) and ϕ : (X, ·)→ (Y, ?) is a groupoid homomor-
phism, then (X, ·) ∈ Ω(µϕ).

Proof. Given x, y ∈ X, since (Y, ?) ∈ Ω(µ), we have

µϕ(x · y) = µ(ϕ(x · y))

= µ(ϕ(x) ? ϕ(y))

≥ min{µ(ϕ(x)), µ(ϕ(y))}
= min{µϕ(x), µϕ(y)}.

This shows that (X, ·) ∈ Ω(µϕ). �

Proposition 4.7. Let ϕ : (X, ·) → (Y, ?) be a groupoid homomorphism and let
µ : (Y, ?)→ [0, 1] be a fuzzy subset. If (Y, I, F ) is a framework for µ, then (X, I, F )
is a framework for µϕ.

Proof. Since (Y, I, F ) is a framework for µ, we have F (µ(z ? y), µ(y ? x)) = µ(z ? x)
for all x, y, z ∈ Y . It follows that

F (µϕ(c · b), µϕ(b · a)) = F (µ(ϕ(c · b)), µ(ϕ(b · a)))

= F (µ(ϕ(c) ? ϕ(b)), µ(ϕ(b) ? ϕ(a)))

= µ(ϕ(c) ? ϕ(a))

= µ(ϕ(c · a))

= µϕ(c · a),
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which shows that (X, I, F ) is a framework for µϕ. �

Proposition 4.8. Let ϕ : (X, ·) → (Y, ?) be a groupoid homomorphism and let
µ : (Y, ?) → [0, 1] be a fuzzy subset. If (Y, I, F ) is a framework for µ, then ϕ :
(X,Cµϕ)→ (Y,Cµ) is order preserving, i.e., a Cµϕ b implies ϕ(a) Cµ ϕ(b).

Proof. If a Cµϕ b, then µϕ(b · a) ∗ µϕ(a · b) = 0. It follows that 0 = µ(ϕ(b · a)) ∗
µ(ϕ(a · b)) = µ(ϕ(b) ? ϕ(a)) ∗ µ(ϕ(a) ? ϕ(b)). This shows that ϕ(a) Cµ ϕ(b). �

The converse of Proposition 4.8 holds for any onto homomorphism of groupoids
ϕ : (X, ·)→ (Y, ?).

Proposition 4.9. Let ϕ : (X, ·) → (Y, ?) be an onto homomorphism of groupoids
and let µ : (Y, ?) → [0, 1] be a fuzzy subset. If (Y, I, F ) is a framework for µ, then
ϕ : (X,Cµϕ)→ (Y,Cµ) is order reversing, i.e., ϕ(a) Cµ ϕ(b) implies a Cµϕ b.

Proof. Let ϕ(a) and ϕ(b) be arbitrary elements of (Y, ?) such that ϕ(a) Cµ ϕ(b).
Then µ(ϕ(b · a)) ∗ µ(ϕ(a · b)) = µ(ϕ(b) ? ϕ(a)) ∗ µ(ϕ(a) ? ϕ(b)) = 0. It follows that
µ(ϕ(b · a)) ∗ µ(ϕ(a · b)) = 0, i.e., a Cµϕ b, proving the proposition. �

Given a groupoid homomorphism ϕ : (X, ·) → (Y, ?) and a fuzzy subset µ :
(X, ·)→ [0, 1], we define a map µϕ : (Y, ?)→ [0, 1] by µϕ(ϕ(a)) := sup{µ(b) | ϕ(a) =
ϕ(b)}.

Theorem 4.10. Let ϕ : (X, ·) → (Y, ?) be an onto groupoid homomorphism. If
(X, ·) ∈ Ω(µ), then (Y, ?) ∈ Ω(µϕ).

Proof. Given α, β ∈ Y , since ϕ is onto, there exist x, y ∈ X such that α = ϕ(x), β =
ϕ(y). It follows that

µϕ(α ? β) = µϕ(ϕ(x) ? ϕ(y))

= µϕ(ϕ(x · y))

= sup{µ(z)|ϕ(z) = ϕ(x · y)}
≥ sup{µ(p · q)|ϕ(p · q) = ϕ(x · y)}
≥ sup{µ(p · q)|ϕ(p) = ϕ(x), ϕ(q) = ϕ(y)}

Since µϕ(α) = µϕ(ϕ(x)) = sup{µ(z)|ϕ(z) = ϕ(x)}, there exists p0 ∈ X such that
µ(p0) > µϕ(α) − ε and ϕ(p0) = ϕ(x) for any ε > 0. Similarly, there exists q0 ∈ X
such that µ(q0) > µϕ(β)− ε and ϕ(q0) = ϕ(y) for any ε > 0. It follows that

µ(p0 · q0) ≥ min{µ(p0), µ(q0)}
> min{µϕ(α), µϕ(β)} − ε

Hence we obtain

µϕ(α ? β) ≥ sup{µ(p · q) |ϕ(p) = ϕ(x), ϕ(q) = ϕ(y)}
≥ sup{min{µ(p), µ(q)} |ϕ(p) = ϕ(x), ϕ(q) = ϕ(y)}
≥ sup{min{µϕ(α), µϕ(β)} − ε |ϕ(p) = ϕ(x), ϕ(q) = ϕ(y)}
= min{µϕ(α), µϕ(β)} − ε
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for any ε > 0. It follows that µϕ(α ∗β) ≥ min{µϕ(α), µϕ(β)}, proving that (Y, ?) ∈
Ω(µϕ). �

Corollary 4.11. Let ϕ : (X, ·) → (Y, ?) be an onto groupoid homomorphism. If
(Y, ?) ∈ Ω(µϕ), then (X, ·) ∈ Ω((µϕ)ϕ).

Proof. It follows immediately from Proposition 4.6. �

Note that the mapping (µϕ)ϕ is a constant function on inverse image ϕ−1(y), y ∈
Y . In fact, assume that ϕ(a) = ϕ(b) = y. Then we have (µϕ)ϕ(a) = µϕ(ϕ(a)) =
sup{µ(x) |ϕ(x) = ϕ(a)} = sup{µ(x) |ϕ(x) = ϕ(b)} = (µϕ)ϕ(b).

Theorem 4.12. Given a groupoid homomorphism ϕ : (X, ·) → (Y, ?) and a fuzzy
subset µ : (Y, ?)→ [0, 1], we have

(i). [(µϕ)ϕ]ϕ = µϕ,
(ii). [(µϕ)ϕ]ϕ = µϕ if ϕ is onto.

Proof. (i). If we let ξ := µϕ, then, for all a ∈ X, we have

[(µϕ)ϕ]ϕ(a) = (ξϕ)(ϕ(a))

= sup{ξ(b) |ϕ(b) = ϕ(a)}
= sup{(µϕ)(b) |ϕ(b) = ϕ(a)}
= sup{µ(ϕ(a))}
= µ(ϕ(a)) = µϕ(a).

(ii). Assume that ϕ is onto and assume that α := (µϕ)ϕ. Given a ∈ X, we have

[(µϕ)ϕ]ϕ(ϕ(a)) = sup{α(b) |ϕ(b) = ϕ(a)}
= sup{(µϕ)ϕ |ϕ(b) = ϕ(a)}
= sup{µϕ(ϕ(b)) |ϕ(b) = ϕ(a)}
= sup{sup{µ(z) |ϕ(z) = ϕ(b)} |ϕ(b) = ϕ(a)}
= sup{µ(z) |ϕ(z) = ϕ(a)}
= µϕ(ϕ(a)).

This proves that [(µϕ)ϕ]ϕ = µϕ. �

5. Conclusion

In this paper we discussed some ideas associated with posets, fuzzy subsets as
fuzzy groupoids and pogroupoids. The culminating notion here is probably that
of a framework for a quasi ordered set which provides a very flexible structure
incorporating the poset notion in several ways, and thus making order concepts
accessible to many contexts.

It should be noted that if D is the distribution function of any real random
variable on R, the real numbers, then as a fuzzy subset of R itself, the theory
developed above can then be introduced and help to yield new approaches to sta-
tistics/probability theory which may ultimately turn out to be useful.

www.SID.ir

WWW.SID.IR
WWW.SID.IR


Arc
hive

 of
 S

ID

160 Y. H. Kim, H. S. Kim and J. Neggers

Acknowledgement. Authors are very grateful for referee’s valuable suggestions
and help.

References

[1] R. K. Bandaru, K. P. Shum and N. Rafi, Fuzzy ideals of implication groupoids, Italian J.

Pure and Appl. Math., 34 (2015), 277–290.
[2] G. Grätzer, General lattice theory, Springer, New York, 1978.

[3] J. S. Han, H. S. Kim and J. Neggers, Strong and ordinary d-algebras, J. Mult.-Valued Logic

& Soft Computing, 16 (2010), 331–339.
[4] D. Kelly and I. Rival, Planar lattices, Canad. J. Math., 27 (1975), 636–665.

[5] M. Khan, M. Shakeel, M. Gulistan and S. Rashid, Generalized fuzzy bi-ideals of order right

modular groupoids, Int. J. Algebra and Statistics, 4 (2015), 46–56.
[6] H. S. Kim and J. Neggers, The semigroups of binary systems and some perspectives, Bull.

Korean Math. Soc., 45 (2008), 651–661.

[7] J. Neggers, Partially ordered sets and groupoids, Kyungpook Math. J., 16 (1976), 7–20.
[8] J. Neggers and H. S. Kim, Modular posets and semigroups, Semigroup Forum, 53 (1996),

57–62.

[9] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca, 49 (1999), 19–26.
[10] J. Neggers and H. S. Kim, Algebras associated with posets, Demonstratio Math., 34 (2001),

13–23.
[11] J. Neggers and H. S. Kim, Fuzzy posets on sets, Fuzzy Sets and Sys., 117 (2001), 391–402.

[12] J. Neggers and H. S. Kim, Fuzzy pogroupoids, Information Sci., 175 (2005), 108–119.

[13] S. J. Shin, H. S. Kim and J. Neggers, On Abelian and related fuzzy subsets of groupoids, The
Scientific World J., Article ID 476057, 2013 (2013), 5 pages.

[14] S. J. Shin, H. S. Kim and J. Neggers, The intersection between fuzzy subsets and groupoids,

The Scientific World J., Article ID 246285, 2014 (2014), 6 pages.
[15] L. Zadeh, Fuzzy Sets, Inform. and Control, 8 (1965), 338–353.

Young Hee Kim, Department of Mathematics, Chungbuk National University, Cheongju,

28644, Korea
E-mail address: yhkim@cbnu.ac.kr

Hee Sik Kim∗, Research Institute for Natural Sci., Department of Mathematics,

Hanyang University, Seoul, 04763, Korea
E-mail address: heekim@hanyang.ac.kr

J. Neggers, Department of Mathematics, University of Alabama, Tuscaloosa, AL
35487-0350, U. S. A.

E-mail address: jneggers@ua.edu

∗Corresponding Author

www.SID.ir

WWW.SID.IR
WWW.SID.IR


Arc
hive

 of
 S

ID

190                                                                                       Iranian  Journal  of  Fuzzy  Systems   Vol.14,  No. 3  (2017)   
SELECTIVE GROUPOIDS AND FRAMEWORKS INDUCED BY FUZZY SUBSETS 

 Y. H. KIM, H. S. KIM AND J. NEGGERS   گروه واره هاي انتخابي و چارچوب هاي القايي توسط زير مجموعه هاي فازي  
فازي ، يك نشان مي دهيم كه هر گروه وار انتخابي القايي توسط يك زير مجموعه  مقاله، اين در. دهيچك  

گروه وار مرتب جزئي است و با معرفي مفهوم يك چارچوب ، خواص متعددي در مجموعه هاي شبه 
 مرتب را مورد بحث قرار مي دهيم. 
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