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SOME FIXED POINT RESULTS FOR ADMISSIBLE GERAGHTY

CONTRACTION TYPE MAPPINGS IN FUZZY METRIC SPACES

M. DINARVAND

Abstract. In this paper, we introduce the notions of fuzzy α-Geraghty con-
traction type mapping and fuzzy β-ϕ-contractive mapping and establish some

interesting results on the existence and uniqueness of fixed points for these two

types of mappings in the setting of fuzzy metric spaces and non-Archimedean
fuzzy metric spaces. The main results of our work generalize and extend some

known comparable results in the literature. Furthermore, several illustrative

examples are given to support the usability of our obtained results.

1. Introduction

It is well known that the fuzzy set concept plays an important role in many
scientific and engineering applications. The fuzziness appears when we need to
perform, on manifold, calculations with imprecision variables. The concept of fuzzy
sets was introduced initially by Zadeh [25] in 1965. The contraction type mappings
in fuzzy metric spaces play a crucial role in fixed point theory. In 1988, Grabiec [11]
defined the Banach contraction in a fuzzy metric space (in the sense of Kramosil
and Michálek [13]) and extended fixed point theorems of Banach and Edelstein
to fuzzy metric spaces. Successively, George and Veeramani [7] slightly modified
the notion of a fuzzy metric space introduced by Kramosil and Michálek and then
defined a Hausdorff and first countable topology on it.

In 2002, Gregori and Sapena [12] introduced the notion of fuzzy contractive map-
ping and gave some fixed point theorems for complete fuzzy metric spaces in the
sense of George and Veeramani, and also for Kramosil and Michálek’s fuzzy metric
spaces which are complete in Grabiec’s sense. Soon after, Mihet [15] proposed a
fuzzy fixed point theorem for a (weak) Banach contraction in M -complete fuzzy
metric spaces. In this direction, Mihet [16, 17, 18] further extended the fixed point
theory in fuzzy metric spaces besides introducing some new notions of contraction
mappings such as Edelstein fuzzy contractive mappings, fuzzy ψ-contractive map-
pings, fuzzy contractive mappings of (ε-λ) type, etc. For more details on fixed point
theory for contraction type mappings in fuzzy metric spaces, we refer the interested
reader to [1, 2, 5, 10, 19, 20, 24, 23] and the references cited therein.

The applications of fixed point theorems are remarkable in different disciplines
of mathematics, engineering and economics in dealing with problems arising in
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approximation theory, game theory and many others. Consequently, many re-
searchers, following the Banach contraction principle, investigated the existence of
weaker contractive conditions or extended previous results under relatively weak
hypotheses on the metric space. One of the interesting results which generalizes
the Banach contraction principle was given by Geraghty [9] in the setting of com-
plete metric spaces by considering an auxiliary function. Later, Amini-Harandi and
Emami [3] characterized the result of Geraghty in the context of a partially ordered
complete metric space. Recently, Samet et al. [21] obtained remarkable fixed point
results by defining the notion of α-ψ-contractive mappings via admissible mappings.

Motivated and inspired by Samet et al. [21], we introduce the new concepts of
fuzzy α-Geraghty contraction type mapping and fuzzy β-ϕ-contractive mapping
via triangular α and β-admissible mappings, respectively. Subsequently, we derive
several sufficient conditions which ensure the existence and uniqueness of fixed
points for these classes of mappings in the setup of complete fuzzy metric spaces
and complete non-Archimedean fuzzy metric spaces. Our main results substantially
generalize and extend some known results in the existing literature. Meantime, we
provide some illustrative examples in support of our new results where results from
current literature are not applicable.

2. Preliminaries

In this section, we briefly recall some known definitions and terminologies from
the theory of fuzzy metric spaces which will be needed in the sequel.

Definition 2.1. (Schweizer and Sklar [22]) A binary operation ? : [0, 1]× [0, 1]→
[0, 1] is called a continuous triangular norm (in short, continuous t-norm) if it
satisfies the following assertions:

(i) ? is commutative and associative;
(ii) ? is continuous;

(iii) a ? 1 = a for all a ∈ [0, 1];
(iv) a ? b ≤ c ? d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Four basic examples of the continuous t-norm are a ?1 b = min{a, b}, a ?2 b =
ab

max{a,b,λ} for λ ∈ (0, 1), a?3 b = ab, and a?4 b = max{a+b−1, 0} for all a, b ∈ [0, 1].

Definition 2.2. (Kramosil and Michálek [13]) A fuzzy metric space is a triple
(X,M, ?) such that X is an arbitrary nonempty set, ? is a continuous t-norm and
M is a fuzzy set on X × X × [0,+∞) satisfying, for all x, y ∈ X, the following
properties:

(KM1) M(x, y, 0) = 0;
(KM2) M(x, y, t) = 1 for all t > 0 if and only if x = y;
(KM3) M(x, y, t) = M(y, x, t) for all t > 0;
(KM4) M(x, y, ·) : [0,+∞)→ [0, 1] is left continuous;
(KM5) M(x, z, t+ s) ≥M(x, y, t) ? M(y, z, s) for all z ∈ X and for all t, s > 0.

If we replace the triangular inequality (KM5) by

(NA) M(x, z,max{t, s}) ≥ M(x, y, t) ? M(y, z, s) for all x, y, z ∈ X and for all
t, s > 0,
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then the triple (X,M, ?) is called a non-Archimedean fuzzy metric space.

It is easy to check that (NA) implies (KM5). Hence, each non-Archimedean
fuzzy metric space is a fuzzy metric space.

In order to introduce a Hausdorff topology on the fuzzy metric space, George
and Veeramani [8] modified the above definition as follows.

Definition 2.3. (George and Veeramani [8]) A fuzzy metric space is a triple
(X,M, ∗) such that X is an arbitrary nonempty set, ? is a continuous t-norm
and M is a fuzzy set on X ×X × (0,+∞) satisfying, for all x, y ∈ X, the following
properties:

(GV1) M(x, y, t) > 0 for all t > 0;
(GV2) M(x, y, t) = 1 for all t > 0 if and only if x = y;
(GV3) M(x, y, t) = M(y, x, t) for all t > 0;
(GV4) M(x, y, ·) : (0,+∞)→ [0, 1] is continuous;
(GV5) M(x, z, t+ s) ≥M(x, y, t) ? M(y, z, s) for all z ∈ X and for all t, s > 0.

Example 2.4. [8] Let (X, d) be a metric space. Then the triple (X,M, ?) is a
fuzzy metric space, where a ? b = ab for all a, b ∈ [0, 1] and M(x, y, t) = t

t+d(x,y) for

all x, y ∈ X and for all t > 0. We call this M as the standard fuzzy metric induced
by the metric d. Even if we define a ? b = min{a, b} for all a, b ∈ [0, 1], then the
triple (X,M, ?) will be a fuzzy metric space.

From now on, we will work in fuzzy metric spaces on the sense of George and
Veeramani.

Definition 2.5. [7] Let (X,M, ?) be a fuzzy metric space (or a non-Archimedean
fuzzy metric space).

(i) A sequence {xn} in X is said to be convergent to a point x ∈ X, denoted
by xn → x as n → +∞, if and only if limn→+∞M(xn, x, t) = 1 for all
t > 0, i.e. for each r ∈ (0, 1) and t > 0, there exists n0 ∈ N such that
M(xn, x, t) > 1− r for all n ≥ n0.

(ii) A sequence {xn} in X is a Cauchy sequence if and only if for all ε ∈ (0, 1)
and t > 0, there exists n0 ∈ N such that M(xn, xm, t) > 1 − ε for all
m,n ≥ n0.

(iii) The fuzzy metric space (or the non-Archimedean fuzzy metric space) is
called complete if every Cauchy sequence is convergent.

Definition 2.6. (Di Bari and Vetro [6]) Let (X,M, ?) be a fuzzy metric space.
The fuzzy metric M is said to be triangular whenever,(

1

M(x, y, t)
− 1

)
≤
(

1

M(x, z, t)
− 1

)
+

(
1

M(y, z, t)
− 1

)
(1)

for all x, y, z ∈ X and any t > 0.

Finally, let X be a nonempty set. If (X,M, ?) is a fuzzy metric space and (X,�)
is a partially ordered set, then (X,M, ?,�) is called an ordered fuzzy metric space.
Also, x, y ∈ X are called comparable if x � y or y � x holds. Let (X,�) be a
partially ordered set and T : X → X be a mapping. T is called a nondecreasing
mapping if Tx � Ty whenever x � y for all x, y ∈ X.
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3. Main Results

We begin this section by introducing the new notion of triangular α-admissible
mappings in fuzzy metric spaces as follows.

Definition 3.1. Let (X,M, ?) be a fuzzy metric space and T : X → X be a given
mapping. We say that T is a triangular α-admissible mapping if there exists a
function α : X ×X × (0,+∞)→ (−∞,+∞) such that

(Tα1
) α(x, y, t) ≥ 1 implies α(Tx, Ty, t) ≥ 1 for all x, y ∈ X and any t > 0;

(Tα2) α(x, z, t) ≥ 1 and α(z, y, t) ≥ 1 imply α(x, y, t) ≥ 1 for all x, y, z ∈ X and
any t > 0.

We now prove the following important lemma that will be used for proving our
first theorem.

Lemma 3.2. Let (X,M, ?) be a fuzzy metric space and T : X → X be a triangular
α-admissible mapping. Assume that there exists x0 ∈ X such that α(x0, Tx0, t) ≥ 1.
Define a sequence {xn} by xn+1 = Txn. Then

α(xm, xn, t) ≥ 1 for all m,n ∈ N with m < n.

Proof. Since there exists x0 ∈ X such that α(x0, Tx0, t) ≥ 1, it follows that
α(x0, x1, t) = α(x0, Tx0, t) ≥ 1. Now, by using Tα1 of Definition 3.1, we obtain

α(x1, x2, t) = α(Tx0, Tx1, t) ≥ 1 =⇒ α(x2, x3, t) = α(Tx1, Tx2, t) ≥ 1.

By continuing the process as above, we get

α(xn, xn+1, t) ≥ 1 for all n ∈ N ∪ {0}.

Let m,n ∈ N with m < n. Because α(xm, xm+1, t) ≥ 1 and α(xm+1, xm+2, t) ≥ 1,
it follows by Tα2 that α(xm, xm+2, t) ≥ 1. Again, since α(xm, xm+2, t) ≥ 1 and
α(xm+2, xm+3, t) ≥ 1, by applying Tα2 , we have α(xm, xm+3, t) ≥ 1. By continuing
this process inductively, we obtain α(xm, xn, t) ≥ 1. �

As mentioned before, in order to generalize the Banach contraction principle,
Geraghty [9] used the following class of functions.

Let Ψ denote the class of all functions ψ : [0,+∞)→ [0, 1) satisfying the following
condition:

ψ(tn)→ 1 as n→ +∞ implies tn → 0 as n→ +∞.

We now introduce the concept of fuzzy α-Geraghty contraction type mappings
and prove the fixed point theorems for such mappings.

Definition 3.3. Let (X,M, ?) be a fuzzy metric space. A mapping T : X → X is
said to be a fuzzy α-Geraghty contraction type mapping if there exist two functions
α : X ×X × (0,+∞)→ (−∞,+∞) and ψ ∈ Ψ such that

α(x, y, t)

(
1

M(Tx, Ty, t)
− 1

)
≤ ψ

(
1

M(x, y, t)
− 1

)(
1

M(x, y, t)
− 1

)
(2)

for all x, y ∈ X and any t > 0.
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Remark 3.4. It is interesting to remark at this point that due to property of
ψ ∈ Ψ, it follows that

α(x, y, t)

(
1

M(Tx, Ty, t)
− 1

)
≤ ψ

(
1

M(x, y, t)
− 1

)(
1

M(x, y, t)
− 1

)
<

(
1

M(x, y, t)
− 1

)
for all x, y ∈ X with x 6= y and any t > 0.

Remark 3.5. If α(x, y, t) = 1 for all x, y ∈ X and any t > 0 and ψ(r) = λ for all
r > 0 and for some λ ∈ (0, 1), then Definition 3.3 reduces to the definition of fuzzy
contractive mapping given by Gregori and Sapena [12]. Hence, a fuzzy contractive
mapping is a fuzzy α-Geraghty contraction type mapping, but the converse is not
necessarily true (see Example 3.9).

Our first result is an existence theorem for fixed points of α-Geraghty contraction
type mapping.

Theorem 3.6. Let (X,M, ?) be a complete fuzzy metric space such that M be
triangular. Suppose that T : X → X be a self-mapping satisfying the following
assertions:

(i) T is a fuzzy α-Geraghty contraction type mapping;
(ii) T is a triangular α-admissible mapping;
(iii) there exists x0 ∈ X such that α(x0, Tx0, t) ≥ 1 for all t > 0;
(iv) T is continuous.

Then T has a fixed point, that is, there exists x∗ ∈ X such that Tx∗ = x∗.

Proof. By assumption (iii), there exists x0 ∈ X such that α(x0, Tx0, t) ≥ 1 for all
t > 0. We define a sequence {xn} in X by xn = Txn−1 for all n ∈ N. Suppose
that xn = xn+1 for some n ∈ N ∪ {0}. Then, in this case, the proof is completed
since x∗ = xn = xn+1 = Txn = Tx∗. Hence, throughout the proof, we assume that
xn 6= xn−1 for all n ∈ N.

By virtue of Lemma 3.2, we have

α(xn−1, xn, t) ≥ 1 for all n ∈ N and for all t > 0. (3)

By applying the inequality (2) with x = xn−1 and y = xn and thanks to (3), we
obtain(

1

M(xn, xn+1, t)
− 1

)
=

(
1

M(Txn−1, Txn, t)
− 1

)
≤ α(xn−1, xn, t)

(
1

M(Txn−1, Txn, t)
− 1

)
≤ ψ

(
1

M(xn−1, xn, t)
− 1

)(
1

M(xn−1, xn, t)
− 1

)
(4)

<

(
1

M(xn−1, xn, t)
− 1

)
.
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Thus, we conclude that M(xn, xn+1, t) > M(xn−1, xn, t) for all n ∈ N. Hence,
{M(xn−1, xn, t)} is an increasing sequence of positive real numbers in [0, 1]. So,
there exists `(t) ∈ [0, 1] such that limn→+∞M(xn−1, xn, t) = `(t) for all t > 0. We
will prove that `(t) = 1 for all t > 0. Suppose to the contrary that there exists
t0 > 0 such that `(t0) < 1. By taking the limit as n → +∞ in the inequality (4),
we get

lim
n→+∞

ψ

(
1

M(xn−1, xn, t)
− 1

)
= 1.

Due to property of ψ ∈ Ψ, we have

lim
n→+∞

(
1

M(xn−1, xn, t)
− 1

)
= 0,

so equivalently, limn→+∞M(xn−1, xn, t) = 1, which is a contradiction. Hence, we
conclude that

lim
n→+∞

M(xn−1, xn, t) = 1 for all t > 0. (5)

Now, we assert that {xn} is a Cauchy sequence. Arguing by contradiction, we
suppose

λ := lim sup
m,n→+∞

M(xm, xn, t) < 1. (6)

By applying the inequality (2) and Lemma 3.2, we have(
1

M(xm+1, xn+1, t)
− 1

)
=

(
1

M(Txm, Txn, t)
− 1

)
≤ α(xm, xn, t)

(
1

M(Txm, Txn, t)
− 1

)
≤ ψ

(
1

M(xm, xn, t)
− 1

)(
1

M(xm, xn, t)
− 1

)
.

By taking limit supremum as m,n→ +∞ in the above inequality, we obtain

lim sup
m,n→+∞

(
1

M(xm+1, xn+1, t)
− 1

)
≤ lim sup
m,n→+∞

ψ

(
1

M(xm, xn, t)
− 1

)
lim sup
m,n→+∞

(
1

M(xm, xn, t)
− 1

)
=

(
1

λ
− 1

)
lim sup
m,n→+∞

ψ

(
1

M(xm, xn, t)
− 1

)
.

(7)

On the other hand, we have(
1

M(xm, xn, t)
− 1

)
≤
(

1

M(xm, xm+1, t)
− 1

)
+

(
1

M(xm+1, xn, t)
− 1

)
≤
(

1

M(xm, xm+1, t)
− 1

)
+

(
1

M(xm+1, xn+1, t)
− 1

)
+

(
1

M(xn+1, xn, t)
− 1

)
.
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Again, by taking limit supremum as m,n→ +∞ in the above inequality and using
(5) and (7), we get(

1

λ
− 1

)
≤ lim sup
m,n→+∞

(
1

M(xm+1, xn+1, t)
− 1

)
≤
(

1

λ
− 1

)
lim sup
m,n→+∞

ψ

(
1

M(xm, xn, t)
− 1

)
,

which implies that

lim sup
m,n→+∞

ψ

(
1

M(xm, xn, t)
− 1

)
= 1.

Owing to the fact that ψ ∈ Ψ, we deduce that

lim sup
m,n→+∞

(
1

M(xm, xn, t)
− 1

)
= 0.

This yields to lim supm,n→+∞M(xm, xn, t) = `(t0) = 1, which is a contradiction.
Hence, {xn} is a Cauchy sequence. Since (X,M, ?) is a complete fuzzy metric space,
it follows that the sequence {xn} converges to some x∗ ∈ X, that is, xn → x∗ as
n → +∞. Now, the continuity of T implies that Txn → Tx∗ as n → +∞ and so
limn→+∞M(Txn, Tx

∗, t) = 1 for all t > 0. It follows that

lim
n→+∞

M(xn+1, Tx
∗, t) = lim

n→+∞
M(Txn, Tx

∗, t) = 1

for all t > 0, that is, xn → Tx∗ as n → +∞. By the uniqueness of the limit, we
get x∗ = Tx∗, i.e. x∗ is a fixed point of T . �

In the next theorem, we establish a fixed point result without any continuity
assumption on the mapping T .

Theorem 3.7. Let (X,M, ?) be a complete fuzzy metric space such that M be
triangular. Suppose that T : X → X be a self-mapping satisfying the following
assertions:

(i) T is a fuzzy α-Geraghty contraction type mapping;
(ii) T is a triangular α-admissible mapping;

(iii) there exists x0 ∈ X such that α(x0, Tx0, t) ≥ 1 for all t > 0;
(iv) if {xn} is a sequence such that α(xn, xn+1, t) ≥ 1 for all n ∈ N and xn → x

as n→ +∞, then α(xn, x, t) ≥ 1 for all n ∈ N.

Then T has a fixed point.

Proof. Following the same lines in the proof of Theorem 3.6, we get that the se-
quence {xn} defined by the schema xn = Txn−1 for all n ∈ N which converging to
some x∗ ∈ X. Regarding (3) together with the condition (iv), we have

α(xn, x
∗, t) ≥ 1 for all n ∈ N and for all t > 0. (8)
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By applying the inequality (2) and using (1) and (8) and in view of (GV3), we
obtain(

1

M(Tx∗, x∗, t)
− 1

)
≤
(

1

M(Tx∗, Txn, t)
− 1

)
+

(
1

M(Txn, x∗, t)
− 1

)
=

(
1

M(Tx∗, Txn, t)
− 1

)
+

(
1

M(xn+1, x∗, t)
− 1

)
≤ α(xn, x

∗, t)

(
1

M(Txn, Tx∗, t)
− 1

)
+

(
1

M(xn+1, x∗, t)
− 1

)
≤ ψ

(
1

M(xn, x∗, t)
− 1

)(
1

M(xn, x∗, t)
− 1

)
+

(
1

M(xn+1, x∗, t)
− 1

)
.

By taking the limit as n→ +∞ in the above inequality, we get(
1

M(Tx∗, x∗, t)
− 1

)
= 0.

Hence, Tx∗ = x∗, i.e. x∗ is a fixed point of T . �

Now, we present some examples to illustrate the usefulness of the proposed
theoretical results.

Example 3.8. Let X = [0, 1], a ? b = min{a, b} for all a, b ∈ [0, 1] and M(x, y, t) =
t

t+|x−y| for all x, y ∈ X and for all t > 0. Obviously, (X,M, ?) is a complete fuzzy

metric space.
Consider the mapping T : X → X by

Tx =

{
1
4 (1− x), x ∈ [0, 13 ) ∪ ( 1

3 , 1],
1
2 , x = 1

3

and the function α : X ×X × (0,+∞)→ (−∞,+∞) defined as

α(x, y, t) =

{
1, x, y ∈ [0, 13 ) ∪ ( 1

3 , 1],

0, otherwise

for all t > 0. It is easy to check that T is a fuzzy α-Geraghty contraction type
mapping with ψ(s) = 1

2 . In fact, if at least one between x and y is equal to 1
3 ,

then α(x, y, t) = 0 and so (2) holds trivially. Otherwise, if both x and y are in
(0, 13 ) ∪ ( 1

3 , 1], then α(x, y, t) = 1 and hence (2) becomes(
1

M(Tx, Ty, t)
− 1

)
≤ 1

2

(
1

M(x, y, t)
− 1

)
.

Now, let x, y ∈ X such that α(x, y, t) ≥ 1 for all t > 0. This implies that
x, y ∈ [0, 13 )∪( 1

3 , 1] and by the definitions of T and α, we have Tx, Ty ∈ [0, 13 )∪( 1
3 , 1].

Thus, α(Tx, Ty, t) = 1 for all t > 0. Also, let x, y, z ∈ X such that α(x, z, t) ≥ 1
and α(z, y, t) ≥ 1 for all t > 0. This implies that x, y, z ∈ [0, 13 ) ∪ ( 1

3 , 1] and so
α(x, y, t) ≥ 1 for all t > 0. Hence, T is triangular α-admissible. Moreover, there
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exists x0 ∈ X such that α(x0, Tx0, t) ≥ 1 for all t > 0. Indeed, for x0 = 1, we have
α(1, T1, t) = 1.

Finally, let {xn} be a sequence in X such that α(xn, xn+1, t) ≥ 1 for all n ∈ N
and xn → x ∈ X as n → +∞. By the definition of the function α, it follows that
{xn} ∈ [0, 13 ) ∪ ( 1

3 , 1] for all n ∈ N and so x ∈ [0, 13 ) ∪ ( 1
3 , 1]. Thus, α(xn, x, t) = 1

for all n ∈ N. Therefore, all the required hypotheses of Theorem 3.7 are satisfied
and hence T has a fixed point. Here 1

5 is the fixed point of T .

The next example shows that our results generalize the corresponding classical
concepts in the classical metric space.

Example 3.9. Let X =
{

1
n : n ∈ N

}
∪ {0, 3}, a ? b = ab for all a, b ∈ [0, 1]

and M(x, y, t) = t
t+|x−y| for all x, y ∈ X and for all t > 0. Clearly, (X,M, ?) is a

complete fuzzy metric space.
Define the mapping T : X → X by

Tx =

{
x2

9 , x ∈ X \ {3},
3, x = 3

and the function α : X ×X × (0,+∞)→ (−∞,+∞) as

α(x, y, t) =

{
1, x, y ∈ X \ {3},
0, otherwise

for all t > 0. It is elementary to check that T is a fuzzy α-Geraghty contraction
type mapping by considering ψ(s) = 1

3 . In fact, if at least one between x and y is
equal to 3, then α(x, y, t) = 0 and so (2) holds trivially. Otherwise, if both x and
y are in X \ {3}, then α(x, y, t) = 1 and hence (2) becomes(

1

M(Tx, Ty, t)
− 1

)
≤ 1

3

(
1

M(x, y, t)
− 1

)
that is always true since x+ y ≤ 3. By the similar method in the proof of Example
3.8, we can show that all the required conditions of Theorem 3.7 hold and hence T
has a fixed point. Indeed, 0 and 3 are two fixed points of T .

However, T is not a fuzzy contractive mapping in the sense of Gregori and Sapena
[12]. To see this, take the points x = 3 and y = 1 and so(

1

M(Tx, Ty, t)
− 1

)
=

13

9t
�
λ

t
= λ

(
1

M(x, y, t)
− 1

)
,

since λ ∈ (0, 1).

For an improvement of the above results, we consider some extra sufficient con-
ditions to establishing the uniqueness of the fixed point in Theorems 3.6 and 3.7.
One of these conditions can be defined as follows.

(Uα1
) For all x, y ∈ Fix(T ), we have α(x, y, t) ≥ 1 for all t > 0.

Alternatively, instead of the above condition, the following one can be used.
(Uα2

) For all x, y ∈ Fix(T ), there exists z ∈ X such that α(x, z, t) ≥ 1 and
α(y, z, t) ≥ 1 for all t > 0.
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Theorem 3.10. Adding the condition (Uα1) to the hypotheses of Theorem 3.6
(resp. Theorem 3.7), we obtain the uniqueness of the fixed point of T .

Proof. The existence of a fixed point is obvious from the proof of Theorem 3.6
(resp. Theorem 3.7). To prove the uniqueness, suppose that x∗ and y∗ be any two
fixed points of T with x∗ 6= y∗. Thus, the condition Uα1

implies α(x∗, y∗, t) ≥ 1 for
all t > 0. Now, by using the inequality (2), we have(

1

M(x∗, y∗, t)
− 1

)
=

(
1

M(Tx∗, T y∗, t)
− 1

)
≤ α(x∗, y∗, t)

(
1

M(Tx∗, T y∗, t)
− 1

)
≤ ψ

(
1

M(x∗, y∗, t)
− 1

)(
1

M(x∗, y∗, t)
− 1

)
<

(
1

M(x∗, y∗, t)
− 1

)
,

which is a contradiction. Hence, x∗ = y∗. �

Theorem 3.11. Adding the condition (Uα2
) to the hypotheses of Theorem 3.6

(resp. Theorem 3.7), we obtain the uniqueness of the fixed point of T .

Proof. The existence of a fixed point is obvious from the proof of Theorem 3.6
(resp. Theorem 3.7). To prove the uniqueness, assume that x∗ and y∗ be any two
fixed points of with x∗ 6= y∗. Thus, by using the condition Uα2 , there exists z ∈ X
such that

α(x∗, z, t) ≥ 1 and α(y∗, z, t) ≥ 1 for all t > 0.

Define the sequence {zn} in X by z0 = z and zn+1 = Tzn for all n ∈ N ∪ {0}. Due
to Tα1

of Definition 3.1, we get

α(x∗, zn, t) ≥ 1 and α(y∗, zn, t) ≥ 1 for all n ∈ N ∪ {0} and for all t > 0.
(9)

Now, by applying the inequality (2) and thanks to (9), we obtain(
1

M(x∗, zn+1, t)
− 1

)
=

(
1

M(Tx∗, T zn, t)
− 1

)
≤ α(x∗, zn, t)

(
1

M(Tx∗, T zn, t)
− 1

)
≤ ψ

(
1

M(x∗, zn, t)
− 1

)(
1

M(x∗, zn, t)
− 1

)
<

(
1

M(x∗, zn, t)
− 1

)
.

(10)

Hence, we deduce that M(x∗, zn+1, t) > M(x∗, zn, t) for all n ∈ N ∪ {0}. Thus,
the sequence {M(x∗, zn, t)} is an increasing sequence of positive real numbers in
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[0, 1]. So, there exists τ(t) ∈ [0, 1] such that limn→+∞M(x∗, zn, t) = τ(t) for all
t > 0. By taking the limit as n→ +∞ in the inequality (10), we get

lim
n→+∞

ψ

(
1

M(x∗, zn, t)
− 1

)
= 1.

Since ψ ∈ Ψ, it follows that

lim
n→+∞

(
1

M(x∗, zn, t)
− 1

)
= 0,

so equivalently, limn→+∞M(x∗, zn, t) = 1. Hence, limn→+∞ zn = x∗.
In a similar way, one can show that limn→+∞ zn = y∗. By the uniqueness of the

limit, we get x∗ = y∗. �

As immediate consequences of our results, we deduce versions of the Geraghty’s
fixed point theorem in the setup of fuzzy metric spaces and partially ordered fuzzy
metric spaces.

Theorem 3.12. Let (X,M, ?) be a complete fuzzy metric space such that M be
triangular and T : X → X be a self-mapping satisfying(

1

M(Tx, Ty, t)
− 1

)
≤ ψ

(
1

M(x, y, t)
− 1

)(
1

M(x, y, t)
− 1

)
for all x, y ∈ X and any t > 0, where ψ ∈ Ψ. Then T has a unique fixed point.

Proof. To prove the result, it suffices to take the function α : X ×X × (0,+∞)→
(−∞,+∞) by α(x, y, t) = 1 for all x, y ∈ X and any t > 0 in either Theorem 3.10
or Theorem 3.11. �

Theorem 3.13. Let (X,M, ?,�) be a complete ordered fuzzy metric space such
that M be triangular and T : X → X be a self-mapping satisfying the following
conditions:

(i) there exists ψ ∈ Ψ such that(
1

M(Tx, Ty, t)
− 1

)
≤ ψ

(
1

M(x, y, t)
− 1

)(
1

M(x, y, t)
− 1

)
for all x, y ∈ X with x � y and any t > 0;

(ii) T is a nondecreasing mapping with respect to �;
(iii) there exists x0 ∈ X such that x0 � Tx0 with M(x0, Tx0, t) > 0 for all

t > 0;
(iv) either T is continuous or if {xn} is a nondecreasing sequence in X such

that xn → x ∈ X as n→ +∞, then xn � x for all n ∈ N.

Then T has a fixed point. Moreover, if

(v) for all x, y ∈ Fix(T ) either x and y are comparable, or there exists z ∈ X
which is comparable to x and y,

then the fixed point of T is unique.
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Proof. Consider the function α : X ×X × (0,+∞)→ (−∞,+∞) defined by

α(x, y, t) =

{
1, x � y,
0, otherwise

for all t > 0. The reader can show easily that T is a fuzzy α-Geraghty contraction
type mapping, because of α(x, y, t) = 1 for all x, y ∈ X and for all t > 0 with x � y
and α(x, y, t) = 0 with x � y. If α(x, y, t) ≥ 1 for all t > 0, then x � y. As T is
a nondecreasing mapping, we have Tx � Ty. Thus, α(Tx, Ty, t) ≥ 1 for all t > 0.
Also, if α(x, z, t) ≥ 1 and α(z, y, t) ≥ 1 for all t > 0, then x � z and z � y. So,
from transitivity, we have x � y. Hence, α(x, y, t) ≥ 1 for all t > 0. Therefore, T is
a triangular α-admissible mapping. In view of hypothesis (iii), there exists x0 ∈ X
such that x0 � Tx0 which implies α(x0, Tx0, t) ≥ 1 for all t > 0. Precisely, in the
case that T is a continuous mapping, the existence of a fixed point x∗ of T is an
immediate consequence of our Theorem 3.6.

On the other hand, define a sequence {xn} in X such that α(xn, xn+1, t) ≥ 1
for all n ∈ N and for all t > 0 and xn → x ∈ X as n → +∞. Now, in view of the
definition of function α, we have xn � xn+1 for all n ∈ N. Hence, by hypothesis
(iv), we get xn � x for all n ∈ N and so α(xn, x, t) ≥ 1 for all n ∈ N and for all
t > 0. Thus, the existence of a fixed point x∗ of T is a consequence of our Theorem
3.7.

Notice that the same considerations show that (v) of this theorem implies either
Theorem 3.10 or Theorem 3.11. �

Next, we present the new notion of triangular β-admissible mappings in fuzzy
metric spaces as follows.

Definition 3.14. Let (X,M, ?) be a fuzzy metric space and T : X → X be a
given mapping. We say that T is a triangular β-admissible mapping if there exists
a function β : X ×X × (0,+∞)→ (0,+∞) such that

(Tβ1
) β(x, y, t) ≤ 1 implies β(Tx, Ty, t) ≤ 1 for all x, y ∈ X and for all t > 0;

(Tβ2
) β(x, z, t) ≤ 1 and β(z, y, t) ≤ 1 imply β(x, y, t) ≤ 1 for all x, y, z ∈ X and

for all t > 0.

We will require the following lemma which we use in the next theorem.

Lemma 3.15. Let (X,M, ?) be a fuzzy metric space and T : X → X be a triangular
β-admissible mapping. Assume that there exists x0 ∈ X such that β(x0, Tx0, t) ≤ 1.
Define a sequence {xn} by xn+1 = Txn. Then

β(xm, xn, t) ≤ 1 for all m,n ∈ N with m < n.

Proof. The proof can be completed using a similar technique as given in the proof
of Lemma 3.2. Therefore, to avoid repetitions, we omit the details. �

Let Φ denote the class of all functions ϕ : [0, 1]→ [1,+∞) satisfying the following
condition:

ϕ(tn)→ 1 as n→ +∞ implies tn → 1 as n→ +∞.
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We now introduce the concept of fuzzy β-ϕ-contractive mappings and prove the
fixed point theorems for such mappings.

Definition 3.16. Let (X,M, ?) be a fuzzy metric space. A mapping T : X → X
is said to be a fuzzy β-ϕ-contractive mapping if there exist two functions β : X ×
X × (0,+∞)→ (0,+∞) and ϕ ∈ Φ such that M(x, y, t) > 0 implies that

β(x, y, t)M(Tx, Ty, t) ≥ ϕ
(
M(x, y, t)

)
M(x, y, t) (11)

for all x, y ∈ X with x 6= y and any t > 0.

Theorem 3.17. Let (X,M, ?) be a complete non-Archimedean fuzzy metric space
and T : X → X be a self-mapping satisfying the following assertions:

(i) T is a fuzzy β-ϕ-contractive mapping;
(ii) T is a triangular β-admissible mapping;
(iii) there exists x0 ∈ X such that β(x0, Tx0, t) ≤ 1 for all t > 0;
(iv) if {xn} is a sequence such that β(xn, xn+1, t) ≤ 1 for all n ∈ N and xn → x

as n→ +∞, then β(xn, x, t) ≤ 1 for all n ∈ N.

Then T has a fixed point.

Proof. Following (iii), there exists x0 ∈ X such that β(x0, Tx0, t) ≤ 1 for all t > 0.
Define a sequence {xn} in X by xn = Txn−1 for all n ∈ N. If xn = xn+1 for some
n ∈ N∪ {0}, then x∗ = xn is a fixed point of T and the result is proved. Hence, we
suppose that xn 6= xn−1 for all n ∈ N.

Due to Lemma 3.15, we have

β(xn−1, xn, t) ≤ 1 for all n ∈ N and for all t > 0. (12)

By applying the inequality (11) with x = xn−1 and y = xn and takes to (12), we
obtain

M(xn, xn+1, t) =M(Txn−1, Txn, t)

≥ β(xn−1, xn, t)M(Txn−1, Txn, t)

≥ ϕ
(
M(xn−1, xn, t)

)
M(xn−1, xn, t)

≥M(xn−1, xn, t). (13)

Thus, {M(xn−1, xn, t)} is an increasing sequence in (0, 1]. Hence, there exists
τ(t) ∈ (0, 1] such that limn→+∞M(xn−1, xn, t) = τ(t) for all t > 0. We will prove
that τ(t) = 1 for all t > 0. Taking (13) into account, we have

M(xn, xn+1, t)

M(xn−1, xn, t)
≥ ϕ

(
M(xn−1, xn, t)

)
≥ 1,

which implies that limn→+∞ ϕ(M(xn−1, xn, t)) = 1. Regarding the property of the
function ϕ, we conclude that

lim
n→+∞

M(xn, xn+1, t) = 1.

Now, we shall prove that {xn} is a Cauchy sequence. Arguing by contradiction, we
assume that {xn} is not a Cauchy sequence. Thus, there exist ε ∈ (0, 1) and t0 > 0
such that for all k ∈ N there exist n(k),m(k) ∈ N with m(k) > n(k) ≥ k and

M(xm(k), xn(k), t0) ≤ 1− ε.
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Assume that m(k) is the least integer exceeding n(k) satisfying the above inequality.
Equivalently,

M(xm(k)−1, xm(k), t0) > 1− ε (14)

and so, for all k ∈ N, we get

1− ε ≥M(xm(k), xn(k), t0)

≥M(xm(k)−1, xm(k), t0) ? M(xm(k)−1, xn(k), t0)

> τ(t0) ? (1− ε). (15)

By taking the limit as n→ +∞ in (15), we deduce that

lim
n→+∞

M(xm(k), xn(k), t0) = 1− ε. (16)

From

M(xm(k)+1, xn(k)+1, t0)

≥M(xm(k)+1, xm(k), t0) ? M(xm(k), xn(k), t0) ? M(xn(k), xn(k)+1, t0)

and

M(xm(k), xn(k), t0)

≥M(xm(k)+1, xm(k), t0) ? M(xm(k)+1, xn(k)+1, t0) ? M(xn(k), xn(k)+1, t0),

we get

lim
n→+∞

M(xm(k)+1, xn(k)+1, t0) = 1− ε.

In view of Lemma 3.15, we have β(xm(k), xn(k), t) ≤ 1. By applying the inequality
(11) with x = xm(k) and y = xn(k), we have

M(xm(k)+1, xn(k)+1, t0) = M(Txm(k), Txn(k), t0)

≥ β(xm(k), xn(k), t0)M(Txm(k), Txn(k), t0)

≥ ϕ
(
M(xm(k), xn(k), t0)

)
M(xm(k), xn(k), t0),

which yields that

M(xm(k)+1, xn(k)+1, t0)

M(xm(k), xn(k), t0)
≥ ϕ

(
M(xm(k), xn(k), t0)

)
≥ 1.

By taking the limit as k → +∞ in the above inequality, we get

lim
k→+∞

ϕ
(
M(xm(k), xn(k), t0)

)
= 1.

Regarding the property of the function ϕ, we conclude that

lim
k→+∞

M(xm(k), xn(k), t0) = 1,

which implies by (16) that

1− ε = lim
k→+∞

M(xm(k), xn(k), t0) = 1,

a contradiction since ε = 0. This means that {xn} is a Cauchy sequence. As
(X,M, ?) is complete, it follows that the sequence {xn} converges to some x∗ ∈ X,
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that is, xn → x∗ as n → +∞. Now, by using Lemma 3.15 together with the
condition (iv), we have

β(xn, x
∗, t) ≤ 1 for all n ∈ N and for all t > 0. (17)

By applying (NA) and using (11) and (17), we obtain

M(Tx∗, x∗, t) ≥M(Tx∗, Txn, t) ? M(xn+1, x
∗, t)

≥ β(xn, x
∗, t)M(Txn, Tx

∗, t) ? M(xn+1, x
∗, t)

≥ ϕ
(
M(xn, x

∗, t)
)
M(xn, x

∗, t) ? M(xn+1, x
∗, t)

≥M(xn, x
∗, t) ? M(xn+1, x

∗, t).

On taking the limit as n→ +∞ in the above inequality, we conclude that Tx∗ = x∗,
i.e. x∗ is a fixed point of T . �

Next, we provide an example showing how Theorem 3.17 can be used.

Example 3.18. Let X = [1,+∞), a ? b = min{a, b} and M(x, y, t) = min{x,y}
max{x,y} for

all t > 0. Clearly, (X,M, ?) is a complete non-Archimedean fuzzy metric space.
Define the mapping T : X → X by

Tx =

{
2x, x ∈ [1, 3],

4, x ∈ (3,+∞),

and the function β : X ×X × (0,+∞)→ (−∞,+∞) as

β(x, y, t) =

{
1, x, y ∈ [1, 3],

2, otherwise

for all t > 0. It is easy to see that T is a fuzzy β-ϕ contractive mapping with
ϕ(r) = 1 for all r ∈ [0, 1]. In fact, let x, y ∈ (0, 1] and x < y. Then

β(x, y, t)M(Tx, Ty, t) =
x

y
≥ x

y
= ϕ

(
M(x, y, t)

)
M(x, y, t)

for all t > 0. Otherwise, β(x, y, t) = 2 and so

β(x, y, t)M(Tx, Ty, t) = 2 ≥ x

y
= ϕ

(
M(x, y, t)

)
M(x, y, t)

for all t > 0. Obviously, T is triangular β-admissible. Further, there exists x0 ∈ X
such that β(x0, Tx0, t) ≤ 1 for all t > 0. Indeed, for x0 = 1, we have β(1, T1, t) = 1.

Finally, let {xn} be a sequence in X such that β(xn, xn+1, t) ≤ 1 for all n ∈ N
and xn → x ∈ X as n → +∞. By the definition of the function β, it follows that

xn ∈ [1, 3] for all n ∈ N. Now, if x > 3, we get M(xn, x, t) = min{xn,x}
max{xn,x} = xn

x ≤
3
x < 1 which contradicts (i) of Definition 2.5, since limn→+∞M(xn, x, t) = 1 for all
t > 0. Hence, we deduce that x ∈ [1, 3]. Therefore, β(xn, x, t) = 1 for all n ∈ N.
Thus, all the required hypotheses of Theorem 3.17 are satisfied and hence T has a
fixed point. In fact, 4 is the fixed point of T .
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Now, we give some sufficient conditions to obtain the uniqueness of the fixed
point in the previous theorem. Precisely, we consider the following hypothesis:

(Uβ1
) For all x, y ∈ Fix(T ), we have β(x, y, t) ≤ 1 for all t > 0.

(Uβ2
) For all x, y ∈ Fix(T ), there exists z ∈ X such that β(x, z, t) ≤ 1 and

β(y, z, t) ≤ 1 for all t > 0.

Theorem 3.19. Adding the condition (Uβ1
) to the hypotheses of Theorem 3.17,

we obtain the uniqueness of the fixed point of T .

Proof. The proof of this theorem can obtained by using similar arguments as given
in the proof of Theorem 3.10. So we omit the proof. �

Theorem 3.20. Adding the condition (Uβ2
) to the hypotheses of Theorem 3.17,

we obtain the uniqueness of the fixed point of T .

Proof. This theorem can be proved by the same method as was employed in The-
orem 3.11. So we omit the proof. �

4. Conclusion

In view of their interesting applications, searching for fixed point theorems in
fuzzy and non-Archimedean fuzzy metric spaces has received considerable attention
through the last decades. In particular, researchers are currently focusing on weaker
form of contractive conditions. In the present work, we introduced two new notions
called fuzzy α-Geraghty contraction type mapping via triangular α-admissible map-
ping and fuzzy β-ϕ-contractive mapping via triangular β-admissible mapping by us-
ing Geraghty type contractive conditions. Subsequently, we proved some interesting
results which guarantee the existence and uniqueness of fixed points for these new
types of contractive mappings in the setting of complete fuzzy metric spaces and
complete non-Archimedean fuzzy metric spaces. As a result, we also generalized
and extended the well known generalizations [3, 4, 14] of Geraghty’s theorem [9].
Further, the attached examples illustrate the validity of the obtained results. The
new concepts lead to further investigations and applications and our work enriches
our knowledge of fixed points in fuzzy metric spaces.

Acknowledgements. The author would like to thank the referees for their valu-
able comments and suggestions to improve this paper.
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 M. DINARVAND  هاي پذيرنده نوع انقباض گرختي برخي نتايج نقطه ثابت براي نگاشت  
  در فضاهاي متريك فازي

انقباضي را - β -φگرختي و نگاشت فازي –αدر اين مقاله، ما مفاهيم نگاشت فازي نوع انقباض . دهيچك  
ي اين دو نوع از فردي نقاط ثابت برابهبه وجود و منحصركنيم و برخي نتايج جالب راجعمعرفي مي

كنيم. نتايج اصلي ارشميدسي ثابت ميها را در فضاهاي متريك فازي و فضاهاي متريك فازي غيرنگاشت
- بردهند. علاوهي موجود در تحقيقات را تعميم و توسيع ميشدهي شناختهكار ما برخي از نتايج قابل مقايسه

ي ما داده بودن نتايج به دست آمدهاز قابليت استفادهمختلفي به منظور حمايت  دهندههاي توضيحاين، مثال
 شود.مي
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