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ITERATIVE METHOD FOR SOLVING TWO-DIMENSIONAL

NONLINEAR FUZZY INTEGRAL EQUATIONS USING

FUZZY BIVARIATE BLOCK-PULSE FUNCTIONS

WITH ERROR ESTIMATION

S. ZIARI

Abstract. In this paper, we propose an iterative procedure based on two
dimensional fuzzy block-pulse functions for solving nonlinear fuzzy Fredholm

integral equations of the second kind. The error estimation and numerical

stability of the proposed method are given in terms of supplementary Lipschitz
condition. Finally, illustrative examples are included in order to demonstrate

the accuracy and convergence of the proposed method.

1. Introduction

Block pulse functions are a set of orthogonal functions with piecewise constant
value and usually applied as a useful tool in the analysis, synthesis identification
and other problems of control and systems sciences [26]. The block pulse functions
has been frequently used in several papers to approximate solution of differential
equations, integral and integro-differential equations in the crisp case.
One of the most interesting research matters in fuzzy sets and systems is to study
fuzzy integral equations. The study of fuzzy integral equations from theoretical and
practical aspects has been developed by some authors. The investigation of the ex-
istence and uniqueness of the solution for fuzzy integral equations has been carried
out in [6, 7, 8, 28, 29, 32]. The Banach fixed point theorem is the main tool in study-
ing the existence and uniqueness of the solution for fuzzy integral equations which
can appear in numerical procedures for solving fuzzy integral equations, based on
the iterative techniques. The iterative numerical methods for solving fuzzy integral
equations can be found in [8, 9, 10, 20, 21, 22]. The Nyström technique, Adomian
decomposition method, fuzzy Bernstein polynomials and fuzzy Haar wavelet were
applied to solve the fuzzy integral equations of the second kind in [1, 4, 15, 35]. Bica
and Popescu, in [10], applied the method of successive approximations for solving
the fuzzy Hammerstein integral equation. Ezzati and Ziari in [16], proved the con-
vergence of the method of successive approximations for solving nonlinear fuzzy
Fredholm integral equations of the second kind, and proposed an iterative proce-
dure based on the trapezoidal quadrature. Recently, Baghmisheh and Ezzati in [5],
approximated the fuzzy function by the hybrid Taylor and block-pulse functions
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and estimated the error approximation. Also, an iterative procedure is constructed
based on the hybrid Taylor and block-pulse functions for solving nonlinear Fredholm
fuzzy integral equations by them. Recently, in [36], Ziari and Bica obtained the new
error estimation of the iterative method based on the trapezoidal formula for solv-
ing nonlinear fuzzy Hammerstein-Fredholm integral equations of the second kind
in terms of uniform and partial modulus of continuity. Moreover, they extended
the notion of numerical stability of the solution with respect to the first iteration
in the context of using the modulus of continuity. The study of numerical solu-
tion of two-dimensional nonlinear fuzzy Fredholm integral equations of the second
kind using iterative methods based on successive approximations and two dimen-
sional quadrature rules started by Sadat Rasoul and Ezzati, in [30]. Also, Ezzati
and Ziari in [17] proposed a non-iterative numerical method for two-dimensional
fuzzy Fredholm integral equations based on Bernstein polynomials. Sadat Rasoul
and Ezzati in [31] presented an iterative method of successive approximations to
approximate solution of linear and nonlinear two-dimensional Hammerstein fuzzy
integral equations by defining and developing an optimal quadrature formula for
classes of two-dimensional fuzzy-number-valued functions of Lipschitz type. In [11],
Bica and Popescu constructed the fuzzy trapezoidal cubature rule for the case of
Lipschitzian functions. As an application, they proposed an iterative numerical
method in order to approximate the solution of nonlinear fuzzy Fredholm integral
equations in two variables, the fuzzy cubature rule being used in the construction of
the numerical method. Recently, Ezzati and Sadatrasoul in [18] applied the bivari-
ate fuzzy Bernstein polynomials to solve two-dimensional fuzzy integral equations.
Also, recently, in [12], Bica and Ziari proposed an iterative numerical method for
solving fuzzy Volterra linear integral equations in two dimensions. In this paper,
we approximate the integral of fuzzy function in a two dimensional case by the
bivariate fuzzy block-pulse functions and estimate its error approximation. More-
over, an iterative process is constructed based on two dimensional fuzzy block-pulse
functions for solving two dimensional nonlinear Fredholm fuzzy integral equations,

F (x, y) = f(x, y)⊕ (FR)

∫ 1

0

(FR)

∫ 1

0

H(x, y, s, t)�G(F (s, t))dsdt. (1)

In addition the convergence of the presented successive approximations method is
proved, and the accuracy of the proposed method is shown through illustrative
examples. Finally, the concluding remarks are presented.

2. Preliminaries

Definition 2.1. [14] A fuzzy number is a function u : R → [0, 1] having the
properties:

(1) u is normal , that is ∃x0 ∈ R such that u(x0) = 1,
(2) u is fuzzy convex set

(i.e. u(λx+ (1− λ)y) ≥ minu(x), u(y), for any x, y ∈ R and λ ∈ [0, 1]),
(3) u is upper semicontinuous on R,

(4) the { x ∈ R : u(x) > 0} is compact set.
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The set of all fuzzy numbers is denoted by Rz.
The LU -representation of a fuzzy number is specified by its level sets [u]r = {x ∈
R : u(x) ≥ r} as follows:

[u]r = [ur−, u
r
+], ∀r ∈ (0, 1],

where ur−, u
r
+ can be considered as functions ur−, u

r
+ : [0, 1] → R, such that u−

is increasing and u+ is decreasing (according to [24], page 32). Moreover, [u]0 =

{x ∈ R : u(x) > 0}. So, the level sets of a fuzzy number [u]r, r ∈ [0, 1], are compact
intervals of the real axis. For u, v ∈ Rz, k ∈ R, the addition and the scalar
multiplication based on levelsetwise are defined as follows

(1) [u⊕ v]r = [ur− + vr−, u
r
+ + vr+], ∀r ∈ [0, 1],

(2) [k � u]r =

 [kur−, ku
r
+], if k ≥ 0,

[kur+, ku
r
−], if k < 0.

Theorem 2.2. (Stacking Theorem, [25]. A fuzzy number u satisfies the following
conditions:

(1) its r-cuts are nonempty closed intervals, for all r ∈ [0, 1];
(2) if 0 ≤ r1 ≤ r2 ≤ 1, then [u]r2 ⊂ [u]r1 ;
(3) for any nondecreasing sequence (rn) in [0, 1] converging to r ∈ (0, 1] we

have:
∞⋂

n=1

[u]rn = [u]r;

(4) for any nonincreasing sequence (rn) in [0, 1] converging to zero we have:

cl

( ∞⋃
n=1

[u]rn

)
= [u]0;

Theorem 2.3. (Characterization Theorem, [25]. If {[u]r : r ∈ [0, 1]} is a family
of subsets of R
and assumptions (1)-(4) of the above theorem are hold then there exists a unique
fuzzy number u
such that {[u]r : r ∈ [0, 1]} are its r-cuts.

Definition 2.4. (See [10, 34]). For arbitrary fuzzy numbers u, v ∈ RF , the
quantity

D(u, v) = sup
r∈[0,1]

max{|ur− − vr−| , |ur+ − vr+| }

is the distance between u and v.

Lemma 2.5. [34] The following properties are hold:

(1) D(u⊕ w, v ⊕ w) = D(u, v) ∀ u, v, w ∈ RF ,
(2) D(k � u, k � v) = |k|D(u, v) ∀ u, v ∈ RF ∀k ∈ R,
(3) D(u⊕ v, w ⊕ e) ≤ D(u,w) +D(v, e) ∀ u, v, w, e ∈ RF ,
(4) D(u⊕ v, 0̃) ≤ D(u, 0̃) +D(v, 0̃), ∀ u, v ∈ RF ,

In [34], it is proved that (RF , D) is a complete metric space.
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Lemma 2.6. (see [3]). For any k1, k2 ∈ R with k1 · k2 ≥ 0 and any u ∈ RF we

have D (k1 · u, k2 · u) = |k1 − k2|D
(
u, 0̃
)
.

Remark 2.7. The properties (4) in Lemma 1 introduce the definition of a function
‖.‖ : RF → R+ by ‖u‖ = D(u, 0̃), which has the properties of the usual norms. In
[5] the properties of this function are presented as follows:
(i) ‖u‖ ≥ 0, ∀ u ∈ RF , and ‖u‖ = 0 iff u = 0̃,
(ii) ‖λ.u‖ = |λ|‖u‖ and ‖u⊕ v‖ ≤ ‖u‖+ ‖v‖, ∀ u, v ∈ RF , ∀ λ ∈ R,
(iii) |‖u‖ − ‖v‖| ≤ D(u, v) and D(u, v) ≤ ‖u‖+ ‖v‖ ∀ u, v ∈ RF .

Definition 2.8. [19] A fuzzy real number valued function f : [a, b] → RF is
said to be continuous in x0 ∈ [a, b], if for each ε > 0 there is δ > 0 such that
D(f(x), f(x0)) < ε, whenever x ∈ [a, b] and |x− x0| < δ. We say that f is fuzzy
continuous on [a, b] if f is continuous at each x0 ∈ [a, b], and denote the space of
all such functions by CF [a, b].

Definition 2.9. [8] Let f : [a, b]→ RF . f is fuzzy-Riemann integrable to I ∈ RF

if for any ε > 0, there exists δ > 0 such that for any division P = {[u, v] ; ξ} of [a, b]
with the norms ∆(p) < δ, we have

D

(∑
P

(v − u)� f(ξ), I

)
< ε,

where
∑

denotes the fuzzy summation. In this case it is denoted by

I = (FR)

∫ b

a

f(x)dx.

Lemma 2.10. [8, 23] If f, g : [a, b] ⊆ R → RF are fuzzy continuous functions,
then the function F : [a, b] → R+ by F (x) = D(f(x), g(x)) is continuous on [a, b]
and

D

(
(FR)

∫ b

a

f(x)dx, (FR)

∫ b

a

g(x)dx

)
≤
∫ b

a

D(f(x), g(x))dx.

Definition 2.11. (see [8]). For L ≥ 0, a function f : [a, b]→ RF is L-Lipschitz if

D (f (x) , f (y)) ≤ L |x− y|
for any x, y ∈ [a, b]. A function F : RF → RF is Lipschitz if there exists L′ ≥ 0
such that D (F (u) , F (v)) ≤ L′ ·D (u, v), for any u, v ∈ RF .

According to [8], any Lipschitz function is continuous.

Definition 2.12. (see [26]). Block-pulse functions on the unit interval [0, 1) is
defined as follows:

φi(t) =

 1 t ∈ [ i−1m , i
m ),

0 otherwise,
(2)

where i = 1, 2, ...,m with a positive integer value for m. Also, φi is called ith

block-pulse function (BPF).
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The BPFs satisfy in the properties of disjointness, orthogonality and complete-
ness [16].
Now, we defined the fuzzy block-pulse function like operator as follows:

Definition 2.13. For f ∈ CF [0, 1), the fuzzy block-pulse function like operator
defined by

Φ(F )
m (f(t)) =

m∑
i=1

f

(
i− 0.5

m

)
� φi(t) , m ∈ N , t ∈ [0, 1)

where φi(t) defined by (2).
It is obvious that φi(t) ≥ 0, i = 1, ...,m for all t ∈ [0, 1), {φi}mi=1 are linearly
independent, and

m∑
i=1

φi(t) = 1.

The following definitions are related to fuzzy-number-valued functions in two
variables.

Definition 2.14. (see [30]). Let f : [a, b] × [c, d] → RF . For ∆x
n : a = x0 <

x1 < ... < xn−1 < xn = b a partition of the interval [a, b] and ∆y
m : c = y0 <

y1 < ... < ym−1 < ym = d a partition of the interval [c, d], let us consider the
intermediate points ξi ∈ [xi−1, xi] , i = 1, n, ηj ∈ [yj−1, yj ] , j = 1,m, and the
functions δ : [a, b] → R+. σ : [c, d] → R+. The partitions Px = {([xi−1, xi]; ξi),
i = 1, n} denoted by Px = (∆x

n, ξ) and Py = {([yj−1, yj ]; ηj), j = 1,m} denoted by
Py = (∆y

m, η) are said to be δ-fine iff [xi−1, xi] ⊆ (ξi − δ (ξi) , ξi + δ (ξi)) , ∀i = 1, n,
and σ-fine iff [yj−1, yj ]
⊆ (ηj − σ (ηj) , ηj + σ (ηj)) , ∀j = 1,m, respectively. The function f is said to be
fuzzy Henstock integrable if there exists I (f) ∈ RF with the property that for any
ε > 0 there is a function δ : [a, b] → R+ and a function σ : [c, d] → R+ such that
for any partition δ-fine Px, and for any partition σ-fine Py, we have

D

(
n∑

i=1

m∑
j=1

(xi − xi−1) (yj − yj−1)� f (ξi, ηj) , I

)
< ε.

The fuzzy number I is named the fuzzy Henstock double integral of f and will
be denoted by

I (f) = (FH)

∫ d

c

(FH)

(∫ b

a

f (s, t) ds

)
dt.

Remark 2.15. If the above mentioned functions δ and σ are constant then it
obtains the fuzzy-Riemann double integrability. In this case I (f) ∈ RF is called
the fuzzy-Riemann double integral of f on [a, b]× [c, d], being denoted by

I (f) = (FR)

∫ d

c

(FR)

(∫ b

a

f (s, t) ds

)
dt
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or simply,
∫ d

c

(∫ b

a
f (s, t) ds

)
dt. Consequently, the fuzzy-Riemann double integra-

bility is a particular case of the fuzzy-Henstock double integrability, and therefore
any valid property for the double integral (FH) will be valid for the double integral
(FR), too.

Definition 2.16. (see [30]). A function f : [a, b]× [c, d]→ RF is called:
(i) continuous in (x0, y0) ∈ [a, b]× [c, d] if for any ε > 0 there exists δ > 0 such that
for any (x, y) ∈ [a, b]× [c, d] with |x− x0| < δ, |y − y0| < δ we have

D (f (x, y) , f (x0, y0)) < ε.

The function f is continuous on [a, b] × [c, d] if it is continuous in each (x, y) ∈
[a, b]× [c, d].
(ii) bounded if there exists M ≥ 0 such that

D
(
f (x, y) , 0̃

)
≤M, ∀ (x, y) ∈ [a, b]× [c, d].

The set of all continuous functions f : [a, b]× [c, d]→ RF is denoted by

C ([a, b]× [c, d],RF ) .

Lemma 2.17. (see [30]). If f ∈ C ([a, b]× [c, d],RF ) then

(FR)

∫ d

c

(
(FR)

∫ b

a

f (s, t) ds

)
dt

exists and[
(FR)

∫ d

c

(
(FR)

∫ b

a

f (s, t) ds

)
dt

]r
=

[∫ d

c

∫ b

a

fr
− (s, t) dsdt,

∫ d

c

∫ b

a

fr
+ (s, t) dsdt

]
.

Lemma 2.18. If f, g : [a, b]× [c, d]→ RF are continuous fuzzy functions then the
function ϕ : [a, b]×[c, d]→ R+ defined by ϕ (s, t) = D (f (s, t) , g (s, t)) is continuous
on [a, b]× [c, d] and

D

(
(FR)

∫ d

c

(FR)

(∫ b

a

f (s, t) ds

)
dt, (FR)

∫ d

c

(FR)

(∫ b

a

g (s, t) ds

)
dt

)

≤
∫ d

c

∫ b

a

D (f (s, t) , g (s, t)) dsdt.

Proof. Firstly, we prove that the function ϕ (s, t) = D(f(s, t), g(s, t)) be contin-
uous in every point (s0, t0) ∈ [a, b] × [c, d], for this purpose, we let the sequence
{(sn, tn)}n≥1, (sn, tn) ∈ [a, b]× [c, d], such that limn→∞(sn, tn) = (s0, t0).

In this case, we have:

D (f(sn, tn), g(sn, tn)) ≤D (f(sn, tn), f(s0, t0)) +D (f(s0, t0), g(s0, t0)) +

+D (g(s0, t0), g(sn, tn)) ,

and on the other hand, we have:

D (f(s0, t0), g(s0, t0)) ≤D (f(s0, t0), f(sn, tn)) +D (f(sn, tn), g(sn, tn)) +

+D (g(sn, tn), g(s0, t0)) .
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Taking the limit when n → ∞, and according to the continuity of f and g we
obtain:

lim
n→∞

D (f(sn, tn), g(sn, tn)) = D (f(s0, t0), g(s0, t0)) ,

that is ϕ is continuous at each (s0, t0) ∈ [a, b]×[c, d]. Now, let Pn = {([sn−1, sn]; ξn)},
and Qm = {([tm−1, tm]; ηm)}, m, n ∈ N be two sequences of partitions of [a, b] and
[c, d] with ∆(Pn)→ 0, when n→∞ and ∆(Qm)→ 0, when m→∞, respectively.
So, we have:

D

(
(FR)

∫ d

c

(FR)

(∫ b

a

f (s, t) ds

)
dt, (FR)

∫ d

c

(FR)

(∫ b

a

g (s, t) ds

)
dt

)

≤ D

(
(FR)

∫ d

c

(FR)

(∫ b

a

f (s, t) ds

)
dt,

,

n∑
i=1

m∑
j=1

(xi − xi−1) (yj − yj−1)� f (ξi, ηj)

)

+D

(
n∑

i=1

m∑
j=1

(xi − xi−1) (yj − yj−1)� f (ξi, ηj) ,

,

n∑
i=1

m∑
j=1

(xi − xi−1) (yj − yj−1)� g (ξi, ηj)

)
+

+D

(
n∑

i=1

m∑
j=1

(xi − xi−1) (yj − yj−1)� g (ξi, ηj) ,

, (FR)

∫ d

c

(FR)

(∫ b

a

g (s, t) ds

)
dt

)

≤ D

(
(FR)

∫ d

c

(FR)

(∫ b

a

f (s, t) ds

)
dt,

,

n∑
i=1

m∑
j=1

(xi − xi−1) (yj − yj−1)� f (ξi, ηj)

)

+

n∑
i=1

m∑
j=1

D (f (ξi, ηj) , g (ξi, ηj)) (xi − xi−1) (yj − yj−1)

+D

(
n∑

i=1

m∑
j=1

(xi − xi−1) (yj − yj−1)� g (ξi, ηj) ,

, (FR)

∫ d

c

(FR)

(∫ b

a

g (s, t) ds

)
dt

)
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Taking the limit when n, m→∞, we get:

D

(
(FR)

∫ d

c

(FR)

(∫ b

a

f (s, t) ds

)
dt, (FR)

∫ d

c

(FR)

(∫ b

a

g (s, t) ds

)
dt

)

≤
∫ d

c

∫ b

a

D (f (s, t) , g (s, t)) dsdt.

Thus, the proof is complete. �

Moreover, it can be easily proved that any continuous function f : [a, b]× [c, d]→
RF is bounded. In [12] is considered a fuzzy-number-valued function f : [a, b] ×
[c, d] → RF having the following Lipschitz property: there exist L1, L2 ≥ 0 such
that

D (f (x1, y1) , f (x2, y2)) ≤ L1 |x1 − x2|+ L2 |y1 − y2| (3)

for all x1, x3 ∈ [a, b], y1, y2 ∈ [c, d]. We use the inequality (3) in the proof of pre-
sented some theorems in this paper.

Similar to the one dimensional case, a set of two dimensional block pulse func-
tions φi,j(s, t) (i = 1, 2, ...,m; j = 1, 2, ..., n) is defined as follows.

Definition 2.19. (see [26]). Two dimensional block-pulse functions on the region
[0, 1)× [0, 1) is defined as follows:

φi,j(s, t) =

 1 (s, t) ∈ [ i−1m , i
m )× [ j−1n , j

n ),

0 otherwise, (4)

where i = 1, 2, ...,m; j = 1, 2, ..., n with a positive integer values for m, n. Also,
φi,j is called (i, j)th block-pulse function .

Similar to 1D case, The 2D block pulse functions satisfy in the properties of
disjointness, orthogonality and completeness.[16]

3. Function Approximation

Now, we define the two dimensional fuzzy block-pulse functions as follows:

Definition 3.1. For f ∈ CF

(
[0, 1)× [0, 1)

)
, the two dimensional fuzzy block-pulse

function like operator for m,n ∈ N and s, t ∈ [0, 1) defined by

Φ(F )
m,n(f(s, t)) =

m∑
i=1

n∑
j=1

f

(
i− 0.5

m
,
j − 0.5

n

)
� φi,j(s, t),

where φi,j(s, t) defined by (4).
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It is obvious that φi,j(s, t) ≥ 0, for all (s, t) ∈ [0, 1)× [0, 1), , {{φi,j}mi=1}nj=1 are
linearly independent, and

m∑
i=1

n∑
j=1

φi,j(s, t) = 1. (5)

Thus, the fuzzy function f(s, t) can be approximated using fuzzy block functions
like operator as

f(s, t) ≈
m∑
i=1

n∑
j=1

f

(
i− 0.5

m
,
j − 0.5

n

)
� φi,j(s, t).

Hence, the approximate value of the integral of fuzzy function can be obtained as
follows:

(FR)

∫ 1

0

(FR)

∫ 1

0

f(s, t)dsdt ≈
m∑
i=1

n∑
j=1

f

(
i− 0.5

m
,
j − 0.5

n

)
�
∫ 1

0

∫ 1

0

φi,j(s, t)dsdt.

Since ∫ 1

0

∫ 1

0

φi,j(s, t)dsdt =
1

mn
, ∀ i, j, (6)

we have:

(FR)

∫ 1

0

(FR)

∫ 1

0

f(s, t)dsdt ≈ 1

mn

m∑
i=1

n∑
j=1

f

(
i− 0.5

m
,
j − 0.5

n

)
.

Theorem 3.2. Let f ∈ CF

(
[0, 1)× [0, 1)

)
be a L-Lipschitz function. Then we have:

D

(FR)

∫ 1

0

(FR)

∫ 1

0

f(s, t)dsdt,
1

mn

m∑
i=1

n∑
j=1

f

(
i− 0.5

m
,
j − 0.5

n

) ≤ L1

2m
+
L2

2n
.

Proof. . According to (5) and (6), we have:

D

(FR)

∫ 1

0

(FR)

∫ 1

0

f(s, t)dsdt,
1

mn

m∑
i=1

n∑
j=1

f

(
i− 0.5

m
,
j − 0.5

n

) =

=D

(
(FR)

∫ 1

0

(FR)

∫ 1

0

m∑
i=1

n∑
j=1

φi,j(s, t)f(s, t)dsdt,

∫ 1

0

∫ 1

0

m∑
i=1

n∑
j=1

φi,j(s, t)f

(
i− 0.5

m
,
j − 0.5

n

)
dsdt

)
.

Then, applying the parts of 2 and 3 of Lemma 2.5, we obtain:

D

(FR)

∫ 1

0

(FR)

∫ 1

0

f(s, t)dsdt,
1

mn

m∑
i=1

n∑
j=1

f

(
i− 0.5

m
,
j − 0.5

n

) ≤
≤
∫ 1

0

∫ 1

0

m∑
i=1

n∑
j=1

φi,j(s, t)D

(
f(s, t), f

(
i− 0.5

m
,
j − 0.5

n

))
dsdt.
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As regards, f satisfies in Lipschitz condition (3), we obtain:

D

(FR)

∫ 1

0

(FR)

∫ 1

0

f(s, t)dsdt,
1

mn

m∑
i=1

n∑
j=1

f

(
i− 0.5

m
,
j − 0.5

n

) ≤
≤
∫ 1

0

∫ 1

0

m∑
i=1

n∑
j=1

φi,j(s, t)

(
L1

∣∣∣∣s− i− 0.5

m

∣∣∣∣+ L2

∣∣∣∣t− j − 0.5

n

∣∣∣∣) dsdt.
According to the (s, t) ∈ [ i−1m , i

m )× [ j−1n , j
n ), we get:

D

(FR)

∫ 1

0

(FR)

∫ 1

0

f(s, t)dsdt,
1

mn

m∑
i=1

n∑
j=1

f

(
i− 0.5

m
,
j − 0.5

n

) ≤ L1

2m
+
L2

2n
.

Thus, the proof is complete. �

4. Fuzzy Integral Equations

Here, we consider the two dimensional nonlinear fuzzy Fredholm integral equa-
tion (1), where H(x,y,s, t) is a crisp kernel function over [0, 1]4, f, F are continuous
fuzzy-number-valued functions and G : RF → RF is a continuous fuzzy function.
We assume that H is continuous and therefore it is uniformly continuous with re-
spect to (s, t) and there exists M > 0, such that MH = max

0≤x,y,s,t≤1
|H(x, y, s, t)|.

Let Ω = {f : [0, 1]2 → RF ; f is continuous} be the space of the two-dimensional
fuzzy continuous functions with the metric D∗(f, g) = sup

0≤s,t≤1
D(f(s, t), g(s, t)),

for f, g ∈ Ω. In the following theorem, sufficient conditions for the existence and
uniqueness of the solution of equation (1) are given.

Theorem 4.1. (See [30]). Let H(x, y, s, t) be continuous and positive for 0 ≤
x, y, s, t ≤ 1 and f : [0, 1)2 → RF be continuous on [0, 1)2. Moreover assume that
there exists L > 0, such that

D(G(F1(s, t)), G(F2(s, t))) ≤ L.D(F1(s, t), F2(s, t)),∀(s, t) ∈ [0, 1]2, F1, F2 ∈ Ω.

If MHL < 1, then the iterative procedure for k ∈ N

F0(x, y) = f(x, y),

Fk(x, y) = f(x, y)⊕ (FR)

∫ 1

0

(FR)

∫ 1

0

H(x, y, s, t)�G(Fk−1(s, t))dsdt. (7)

converges to the solution of F of (1). In addition, the following error bound holds:

D∗(F, Fk) ≤ (MHL)k

1−MHL
D∗(F1, F0), ∀k ∈ N. (8)

Remark 4.2. If F0 = f the error estimate (8), becomes:

D∗(F, Fk) ≤ (MHL)k+1

L(1−MHL)
(L‖f‖z +M0) , ∀k ∈ N, (9)

where M0 = sup
0≤x,y≤1

‖G(0̃)‖F .
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Theorem 4.3. Suppose that:

(i) f : [0, 1)2 → RF is fuzzy continuous and bounded such that
Mf = sup

0≤x,y<1
‖f(x, y)‖F ,

[f(x, y)]r = [fr−(x, y), fr+(x, y)], ∀r ∈ [0, 1];
and fr−(x, y), fr+(x, y), r ∈ [0, 1] are equicontinuous;

(ii) G is fuzzy continuous and bounded such that MG = sup
0≤x,y<1

‖G(u(x, y))‖F

for every u(x, y) ∈ Rz;
(iii) H is positive and uniformly continuous with respect to (s, t) and bounded is

such that MH = max
0≤x,y,s,t<1

H(x, y, s, t).

Then the unique solution of (1), can be obtained by solving the following integral
equations for r ∈ [0, 1], (x, y) ∈ [0, 1]× [0, 1]:

[F (x, y)]r = [f(x, y)]r +

∫ 1

0

∫ 1

0

H(x, y, s, t).[G([F (s, t)]r)]rdsdt;
(10)

Proof. Let Γr = Sr(fr) be the solution set of rth inclusion r ∈ [0, 1]} where the
subscript r indicates that the r-level set of a fuzzy set is included. First, according
to Theorem 1 [13], the set Γr is nonempty, compact and connected. Thus the
first condition of the Characterization Theorem holds. Second, since f , G are
continuous we imply that these fuzzy functions are upper semi-continuous and so
[f ]r2 ⊆ [f ]r1 and [G]r2 ⊆ [G]r1 for 0 ≤ r1 ≤ r2 ≤ 1, consequently Γr2 ⊆ Γr1 ,
which is equivalence to the second condition of the Characterization Theorem.
Third, Let (rn) be a nondecreasing sequence in [0, 1] converging to r ∈ (0, 1].
Now, we should prove that

⋂∞
n=1 Γrn = Γr. We note that Γrn is a nonincreasing

sequence of nonempty, compact and connected sets and so, according to Theorem
1.11 [2], the set Γ =

⋂∞
n=1 Γrn is nonempty, compact and connected. Now, we

show that, Γ = Sr(fr). Since Sr(fr) ⊆ Srn(frn) for each n we have Sr(fr) ⊆ Γ.
It remains to show Γ ⊆ Sr(fr). For this purpose, let urn ∈ Srn(frn) for each
n, then there exist the continuous function frn(x, y) and an integrable function
vrn(x, y) ∈ Grn [urn(x, y)] with

[u(x, y)]rn = [f(x, y)]rn +

∫ 1

0

∫ 1

0

H(x, y, s, t).[v(s, t)]rnrdsdt.
(11)

Since the support of f , [f ]0 ⊇ [f ]rn is compact, by Arzelas Theorem the sequence
[f ]rn is uniformly bounded and equicontinuous. Therefore, taking into account the
conditions (ii)-(iii), we have:

|urn− (x, y)| ≤ |frn− (x, y)|+
∫ 1

0

∫ 1

0

|H(x, y, s, t)|.|vrn− (s, t)|dsdt ≤Mf +MH .MG,

and similarly for the ur+(x, y), we have:

|urn+ (x, y)| ≤Mf +MH .MG,
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and so the sequence of ([u]rn) is uniformly bounded. Now, we demonstrate the
sequence of ([u]rn) is equicontinuous. For this aim, we obtain:

|urn− (x1, y1)− urn− (x2, y2)| ≤|frn− (x1, y1)− frn− (x2, y2)|

+

∫ 1

0

∫ 1

0

|H(x1, y1, s, t)−H(x2, y2, s, t)|.|vrn− (s, t)|dsdt

≤|frn− (x1, y1)− frn− (x2, y2)|+ 2MH .MG,

and analogously for the |urn+ (x1, y1)− urn+ (x2, y2)|, we get:

|urn+ (x1, y1)− urn+ (x2, y2)| ≤ |frn+ (x1, y1)− frn+ (x2, y2)|+ 2MH .MG.

As regards, H is uniformly continuous and ([f ]rn) is equicontinuous, it deduce
that ([u]rn) is equicontinuous and so compact. Consequently, there exists a sub-
sequence ([u]rn1) ⊆ ([u]rn) such that [u]rn1 −→ [u]r. From compactness of ([v]rn),
we conclude that ([v]rn1) is also compact, hence there exists a further subse-
quence [v]rn2 −→ [v]r and clearly [u]rn2 −→ [u]r. Since ‖v(x, y)‖F ≤ MG, the
sequence of functions [w(x, y)]rn2 = [w(x, y)]rn2/MG belongs to the unit ball of
L∞([0, 1]× [0, 1]), which is weakly compact by Theorem 1.10 [2], so there is subse-
quence [w]rn3 converges weakly to [w]r. But the map w −→ MGw is a continuous
map from L∞([0, 1]×[0, 1]) to L1([0, 1]×[0, 1]) and thus the sequence [v]rn3 converges
weakly to [v]r = MG[w]r. We note that L∞([0, 1]× [0, 1]) is the space of measurable
functions from [0, 1]× [0, 1] to R with bounded almost everywhere on [0, 1]× [0, 1],
with essential supremum norm and L∞([0, 1]× [0, 1]) is the space of integrable func-

tions from [0, 1] × [0, 1] to R with metric ‖f − g‖1 =
∫ 1

0

∫ 1

0
|f(s, t) − g(s, t)|dsdt.

Now, from condition (iii), there is a subsequence ([v]rn4) ⊆ ([v]rn3) such that∫ 1

0

∫ 1

0

H(x, y, s, t).[v(s, t)]r4)dsdt −→
∫ 1

0

∫ 1

0

H(x, y, s, t).[v(s, t)]rdsdt.

The above expression and (11) implies

[u(x, y)]r = [f(x, y)]r +

∫ 1

0

∫ 1

0

H(x, y, s, t).[v(s, t)]rrdsdt, (x, y) ∈ [0, 1]× [0, 1].

Then (10) is satisfied so [F ]r ∈ Sr(fr), thus Γ ⊆ Sr(fr). Finally, according to
Characterization Theorem (Theorem 2.3) there exist fuzzy function F (x, y) which
[F (x, y)]r for r ∈ [0, 1] are its r-cuts. �

Now, we introduce the numerical method to find the approximate solution of the
two dimensional nonlinear fuzzy Fredholm integral equation (1). In this way, we
consider the following uniform partitions of the region [0, 1)2:

Dx = 0 = s1 < s2 < ... < sm−1 < sm = 1,

Dy = 0 = t1 < t2 < ... < tn−1 < tn = 1, (12)

with si = i−0.5
m , tj = j−0.5

n , 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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Then the following iterative procedure gives the approximate solution of equation
(1) in the point (x, y) ∈ [0, 1)2 using two dimensional block pulse functions:

z0(x, y) = f(x, y),

zk(x, y) = f(x, y)⊕ 1

mn

m∑
i=1

n∑
j=1

H (x, y, si, tj)�G (zk−1 (si, tj)) , ∀ k ∈ N. (13)

5. Convergence Analysis

In this section, we investigate the convergence of the iterative proposed method
to the solution of equation (1) under the following conditions:

(i) f : [0, 1)2 → RF is fuzzy continuous;
(ii) H : [0, 1)4 → R+ is continuous;

(iii) There exist α, β ≥ 0 such that

D (f (s′, t′) , f (s′′, t′′)) ≤ α |s′ − s′′|+ β |t′ − t′′| ,
for any s′, s′′, t′, t′′ ∈ [0, 1);

(iv) There exists L > 0 such that

D(G(F1(s, t)), G(F2(s, t))) ≤ L.D(F1(s, t), F2(s, t)),∀(s, t) ∈ [0, 1)2,

where F1, F2 : [0, 1)2 → RF ;
(v) MHL < 1, where L is as given in the above item and MH ≥ 0 is such that

MH = max
0≤x,y,s,t<1

H(x, y, s, t);

(vi) There exist µ, λ ≥ 0 such that

|H (x, y, s′, t′)−H (x, y, s′′, t′′)| ≤ µ |s′ − s′′|+ λ |t′ − t′′| ,
for any x, y, s′, t′, s′′, t′′ ∈ [0, 1);

(vii) There exist γ, η ≥ 0 such that

|H (s′, t′, s, t)−H (s′′, t′′, s, t)| ≤ γ |s′ − s′′|+ η |t′ − t′′| ,
for any s, s′, s′′, t, t′, t′′ ∈ [0, 1);

Firstly, we prove an interesting result about the satisfying functions H (x, y, s, t)�
G (Fk (s, t)) in Lipschitz condition which is used in the proof of the main result.

Lemma 5.1. Consider the iterative procedure (7). Under the conditions (i)-(vii),
the functions ϕk(s, t) = H (x, y, s, t)�G (Fk (s, t)) are Lipschitzian.

Proof. Using fuzzy Distance, we have:

D(ϕk(s′, t′), ϕk(s′′, t′′)) =

D(H (x, y, s′, t′)�G(Fk (s′, t′)), H (x, y, s′′, t′′)�G(Fk (s′′, t′′)) ≤
≤ D(H (x, y, s′, t′)�G(Fk (s′, t′)), H (x, y, s′, t′)�G(Fk (s′′, t′′))+

+D(H (x, y, s′, t′)�G(Fk (s′′, t′′)), H (x, y, s′′, t′′)�G(Fk (s′′, t′′)).

Using part (2) of Lemma 2.5, condition (iv) and Lemma 2.6, we obtain:

D(ϕk(s′, t′), ϕk(s′′, t′′)) ≤ |H (x, y, s′, t′) |LD(Fk (s′, t′) , Fk (s′′, t′′))+

+|H (x, y, s′, t′)−H (x, y, s′′, t′′) |D
(
G (Fk(s′′, t′′)) , 0̃

)
.
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Using condition (vi), we get:

D(ϕk(s′, t′), ϕk(s′′, t′′)) ≤MHLD (Fk (s′, t′) , Fk (s′′, t′′)) +

+ (µ |s′ − s′′|+ λ |t′ − t′′)D∗
(
G (Fk)) , 0̃

)
. (14)

On the other hand, we have:

D (Fk (s′, t′) , Fk (s′′, t′′)) ≤ D (f (s′, t′) , f (s′′, t′′)) +

+D
(

(FR)

∫ 1

0

(FR)

∫ 1

0

H(s′, t′, s, t)�G(Fm−1(s, t))dsdt,

(FR)

∫ 1

0

(FR)

∫ 1

0

H(s′′, t′′, s, t)�G(Fm−1(s, t))dsdt
)

≤ D (f (s′, t′) , f (s′′, t′′)) +

+

∫ 1

0

∫ 1

0

|H(s′, t′, s, t)−H(s′′, t′′, s, t)|D(G(Fk−1(s, t)), 0̃)dsdt.

Consequently, using conditions (iii) and (vii), we obtain:

D (Fk (s′, t′) , Fk (s′′, t′′)) ≤
α|s′ − s′′|+ β|t′ − t′′|+ (γ |s′ − s′′|+ η |t′ − t′′|)D∗(G(Fk−1), 0̃) (15)

Substituting the inequality (15), into the inequality (14), we get:

D(ϕk(s′, t′), ϕk(s′′, t′′)) ≤MHL
(
α |s′ − s′′|+ β |t′ − t′′|

)
+

+MHL
(
γ |s′ − s′′|+ η |t′ − t′′|

)
D∗(G(Fk−1), 0̃))+

+
(
µ |s′ − s′′|+ λ |t′ − t′′|

)
D∗(G(Fk), 0̃)). (16)

By applying the properties of the norm function ‖.‖z in Remark 2.7, we obtain

D
(
G (Fk(s′′, t′′)) , 0̃

)
≤ D

(
G (Fk(s′′, t′′)) , G

(
0̃
))

+D
(
G
(
0̃
)
, 0̃
)

≤ LD
(
Fk(s′′, t′′), 0̃

)
+ sup

0≤s′′,t′′≤1
‖H(0̃)‖z

= LD
(
zk(s′′, t′′), 0̃

)
+M0. (17)

By using again the properties of the norm function ‖.‖z in Remark 2.7, we have

D
(
Fk(s′′, t′′), 0̃

)
=‖Fk(s′′, t′′)‖z ≤ D

(
f (s′′, t′′) , 0̃

)
+

+

∫ 1

0

∫ 1

0

D(H(s′′, t′′, s, t)�G(Fk−1(s, t)), 0̃)dsdt.

By applying the inequality (17) into the above inequality, we have:

‖Fk(s′′, t′′‖z ≤ ‖f(s′′, t′′)‖z +

∫ 1

0

∫ 1

0

|H(s′′, t′′, s, t)|
(
LD(Fk−1(s, t), 0̃) +M0

)
dsdt

≤ ‖f(s′′, t′′)‖z +MH

∫ 1

0

∫ 1

0

(
LD∗(Fk−1, 0̃) +M0

)
dsdt.
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Taking supremum from the above inequality for 0 ≤ s′′, t′′ ≤ 1, it follows that

‖Fk‖z ≤ ‖f‖z +MH (L‖Fk−1‖z +M0) = ‖f‖z +MHL‖Fk−1‖z + (MHL)
M0

L
.

By successive substitutions on the above inequality, we obtain

‖Fk‖z ≤
1− (MHL)k+1

1−MHL
· ‖f‖z +

1− (MHL)k

1−MHL
·MHM0.

Since, 1−(MHL)k

1−MHL ≤ 1
1−MHL , for all k ∈ N we obtain:

‖Fk‖z ≤
‖f‖z +MHM0

1−MHL
.

Now, by taking into account the above inequality, from (16) we get:

D(ϕk(s′, t′), ϕk(s′′, t′′)) ≤

≤
(
αMHL+ (γMHL)

(
‖f‖z +MHM0

1−MHL

)
+ µ

(
‖f‖z +MHM0

1−MHL

))
|s′ − s′′|+

+

(
βMHL+ (ηMHL)

(
‖f‖z +MHM0

1−MHL

)
+ λ

(
‖f‖z +MHM0

1−MHL

))
|t′ − t′′|.

By supposing L′1 =
(
αMHL+ (γMHL)

(
‖f‖z+MHM0

1−MHL

)
+ µ

(
‖f‖z+MHM0

1−MHL

))
and L′2 =

(
βMHL+ (ηMHL)

(
‖f‖z+MHM0

1−MHL

)
+ λ

(
‖f‖z+MHM0

1−MHL

))
, we have:

D(ϕk(s′, t′), ϕk(s′′, t′′)) ≤ L′1|s′ − s′′|+ L′2|t′ − t′′|.
Thus, the functions ϕk(s, t) for all k are Lipschitzian. �

Theorem 5.2. Under the conditions (i)-(iiv) the iterative procedure equation (13)
converges to the unique solution of equation (1), F, and its error estimate is as
follows:

D∗(F, zm) ≤ (MHL)k+1

L(1−MHL)
(L‖f‖z +M0) +

1

1−MHL

(
L′1
2m

+
L′2
2n

)
,

where M0 = sup
0≤x,y≤1

‖F (0̃)‖F .

Proof. . Since

F1(x, y) = f(x, y)⊕ (FR)

∫ 1

0

(FR)

∫ 1

0

H(x, y, s, t)�G(F0(s, t)dsdt,

we have

D(F1(x, y), z1(x, y)) = D(f(x, y), f(x, y))+

+D

(
(FR)

∫ 1

0

(FR)

∫ 1

0

H(x, y, s, t)�G(F0(s, t))dsdt,

1

mn

m∑
i=1

n∑
j=1

H (x, y, si, tj)�G (z0 (si, tj))

)
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As regards F0(x, y) = z0(x, y) = f(x, y), we have:

≤ D

(
(FR)

∫ 1

0

(FR)

∫ 1

0

H(x, y, s, t)�G(f(s, t))dsdt,

1

mn

m∑
i=1

n∑
j=1

H (x, y, si, tj)�G (f (si, tj))

)
.

Regarding to Lemma 5.1 and Theorem 3.2, we have:

D(F1(x, y), z1(x, y)) ≤ L′1
2m

+
L′2
2n
.

Taking supremum from the above inequality for 0 ≤ x, y ≤ 1, it deduces that

D∗(F1, z1) ≤ L′1
2m

+
L′2
2n
. (18)

Now, since

F2(x, y) = f(x, y)⊕ (FR)

∫ 1

0

(FR)

∫ 1

0

H(x, y, s, t)�G(F1(s, t))dsdt,

we conclude that

D(F2(x, y), z2(x, y)) = D(f(x, y), f(x, y))+

+D

(
(FR)

∫ 1

0

(FR)

∫ 1

0

H(x, y, s, t)�G(F1(s, t))dsdt,

1

mn

m∑
i=1

n∑
j=1

H (x, y, si, tj)�G (z1 (si, tj))

)

≤ D

(
(FR)

∫ 1

0

(FR)

∫ 1

0

H(x, y, s, t)�G(F1(s, t))dsdt,

1

mn

m∑
i=1

n∑
j=1

H (x, y, si, tj)�G (F1 (si, tj))

)
+

+D

(
1

mn

m∑
i=1

n∑
j=1

H (x, y, si, tj)�G (F1 (si, tj)) ,

1

mn

m∑
i=1

n∑
j=1

H (x, y, si, tj)�G (z1 (si, tj))

)
.

Using again Lemma 5.1 and Theorem 3.2 for part 1 of the above inequality and
applying part (2) and (3) of Lemma 2.5 for part of 2 the above inequality, we obtain:

D(F2(x, y), z2(x, y)) ≤ L
′
1

2m
+
L′2
2n

+

1

mn

m∑
i=1

n∑
j=1

|H (x, y, si, tj) |D (G (F1 (si, tj)) , G (z1 (si, tj))) .
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Considering conditions (iv) and (v), we have:

D(F2(x, y), z2(x, y)) ≤ L′1
2m

+
L′2
2n

+MHLD
∗(F1, z1).

Then, according to (18), we get:

D(F2(x, y), z2(x, y)) ≤ (1 +MHL)

(
L′1
2m

+
L′2
2n

)
.

By induction, for k ≥ 3, we obtain:

D(Fk(x, y), zk(x, y)) ≤
(
1 +MHL+ . . .+ (MHL)k−1

)
·
(
L′1
2m

+
L′2
2n

)
.

Therefore, we have:

D∗(Fk, zk) ≤
(

1− (MHL)k

1−MHL

)(
L′1
2m

+
L′2
2n

)
.

Since MHL < 1, we conclude that

D∗(Fk, zk) ≤ 1

1−MHL

(
L′1
2m

+
L′2
2n

)
. (19)

Using equations (9) and (19), we obtain:

D∗(F, zk) ≤D∗(F, Fk) +D∗(Fk, zk)

≤ (MHL)k+1

L(1−MHL)
(L‖f‖z +M0) +

1

1−MHL

(
L′1
2m

+
L′2
2n

)
.

�

Remark 5.3. Since MHL < 1, it is easy to show that

lim
k→∞m→∞n→∞

D∗(F, zk) = 0

This result shows that the proposed method is convergent.

6. Numerical Stability Analysis

For the iterative numerical method, it is more suitable investigating the stability
of the obtained numerical solution with respect to the choice of the first iteration.
So, in order to study the numerical stability of the iterative method (13) with
respect to small changes in the starting approximation, we consider another first
iteration term F̂0 ∈ Ω such that there exists ε > 0 for which D(F0(x, y), F̂0(x, y) < ε
, for all (x, y) ∈ [0, 1]× [0, 1]. The new sequence of successive approximations is:

F̂k(x, y) = f̂(x, y)⊕ (FR)

∫ 1

0

(FR)

∫ 1

0

H(x, y, s, t)�G(F̂k−1(s, t))dsdt. (20)

Using the same iterative method, the terms of produced sequence are:

ẑ0(x, y) = f̂(x, y),

ẑk(x, y) = f̂(x, y)⊕ 1

mn

m∑
i=1

n∑
j=1

H (x, y, si, tj)�G (ẑk−1 (si, tj)) . (21)
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Definition 6.1. We say that the method of successive approximations applied
to solve equation (1) is numerically stable with respect to the choice of the first
iteration iff there exist positive numbers p, q and constants k1, k2, k3 > 0 which are
independent by step-sizes h1 = 1

m and h2 = 1
n respectively, such that

D(zk(x, y), ẑk(x, y)) < K1ε+K2h
p
1 +K3h

q
2. (22)

Theorem 6.2. Under the conditions of Theorem 3, the iterative method (21) is
numerically stable with respect to the choice of the first iteration.

Proof. . Since Firstly, we observe that:

D(zk(x, y), ẑk(x, y)) ≤ D(zk(x, y), Fk(x, y)) +D(Fk(x, y), F̂k(x, y))+

+D(F̂k(x, y), ẑk(x, y)). (23)

Using equation (19), we obtain:

D(zk(x, y), Fk(x, y)) ≤ 1

1−MHL

(
L′1
2m

+
L′2
2n

)
. (24)

Also, by similar reasoning we have:

D(F̂k(x, y), zk(x, y)) ≤ 1

1−MHL

(
L′′1
2m

+
L′′2
2n

)
. (25)

For obtaining the bound of D(Fk(x, y), F̂k(x, y)), we observe that

D(F0(x, y), F̂0(x, y)) < ε, ∀(x, y) ∈ [0, 1]× [0, 1],

and thus

D(F1(x, y), F̂1(x, y)) = D(f(x, y), f̂(x, y))+

D
(

(FR)

∫ 1

0

(FR)

∫ 1

0

H(x, y, s, t)�G(F0(s, t))dsdt,

, (FR)

∫ 1

0

(FR)

∫ 1

0

H(x, y, s, t)� (G(F̂0(s, t))dsdt
)

≤ ε+

∫ 1

0

∫ 1

0

|H(x, y, s, t)|D
(
G(f(s, t)), G(f̂(s, t)

)
dsdt

≤ ε+MH

∫ 1

0

∫ 1

0

D
(
G(f(s, t)), G(f̂(s, t))

)
dsdt

≤ ε+MHLD
∗(f, f̂).

Therefor, we obtain:

D(F1(x, y), F̂1(x, y)) < ε+MHLε.

By induction for k ≥ 2, we get:

D(Fk(x, y), F̂k(x, y)) ≤ ε+MHL · ε+ (MHL)
2 · ε+ ...+ (MHL)

k−1 · ε+ (MHL)
k · ε

≤ ε · 1− (MHL)
k+1

1−MHL
, ∀x, y ∈ [0, 1], k ∈ N.
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According to MHL < 1, this inequality becomes:

D
(
Fk(x, y), F̂k(x, y)

)
<

ε

1−MHL
, ∀x, y ∈ [0, 1), k ∈ N.

Then, we conclude that

D(zk(x, y), ẑk(x, y)) ≤
ε

1−MHL
+

L′1 + L′′1
2m(1−MHL)

+
L′2 + L′′2

2n(1−MHL)
. (26)

By comparing inequalities (22) and (26), we deduce that

K1 =
1

1−ML
, K2 =

L′1 + L′′1
2(1−MHL)

, K2 =
L′2 + L′′2

2(1−MHL)
, p = q = 1.

So, the numerical stability of the proposed iterative method is proved. �

7. Numerical Examples

In this section, we apply the presented method in Section 5 for solving the two
dimensional fuzzy integral equation (1) in two examples. The approximate solution
is calculated for different values of k, m and n. Also, we compare the numerical
solution obtained by using the proposed method with the exact solution. The
computations associated with the examples were performed using Mathematica 7.

Example 7.1. Consider the following nonlinear two dimensional fuzzy integral
equation:

F (x, y) = f(x, y)⊕ (FR)

∫ 1

0

(FR)

∫ 1

0

H(x, y, s, t)� (F (s, t))2dsdt, s, t, x, y ∈ [0, 1],

where

H(x, y, s, t) =
xyst

2
,

[f(x, y)]r = [fr
−(x, y), f

r
+(x, y)] =

[
(32r − r2)

32
xy,

(60− 28r − r2)
32

xy

]
,

the exact solution is

[F (x, y]
r

=
[
F r
−(x, y), F r

+(x, y)
]

= [rxy, (2− r)xy] .

The comparison of the proposed iterative algorithm solution and the exact solution
is shown in Table 1.

Example 7.2. Consider the following linear two dimensional fuzzy Fredholm in-
tegral equation:

F (x, y) = f(x, y)⊕ (FR)

∫ 1

0

(FR)

∫ 1

0

H(x, y, s, t)� F (s, t)dsdt, x, y, s, t ∈ [0, 1],

where

H(x, y, s, t) =
x2 + y2 + s2 + t2

5
,

[f(x, y)]
r

=

[
rxy − r

20
(x2 + y2 + 1), (2− r)xy − 2− r

20
(x2 + y2 + 1)

]
,

the exact solution is

[F (x, y
r
] =

[
F r
−(x, y), F r

+(x, y)
]

= [rxy, (2− r)xy] .
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k=10, m=n=10 k=15, m=n=50

r-level |F − y
m
| |F − ym| |F − y

m
| |F − ym|

0 0.0000E-0 3.5573E-4 0.0000E-0 1.4283E-5
0.25 4.9471E-6 3.5573E-4 1.9840E-7 1.0744E-5
0.50 2.0104E-5 1.9328E-4 8.0640E-7 7.7575E-6
0.75 4.5969E-5 1.3197E-4 1.8440E-6 5.2959E-6
1 8.3069E-5 8.3069E-5 3.3329E-6 3.3329E-6

Table 1. The Accuracy on the Level Sets for Example 1

in (x, y) = (0.5, 0.5)

k=10, m=n=10 k=12, m=n=50

r-level |F − y
m
| |F − ym| |F − y

m
| |F − ym|

0 0.0000E-0 6.6570E-4 0.0000E-0 2.6675E-5
0.25 8.3212E-5 5.8249E-4 3.3344E-6 2.3341E-5
0.50 1.6642E-4 4.9927E-4 6.6688E-6 2.0006E-5
0.75 2.4964E-4 4.1606E-4 1.0003E-5 1.6672E-5
1 3.3285E-4 3.3285E-4 1.3338E-5 1.3338E-5

Table 2. The Accuracy on the Level Sets for Example 2

in (x, y) = (0.5, 0.5)

The comparison of the proposed iterative algorithm solution and the exact solution
is shown in Table 2.

8. Conclusions

In this paper, we have presented an iterative procedure by using two dimensional
fuzzy block-pulse functions to solve the two dimensional nonlinear Ferdholm fuzzy
integral (1). The error estimation for approximating the solution of nonlinear two
dimensional nonlinear fuzzy Fredholm integral equations is given in Theorem 5.1
in terms of supplementary Lipschitz condition which proves the convergence of the
proposed method. The concept of numerical stability is defined based on the choice
of the first iteration and then the numerical stability of the proposed iterative
algorithm is proven. Finally, the illustrative numerical examples included in the
study in order to test the accuracy and the convergence of the proposed method
indicate that the proposed method performs well both for nonlinear and linear fuzzy
two dimensional integral equations.
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ستفاده از توابع اروش تکراري جهت حل معادلات انتگرال فازي غیرخطی دوبعدي با 

  بلاك پالس دومتغیره فازي همراه با تقریب خطا

  

ازي جهت حل معادلات انتگرال نوع در این مقاله، فرآیندي تکراري براساس توابع بلا ك پالس ف .دهیچک

. تقریب خطا و پایداري عددي روش ارائه شده برحسب شرط می نماییم ارائه دوم فردهلم غیرخطی فازي

مثالهاي  ارائه شده، نشان دادن دقت و همگرایی روش  به منظور . سرانجام،شده اندمکمل لیپشیتس بیان 

  شده است.تشریحی لحاظ 

   

  

  

  

  

  

  

  

  

  

  

  

  

 

www.SID.ir

