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SOME SIMILARITY MEASURES FOR PICTURE FUZZY SETS

AND THEIR APPLICATIONS

G. W. WEI

Abstract. In this work, we shall present some novel process to measure the

similarity between picture fuzzy sets. Firstly, we adopt the concept of intu-
itionistic fuzzy sets, interval-valued intuitionistic fuzzy sets and picture fuzzy

sets. Secondly, we develop some similarity measures between picture fuzzy

sets, such as, cosine similarity measure, weighted cosine similarity measure,
set-theoretic similarity measure, weighted set-theoretic cosine similarity mea-

sure, grey similarity measure and weighted grey similarity measure. Then, we

apply these similarity measures between picture fuzzy sets to building material
recognition and minerals field recognition. Finally, two illustrative examples

are given to demonstrate the efficiency of the similarity measures for building
material recognition and minerals field recognition.

1. Introduction

Fuzzy set theory, introduced by Zadeh [52], has been widely used to model uncer-
tainty present in real-world applications. Many researchers have paid their attention
to the generalization of fuzzy set theory and its applications. Out of several gen-
eralizations of fuzzy sets, the concept of intuitionistic fuzzy sets (IFSs), introduced
by Atanassov [1-2], has been found to be highly useful to deal with vagueness. By
adding the degree of non-membership to fuzzy set, IFS [1-2] was introduced, which
reflects the fact that the degree of non-membership is not always equal to one mi-
nus degree of membership. Atanassov and Gargov [3] and Atanassov[4] proposed
the concept of interval-valued intuitionistic fuzzy sets, which are characterized by a
membership function, a non-membership function, and a hesitancy function whose
values are intervals. Thus, there are some situations where intuitionistic fuzzy sets
and interval-valued intuitionistic fuzzy sets theory provides a strong and suitable
framework to deal with incomplete information present in real-world decision mak-
ing problems [6-9, 13-15, 19, 23, 26-33, 41, 44, 45, 46, 48, 55].

Recently, Cuong [10] proposed picture fuzzy set (PFS) and investigated the some
basic operations and properties of PFS. The picture fuzzy set is characterized by
three functions expressing the degree of membership, the degree of neutral mem-
bership and the degree of non-membership. The only constraint is that the sum of
the three degrees must not exceed 1. Basically, PFS based models can be applied to
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situations requiring human opinions involving more answers of types: yes, abstain,
no, refusal, which cant be accurately expressed in the traditional FS and IFS. Until
now, some progress has been made in the research of the PFS theory. Singh [21] in-
vestigated the correlation coefficients for picture fuzzy set and apply the correlation
coefficient to clustering analysis with picture fuzzy information. Son[22] introduce
several novel fuzzy clustering algorithms on the basis of picture fuzzy sets and ap-
plications to time series forecasting and weather forecasting. Thong & Son[24] and
Thong [25] developed a novel hybrid model between picture fuzzy clustering and
intuitionistic fuzzy recommender systems for medical diagnosis and application to
health care support systems.

Although, Atanassovs intuitionistic fuzzy set theory has been successfully applied
in different areas, but there are situations in real life which cant be represented by
Atanassovs intuitionistic fuzzy sets. Voting can be a good example of such situation
as the human voters may be divided into four groups of those who: vote for, abstain,
refusal of voting. Basically, picture fuzzy sets[10] based models may be adequate in
situations when we face human opinions involving more answers of the type: yes,
abstain, no, refusal. Therefore in order to deal with these types of situations, in this
paper we introduce the concept of similarity measures for picture fuzzy sets, which
is a new extension of the similarity measure of Atanassovs intuitionistic fuzzy set. In
order to do so, the remainder of this paper is set out as follows. In the next section,
we introduce some basic concepts related to intuitionistic fuzzy set, interval-valued
intuitionistic fuzzy sets and picture fuzzy sets. In Section 3, we shall propose some
similarity measure and some weighted similarity measure between PFSs based on
the concept of the similarity measure for fuzzy sets. In Section 4, the similarity
measures for PFSs are applied to building material recognition and minerals field
recognition. Section 5 concludes the paper with some remarks.

2. Preliminaries

In the following, we introduce some basic concepts related to intuitionistic fuzzy
sets and interval-valued intuitionistic fuzzy sets.

Definition 2.1. [1-3] An IFS A in X is given by

A = {〈x, µA(x), νA(x)〉|x ∈ X.}, (1)

where µA : X → [0, 1] and νA : X → [0, 1], with the condition 0 ≤ µA(x)+νA(x) ≤
1, ∀ x ∈ X. The numbers µA(x) and νA(x) represent, respectively, the membership
degree and non- membership degree of the element to the set A.

Atanassov and Gargov[3] further introduced the interval-valued intuitionistic
fuzzy set (IVIFS) based on the intuitionistic fuzzy sets.

Definition 2.2. [3] Let X be a universe of discourse, An interval-valued intuition-

istic fuzzy set (IVIFS) Ã over X is an object having the form:

Ã = {〈x, µ̃A (x) , ν̃A (x)〉 |x ∈ X } , (2)

www.SID.ir


www.SID.ir

Arh
ive

 of
 S

ID

Some Similarity Measures for Picture Fuzzy Sets and Their Applications 79

where µ̃A (x) ⊂ [0, 1] and ν̃A (x) ⊂ [0, 1] are interval numbers, and 0 ≤ sup (µ̃A (x))+
sup (ν̃A (x)) ≤ 1, ∀ x ∈ X. For convenience, let µ̃A (x) = [a, b], ν̃A (x) = [c, d], so

Ã = ([a, b] , [c, d]).

Picture fuzzy set[10] based models may be adequate in situations when we face
human opinions involving more answers of types: yes, abstain, no, refusal. It can
be considered as a powerful tool represent the uncertain information in the process
of patterns recognition and cluster analysis.

Definition 2.3. [10] A picture fuzzy set (PFS) A on the universe X is an object
of the form

A = {〈x, µA (x) , ηA (x) , νA (x)〉 |x ∈ X } (3)

where µA (x) ∈ [0, 1] is called the “degree of positive membership of A”, ηA (x) ∈
[0, 1] is called the “degree of neutral membership of A” and νA (x) ∈ [0, 1] is called
the “degree of negative membership ”, and µA (x), ηA (x), νA (x) satisfy the fol-
lowing condition: 0 ≤ µA (x) + ηA (x) + νA (x) ≤ 1, ∀ x ∈ X. Then for x ∈ X,
ρA (x) = 1− (µA (x) + ηA (x) + νA (x)) could be called the degree of refusal mem-
bership of x in A.

Cuong et al.[10] also defined some operations as follows.

Definition 2.4. [10] Given two PFEs represented by and A on B universe X, the
inclusion, union, intersection and complement operations are defined as follows:

(1) A ⊆ B, if µA (x) ≤ µB (x), ηA (x) ≤ ηB (x) and νA (x) ≥ νB (x), ∀x ∈ X;

(2) A ∪B = {(x,max (µA (x) , µB (x)) ,min (ηA (x) , ηB (x)) ,min (νA (x) , νB (x))) |x ∈ X }

(3) A ∩B = {(x,min (µA (x) , µB (x)) ,max (ηA (x) , ηB (x)) ,max (νA (x) , νB (x))) |x ∈ X }

(4) Ā = {(x, νA (x) , ηA (x) , µA (x)) |x ∈ X }

3. Cosine Similarity Measure for Picture Fuzzy Sets

In this section, we shall propose some similarity measure and some weighted
similarity measure between PFSs based on the concept of the similarity measure
for fuzzy sets[20].

3.1. Linguistic Term Set.
Let A be PFS in universe of discourse X = {x}, the PFS is characterized by

the degree of positive membership µA (x), the degree of neutral membership ηA (x)
and the degree of negative membership νA (x) which can be considered as a vector
representation with the three elements. Therefore, a cosine similarity measure and a
weighted cosine similarity measure for PFSs are proposed in an analogous manner
to the cosine similarity measure based on Bhattacharyas distance [5, 20,51] and
cosine similarity measure for intuitionistic fuzzy set[51].

Assume that there are two PFSs A and B in X = {x1, x2, · · · , xn}, a cosine
similarity measure between PIFSs A and B is proposed as follows:

C1
PFS

(A,B) =
1

n

n∑
i=1

µA (xi)µB (xi) + ηA (xi) ηB (xi) + νA (xi) νB (xi)√
µ2A (xi) + η2A (xi) + ν2A (xi)

√
µ2B (xi) + η2B (xi) + ν2B (xi)

(4)
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If we take n = 1, then the cosine similarity measure between PFSs A and B becomes
the correlation coefficient between PFSs A and B, i.e. CPFS (A,B) = KPFS (A,B).
Therefore, the cosine similarity measure between PFSs A and B also satisfies the
following properties:

(1) 0 ≤ C1
PFS

(A,B) ≤ 1;

(2) C1
PFS

(A,B) = C1
PFS

(B,A);

(3) C1
PFS

(A,B) = 1, if A = B,i = 1, 2, · · · , n
(4) if A ⊆ B ⊆ C , then C1

PFS
(A,C) ≤ C1

PFS
(A,B), C1

PFS
(A,C) ≤ C1

PFS
(B,C).

Proof. (1) It is obvious that the proposition is true according to the cosine value.
(2) It is obvious that the proposition is true.
(3)When A = B, there are µA (xi) = µB (xi), ηA (xi) = ηB (xi) and νA (xi) =

νB (xi) for i = 1, 2, · · · , n. So, there is C1
PFS

(A,B) = 1.
(4) if A ⊆ B ⊆ C, geometrically the angle between A and C should be larger

than the angle between A and B and the angle between B and C for any ele-
ment i (i = 1, 2, · · · , n). Obviously the relations for C1

PFS
(A,C) 6 C1

PFS
(A,B)

and C1
PFS

(A,C) 6 C1
PFS

(B,C) can be obtained from equation (4).

Therefore, we have finished the proofs. �

In the following, we shall investigate the distance measure of the angle as

d (A,B) = arccos
(
C1

PFS
(A,B)

)
.

It satisfies the following properties:

(1) d (A,B) > 0, if 0 6 CPFS (A,B) 6 1;
(2) d (A,B) = arccos (1) = 0, if CPFS (A,A) = 1;
(3) d (A,B) = d (B,A), if CPFS (A,B) = CPFS (B,A),
(4) d (A,C) 6 d (A,B) + d (B,C), if A ⊆ B ⊆ Cfor any PFS C.

Proof. Obviously, d (A,B) satisfies the property (1)-(3). In the following, d (A,B)
will be proved to satisfy the property (4).

For any C = {〈xi, (µC (xi) , ηC (xi) , νC (xi))〉 |xi ∈ x}, A ⊆ B ⊆ C, Since equa-
tion(4) is the sum of terms, let us investigate the distance measures of the angle
between the vectors:
di (A (xi) , B (xi)) = arccos (CPFSi

(A (xi) , B (xi))) ,

di (B (xi) , C (xi)) = arccos (CPFSi
(B (xi) , C (xi))),

di (A (xi) , C (xi)) = arccos (CPFSi
(A (xi) , C (xi))) i = 1, 2, · · · , n, where

CPFSi
(A (xi) , B (xi)) = µA(xi)µB(xi)+ηA(xi)ηB(xi)+νA(xi)νB(xi)√

µ2
A(xi)+η2A(xi)+ν2

A(xi)
√
µ2
B(xi)+η2B(xi)+ν2

A(xB)

CPFSi (B (xi) , C (xi)) = µB(xi)µC(xi)+ηB(xi)ηC(xi)+νB(xi)νC(xi)√
µ2
B(xi)+η2B(xi)+ν2

B(xi)
√
µ2
C(xi)+η2C(xi)+ν2

C(xi)

CPFSi (A (xi) , C (xi)) = µA(xi)µC(xi)+ηA(xi)ηC(xi)+νA(xi)νC(xi)√
µ2
A(xi)+η2A(xi)+ν2

A(xi)
√
µ2
C(xi)+η2C(xi)+ν2

C(xi)

For three vectors A (xi) = 〈µA (xi) , ηA (xi) , νA (xi)〉, B (xi) = 〈µB (xi) , ηB (xi) ,
νB (xi)〉, C (xi) = 〈µC (xi) , ηC (xi) , νC (xi)〉 in one plane, if A (xi) ⊆ B (xi) ⊆
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C (xi), i = 1, 2, · · · , n. Then, it is obvious that

di (A (xi) , C (xi)) 6 di (A (xi) , B (xi)) + di (B (xi) , C (xi))

according to the triangle inequality. Combining the inequality with equation(4),
we can obtain d (A,C) 6 d (A,B) + d (B,C). Thus d (A,B) satisfies the property
(4). So we finished the proof. �

If we consider the weights of xi, a weighted cosine similarity measure between
PFSs A and B is proposed as follows:

W 1
PFS (A,B) =

n∑
i=1

wi
µA (xi)µB (xi) + ηA (xi) ηB (xi) + νA (xi) νB (xi)√

µ2A (xi) + η2A (xi) + ν2A (xi)
√
µ2B (xi) + η2B (xi) + ν2B (xi)

(5)

where w = (w1, w2, · · · , wn)
T

is the weight vector of xi (i = 1, 2, · · · , n),with wi ∈
[0, 1],i = 1, 2, · · · , n,

n∑
i=1

wi = 1. In particular, if w = (1/n, 1/n, · · · , 1/n)
T

, then

the weighted cosine similarity measure reduces to cosine similarity measure. Thatis
to say, if we take wi = 1

n , i = 1, 2 · · · , n, then there is W 1
PFS

(A,B) = C1
PFS

(A,B).

Obviously, the weighted cosine similarity measure of two PFSs A and B also
satisfies the following properties:

(1)0 6W 1
PFS

(A,B) 6 1

(2)W 1
PFS

(A,B) = W 1
PFS

(B,A)

(3)W 1
PFS

(A,B) = 1, if A = B, i = 1, 2, · · · , n.

Similar to the previous proof method, we can prove the above three properties.

3.2. Set-theoretic Similarity Measure for Picture Fuzzy Sets.
Assume that there are two PFSs A and B in X = {x1, x2, · · · , xn}. Based on

the set-theoretic viewpoint[50], we shall propose another similarity measure between
PFSs A and B as follows:

C2
PFS (A,B) =

1

n

n∑
i=1

µA (xi)µB (xi) + ηA (xi) ηB (xi) + νA (xi) νB (xi)

max
(
µ2A (xi) + η2A (xi) + ν2A (xi) , µ2B (xi) + η2B (xi) + ν2B (xi)

) (6)

Obviously, equation(6) satisfies the three properties of the similarity measures
as follows:

(1) 0 6 C2
PFS (A,B) 6 1;

(2) C2
PFS (A,B) = C2

PFS (B,A);

(3) C2
PFS (A,B) = 1, if A = B, i = 1, 2, · · · , n.

(4) if A ⊆ B ⊆ C ,then C2
PFS

(A,C) 6 C2
PFS

(A,B), C2
PFS

(A,C) 6 C2
PFS

(B,C).

If we consider the weights of xi, a weighted set-theoretic similarity measure
between PFSs A and B is proposed as follows:

W 2
PFS (A,B) =

n∑
i=1

wi
µA (xi)µB (xi) + ηA (xi) ηB (xi) + νA (xi) νB (xi)

max
(
µ2A (xi) + η2A (xi) + ν2A (xi) , µ2B (xi) + η2B (xi) + ν2B (xi)

) (7)

wherew = (w1, w2, · · · , wn)
T

is the weight vector of xi (i = 1, 2, · · · , n), with wi ∈
[0, 1], i = 1, 2, · · · , n,

n∑
i=1

wi = 1. In particular, if w = (1/n, 1/n, · · · , 1/n)
T

, then

equation(7) reduces to equation(6).
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Obviously, the weighted set-theoretic similarity measure of two PFSs A and B
also satisfies the following properties:

(1) 0 6W 2
PFS (A,B) 6 1,

(2) W 2
PFS (A,B) = W 2

PFS (B,A),

(3) W 2
PFS (A,B) = 1, if A = B, i = 1, 2, · · · , n.

3.3. Grey Similarity Measure for Picture Fuzzy Sets.
Assume that there are two PFSs A and B in X = {x1, x2, · · · , xn}. In what

follows, we shall propose grey similarity measure and a weighted grey similarity
measure between PFSs based on the concept of the grey relational analysis[47].

Assume that there are two PFSs A and B in X = {x1, x2, · · · , xn}. Based on the
extension of the grey relational analysis, a grey similarity measure between PIFSs
A and B is proposed as follows:

C3
PFS (A,B) =

1

3n

n∑
i=1

(
∆µmin + ∆µmax

∆µi + ∆µmax
+

∆ηmin + ∆ηmax

∆ηi + ∆ηmax
+

∆νmin + ∆νmax

∆νi + ∆νmax

)
(8)

where ∆µi = |µA (xi)− µB (xi)| , ∆µmin = min
i
{|µA (xi)− µB (xi)|} ,

∆µmax = max
i
{|µA (xi)− µB (xi)|}, ∆ηi = |ηA (xi)− ηB (xi)| ,

∆ηmin = min
i
{|ηA (xi)− ηB (xi)|} , ∆ηmax = max

i
{|ηA (xi)− ηB (xi)|},

∆νi = |νA (xi)− νB (xi)| ,∆νmin = min
i
{|νA (xi)− νB (xi)|} ,

∆νmax = max
i
{|νA (xi)− νB (xi)|}.

Obviously, the greater the value of CPFS (A,B), the closer A to B. By equa-
tion(8), the grey similarity measure CPFS (A,B) satisfies the following properties:

(1) 0 6 C3
PFS (A,B) 6 1;

(2) C3
PFS (A,B) = C3

PFS (B,A);

(3) C3
PFS (A,B) = 1, if A = B,i = 1, 2, · · · , n.

(4) if A ⊆ B ⊆ C,then C3
PFS

(A,C) 6 C3
PFS

(A,B), C3
PFS

(A,C) 6 C3
PFS

(B,C).

In many situations, the weight of the elements xi ∈ X should be taken into
account. For example, in multiple attribute decision making, the considered at-
tributes usually have different importance, and thus need to be assigned different
weights. As a result, a weighted cosine similarity measure between PFSs A and B
is proposed as follows:

W 3
PFS (A,B) =

1

3

n∑
i=1

wi

(
∆µmin + ∆µmax

∆µi + ∆µmax
+

∆ηmin + ∆ηmax

∆ηi + ∆ηmax
+

∆νmin + ∆νmax

∆νi + ∆νmax

)
(9)

where ∆µi = |µA (xi)− µB (xi)| ,∆µmin = min
i
{|µA (xi)− µB (xi)|} ,

∆µmax = max
i
{|µA (xi)− µB (xi)|}, ∆ηi = |ηA (xi)− ηB (xi)| ,

∆ηmin = min
i
{|ηA (xi)− ηB (xi)|} , ∆ηmax = max

i
{|ηA (xi)− ηB (xi)|}

∆νi = |νA (xi)− νB (xi)| ,∆νmin = min
i
{|νA (xi)− νB (xi)|} ,

∆νmax = max
i
{|νA (xi)− νB (xi)|} and w = (w1, w2, · · · , wn)T is the weight vector of

xi (i = 1, 2, · · · , n),with wi ∈ [0, 1],i = 1, 2, · · · , n,
n∑

i=1
wi = 1.
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A1 A2 A3 A4 A
x1 (0.17, 0.53, 0.13) (0.51, 0.24, 0.21) (0.31, 0.39, 0.25) (1.00, 0.00, 0.00) (0.91, 0.03, 0.05)
x2 (0.10, 0.81, 0.05) (0.62, 0.12, 0.07) (0.60, 0.26, 0.11) (1.00, 0.00, 0.00) (0.78, 0.12, 0.07)
x3 (0.53, 0.33, 0.09) (1.00, 0.00, 0.00) (0.91, 0.03, 0.02) (0.85, 0.09, 0.05) (0.90, 0.05, 0.02)
x4 (0.89, 0.08, 0.03) (0.13, 0.64, 0.21) (0.07, 0.09, 0.05) (0.74, 0.16, 0.10) (0.68, 0.08, 0.21)
x5 (0.42, 0.35, 0.18) (0.03, 0.82, 0.13) (0.04, 0.85, 0.10) (0.02, 0.89, 0.05) (0.05, 0.87, 0.06)
X6 (0.08, 0.89, 0.02) (0.73, 0.15, 0.08) (0.68, 0.26, 0.06) (0.08, 0.84, 0.06) (0.13, 0.75, 0.09)
X7 (0.33, 0.51, 0.12) (0.52, 0.31, 0.16) (0.15, 0.76, 0.07) (0.16, 0.71, 0.05) (0.15, 0.73, 0.08)

Table 1. The Data on Building Materials

similarity measures (A1, A) (A2, A) (A3, A) (A4, A)

W1
PFS

(Ai, A) 0.716 0.763 0.858 0.994

W2
PFS

(Ai, A) 0.556 0.657 0.693 0.920

W3
PFS

(Ai, A) 0.660 0.762 0.830 0.901

Table 2. The Similarity Measures Between Ai (i = 1, 2, 3, 4) and A

In particular, if w = (1/n, 1/n, · · · , 1/n)T , then the weighted grey similarity measure
reduces to grey similarity measure. That is to say, if we take wi = 1

n
, i = 1, 2 · · · , n,

then there is W 3
PFS (A,B) = C3

PFS (A,B).

Obviously, the weighted grey similarity measure of two PFSs A and B also
satisfies the following properties:

(1) 0 6W 3
PFS (A,B) 6 1,

(2) W 3
PFS (A,B) = W 3

PFS (B,A),

(3) W 3
PFS (A,B) = 1, if A = B, i = 1, 2, · · · , n.

4. Applications

In this section, the similarity measures for PFSs are applied to building material
recognition and minerals field recognition(adapted from[49]).

4.1. Example1- building Materials Recognition.
Let us consider four building materials: sealant, floor varnish, wall paint and

polyvinyl chloride flooring, which are represented by the PFSs Ai (i = 1, 2, 3, 4) in
the feature space X = {x1, x2, x3, x4, x5, x6, x7}. The weight vector of xi(i = 1, 2,

· · · , 7) is: w = (0.12, 0.15, 0.09, 0.16, 0.20, 0.10, 0.18)
T

Now, we consider another kind of unknown building material A, with data as
listed in Table 1. Based on the weight vector w and the data in Table 1, we can
use the above similarity measures to identify to which type the unknown material
A belongs. According to the recognition principle of maximum degree of similarity
between IFSs proposed by Li and Cheng[12], the process of assigning A to Ak is
described by

k = arg Max
16i64

{WPFS (Ai, A)}
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A1 A2 A3 A4
x1 (0.53, 0.33, 0.09) (1.00, 0.00, 0.00) (0.91, 0.03, 0.02) (0.85, 0.09, 0.05) (0.90, 0.05, 0.02)
x2 (0.89, 0.08, 0.03) (0.13, 0.64, 0.21) (0.07, 0.09, 0.05) (0.74, 0.16, 0.10) (0.68, 0.08, 0.21)
x3 (0.42, 0.35, 0.18) (0.03, 0.82, 0.13) (0.04, 0.85, 0.10) (0.02, 0.89, 0.05) (0.05, 0.87, 0.06)
x4 (0.08, 0.89, 0.02) (0.73, 0.15, 0.08) (0.68, 0.26, 0.06) (0.08, 0.84, 0.06) (0.13, 0.75, 0.09)
x5 (0.33, 0.51, 0.12) (0.52, 0.31, 0.16) (0.15, 0.76, 0.07) (0.16, 0.71, 0.05) (0.15, 0.73, 0.08)
X6 (0.17, 0.53, 0.13) (0.51, 0.24, 0.21) (0.31, 0.39, 0.25) (1.00, 0.00, 0.00) (0.91, 0.03, 0.05)

Table 3. The Data on Minerals

similarity measures (A1, A) (A2, A) (A3, A) (A4, A)

W1
PFS

(Ai, A) 0.813 0.656 0.787 0.994

W2
PFS

(Ai, A) 0.634 0.559 0.576 0.935

W3
PFS

(Ai, A) 0.696 0.700 0.793 0.913

Table 4. The Similarity Measures Between Ai (i = 1, 2, 3, 4) and A

In the above numerical results in Table 2, all the similarity measures derive the
same ranking, in which the degree of similarity between A4 and A is the largest
one, the degree of similarity between A3 and A ranks the second, the degree of
similarity between A2 and A ranks the third, the degree of similarity between A1

and A is the smallest one. Therefore, the building material A should belong to the
class of building material A4 according to the principle of the maximum degree of
similarity between PFSs.

4.2. Example 2-mineral Fields Recognition.
Let us consider four kinds of mineral fields, which are represented by PFSs

Ai (i = 1, 2, 3, 4). Each of which is featured by the content of six minerals in the
feature space X = {x1, x2, x3, x4, x5, x6}. The weight vector of xi (i = 1, 2, · · · , 6)

is: w = (0.12, 0.25, 0.09, 0.16, 0.20, 0.18)
T

.
Now, we consider another kind of unknown mineral A, with data as listed in

Table 3. Based on the weight vector w and the data in Table 3, we can use the
above similarity measures to identify to which type the unknown material A should
belong. According to the recognition principle of maximum degree of similarity
between IFSs proposed by Li and Cheng[12], the process of assigning A to Ak is
described by

k = arg Max
16i64

{WPFS (Ai, A)}

From the above numerical results in Table 4, we know that the degree of similarity
between A4 and A is the largest one as derived by three similarity measures. That
is, all the three similarity measures assign the unknown mineral A to the class of
mineral field A4 according to the principle of the maximum degree of similarity
between PFSs. Yet, there exist two slightly different ranking results: the cosine
similarity measure and set-theoretic similarity measures derive the same ranking
of the mineral fields, in which the degree of similarity between A1 and A ranks
the second, the degree of similarity between A3 and A ranks the third, the degree
of similarity between A2 and A is the smallest one. While for the grey similarity
measure, the degree of similarity between A2 and A ranks the second, the degree
of similarity between A2 and A ranks the third, the degree of similarity between
A1 and A is the smallest one.
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4.3. Comparison Studies.
The cross entropy of picture fuzzy sets, called picture fuzzy cross entropy[35], is

proposed as an extension of the cross entropy of fuzzy sets. In order to show my
proposed model effectively, in the following, we shall compare the proposed method
with picture fuzzy cross entropy method which was proposed by Wei[35].

For Example 1, by using the picture fuzzy cross entropy method, we can calculate
the cross-entropy Cω (Ai, A) between Ai (i = 1, 2, 3, 4) and A by using equation(18)
in Ref.[50]: Cω (A1, A) = 0.219, Cω (A2, A) = 0.150, Cω (A3, A) = 0.117, Cω (A4, A) = 0.021

The smaller the value of C (Ai, A) is, the alternative is closer Ai to A. The
picture fuzzy cross entropy between A1 and A is the largest one, the picture fuzzy
cross entropy between A2 and A ranks the second, the picture fuzzy cross entropy
between A3 and A ranks the third, the picture fuzzy cross entropy between A4 and
A is the smallest one. Therefore, the building material should belong to the class
of building material A4 according to the principle of the minimum picture fuzzy
cross entropy between PFSs.

For Example 2, by using the picture fuzzy cross entropy method, we can cal-
culate the cross-entropy Cω (Ai, A) between Ai (i = 1, 2, 3, 4) and the A by using
equation(18) in Ref.[35]: Cω (A1, A) = 0.155, Cω (A2, A) = 0.214, Cω (A3, A) =
0.173, Cω (A4, A) = 0.014 The smaller the value of C (Ai, A) is, the alternative is
closer Aito A. The picture fuzzy cross entropy between A2 and A is the largest
one, the picture fuzzy cross entropy between A3 and A ranks the second, the pic-
ture fuzzy cross entropy between A1 and A ranks the third, the picture fuzzy cross
entropy between A4 and A is the smallest one. Therefore, the unknown mineral
A should belong to the class of mineral field A4according to the principle of the
minimum picture fuzzy cross entropy between PFSs.

From the above analysis, it can be seen that the proposed model is effective.

4.4. Advantages of the Proposed Method.

(1) As mentioned above, the existing similarity measures for intuitionistic fuzzy
set have some limitations and are not able to represent the full information about
the situation. Picture fuzzy set is a further generalization of the intuitionistic fuzzy
set. So the PFS contains more information (degree of positive membership, degree
of neutral membership, degrees of negative membership and degrees of refusal mem-
bership) than intuitionistic fuzzy set (both membership degree and nonmembership
degree). Thus, the proposed similarity measures for picture fuzzy set can be con-
sidered as a further generalization of the similarity measures of intuitionistic fuzzy
set [50]. Also the proposed similarity measures reflect the amount of information
expressed by the degree of positive membership, neutral membership and negative
membership and the reliability of the information expressed by refusal membership.

(2) The similarity measures for intuitionistic fuzzy set are special cases of the
similarity measures of picture fuzzy set. Therefore, similarity measures proposed in
this paper can be used to find not only the similarity measures for the problems with
picture fuzzy set but also the similarity measures of the problems with intuitionistic
fuzzy set, whereas the method in [50] is only suitable to find the similarity measures
for intuitionistic fuzzy set.
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5. Conclusion

In this paper, we presented some novel process to measure the similarity between
PFSs. Firstly, we adopt the concept of intuitionistic fuzzy sets, interval-valued in-
tuitionistic fuzzy sets and picture fuzzy sets. Secondly, we develop some similarity
measures between picture fuzzy sets, such as, cosine similarity measure, weighted
cosine similarity measure, set-theoretic similarity measure, weighted set-theoretic
cosine similarity measure, grey similarity measure and weighted grey similarity
measure. Then, we applied these similarity measures between PFSs to building
material recognition and minerals field recognition. Finally, two illustrative exam-
ples are given to demonstrate the efficiency of the similarity measures for building
material recognition and minerals field recognition. In the future, the pattern recog-
nition application of the proposed similarity measure of PFSs needs to be explored
on the basis of the similarity measures[11, 16-18, 34, 36-43, 53-57].
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  برخی از اندازه هاي تشابه براي مجموعه هاي فازي تصویر و کاربرد آنها

 

          فرآیند جدیدي براي اندازه گیري تشابه بین مجموعه هاي فازي تصویر ارایه این مقاله،در .چکیده

مقدار و مجموعه  –مجموعه هاي فازي شهودي بازه ، مفهوم مجموعه هاي فازي شهودي ، می کنیم. ابتدا 

هاي فازي تصویر را بخدمت می گیریم. سپس ، برخی از اندازه هاي تشابه بین مجموعه هاي فازي تصویر 

اندازه تشابه ،  به نظریه مجموعه اياندازه تشابه وزن دار ،  اندازه تشابه کسینوسمانند اندازه تشابه کسینوس ، 

خاکستري وزن دار را گسترش اندازه تشابه خاکستري و اندازه تشابه نظریه مجموعه اي وزن دار ،  کسینوس

بین مجموعه هاي فازي تصویر را جهت تشخیص مواد ساختمان و تشخیص اندازه تشابه می دهیم. سپس 

براي تشابه هاي  اندازهیه گردیده تا کارآیی میدان معادن به کار می بریم. بالاخره ، دو مثال روشن کننده ارا

  تشخیص مواد ساختمان و تشخیص میدان معادن را نشان دهد. 
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