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ON SOMEWHAT FUZZY AUTOMATA CONTINUOUS

FUNCTIONS IN FUZZY AUTOMATA TOPOLOGICAL SPACES

N. KRITHIKA AND B. AMUDHAMBIGAI

Abstract. In this paper, the concepts of somewhat fuzzy automata continu-

ous functions and somewhat fuzzy automata open functions in fuzzy automata
topological spaces are introduced and some interesting properties of these func-

tions are studied. In this connection, the concepts of fuzzy automata resolvable

spaces and fuzzy automata irresolvable spaces are also introduced and their
properties are studied.

1. Introduction

Zadeh [25] innovated the concept of a fuzzy set in 1965 and then it has invaded
almost all branches of mathematics. The notion of an automaton was first fuzzified
by Wee [24]. Later, the concepts of fuzzy subsystems and strong fuzzy subsystems
of a fuzzy finite state machine (ffsm) were introduced and studied by Malik and
Mordeson [15]. In [4, 18, 19], it is shown that certain topological and fuzzy topologi-
cal concepts can be used in fuzzy automata theory to throw light on the structure of
such fuzzy automata, particularly, to obtain certain results pertaining to their con-
nectivity and separation properties. Zhihui, Ping and Yongming [14] discussed the
relationships among several types of fuzzy automata. In [7, 9, 13, 11, 12, 22, 21], the
researchers began to work on fuzzy automata with membership values in complete
residuated lattice, lattice ordered monoid and some kind of lattices. Ignjatovic,
Ciric and Simovic [10] studied the concepts of subsystems, reverse subsystems and
double subsystems of a fuzzy automaton in terms of fuzzy relation inequalities and
equations. Tiwari, Singh, Sharan and Yadav [23] introduced and studied the con-
cept of bifuzzy core inducing a bifuzzy topology on the state-set of fuzzy automaton.
In classical topology, the class of somewhat continuous functions was introduced
and studied by Gentry and Hoyle [6]. Later, the concept of somewhat continuous
functions in classical topology has been extended to fuzzy topological spaces. Some-
what fuzzy continuous functions and somewhat open functions in fuzzy topological
spaces were introduced and studied by Thangaraj and Balasubramanian [20]. He-
witt [8] introduced the concepts of resolvability and irresolvability in topological
spaces. In this paper, the concepts of somewhat fuzzy automata continuous func-
tions and somewhat fuzzy automata open functions in fuzzy automata topological
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spaces are introduced and some interesting properties of these functions are stud-
ied. In this connection, the concepts of fuzzy automata resolvable spaces and fuzzy
automata irresolvable spaces are also introduced and their properties are studied.

2. Preliminaries

Definition 2.1. [18] A fuzzy automaton is a triple M = (Q,X, δ), where Q is a set
(of states of M), X is a monoid(the input monoid of M), whose identity shall be
denoted as e, and δ is a fuzzy subset of Q×X×Q, i.e., a map δ : Q×X×Q→ [0, 1],
such that ∀q, p ∈ Q, ∀x, y ∈ X.
(i) δ(q, e, p) = 1 or 0, according as q = p or q 6= p,
(ii) δ(q, xy, p) = ∨{δ(q, x, r) ∧ δ(r, x, p) : r ∈ Q}.

Notation. For any non-empty set of states Q, IQ denotes the collection of all
functions from Q into I, where I is the unit interval [0, 1].

Definition 2.2. [16] λ ∈ IQ is called a fuzzy subsystem of (Q,X, δ) if
λ(q) ≥ λ(p) ∧ δ(p, x, q), ∀p, q ∈ Q, x ∈ X.

Proposition 2.3. [4] The function c : IQ → IQ defined as
c(λ)(q) =

∨
{
∨
{ λ(p) ∧ δ(p, x, q) : x ∈ X } : p ∈ Q }, ∀λ ∈ IQ, ∀q ∈ Q.

is a kuratowski saturated fuzzy closure operator on Q.

This proposition shows that c is a fuzzy closure operator on IQ. Then c induces a
fuzzy topology τ on Q. The fuzzy topology τ is called the fuzzy topology associated
with the fuzzy automaton M .

Proposition 2.4. [4] λ ∈ IQ is a fuzzy subsystem of (Q,X, δ) iff c(λ) = λ. (i.e.,
iff λ is closed with respect to the fuzzy topology induced by c on Q)

Definition 2.5. [4] A fuzzy subset λ of Q is said to be a generating fuzzy set of
M if c(λ) = 1.

Definition 2.6. [3] Let (X,T ) and (Y, S) be any two fuzzy topological spaces. Let
f be a function from the fuzzy topological space (X,T ) to the fuzzy topological
space (Y, S). Let λ be a fuzzy set in (Y, S). The inverse image of λ under f written
as f−1(λ) is the fuzzy set in (X,T ) defined by f−1(λ)(x) = λ(f(x)), for all x ∈ X.
Also the image of λ in (X,T ) under f written as f(λ) is the fuzzy set in (Y, S)
defined by

f(λ)(y) =

{
supx∈f−1(y)λ(x), if f−1(y) is non-empty, for each y ∈ Y .
0, otherwise

Definition 2.7. [3] Let f : (X,T ) −→ (Y, S) be a mapping. For fuzzy sets λ and
µ of (X,T ) and (Y, S) respectively, the following statements hold.
(1) ff−1(µ) ≤ µ;
(2) f−1f(λ) ≥ λ;
(3) f(1− λ) ≥ 1− f(λ);
(4) f−1(1− µ) = 1− f−1(µ);
(5) If f is injective, then f−1f(λ) = λ;
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(6) If f is surjective, then ff−1(µ) = µ;
(7) If f is bijective, then f(1− λ) = 1− f(λ).

Lemma 2.8. [1] Let f : (X,T ) −→ (Y, S) be a mapping and {λα} be a family of
fuzzy sets of Y . Then
(a) f−1(∪αλj) = ∪αf−1(λj),
(b)f−1(∩αλj) = ∩αf−1(λj).

Lemma 2.9. [5] Let f : (X,T ) −→ (Y, S) be a mapping and {Aj}, j ∈ J be a
family of fuzzy sets of X. Then
(a) f(∪j∈JAj) = ∪j∈Jf(Aj),
(b)f(∩j∈JAj) ≤ ∩j∈Jf(Aj).

Lemma 2.10. [1] Let g : X −→ X × Y be the graph of a function f : X −→ Y
defined by g(x) = (x, f(x)). If λ is a fuzzy set of X and µ is a fuzzy set of Y , then
g−1(λ× µ) = λ ∧ f−1(µ).

Definition 2.11. [17] Two fuzzy sets µ and γ of X are said to be disjoint if they
do not intersect at any point of X. That is, µ(x) + γ(x) ≤ 1, for all x ∈ X.

Definition 2.12. [20] A mapping f : X −→ Y is somewhat fuzzy continuous if
there exists a fuzzy open set µ 6= 0X on X such that µ ≤ f−1(ν) 6= 0X for any
fuzzy open set ν on Y .

It is clear that every fuzzy continuous mapping is a somewhat fuzzy continuous
mapping. But the converse is not true in general.

Definition 2.13. [20] A mapping f : X −→ Y is somewhat fuzzy open if there
exists a fuzzy open set ν 6= 0Y on Y such that ν ≤ f(µ) 6= 0Y for any fuzzy open
set µ on X.

Note that every fuzzy open mapping is a somewhat fuzzy open mapping but the
converse is not true in general.

Definition 2.14. [2] The product λ × µ of a fuzzy set λ of X and a fuzzy set µ
of Y is a fuzzy set of X × Y , defined by (λ × µ)(x, y) = min(λ(x), µ(y)), for each
(x, y) ∈ X × Y .

Definition 2.15. [2] The product f1 × f2 : X1 × X2 −→ Y1 × Y2 of mappings
f1 : X1 −→ Y1 and f2 : X2 −→ Y2, is defined by (f1×f2)(x1, x2) = (f1(x1), f2(x2)),
for each (x1, x2) ∈ X1 ×X2.

3. On Somewhat Fuzzy Automata Continuous Functions

In this section, the concept of somewhat fuzzy automata continuous functions
is introduced. Some interesting properties and characterizations are discussed with
necessary examples.

Definition 3.1. Let M = (Q,X, δ) be a fuzzy automaton, where Q is a set (of
states of M). For all λ ∈ IQ and q ∈ Q, c(λ)(p) =

∨
q∈Q {

∨
x∈X { λ(q) ∧

δ(q, x, p) } } is a fuzzy closure operator on Q. Let τ(Q) = { λ : c(λ) = λ } be the
collection of fuzzy subsystems which satisfies the following axioms:
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(i) 0Q, 1Q ∈ τ(Q),
(ii) If λ, µ ∈ τ(Q), then λ ∧ µ ∈ τ(Q),

(iii) If λi ∈ τ(Q) for each i ∈ J, then ∨λi ∈ τ(Q).

Then, the ordered pair (Q, τ(Q)) is said to be a fuzzy automata topological space
(in short, FATS) iff there exists a fuzzy automaton (Q,X, δ) such that τ(Q) is a
fuzzy topology associated with (Q,X, δ). Moreover, members of τ(Q) are said to
be the fuzzy automata open subsystems and their complements are said to be the
fuzzy automata closed subsystems.

Notation. Throughout this paper, 0Q denotes µ0Q(q) = 0, for all q ∈ Q and 1Q
denotes µ1Q(q) = 1, for all q ∈ Q.

Example 3.2. Let M = (Q,X, δ) be a fuzzy automaton where Q = X =
{0, 1, 2, ......} and δ : Q×X ×Q→ [0, 1] is given by

δ(q, 0, p) =

{
1, if q = p
0, if q 6= p

with δ(q, x0, p) = 0.7, δ(q, x0, q) = 0.65, δ(p, x0, p) = 0.6, δ(p, x0, q) = 0.8 for fixed
x0 ∈ X(x0 6= 0) and for fixed p, q ∈ Q. For other p, q ∈ Q and x ∈ X, δ(p, x, q) = 0.
Let λ, µ ∈ IQ be defined as follows : λ(p) = 0.55, λ(q) = 0.6, µ(p) = 0.22,
µ(q) = 0.25 and for other r ∈ Q, λ(r) = 0, µ(r) = 0. The Kuratowski saturated
fuzzy closure operator c : IQ → IQ on Q is defined as

c(λ)(q) =
∨{∨

{λ(p) ∧ δ(p, x, q) : x ∈ X} : p ∈ Q
}
, for all λ ∈ IQ and q ∈ Q.

It is clear that c(λ) = λ, c(µ) = µ, c(0Q) = 0Q and c(1Q) = 1Q.
Then, τ(Q) = { 0Q, 1Q, λ, µ } is a fuzzy automata topology on Q and hence the
ordered pair (Q, τ(Q)) is a fuzzy automata topological space.

Definition 3.3. Let (Q, τ(Q)) be a FATS. For any λ ∈ IQ,
(i) FAint(λ) = ∨{ µ | µ ≤ λ, µ ∈ τ(Q) } is said to be the fuzzy automata
interior (in short, FAint(λ)) of λ,
(ii) FAcl(λ) = ∧{ µ | λ ≤ µ, 1Q − µ ∈ τ(Q) } is said to be the fuzzy automata
closure (in short, FAcl(λ)) of λ.

Definition 3.4. Let M = (Q,X, δ) and N = (R,X, µ) be any two fuzzy automata
and let (Q, τ(Q)) and (R, τ(R)) be any two fuzzy automata topological spaces.
Any function f : (Q, τ(Q)) −→ (R, τ(R)) is said to be fuzzy automata continuous
if for each fuzzy automata open subsystem λ ∈ IR in (R, τ(R)) the inverse image
f−1(λ) ∈ IQ is a fuzzy automata open subsystem in (Q, τ(Q)).

Definition 3.5. Let M = (Q,X, δ) and N = (R,X, µ) be any two fuzzy automata
and let (Q, τ(Q)) and (R, τ(R)) be any two fuzzy automata topological spaces.
A function f : (Q, τ(Q)) −→ (R, τ(R)) is said to be somewhat fuzzy automata
continuous if λ ∈ τ(R) and f−1(λ) 6= 0Q implies that there exists a fuzzy automata
open subsystem µ ∈ IQ in (Q, τ(Q)) such that µ 6= 0Q and µ ≤ f−1(λ). That is,
FAcl(1Q − f−1(λ)) 6= 1Q or FAint(f−1(λ)) 6= 0Q.
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It is clear from Definition 3.4 and Definition 3.5 that every fuzzy automata
continuous function is a somewhat fuzzy automata continuous function. But the
converse is not true as shown in Example 3.6.

Example 3.6. Let M = (Q,X, δ) be a fuzzy automaton, where Q = R = X =
{0, 1, 2, .....} and δ : Q×X ×Q→ [0, 1] is given by

δ(q, 0, p) =

{
1, if q = p
0, if q 6= p

with δ(q, x0, p) = 0.75, δ(q, x0, q) = 0.7, δ(p, x0, p) = 0.65, δ(p, x0, q) = 0.6 for
fixed x0 ∈ X(x0 6= 0) and for fixed p, q ∈ Q. For other p, q ∈ Q and x ∈ X,
δ(p, x, q) = 0. Let λ1 ∈ IQ and λ2 ∈ IR be defined as follows : λ1(p) = 0.2,
λ1(q) = 0.3, λ2(p) = 0.6, λ2(q) = 0.7 and for other r ∈ Q, λ1(r) = 0, λ2(r) = 0.
The Kuratowski saturated fuzzy closure operator c : IQ → IQ on Q is defined as

c(λ)(q) =
∨{∨

{λ(p) ∧ δ(p, x, q) : x ∈ X} : p ∈ Q
}
, for all λ ∈ IQ and q ∈ Q.

It is clear that c(λ1) = λ1, c(λ2) = λ2, c(0Q) = 0Q and c(1Q) = 1Q.
Then, τ(Q) = { 0Q, 1Q, λ1 } and τ(R) = { 0R, 1R, λ2 } are the respective fuzzy
automata topologies on Q and R and the ordered pairs (Q, τ(Q)) and (R, τ(R)) are
the fuzzy automata topological spaces respectively. Let f : (Q, τ(Q)) → (R, τ(R))
be a fuzzy automata identity function. Now, for λ2 ∈ τ(R) and f−1(λ2) 6= 0Q there
exists a fuzzy automata open subsystem λ1 ∈ τ(Q) such that λ1 6= 0Q and λ1 ≤
f−1(λ2) = λ2. That is, FAcl(1Q− f−1(λ2)) 6= 1Q. Hence f is a somewhat fuzzy
automata continuous function. But f−1(λ2) = λ2 is not a fuzzy automata
open subsystem in (Q, τ(Q)). Therefore, f is not a fuzzy automata continuous
function.

Definition 3.7. A fuzzy automata subsystem λ ∈ IQ in (Q, τ(Q)) is said to be a
generating fuzzy automata subsystem if FAcl(λ) = 1Q.

Example 3.8. In Example 3.2, let the fuzzy automata subsystem ν ∈ IQ be defined
as follows:

ν(p) = 0.8, ν(q) = 0.8

and for other r ∈ Q, ν(r) = 0. Then FAcl(ν) = 1Q. Therefore, ν is a generating
fuzzy automata subsystem in (Q, τ(Q)).

Proposition 3.9. Let M = (Q,X, δ) and N = (R,X, µ) be any two fuzzy automata
and let (Q, τ(Q)) and (R, τ(R)) be any two fuzzy automata topological spaces. If
f : (Q, τ(Q)) −→ (R, τ(R)) is a somewhat fuzzy automata continuous function,
then f−1(1R − µ) is not a generating fuzzy automata subsystem in (Q, τ(Q)), for
any fuzzy automata open subsystem µ ∈ IR in (R, τ(R)).

Proof. Let 0R 6= µ ∈ IR be a fuzzy automata open subsystem in (R, τ(R)). Since f
is a somewhat fuzzy automata continuous function, there exists a fuzzy automata
open subsystem 0Q 6= λ ∈ IQ in (Q, τ(Q)) such that λ ≤ f−1(µ). That is FAcl(1Q−
f−1(µ)) 6= 1Q and hence FAcl(f−1(1R − µ)) 6= 1Q. Therefore, f−1(1R − µ) is not
a generating fuzzy automata subsystem in (Q, τ(Q)). �
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Proposition 3.10. Let (Q, τ(Q)) and (R, τ(R)) be any two fuzzy automata topo-
logical spaces. Let f : (Q, τ(Q)) −→ (R, τ(R)) be a one-to-one and onto function.
Then the following statements are equivalent:

(i) f is somewhat fuzzy automata continuous.
(ii) If µ ∈ IR is a fuzzy automata closed subsystem in (R, τ(R)) such that

f−1(µ) 6= 1Q, then there exists a fuzzy automata closed subsystem λ 6=
1Q ∈ IQ in (Q, τ(Q)) such that λ ≥ f−1(µ).

(iii) If λ ∈ IQ is a generating fuzzy automata subsystem in (Q, τ(Q)), then
f(λ) ∈ IR is a generating fuzzy automata subsystem in (R, τ(R)).

Proof. (i)⇒(ii). Let f be a somewhat fuzzy automata continuous function and
µ ∈ IR be a fuzzy automata closed subsystem in (R, τ(R)) such that f−1(µ) 6= 1Q.
Clearly, 1R−µ ∈ τ(R) and f−1(1R−µ) = 1Q− f−1(µ) 6= 0Q (since f−1(µ) 6= 1Q).
By (i), there exists a fuzzy automata open subsystem 0Q 6= η ∈ IQ in (Q, τ(Q))
such that η ≤ f−1(1R − µ). Then η ≤ 1Q − f−1(µ) and hence f−1(µ) ≤ 1Q − η.
Clearly, 1Q − η is a fuzzy automata closed subsystem in (Q, τ(Q)). By replacing
1Q − η = λ, λ ≥ f−1(µ). Hence (i)⇒(ii).

(ii)⇒(iii). Let λ ∈ IQ be a generating fuzzy automata subsystem in (Q, τ(Q))
and suppose f(λ) is not a generating fuzzy automata subsystem in (R, τ(R)). Then
there exists a fuzzy closed subsystem 0R 6= µ ∈ IR in (R, τ(R)) such that f(λ) <
µ < 1R. Since µ < 1R and f−1(µ) 6= 1Q, there exists a fuzzy automata closed
subsystem 1Q 6= δ ∈ IQ in (Q, τ(Q)) such that λ ≤ f−1(f(λ)) < f−1(µ) ≤ δ implies
λ ≤ δ. This contradicts the assumption that λ is a generating fuzzy automata
subsystem in (Q, τ(Q)). Hence f(λ) is a generating fuzzy automata subsystem in
(R, τ(R)).

(iii) ⇒ (i). Let λ ∈ IR be a fuzzy automata open subsystem in (R, τ(R))
with f−1(λ) 6= 0Q. Suppose that there exists no fuzzy automata open subsystem
0Q 6= γ ∈ IQ in (Q, τ(Q)) such that γ ≤ f−1(λ). That is, FAcl(1Q−f−1(λ)) = 1Q.
Then 1Q − f−1(λ) is a generating fuzzy automata subsystem in (Q, τ(Q)). Then
by (iii) f(1Q − f−1(λ)) is a generating fuzzy automata subsystem in (R, τ(R)).
That is, FAcl(f(1Q − f−1(λ))) = 1R. But f(1Q − f−1(λ)) = f(f−1(1R − λ)) ≤
1R−λ < 1R. Now, f(f−1(1R−λ)) ≤ 1R−λ implies that FAcl(f(f−1(1R−λ))) ≤
FAcl(1R − λ) < FAcl(1R) = 1R and then, 1R < 1R. This is a contradiction to the
fact that f(1Q − f−1(λ)) is a generating fuzzy automata subsystem in (R, τ(R)).
Hence FAcl(1Q − f−1(λ)) 6= 1Q. Consequently, f is somewhat fuzzy automata
continuous. �

Proposition 3.11. Let (Q, τ(Q)) and (R, τ(R)) be any two fuzzy automata topo-
logical spaces. If the function f : (Q, τ(Q)) −→ (R, τ(R)) is a somewhat fuzzy au-
tomata continuous, one-to-one and onto function and if FAcl(1Q−µ) = 1Q, for any
fuzzy automata subsystem µ ∈ IQ and µ 6= 0Q in (Q, τ(Q)), then FAcl(1R−f(µ)) =
1R in (R, τ(R)).

Proof. Let 0Q 6= µ ∈ IQ be a fuzzy automata subsystem in (Q, τ(Q)) such that
FAcl(1Q − µ) = 1Q. Since f is a somewhat fuzzy automata continuous function
and (1Q−µ) is a generating fuzzy automata subsystem in (Q, τ(Q)), by Proposition

www.SID.ir


www.SID.ir

Arh
ive

 of
 S

ID

On Somewhat Fuzzy Automata Continuous Functions in Fuzzy Automata Topological Spaces 169

3.10, f(1Q − µ) is a generating fuzzy automata subsystem in (R, τ(R)). That is,
FAcl(f(1Q − µ)) = 1R. Since f is one-to-one and onto, f(1Q − µ) = 1R − f(µ).
Then FAcl(1R − f(µ)) = 1R. Hence FAcl(1R − f(µ)) = 1R in (R, τ(R)). �

Proposition 3.12. Let M = (Q,X, δ), M1 = (Q1, X, δ1) and M2 = (Q2, X, δ2) be
any three fuzzy automata and let (Q, τ(Q)), (Q1, τ(Q1)) and (Q2, τ(Q2)) be any
three fuzzy automata topological spaces and pi : (Q1, τ(Q1)) × (Q2, τ(Q2)) −→
(Qi, τ(Qi)) (i = 1, 2) be any fuzzy automata continuous functions. If f : (Q, τ(Q))→
(Q1, τ(Q1))× (Q2, τ(Q2)) is a somewhat fuzzy automata continuous function, then
pi ◦ f is also a somewhat fuzzy automata continuous function for i = 1, 2.

Proof. For any fuzzy automata open subsystem 0Qi
6= µ ∈ IQi in (Qi, τ(Qi)) for

i = 1, 2, we have (pi ◦ f)−1(µ) = f−1(p−1i (µ)). Now p−1i (µ) 6= 0Q1×Q2 ( since µ 6=
0Qi

). Since pi is a fuzzy automata continuous function, p−1i (µ) is a fuzzy automata
open subsystem and since f is a somewhat fuzzy automata continuous function,
there exists a fuzzy automata open subsystem 0Q 6= λ ∈ IQ in (Q, τ(Q)) such that

λ ≤ f−1(p−1i (µ)). That is, λ ≤ (pi ◦f)−1(µ). Hence FAcl(1Q−(pi ◦f)−1(µ)) 6= 1Q.
Therefore, pi ◦f is a somewhat fuzzy automata continuous function for i = 1, 2. �

Proposition 3.13. Let M1 = (Q1, X, δ1),M2 = (Q2, X, δ2) and M3 = (Q3, X, δ3)
be any three fuzzy automata and let (Q1, τ(Q1)), (Q2, τ(Q2)) and (Q3, τ(Q3)) be
any three fuzzy automata topological spaces. If f : (Q1, τ(Q1)) −→ (Q2, τ(Q2)) is a
somewhat fuzzy automata continuous function and g : (Q2, τ(Q2)) −→ (Q3, τ(Q3))
is a fuzzy automata continuous function, then g ◦ f : (Q1, τ(Q1)) −→ (Q3, τ(Q3))
is a somewhat fuzzy automata continuous function.

Proof. Let 0Q3 6= λ ∈ IQ3 be a fuzzy automata open subsystem in (Q3, τ(Q3)).
Since g is a fuzzy automata continuous function, g−1(λ) 6= 0Q2 is a fuzzy automata
open subsystem in (Q2, τ(Q2)). Since f is a somewhat fuzzy automata continu-
ous function and g−1(λ) is a fuzzy automata open subsystem in (Q2, τ(Q2)) and
g−1(λ) 6= 0Q2

, there exists a fuzzy automata open subsystem 0Q1
6= µ ∈ IQ1

in (Q1, τ(Q1)) such that µ ≤ f−1(g−1(λ)). That is, µ ≤ (g ◦ f)−1(λ). Hence
FAcl(1Q1 − ((g ◦ f)−1)(λ)) 6= 1Q1 . Therefore, g ◦ f is a somewhat fuzzy automata
continuous function. �

Proposition 3.14. Let M1 = (Q1, X, δ1),M2 = (Q2, X, δ2) and M3 = (Q3, X, δ3)
be any three fuzzy automata and let (Q1, τ(Q1)), (Q2, τ(Q2)) and (Q3, τ(Q3)) be any
three fuzzy automata topological spaces. If f : (Q1, τ(Q1)) −→ (Q2, τ(Q2)) is a fuzzy
automata continuous function and g : (Q2, τ(Q2)) −→ (Q3, τ(Q3)) is a somewhat
fuzzy automata continuous function, then g ◦ f : (Q1, τ(Q1)) −→ (Q3, τ(Q3)) is a
somewhat fuzzy automata continuous function.

Proof. Let 0Q3
6= λ ∈ IQ3 be a fuzzy automata open subsystem in (Q3, τ(Q3)).

Since g is a somewhat fuzzy automata continuous function, there exists a fuzzy
automata open subsystem 0Q2

6= µ ∈ IQ2 in (Q2, τ(Q2)) such that µ ≤ g−1(λ).
Then, f−1(µ) ≤ f−1(g−1(λ)). That is, f−1(µ) ≤ (g ◦ f)−1(λ). Again since f is
a fuzzy automata continuous function and µ is a fuzzy automata open subsystem
in (Q2, τ(Q2)), f−1(µ) is a fuzzy automata open subsystem in (Q1, τ(Q1)). Hence
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FAcl(1Q1 − ((g ◦ f)−1)(λ)) 6= 1Q1 . Therefore, g ◦ f is a somewhat fuzzy automata
continuous function. �

Proposition 3.15. Let M1 = (Q1, X, δ1),M2 = (Q2, X, δ2) and M3 = (Q3, X, δ3)
be any three fuzzy automata and let (Q1, τ(Q1)), (Q2, τ(Q2)) and (Q3, τ(Q3)) be
any three fuzzy automata topological spaces. If f : (Q1, τ(Q1)) −→ (Q2, τ(Q2)) and
g : (Q2, τ(Q2)) −→ (Q3, τ(Q3)) are somewhat fuzzy automata continuous functions,
then g ◦ f : (Q1, τ(Q1)) −→ (Q3, τ(Q3)) is a somewhat fuzzy automata continuous
function.

Proof. Let 0Q3 6= λ ∈ IQ3 be a fuzzy automata open subsystem in (Q3, τ(Q3)).
Since g is a somewhat fuzzy automata continuous function, there exists a fuzzy
automata open subsystem 0Q2

6= µ ∈ IQ2 in (Q2, τ(Q2)) such that µ ≤ g−1(λ).
Then, f−1(µ) ≤ f−1(g−1(λ)). That is f−1(µ) ≤ (g ◦ f)−1(λ). Again since f is a
somewhat fuzzy automata continuous function and µ 6= 0Q2

is a fuzzy automata
open subsystem in (Q2, τ(Q2)), there exists a fuzzy automata open subsystem 0Q1 6=
γ ∈ IQ1 in (Q1, τ(Q1)) such that γ ≤ f−1(µ). This implies that 0Q1

6= γ ≤
f−1(µ) ≤ f−1(g−1(λ)) = (g ◦ f)−1(λ). Hence FAcl(1Q1

− ((g ◦ f)−1)(λ)) 6= 1Q1
.

Therefore, g ◦ f is a somewhat fuzzy automata continuous function. �

Proposition 3.16. Let M1 = (Q1, X, δ1),M2 = (Q2, X, δ2), N1 = (R1, X, µ1)
and N2 = (R2, X, µ2) be any four fuzzy automata and let (Q1, τ(Q1)), (Q2, τ(Q2)),
(R1, τ(R1)) and (R2, τ(R2)) be any four fuzzy automata topological spaces. If f1 :
(Q1, τ(Q1)) −→ (R1, τ(R1)) and f2 : (Q2, τ(Q2)) −→ (R2, τ(R2)) are somewhat
fuzzy automata continuous, then the product f1×f2 : (Q1, τ(Q1))×(Q2, τ(Q2)) −→
(R1, τ(R1))× (R2, τ(R2)) is also somewhat fuzzy automata continuous.

Proof. Let η = λ × µ be a fuzzy automata open subsystem in (R1, τ(R1)) ×
(R2, τ(R2)) where λ ∈ IR1 and µ ∈ IR2 are the fuzzy automata open subsystems in
(R1, τ(R1)) and (R2, τ(R2)) respectively. Then (f1×f2)−1(η) = (f1×f2)−1(λ×µ) =
f−11 (λ) × f−12 (µ). Since f1 is somewhat fuzzy automata continuous, there ex-
ists a fuzzy automata open subsystem 0Q1

6= δ ∈ IQ1 in (Q1, τ(Q1)) such that

δ ≤ f−11 (λ) with f−11 (λ) 6= 0Q1
. And since f2 is somewhat fuzzy automata contin-

uous, there exists a fuzzy automata open subsystem 0Q2 6= γ ∈ IQ2 in (Q2, τ(Q2))

such that γ ≤ f−12 (µ) with f−12 (µ) 6= 0Q2
. Now, δ × γ ≤ f−11 (λ) × f−12 (µ) =

(f1 × f2)−1(λ × µ) and δ × γ 6= 0Q1×Q2 . Hence δ × γ is a fuzzy automata
open subsystem in (Q1, τ(Q1)) × (Q2, τ(Q2)). Moreover, (δ × γ) 6= 0Q1×Q2 is a
fuzzy automata open subsystem in (Q1, τ(Q1)) × (Q2, τ(Q2)) such that (δ × γ) ≤
(f−11 (λ) × f−12 (µ)) = (f1 × f2)−1(λ × µ) = (f1 × f2)−1(η) 6= 0Q1×Q2

. Hence
FAcl(1Q1×Q2

− (f1 × f2)−1(η)) 6= 1Q1×Q2
. Therefore, f1 × f2 is somewhat fuzzy

automata continuous. �

Lemma 3.17. Let f : Q −→ R be a function. The graph function g : Q −→ Q×R
of f is defined by g(q) = (q, f(q)). If λ ∈ IQ is a fuzzy subset of Q and µ ∈ IR is
a fuzzy subset of R, then g−1(λ× µ) = λ ∧ f−1(µ).
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Proof. For each q ∈ Q,

g−1(λ× µ)(q) = (λ× µ)g(q)

= (λ× µ)(q, f(q))

= (λ ∧ f−1(µ))(q).

Hence g−1(λ× µ) = λ ∧ f−1(µ). �

Proposition 3.18. Let (Q, τ(Q)) and (R, τ(R)) be any two fuzzy automata topo-
logical spaces. If f : (Q, τ(Q)) −→ (R, τ(R)) is a function and the graph function
g : Q −→ Q × R of f is somewhat fuzzy automata continuous, then f is also
somewhat fuzzy automata continuous.

Proof. Let 0R 6= λ ∈ IR be a fuzzy automata open subsystem in (R, τ(R)). Then
1Q × λ is a fuzzy automata open subsystem in (Q, τ(Q)) × (R, τ(R)). Since g is
somewhat fuzzy automata continuous, then FAcl(1Q − (g−1(1Q × λ))) 6= 1Q. But
f−1(λ) = 1Q ∧ f−1(λ) = g−1(1Q × λ). This implies that FAcl(1Q − f−1(λ)) 6= 1Q.
Therefore, f is somewhat fuzzy automata continuous. �

Definition 3.19. Let (Q, τ(Q)) be any fuzzy automata topological space and A be
an ordinary subset of Q. Then τ(Q)/A = { λ/A : λ ∈ τ(Q) } is a fuzzy automata
topology on A and is called the induced or relative fuzzy automata topology. The
pair (A, τ(Q)/A) is called a fuzzy automata subspace of (Q, τ(Q)).

Proposition 3.20. Let (Q, τ(Q)) and (R, τ(R)) be any two fuzzy automata topo-
logical spaces and f : (Q, τ(Q)) −→ (R, τ(R)) be a somewhat fuzzy automata con-
tinuous function. Let A ⊂ Q be such that 1A ∧ λ 6= 0A for all λ 6= 0Q where λ
is a fuzzy automata open subsystem in (Q, τ(Q)). Let τ(Q)/A be an induced fuzzy
automata topology on A. Then the function f/A : (A, τ(Q)/A) −→ (R, τ(R)) is
somewhat fuzzy automata continuous.

Proof. Let λ ∈ IR be a fuzzy automata open subsystem in (R, τ(R)) such that
f−1(λ) 6= 0Q. Since f is somewhat fuzzy automata continuous, there exists a fuzzy
automata open subsystem 0Q 6= η ∈ IQ in (Q, τ(Q)) such that η ≤ f−1(λ). Now
clearly, η/A is a fuzzy automata open subsystem in (A, τ(Q)/A) and η/A 6= 0A,
since 1A∧λ 6= 0A for all λ where λ is a fuzzy automata open subsystem in (Q, τ(Q)).
Also, (f/A)−1(λ)(x) = λ(f/A)(x) = λf(x) ≥ η(x) = (η/A)(x), for all x ∈ A. That
is, η/A ≤ (f/A)−1(λ). Hence FAcl(1A − (f/A)−1(λ)) 6= 1A. This shows that f/A
is somewhat fuzzy automata continuous. �

Proposition 3.21. Let (Q, τ(Q)) and (R, τ(R)) be any two fuzzy automata topo-
logical spaces and let Q = A ∪ B where A and B are such that 1A and 1B are the
fuzzy automata open subsystems in (Q, τ(Q)). Let f : (Q, τ(Q)) −→ (R, τ(R)) be
such that f/A : (A, τ(Q)/A) −→ (R, τ(R)) and f/B : (B, τ(Q)/B) −→ (R, τ(R))
are somewhat fuzzy automata continuous. Then f is somewhat fuzzy automata
continuous.

Proof. Let λ ∈ IR be a fuzzy automata open subsystem in (R, τ(R)) such that
f−1(λ) 6= 0Q. Now, consider (f/A)−1(λ) and (f/B)−1(λ). Since f−1(λ) 6= 0Q,
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atleast (f/A)−1(λ) 6= 0A or (f/B)−1(λ) 6= 0B . Then by assumption, there ex-
ists a fuzzy automata open subsystem 0Q 6= γ ∈ IQ in (Q, τ(Q)) such that
γ/A ≤ (f/A)−1(λ) and γ/B ≤ (f/B)−1(λ). Then γ ≤ f−1(λ). Hence FAcl(1Q −
f−1(λ)) 6= 1Q. This proves that f is somewhat fuzzy automata continuous. �

4. On Somewhat Fuzzy Automata Open Functions

In this section, the concept of somewhat fuzzy automata open functions is in-
troduced. Some interesting properties and characterizations are discussed with
necessary examples.

Definition 4.1. Let M = (Q,X, δ) and N = (R,X, µ) be any two fuzzy automata
and let (Q, τ(Q)) and (R, τ(R)) be any two fuzzy automata topological spaces. Any
function f : (Q, τ(Q)) −→ (R, τ(R)) is said to be a fuzzy automata open function if
for each fuzzy automata open subsystem λ ∈ IQ in (Q, τ(Q)) the image f(λ) ∈ IR
is a fuzzy automata open subsystem in (R, τ(R)).

Definition 4.2. Let M = (Q,X, δ) and N = (R,X, µ) be any two fuzzy automata
and let (Q, τ(Q)) and (R, τ(R)) be any two fuzzy automata topological spaces. A
function f : (Q, τ(Q)) −→ (R, τ(R)) is said to be a somewhat fuzzy automata
open function if λ ∈ τ(Q) and λ 6= 0Q implies that there exists a fuzzy automata
open subsystem µ ∈ IR in (R, τ(R)) such that µ 6= 0R and µ ≤ f(λ). That is,
FAcl(1R − f(λ)) 6= 1R.

It is clear from Definition 4.1 and Definition 4.2 that every fuzzy automata open
function is a somewhat fuzzy automata open function. But the converse is not true
as shown in Example 4.3.

Example 4.3. Let M = (Q,X, δ) be a fuzzy automaton, where Q = R = X =
{0, 1, 2, .....} and δ : Q×X ×Q→ [0, 1] is given by

δ(q, 0, p) =

{
1, if q = p
0, if q 6= p

with δ(q, x0, p) = 0.8, δ(q, x0, q) = 0.6, δ(p, x0, p) = 0.65, δ(p, x0, q) = 0.7 for
fixed x0 ∈ X(x0 6= 0) and for fixed p, q ∈ Q. For other p, q ∈ Q and x ∈ X,
δ(p, x, q) = 0. Let λ1 ∈ IQ and λ2 ∈ IR be defined as follows : λ1(p) = 0.5,
λ1(q) = 0.7, λ2(p) = 0.3, λ2(q) = 0.4. and for other r ∈ Q, λ1(r) = 0, λ2(r) = 0.
The Kuratowski saturated fuzzy closure operator c : IQ → IQ on Q is defined as

c(λ)(q) =
∨{∨

{λ(p) ∧ δ(p, x, q) : x ∈ X} : p ∈ Q
}
, for all λ ∈ IQ and q ∈ Q.

It is clear that c(λ1) = λ1, c(λ2) = λ2, c(0Q) = 0Q and c(1Q) = 1Q.
Then, τ(Q) = { 0Q, 1Q, λ1 } and τ(R) = { 0R, 1R, λ2 } are the respective fuzzy
automata topologies on Q and R and the ordered pairs (Q, τ(Q)) and (R, τ(R)) are
the fuzzy automata topological spaces respectively. Let f : (Q, τ(Q)) → (R, τ(R))
be a fuzzy automata identity function. Now, for λ1 ∈ τ(Q) and λ1 6= 0Q there
exists a fuzzy automata open subsystem λ2 ∈ τ(R) such that λ2 6= 0R and λ2 ≤
f(λ1) = λ1. Hence f is a somewhat fuzzy automata open function. But
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f(λ1) = λ1 is not a fuzzy automata open subsystem in (R, τ(R)). Therefore, f is
not a fuzzy automata open function.

Proposition 4.4. Let f : (Q, τ(Q)) −→ (R, τ(R)) be a one-to-one and onto func-
tion. Then the following conditions are equivalent:

(i) f is a somewhat fuzzy automata open function.
(ii) If λ ∈ IQ is a fuzzy automata closed subsystem in (Q, τ(Q)) such that

f(λ) 6= 1R, then there exists a fuzzy automata closed subsystem µ 6= 1Q and
µ ∈ IQ in (Q, τ(Q)) such that f(λ) ≤ µ.

Proof. (i)⇒(ii). Let f be a somewhat fuzzy automata open function and µ ∈ IQ
be a fuzzy automata closed subsystem in (Q, τ(Q)) such that f(µ) 6= 1R. Clearly
1Q − µ ∈ τ(Q) and f(1Q − µ) = 1R − f(µ) 6= 0R (since f is one-to-one and onto).
By (i), there exists a fuzzy automata open subsystem 0R 6= η ∈ IR in (R, τ(R))
such that η ≤ f(1Q − µ). Then η ≤ 1R − f(µ) and hence f(µ) ≤ 1R − η. Clearly
1R − η is a fuzzy automata closed subsystem in (R, τ(R)). By taking 1R − η = λ,
f(µ) ≤ λ.
(ii)⇒(i). Let 0Q 6= µ ∈ IQ be a fuzzy automata open subsystem in (Q, τ(Q))
such that f(µ) 6= 0R. Then, 1Q − µ is a fuzzy automata closed subsystem in
(Q, τ(Q)) such that f(1Q − µ) = 1R − f(µ) 6= 1R (since f is one-to-one and onto,
f(1Q − µ) = 1R − f(µ)). By hypothesis, there exists a fuzzy automata closed
subsystem 1R 6= λ ∈ IR in (R, τ(R)) such that λ ≥ f(1Q−µ). Then λ ≥ 1R−f(µ).
Hence 1R−λ ≤ f(µ), where 1R−λ is a fuzzy automata open subsystem in (R, τ(R)).
Therefore, f is a somewhat fuzzy automata open function. �

Proposition 4.5. Let f : (Q, τ(Q)) −→ (R, τ(R)) be a function from (Q, τ(Q))
into (R, τ(R)). Then the following conditions are equivalent:

(i) f is a somewhat fuzzy automata open function.
(ii) If γ ∈ IR is a generating fuzzy automata subsystem in (R, τ(R)), then

f−1(γ) ∈ IQ is a generating fuzzy automata subsystem in (Q, τ(Q)).

Proof. (i)⇒(ii). Let f be a somewhat fuzzy automata open function from (Q, τ(Q))
into (R, τ(R)) and γ ∈ IR be a generating fuzzy automata subsystem in (R, τ(R)).
Suppose that f−1(γ) is not a generating fuzzy automata subsystem in (Q, τ(Q)).
Then there exists a fuzzy automata closed subsystem 0Q 6= η ∈ IQ in (Q, τ(Q)) such
that f−1(γ) < η < 1Q. This implies that 1Q−η < 1Q−f−1(γ) = f−1(1R−γ). Now,
1Q−η is a fuzzy automata open subsystem in (Q, τ(Q)). Since η < 1Q, 1R−γ 6= 0R.
Since f is a somewhat fuzzy automata open function, there exists a fuzzy automata
open subsystem 0R 6= µ ∈ IR in (R, τ(R)) such that µ ≤ f(1Q − η) and hence
µ ≤ f(f−1(1R − γ)) ≤ 1R − γ implies γ < 1R − µ < 1R and 1R − µ is a fuzzy
automata closed subsystem in (R, τ(R)), implies that γ is not a generating fuzzy
automata subsystem in (R, τ(R)). This is a contradiction. Hence f−1(γ) is a
generating fuzzy automata subsystem in (Q, τ(Q)).
(ii)⇒(i). Let 0Q 6= λ ∈ IQ be a fuzzy automata open subsystem in (Q, τ(Q)) and
f(λ) 6= 0R. Suppose there exists no fuzzy automata open subsystem 0R 6= µ ∈ IR
in (R, τ(R)) such that µ ≤ f(λ). That is, FAcl(1R − f(λ)) = 1R. This means that
1R−f(λ) is a generating fuzzy automata subsystem in (R, τ(R)). Thus f−1(f(1Q−
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λ)) is a generating fuzzy automata subsystem in (Q, τ(Q)). Now f−1(1R− f(λ)) =
1Q−f−1(f(λ)) ≤ 1Q−λ < 1Q (since λ 6= 1Q). That is, FAcl(f−1(1R−f(λ))) < 1Q.
Then, FAcl(f−1(1R− f(λ))) < FAcl(1Q) = 1Q. This implies that FAcl(f−1(1R−
f(λ))) 6= 1Q. This is a contradiction to the fact that f−1(1R−f(λ)) is a generating
fuzzy automata subsystem in (Q, τ(Q)). Hence FAcl(1R − f(λ)) 6= 1R. Therefore,
f is a somewhat fuzzy automata open function. �

Proposition 4.6. Let (Q, τ(Q)) and (R, τ(R)) be any two fuzzy automata topologi-
cal spaces. If the function f : (Q, τ(Q)) −→ (R, τ(R)) is a somewhat fuzzy automata
open function and if FAcl(1R−λ) = 1R, for any fuzzy automata subsystem λ 6= 0R
in (R, τ(R)), then FAcl(1Q − f−1(λ)) = 1Q in (Q, τ(Q)).

Proof. Let 0R 6= λ ∈ IR be a fuzzy automata subsystem in (R, τ(R)) such that
FAcl(1R − λ) = 1R. Since f is a somewhat fuzzy automata open function and
1R − λ is a generating fuzzy automata subsystem in (R, τ(R)), by Proposition
4.4, f−1(1R − λ) is a generating fuzzy automata subsystem in (Q, τ(Q)). That
is FAcl(f−1(1R − λ)) = 1Q. Since f−1(1R − λ) = 1Q − (f−1(λ)). This implies
FAcl(f−1(1R − λ)) = FAcl(1Q − f−1(λ)) = 1Q. Hence FAcl(1Q − f−1(λ)) = 1Q
in (Q, τ(Q)). �

Proposition 4.7. Let (Q1, τ(Q1)), (Q2, τ(Q2)) and (Q3, τ(Q3)) be any three fuzzy
automata topological spaces. If f : (Q1, τ(Q1)) −→ (Q2, τ(Q2)) is a fuzzy automata
open function and g : (Q2, τ(Q2)) −→ (Q3, τ(Q3)) is a somewhat fuzzy automata
open function, then g ◦ f : (Q1, τ(Q1)) −→ (Q3, τ(Q3)) is a somewhat fuzzy au-
tomata open function.

Proof. Let 0Q1
6= λ ∈ IQ1 be a fuzzy automata open subsystem in (Q1, τ(Q1)).

Since f is a fuzzy automata open function, f(λ) ∈ IQ2 is a fuzzy automata open
subsystem in (Q2, τ(Q2)). Since g is a somewhat fuzzy automata open function
and f(λ) is a fuzzy automata open subsystem in (Q2, τ(Q2)) and f(λ) 6= 0Q2

,
there exists a fuzzy automata open subsystem µ ∈ IQ3 in (Q3, τ(Q3)) such that
µ ≤ g(f(λ)). That is µ ≤ (g◦f)(λ). Hence FAcl(1Q3

−(g◦f)(λ)) 6= 1Q3
. Therefore,

g ◦ f is a somewhat fuzzy automata open function. �

Proposition 4.8. Let (Q1, τ(Q1)), (Q2, τ(Q2)) and (Q3, τ(Q3)) be any three fuzzy
automata topological spaces. If f : (Q1, τ(Q1)) −→ (Q2, τ(Q2)) and g : (Q2, τ(Q2))
−→ (Q3, τ(Q3)) are somewhat fuzzy automata open functions, then g◦f : (Q1, τ(Q1))
−→ (Q3, τ(Q3)) is a somewhat fuzzy automata open function.

Proof. Let 0Q1
6= µ ∈ IQ1 be a fuzzy automata open subsystem in (Q1, τ(Q1)).

Since f is a somewhat fuzzy automata open function, there exists a fuzzy automata
open subsystem 0Q2

6= λ ∈ IQ2 in (Q2, τ(Q2)) such that λ ≤ f(µ). Then g(λ) ≤
g(f(µ)). That is, g(λ) ≤ (g ◦ f)(µ). Since g is a somewhat fuzzy automata open
function and λ is a fuzzy automata open subsystem in (Q2, τ(Q2)) and g(λ) 6= 0Q3 ,
there exists a fuzzy automata open subsystem γ ∈ IQ3 in (Q3, τ(Q3)) such that
γ ≤ g(λ). This implies that γ ≤ g(λ) ≤ (g ◦ f)(λ). Hence FAcl(1Q3

− (g ◦ f)(µ)) 6=
1Q3

. Therefore, g ◦ f is a somewhat fuzzy automata open function. �
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Proposition 4.9. Let (Q, τ(Q)) and (R, τ(R)) be any two fuzzy automata topolog-
ical spaces and Q = A ∪ B where A and B are subsets of Q and f : (Q, τ(Q)) −→
(R, τ(R)) is a function such that f/A : (A, τ(Q)/A) −→ (R, τ(R)) and f/B :
(B, τ(Q)/B) −→ (R, τ(R)) are somewhat fuzzy automata open, then f is somewhat
fuzzy automata open.

Proof. Let λ ∈ IQ be a fuzzy automata open subsystem in (Q, τ(Q)) such that
f(λ) 6= 0R. Now, consider (f/A)(λ) and (f/B)(λ). Since f(λ) 6= 0R, at least
(f/A)(λ) 6= 0A or (f/B)(λ) 6= 0B . In particular (f/A)(λ) 6= 0A. Therefore by as-
sumption, there exists a fuzzy automata open subsystem 0R 6= γ ∈ IR in (R, τ(R))
such that γ/A ≤ (f/A)(λ). That is, γ ≤ f(λ). Hence FAcl(1R − f(λ)) 6= 1R. This
proves that f is somewhat fuzzy automata open. �

5. Functions and Fuzzy Automata Resolvable Spaces, Fuzzy Automata
Irresolvable Spaces

In this section, the concepts of fuzzy automata resolvable and fuzzy automata
irresolvable spaces are introduced. Some interesting properties are discussed.

Definition 5.1. A fuzzy automata topological space (Q, τ(Q)) is called a fuzzy
automata resolvable space if there exists a generating fuzzy automata subsystem
0Q 6= λ ∈ IQ in (Q, τ(Q)) such that FAint(λ) = 0Q. Otherwise (Q, τ(Q)) is called
a fuzzy automata irresolvable space.

Example 5.2. Let M = (Q,X, δ) be a fuzzy automaton where Q = X =
{0, 1, 2, ......} and δ : Q×X ×Q→ [0, 1] is given by

δ(q, 0, p) =

{
1, if q = p
0, if q 6= p

with δ(q, x0, p) = 0.7, δ(q, x0, q) = 0.65, δ(p, x0, p) = 0.6, δ(p, x0, q) = 0.75 for fixed
x0 ∈ X(x0 6= 0) and for fixed p, q ∈ Q. For other p, q ∈ Q and x ∈ X, δ(p, x, q) = 0.
Let λ ∈ IQ be defined as follows : λ(p) = 0.6, λ(q) = 0.7 and for other r ∈ Q,
λ(r) = 0. The Kuratowski saturated fuzzy closure operator c : IQ → IQ on Q is
defined as

c(λ)(q) =
∨{∨

{λ(p) ∧ δ(p, x, q) : x ∈ X} : p ∈ Q
}
, for all λ ∈ IQ and q ∈ Q.

It is clear that c(λ) = λ, c(0Q) = 0Q and c(1Q) = 1Q. Then, τ(Q) = { 0Q, 1Q, λ }
is a fuzzy automata topology on Q and hence the ordered pair (Q, τ(Q)) is a
fuzzy automata topological space. Let the fuzzy automata subsystem µ ∈ IQ

be defined as follows: µ(p) = 0.5, µ(q) = 0.5 and for other r ∈ Q, µ(r) = 0. Then
FAcl(µ) = 1Q. Therefore, µ is a generating fuzzy automata subsystem in (Q, τ(Q))
and FAint(µ) = 0Q. Hence (Q, τ(Q)) is a fuzzy automata resolvable space.

Example 5.3. Let M = (Q,X, δ) be a fuzzy automaton where Q = X =
{0, 1, 2, ......} and δ : Q×X ×Q→ [0, 1] is given by

δ(q, 0, p) =

{
1, if q = p
0, if q 6= p
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with δ(q, x0, p) = 0.7, δ(q, x0, q) = 0.65, δ(p, x0, p) = 0.6, δ(p, x0, q) = 0.55 for fixed
x0 ∈ X(x0 6= 0) and for fixed p, q ∈ Q. For other p, q ∈ Q and x ∈ X, δ(p, x, q) = 0.
Let λ ∈ IQ be defined as follows : λ(p) = 0.3, λ(q) = 0.4 and for other r ∈ Q,
λ(r) = 0. The Kuratowski saturated fuzzy closure operator c : IQ → IQ on Q is
defined as

c(λ)(q) =
∨{∨

{λ(p) ∧ δ(p, x, q) : x ∈ X} : p ∈ Q
}
, for all λ ∈ IQ and q ∈ Q.

It is clear that c(λ) = λ, c(0Q) = 0Q and c(1Q) = 1Q. Then, τ(Q) = { 0Q, 1Q, λ }
is a fuzzy automata topology on Q and hence the ordered pair (Q, τ(Q)) is a
fuzzy automata topological space. For every generating fuzzy automata subsystem
µ ∈ IQ in (Q, τ(Q)), FAint(µ) 6= 0Q. Therefore, (Q, τ(Q)) is a fuzzy automata
irresolvable space.

Proposition 5.4. Let (Q, τ(Q)) be any fuzzy automata topological space. If a
fuzzy automata topological space (Q, τ(Q)) has a pair of generating fuzzy automata
subsystems µ1 ∈ IQ and µ2 ∈ IQ such that µ1 ≤ (1Q − µ2), then (Q, τ(Q)) is a
fuzzy automata resolvable space.

Proof. Let the fuzzy automata topological space (Q, τ(Q)) has a pair of generating
fuzzy automata subsystems µ1 ∈ IQ and µ2 ∈ IQ such that µ1 ≤ (1Q−µ2). Then to
prove (Q, τ(Q)) is a fuzzy automata resolvable space. Assume the contrary. Then,
for all generating fuzzy automata subsystems µi ∈ IQ where i ∈ J in (Q, τ(Q)) we
have FAcl(1Q − µi) 6= 1Q. In particular, FAcl(1Q − µ2) 6= 1Q implies that there
exists a fuzzy automata closed subsystem 0Q 6= λ ∈ IQ in (Q, τ(Q)) such that
1Q − µ2 < λ < 1Q. Then, µ1 ≤ (1Q − µ2), implies that µ1 ≤ (1Q − µ2) < λ < 1Q
and hence µ1 < λ < 1Q. This implies FAcl(1 − µ1) 6= 1Q.This is a contradiction.
Hence FAcl(1Q−µi) = 1Q implies FAint(µi) = 0Q Therefore, (Q, τ(Q)) is a fuzzy
automata resolvable space. �

Proposition 5.5. A fuzzy automata topological space (Q, τ(Q)) is a fuzzy automata
irresolvable space if and only if FAcl(1Q − µ) 6= 1Q, for each generating fuzzy
automata subsystem µ ∈ IQ in (Q, τ(Q)).

Proof. Let (Q, τ(Q)) be a fuzzy automata irresolvable space. Then, for each gener-
ating fuzzy automata subsystem µ ∈ IQ in (Q, τ(Q)), we have FAint(µ) 6= 0Q and
hence 1Q − FAcl(1Q − µ) = FAint(µ) 6= 0Q. Thus FAcl(1Q − µ) 6= 1Q, for each
generating fuzzy automata subsystem µ in (Q, τ(Q)).

Conversely, let FAcl(1Q − µ) 6= 1Q, for each generating fuzzy automata subsys-
tem µ ∈ IQ in (Q, τ(Q)). Suppose that (Q, τ(Q)) is a fuzzy automata resolvable
space. Then, there exists generating fuzzy automata subsystem 0Q 6= µ ∈ IQ in
(Q, τ(Q)) such that FAint(µ) = 0Q and hence 1Q−FAcl(1Q−µ) = FAint(µ) = 0Q
implies FAcl(1Q−µ) = 1Q, a contradiction to the hypothesis. Therefore, (Q, τ(Q))
is a fuzzy automata irresolvable space. �

Proposition 5.6. Let (Q, τ(Q)) and (R, τ(R)) be any two fuzzy automata topo-
logical spaces. If the function f : (Q, τ(Q)) −→ (R, τ(R)) is a somewhat fuzzy
automata open function and if (Q, τ(Q)) is a fuzzy automata irresolvable space,
then (R, τ(R)) is a fuzzy automata irresolvable space.
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Proof. Let 0R 6= λ ∈ IR be an arbitrary fuzzy automata subsystem in (R, τ(R))
such that FAcl(λ) = 1R. It is enough to prove that FAcl(1R−λ) 6= 1R. Assume the
contrary. That is, FAcl(1R−λ) = 1R. Since f is a somewhat fuzzy automata open
function, by Proposition 4.6, FAcl(1Q − f−1(λ)) = 1Q in (Q, τ(Q)) and by Propo-
sition 4.5, f−1(λ) is a generating fuzzy automata subsystem in (Q, τ(Q)), for a gen-
erating fuzzy automata subsystem λ in (R, τ(R)). Thus FAcl(1Q − f−1(λ)) = 1Q
for a generating fuzzy automata subsystem f−1(λ) in (Q, τ(Q)). But this is a
contradiction to (Q, τ(Q)), being a fuzzy automata irresolvable space in which
FAcl(1Q − µ) 6= 1Q, for each generating fuzzy set µ in (Q, τ(Q)) ( by Proposition
5.5). Hence our assumption that FAcl(1R − λ) = 1R, for a generating fuzzy au-
tomata subsystem λ in (R, τ(R)), does not hold. Hence FAcl(1R − λ) 6= 1R, for
a generating fuzzy automata subsystem λ in (R, τ(R)). Therefore, (R, τ(R)) is a
fuzzy automata irresolvable space. �

Proposition 5.7. Let (Q, τ(Q)) and (R, τ(R)) be any two fuzzy automata topo-
logical spaces. If the function f : (Q, τ(Q)) −→ (R, τ(R)) is a somewhat fuzzy
automata continuous and one-to-one function and if (R, τ(R)) is a fuzzy automata
irresolvable space, then (Q, τ(Q)) is a fuzzy automata irresolvable space.

Proof. Let 0Q 6= λ ∈ IQ be an arbitrary fuzzy automata subsystem in (Q, τ(Q))
such that FAcl(λ) = 1Q. It is enough to prove that FAcl(1Q − λ) 6= 1Q. Assume
the contrary. That is, FAcl(1Q − λ) = 1Q. Since f is a somewhat fuzzy automata
continuous and one-to-one function, by Proposition 3.11, FAcl(1R− f(λ)) = 1R in
(R, τ(R)) and by Proposition 3.10, f(λ) is a generating fuzzy automata subsystem
in (R, τ(R)), for a generating fuzzy automata subsystem λ in (Q, τ(Q)). Thus,
FAcl(1R−f(λ)) = 1R for a generating fuzzy automata subsystem f(λ) in (R, τ(R)).
But this is a contradiction to (R, τ(R)), being a fuzzy automata irresolvable space
in which FAcl(1Q − µ) 6= 1Q, for each generating fuzzy automata subsystem µ in
(Q, τ(Q)) ( by Proposition 5.5). Hence our assumption that FAcl(1Q − λ) = 1Q,
for a generating fuzzy automata subsystem λ in (Q, τ(Q)), does not hold. Hence
FAcl(1Q− λ) 6= 1Q, for each generating fuzzy automata subsystem λ in (Q, τ(Q)).
Therefore, (Q, τ(Q)) is a fuzzy automata irresolvable space. �

6. Conclusion

The concepts of somewhat fuzzy automata continuous functions, somewhat fuzzy
automata open functions between fuzzy automata topological spaces are introduced
and studied. Also fuzzy automata resolvable spaces and fuzzy automata irresolv-
able spaces are introduced and studied. Some results concerning fuzzy automata
functions that preserve the fuzzy automata resolvable spaces and fuzzy automata
irresolvable spaces in the context of images and pre-images are obtained in this
paper.
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ON SOMEWHAT FUZZY AUTOMATA CONTINUOUS 

FUNCTIONS IN FUZZY AUTOMATA TOPOLOGICAL SPACES 
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  پیوسته خودکار حدوداً فازي در فضاهاي توپولوژیکی خودکار فازي  توابع

  

در این مقاله ، مفاهیمی چون توابع پیوسته خودکار حدوداً فازي و توابع باز خودکار حدوداً فازي . دهیچک

در فضاهاي توپولوژیکی خودکار فازي معرفی شده اند و برخی از خواص جالب آنها مورد بررسی قرار 

و فضاهاي حل ناپذیر خودکار فازي  . در این ارتباط ، مفاهیم فضاهاي  حل پذیرخودکار فازي  گرفته اند

  نیز معرفی شده اند و خواص آنها مورد مطالعه قرار گرفته اند. 
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